2006年长宁初三年级教育质量检测数学试卷
2006年上海长宁区中考模拟试卷及答案

金山区2005学年第一学期期末考试初三年级化学试卷(供一期课改教材学校使用 时间:90分钟 满分:100分) 2006年1月相对原子质量:C-12 H-1 N-14O-16 Cl-35.5 K-39 一、 填表:(26%)1.根据下表所给的原子结构示意图,回答有关内容(元素类别是指金属元素、非金属元素、稀有气体元素):2. 在下列空格内写出相应的物质名称或化学式及类别(物质类别指单质、氧化物、酸、碱、学校________________________ 班级_________________ 姓名___________________学号__________- - - - - - - - - - - - - - - - - - -- -密 ○- - - - - - - - - - - - - - -- - - - - - - -封 ○- - - - - - - - - - - - - - - -- - - - - - -线 ○- - - - - - - - - - - - - - - - -二、选择题(20%)1.日常生活中的下列现象,属于物理变化的是…………………………………………()A、蜡烛燃烧B、刷了石灰水的墙壁,过一段时间会变白C、钢铁生锈D、灯泡通电会发光发热2.人类历史上较早用实验证明空气是由氮气和氧气组成的科学家是………………()A、舍勒B、侯德榜C、拉瓦锡D、道尔顿3.某地发现一温泉,经分析该温泉属硅酸盐矿泉,对心脏、高血压等有良好的医疗保健作用。
已知硅酸盐中硅元素化合价为+4价,则硅酸的化学式为…………………()A、Na2SiO3B、H2SiO3C、H4SiO3D、H2SiO44.下列物质属于纯净物的是……………………………………………………………()A、空气B、石灰石C、消毒酒精D、胆矾5.下列符号只表示微观意义,不表示宏观意义的是…………………………………()A、H2B、HC、2HD、He6.依次进行如下操作,①将CO2通入盛有紫色石蕊试液的试管中,②加热试管,③在试管中加入适量的活性炭,溶液颜色变化的顺序是………………………………()A、红色→无色→紫色B、红色→紫色→无色C、无色→紫色→红色D、紫色→红色→无色7.下列物质中属于乳浊液的是…………………………………………………………()A、牛奶B、石灰乳C、澄清石灰水D、泥水8.下列情况不会对环境造成污染的是…………………………………………………()A、化工厂的废水,只要无色透明,就可任意排放B、为了防止工业生产中排出的二氧化硫污染空气,将排气烟囱加高C、种草植树,增加城市绿化面积D、涨潮时,将废渣、垃圾等倒入河道中让水冲走9.“神舟六号”载人飞船飞行成功,表明我国载人航天技术有了重大突破。
2023-2024学年上海市长宁区九年级上学期期末考数学试卷(中考一模)含详解

2023学年第一学期初三数学教学质量调研试卷(考试时间:100分钟满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤一、选择题(本大题共6题,每题4分,满分24分)【每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂】1.在Rt ABC △中,90C ∠=︒,如果,A BC a α∠==,那么AC 等于()A.tan a α⋅ B.cot a α⋅ C.sin aαD.cos a α2.下列关于抛物线223y x x =+-的描述正确的是()A.该抛物线是上升的B.该抛物线是下降的C.在对称轴的左侧该抛物线是上升的D.在对称轴的右侧该抛物线是上升的3.已知点C 在线段AB 上,且满足2AC BC AB =⋅,那么下列式子成立的是()A.512AC BC -= B.12AC AB -= C.512BC AB -= D.352BC AC =4.已知a为非零向量,且3a b =-,那么下列说法错误的是()A.13a b=-B.3b a = C.30b a += D.b a∥5.如果点D 、E 分别在△ABC 的两边AB 、AC 上,下列条件中可以推出DE ∥BC 的是()A.23AD BD =,23CE AE = B.23AD AB =,23DE BC =C.32AB AD =,12EC AE = D.43AB AD =,43AE EC =6.已知在ABC 与A B C ''' 中,点D D '、分别在边BC B C ''、上,(点D 不与点B C 、重合,点D ¢不与点B C ''、重合).如果ADC △与'''A D C △相似,点A D 、分别对应点A ''、D ,那么添加下列条件可以证明ABC 与A B C ''' 相似的是()①AD A D ''、分别是ABC 与A B C ''' 的角平分线;②AD A D ''、分别是ABC 与A B C ''' 的中线;③AD A D ''、分别是ABC 与A B C ''' 的高.A.①②B.②③C.①③D.①②③二、填空题(本大题共12题,每题4分,满分48分)【在答题纸相应题号后的空格内直接填写答案】7.如果53(,x y x y =均不为零),那么():x x y +的值是____________.8.式子2cos30tan45︒-︒的值是______.9.已知线段a=3cm ,b=4cm ,那么线段a 、b 的比例中项等于_______cm .10.若两个相似三角形的周长比为2:3,则它们的面积比是_________.11.如图,////AB CD EF ,如果:2:3,10AC CE BF ==,那么线段DF 的长是__________.12.二次函数()2f x ax bx c =++图像上部分点的坐标满足下表:那么()5f -=____________.x⋯3-2-1-01⋯()f x ⋯3-2-3-6-11-⋯13.已知向量a 与单位向量e 方向相反,且3a = ,那么a =____________________(用向量e 的式子表示)14.已知一条斜坡的长度为13米,高度为5米,那么该斜坡的坡度为____________.15.如图,在ABC 中,AD 是BC 上的高,且5,3BC AD ==,矩形EFGH 的顶点F G 、在边BC 上,顶点E H 、分别在边AB 和AC 上,如果2EH EF =,那么EH =____________.16.如图,在ABC 中,90BAC ∠=︒,点G 是ABC 的重心,联结GA GC 、,如果533AC AG ==,,那么GCA ∠的余切值为____________.17.我们把顶角互补的两个等腰三角形叫做友好三角形.在ABC 中,10AB AC ==,点D E 、都在边BC 上,5AD AE ==,如果ABC 与ADE V 是友好三角形,那么BC 的长为____________.18.如图,在矩形ABCD 中,8,4,AD AB AC ==是对角线,点P 在边BC 上,联结DP ,将DPC △沿着直线DP 翻折,点C 的对应点Q 恰好落在ADC △内,那么线段BP 的取值范围是____________.三、解答题(本大题共7题,满分78分)【将下列各题的解答过程,做在答题纸的相应位置上】19.已知抛物线2241y x x =++.(1)用配方法把2241y x x =++化为2()y a x m k =++的形式,并写出该抛物线的开口方向、对称轴和顶点坐标;(2)如果将该抛物线上下平移,得到新的抛物线经过点()1,4,求平移后的抛物线的顶点坐标.20.在平行四边形ABCD 中,点E 是AD 的中点,BE AC 、相交于点F .(1)设,AB a AD b == ,试用a b 、表示EF ;(2)先化简,再求作:()()3222a b a b +-+(直接作在图中).21.如图,在四边形ABCD 中,90BAD AC BC DE AC ∠=⊥︒⊥,,,垂足为点43E AC DE ==,,.(1)求:AD AB 的值;(2)BD 交AC 于点F ,如果1tan 2BAC ∠=,求CF 的长.22.小明为测量河对岸大楼的高度,利用量角器和铅锤自制了一个简易测角仪,如图1所示.测量方法:如图2,人眼在P 点观察所测物体最高点C ,量角器零刻度线上A B 、两点均在视线PC 上,将铅锤悬挂在量角器的中心点O .当铅锤静止时,测得视线PC 与铅垂线OD 所夹的角为α,且此时的仰角为β.实践操作:如图3,小明利用上述工具测量河对岸垂直于水平地面的大楼EF 的高度.他先站在水平地面的点H 处,视线为GE ,此时测角仪上视线与铅垂线的夹角为60︒;然后他向前走10米靠近大楼站在水平地面的点R 处,视线为QE ,此时测角仪上视线与铅垂线的夹角为45︒.问题解决:(1)请用含α的代数式表示仰角β;(2)如果GH QR EF 、、在同一平面内,小明的眼晴到水平地面的距离为1.6米,求大楼EF 的高度.(结果保留根号)23.如图,在ABC 中,点,D E 分别是,BC AD 的中点,且AD AC =,连接CE 并延长交AB 于点F .(1)证明:ABC ECD ∽;(2)证明:4BF EF =.24.已知抛物线212y x bx c =++与x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C ,直线6y x =--经过点A 与点C .(1)求抛物线的表达式;(2)点P 在线段AC 下方的抛物线上,过点P 作BC 的平行线交线段AC 于点D ,交y 轴于点E .①如果C F 、两点关于抛物线的对称轴对称,联结DF ,当DF CF ⊥时,求PDF ∠的正切值;②如果:3:5PD DE =,求点P 的坐标.25.已知ABC 中,2ABC C ∠=∠,BG 平分ABC ∠,8AB =,163AG =,点D ,E 分别是边BC ,AC 上的点(点D 不与点B ,C 重合),且ADE ABC =∠∠,AD ,BG 相交于点F .(1)求BC 的长;(2)如图1,如果2BF CE =,求:BF GF 的值;(3)如果ADE V 是以AD 为腰的等腰三角形,求BD 长.2023学年第一学期初三数学教学质量调研试卷一、选择题(本大题共6题,每题4分,满分24分)【每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂】1.在Rt ABC △中,90C ∠=︒,如果,A BC a α∠==,那么AC 等于()A.tan a α⋅ B.cot a α⋅ C.sin aαD.cos a α【答案】B【分析】本题考查了锐角三角函数的定义的应用,主要考查学生的理解能力和计算能力.画出图形,根据锐角三角函数的定义求出即可.【详解】解:cot ACBCα=,∴cot cot AC BC a αα=⋅=⋅,故选:B .2.下列关于抛物线223y x x =+-的描述正确的是()A.该抛物线是上升的B.该抛物线是下降的C.在对称轴的左侧该抛物线是上升的D.在对称轴的右侧该抛物线是上升的【答案】D【分析】本题考查二次函数的性质、二次函数图象上点的坐标特征,根据抛物线的解析式和二次函数的性质,可以判断各个选项中的说法是否正确.【详解】解:∵抛物线223y x x =+-,∴20a =>,在对称轴左侧,该抛物线下降,在对称轴右侧上升,故选项A 、B 、C 均错误,不符合题意,选项D 正确,符合题意;故选:D .3.已知点C 在线段AB 上,且满足2AC BC AB =⋅,那么下列式子成立的是()A.12AC BC -= B.12AC AB -= C.12BC AB -= D.32BC AC =【答案】B【分析】本题考查黄金分割、解一元二次方程,把AB 当作已知数求出AC ,求出BC ,再分别求出各个比值,根据结果判断即可.【详解】解:令AC x =,()0AB a a =>,则BC a x =-,2AC BC AB =⋅可变形为()2x a x a =-⋅,整理,得220x ax a +-=,()2224150a a a ∆=-⨯⨯-=>,解得22a a x -±-±==,边长为正数,∴)122a a x --+==,)(1322a a a x a -=-=,即512AC AB -=⋅,352BC AB =⋅,∴23525112A ABC BC -⋅=+==,故A选项错误;122ABACABAB -==,故B选项正确;3322BC B B ABA A -==⋅,故C选项错误;251B ABC AC =-==,故D 选项错误;故选B .4.已知a 为非零向量,且3a b =- ,那么下列说法错误的是()A.13a b=-B.3b a= C.30b a += D.b a∥【答案】C【分析】本题考查了实数与向量相乘,向量的相关定义,根据其运算法则进行计算即可求解.【详解】解:A .∵a 为非零向量,且3a b =- ,∴13a b =- ,正确,故本选项不符合题意;B .∵a 为非零向量,且3a b =-,∴3b a = ,正确,故本选项不符合题意;C .∵a 为非零向量,且3a b =- ,∴30b a += ,原说法错误,故本选项符合题意;D .∵a 为非零向量,且3a b =-,∴b a ∥,故本选项不符合题意;故选:C .5.如果点D 、E 分别在△ABC 的两边AB 、AC 上,下列条件中可以推出DE ∥BC 的是()A.23AD BD =,23CE AE = B.23AD AB =,23DE BC =C.32AB AD =,12EC AE = D.43AB AD =,43AE EC =【答案】C【分析】根据各个选项的条件只要能推出AD AE AB AC =或AB ACAD AE=,即可得出△ADE ∽△ABC ,推出∠ADE=∠B ,根据平行线的判定推出即可.【详解】解:A 、根据23AD BD =和23CE AE =,不能推出DE ∥BC ,故本选项错误;B 、根据23AD AB =和23DE BC =,不能推出DE ∥BC ,故本选项错误;C 、∵12EC AE =,∴32AC AE =,∵32AB AD =,∴AB AD =ACAE∵∠A=∠A ,∴△ABC ∽△ADE ,∴∠ADE=∠B ,∴DE ∥BC ,故本选项正确;D 、根据AB AD =43和AE EC =43,不能推出DE ∥BC ,故本选项错误;故选C .【点睛】本题考查了相似三角形的性质和判定,平行线的判定的应用,解题的关键是推出△ABC ∽△ADE .6.已知在ABC 与A B C ''' 中,点D D '、分别在边BC B C ''、上,(点D 不与点B C 、重合,点D ¢不与点B C ''、重合).如果ADC △与'''A D C △相似,点A D 、分别对应点A ''、D ,那么添加下列条件可以证明ABC 与A B C ''' 相似的是()①AD A D ''、分别是ABC 与A B C ''' 的角平分线;②AD A D ''、分别是ABC 与A B C ''' 的中线;③AD A D ''、分别是ABC 与A B C ''' 的高.A.①② B.②③C.①③D.①②③【答案】A【分析】本题考查添加条件证明三角形相似,根据ADC △与'''A D C △相似,可得C C '∠=∠,DAC D A C '''∠=∠,AC DCA C D C ='''',再根据相似三角形的判定方法逐项判断即可.【详解】解: ADC △与'''A D C △相似,点A D 、分别对应点A ''、D ,∴C C '∠=∠,DAC D A C '''∠=∠,AC DCA C D C ='''',①AD A D ''、分别是ABC 与A B C ''' 的角平分线时:2BAC DAC ∠=∠,2B A C D A C ''''''∠=∠,∴BAC B A C '''∠=∠,又∴C C '∠=∠,∴ABC A B C '''∽ ;故①正确;②AD A D ''、分别是ABC 与A B C ''' 的中线时,2BC DC =,2B C D C ''''=,∴BC DCB C D C='''',∴AC BCA CBC ='''',又∴C C '∠=∠,∴ABC A B C '''∽ ;故②正确;③AD A D ''、分别是ABC 与A B C ''' 的高时,现有条件不足以证明ABC A B C '''∽ ,故③错误;综上可知,添加①或②时,可以证明ABC 与A B C ''' 相似故选A .二、填空题(本大题共12题,每题4分,满分48分)【在答题纸相应题号后的空格内直接填写答案】7.如果53(,x y x y =均不为零),那么():x x y +的值是____________.【答案】38【分析】本题考查的是比例的基本性质,令3x a =,则5y a =,然后化简整理即可求得.令3x a =,则5y a =,,()():33538x x y +=+=::,即可作答.【详解】解:根据题意,可令3x a =,则5y a =,因此,()():3353838x x y a a a a a +=+==:::.故答案为:38.8.式子2cos30tan45︒-︒的值是______.【答案】1-##1-【分析】直接将特殊角的三角函数值代入计算即可解答.【详解】解:32cos30tan452112︒-︒=⨯-=.1.【点睛】本题主要考查了三角函数的混合运算,牢记特殊角的三角函数值成为解答本题的关键.9.已知线段a=3cm ,b=4cm ,那么线段a 、b 的比例中项等于_______cm .【答案】【详解】试卷分析:根据线段的比例中项的定义列式计算即可得解.∵线段a=3cm ,b=4cm ,∴线段a 、b 的比例中项=cm .故答案为考点:比例线段.10.若两个相似三角形的周长比为2:3,则它们的面积比是_________.【答案】4∶9【详解】解:∵两个相似三角形的周长比为2:3,∴这两个相似三角形的相似比为2:3,∴它们的面积比是4:9.故答案为:4:9.考点:相似三角形的性质.11.如图,////AB CD EF ,如果:2:3,10AC CE BF ==,那么线段DF 的长是__________.【答案】6【分析】根据平行线分线段成比例定理结合比例解答即可.【详解】解:∵////AB CD EF ,:2:3,AC CE =∴23BD AC DF CE ==∵10BF =∴31065DF =⨯=.故答案为6.【点睛】本题考查平行线分线段成比例定理,灵活应用平行线分线段成比例定理列出比例式是解答本题的关键.12.二次函数()2f x ax bx c =++图像上部分点的坐标满足下表:那么()5f -=____________.x ⋯3-2-1-01⋯()f x ⋯3-2-3-6-11-⋯【答案】11-【分析】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了抛物线的对称性.利用表中数据确定抛物线的对称轴,然后根据抛物线的对称性求解.【详解】解:利用表中数据得抛物线的对称轴为直线2x =-,所以5x =-和1x =时的函数值相等,即当5x =-时,y 的值为11-.故答案为:11-.13.已知向量a 与单位向量e 方向相反,且3a = ,那么a = ____________________(用向量e 的式子表示)【答案】3e- 【分析】此题考查了平面向量的知识,由向量a 与单位向量e 方向相反,且3a = ,根据单位向量与相反向量的知识,即可求得答案.【详解】解:∵向量a 与单位向量e 方向相反,且3a = ,∴3a e =- .故答案为:3e - .14.已知一条斜坡的长度为13米,高度为5米,那么该斜坡的坡度为____________.【答案】1:2.4【分析】本题考查坡度,先利用勾勾股定理求出水平距离,然后利用公式计算是解题的关键.【详解】解:如图,13AB =,5AE =,∴12BE ===,∴斜坡的坡度为i :5:121:2.4AE BE ===,故答案为:1:2.4.15.如图,在ABC 中,AD 是BC 上的高,且5,3BC AD ==,矩形EFGH 的顶点F G 、在边BC 上,顶点E H 、分别在边AB 和AC 上,如果2EH EF =,那么EH =____________.【答案】3011【分析】本题考查了相似三角形的判定和性质及矩形的性质,通过四边形EFGH 为矩形推出EH BC ,因此AEH 与ABC 两个三角形相似,将AM 视为AEH 的高,可得出::AM AD EH BC =,再将数据代入计算是本题的关键.【详解】解:设AD 与EH 交于点M .∵四边形EFGH 是矩形,∴EH BC ,∴AEH ABC ∽,∵AM 和AD 分别是AEH 和ABC 的高,∴::AM AD EH BC =,DM EF =,∴3AM AD DM AD EF EF =-=-=-,∵2EH EF =,代入可得:3235EF EF -=,解得1511EF =,∴153021111EH =⨯=,故答案为:3011.16.如图,在ABC 中,90BAC ∠=︒,点G 是ABC 的重心,联结GA GC 、,如果533AC AG ==,,那么GCA ∠的余切值为____________.【答案】23【分析】延长CG 交AB 于F ,过G 作GD AC ⊥于G ,直线DG 交BC 于E ,证明DCE ACB ∽V V ,得CD DE AC AB =,同理可得DG CD CG GE AF AC CF BF ===,即有DE CG AB CF=,根据G 为ABC 的重心,3AC =,得2DE =,设tan ACG x ∠=,根据勾股定理列式计算53AG ===可得答案.【详解】解:过G 作GD AC ⊥于G ,延长CF 交AB 于点F ,如图:∵90GD AC BAC ⊥∠=︒,,∴DE AB ∥,90CDE BAC ==︒∠∠,∵DCE ACB ∠=∠,∴DCG ACF ∽,∴CD DG CG AC AF CF==,∵G 为ABC 的重心,∴23CD DG CG AC AF CF ===,∵3AC =,∴21CD AD ==,,∴2243DG AG AD =-=,则在直角三角形CDG 中,423tan 23DG ACG CD ∠===,故答案为:23【点睛】本题考查三角形的重心,涉及相似三角形的判定与性质,勾股定理,解直角三角形,难度较大,综合性较强,解题的关键是作辅助线,构造相似三角形.17.我们把顶角互补的两个等腰三角形叫做友好三角形.在ABC 中,10AB AC ==,点D E 、都在边BC 上,5AD AE ==,如果ABC 与ADE V 是友好三角形,那么BC 的长为____________.【答案】5【分析】本题考查相似三角形的判定和性质,等腰三角形的性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程.如图,过过点A 作AF BC ⊥于点F .证明FAD FBA ∽,推出51102AD AF DF AB FB AF ====,设DF EF x ==,这24AF x BF x ==,,构建方程求解.【详解】解:如图,过点A 作AF BC ⊥于点F .∵AB AC AD AE AF BC ==⊥,,,∴DF EF BF FC BAF CAF DAF EAF ==∠=∠∠=∠,,,,∵180BAC DAE ∠+∠=︒,∴22180BAF DAF ∠+∠=︒,∴90BAF DAF ∠+∠=︒,∵90BAF B ∠+∠=︒,∴∠=∠DAF B ,∵90AFD AFB ∠=∠=︒,∴FAD FBA ∽,∴51102AD AF DF AB FB AF ====,设DF EF x ==,这24AF x BF x ==,,∵222AB AF BF =+,∴()()2221024x x =+,∴5x =,∴285BC BF x ===故答案为:85.18.如图,在矩形ABCD 中,8,4,AD AB AC ==是对角线,点P 在边BC 上,联结DP ,将DPC △沿着直线DP 翻折,点C 的对应点Q 恰好落在ADC △内,那么线段BP 的取值范围是____________.【答案】46BP <<【分析】本题考查矩形的折叠问题,相似三角形的判定和性质等,计算出点Q 恰好落在AD 边上,以及点Q 恰好落在AC 边上时BP 的值,即可得出线段BP 的取值范围.【详解】解:当点C 的对应点Q 恰好落在AD 边上时,如图:由折叠的性质知CD QD =,CP QP =,90PQD PCD ∠=∠=︒,又 矩形ABCD 中,90ADC ∠=︒,∴四边形QDCP 是正方形,∴4CP CD AB ===,∴844BP BC CP AD CP =-=-=-=;当点C 的对应点Q 恰好落在AC 边上时,如图,由折叠的性质知PD CQ ⊥,∴90PDC ACD ∠+∠=︒,又 矩形ABCD 中,90ADC ∠=︒,∴90CAD ACD ∠+∠=︒,∴PDC CAD ∠=∠,又 90PCD CDA ∠=∠=︒,∴PDC CAD ∽,∴PC CD CD AD =,即448PC =,∴2PC =,∴826BP BC PC =-=-=,∴线段BP 的取值范围是46BP <<.故答案为:46BP <<.三、解答题(本大题共7题,满分78分)【将下列各题的解答过程,做在答题纸的相应位置上】19.已知抛物线2241y x x =++.(1)用配方法把2241y x x =++化为2()y a x m k =++的形式,并写出该抛物线的开口方向、对称轴和顶点坐标;(2)如果将该抛物线上下平移,得到新的抛物线经过点()1,4,求平移后的抛物线的顶点坐标.【答案】(1)该抛物线的开口向上,对称轴是直线=1x -,顶点坐标为(1,1)--(2)(1,4)--【分析】本题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,掌握二次函数的性质是解题的关键.(1)利用配方法把一般式化为顶点式,根据二次函数的性质写出抛物线的开口方向、对称轴和顶点坐标.(2)设平移后的抛物线解析式为22(1)y x =+1k -+,代入点(1,4),求得k 的值即可求解.【小问1详解】解:2241y x x =++()222121x x =++-+22(1)1x =+-,∴该抛物线的开口向上,对称轴是直线=1x -,顶点坐标为(1,1)--;【小问2详解】设平移后的抛物线解析式为22(1)y x =+1k -+,∵新的抛物线经过点(1,4),∴24221k =⨯-+,解得3k =-,∴平移后的抛物线解析式为22(1)4y x =+-,∴平移后的抛物线的顶点坐标是(1,4)--.20.在平行四边形ABCD 中,点E 是AD 的中点,BE AC 、相交于点F .(1)设,AB a AD b == ,试用a b 、表示EF;(2)先化简,再求作:()()3222a b a b +-+ (直接作在图中).【答案】(1)1136a b - (2)12a b -- ,见详解【分析】本题主要考查平行四边形的性质、平行线分线段成比例定理和平面向量,()1根据题意得AD BC ∥和BC AD =,进一步得到AE EF BC FB =,则1132EF DA AB ⎛⎫=+ ⎪⎝⎭,代入向量即可.()2化解得12a b -- ,将对应线段代入得到()AB AE -+ ,过点E 作EG AB ∥,则AE BG = ,1=2a b GA -- ,连接GA 即可.【小问1详解】解:∵四边形ABCD 为平行四边形,∴AD BC ∥,BC AD =,∴AFE CFB ∽,则AE EF BC FB=,∵点E 是AD 的中点,∴12AE AD =,则12EF FB =,∴()1111123332EF FB EB EA AB DA AB ⎛⎫===+=+ ⎪⎝⎭ ,∵,AB a AD b == ,∴1111=3236EF b a a b ⎛⎫=-+- ⎪⎝⎭ .【小问2详解】()()3312223222a b a b a b a b a b +-+=+--=-- ,∵,AB a AD b == ,∴()1122a b AB AD AB AE AB AE --=--=--=-+ ,过点E 作EG AB ∥,则AE BG = ,∴()()1===2a b AB AE AB BG AG GA --=-+-+- ,如图,GA即为所求.21.如图,在四边形ABCD 中,90BAD AC BC DE AC ∠=⊥︒⊥,,,垂足为点43E AC DE ==,,.(1)求:AD AB 的值;(2)BD 交AC 于点F ,如果1tan 2BAC ∠=,求CF 的长.【答案】(1)3:4(2)1CF =【分析】本题考查了相似三角形的性质与判定、解直角三角形:(1)根据90BAD AC BC DE AC ∠=⊥︒⊥,,,得90AED ACB ∠=∠=︒,EAD ABC ∠=∠,证明AED BCA △∽△,结合相似三角形的性质,得:AD AB 的值;(2)根据相似三角形的性质且1tan 2BAC ∠=,得2BC =, 1.5AE =,再证明BCF DEF ∽,列式代数计算,即可作答.【小问1详解】解:∵90BAD AC BC DE AC∠=⊥︒⊥,,∴90AED ACB ∠=∠=︒,90BAC DAE BAC ABC∠+∠=︒=∠+∠∴EAD ABC ∠=∠,∴AED BCA△∽△则::3:4AD AB DE AC ==【小问2详解】解:如图:∵AED BCA △∽△,1tan 2BAC ∠=,∴11242BC BC BAC ADE AC ==∠=∠,,,∴2BC =,∴1tan 32AE AE ADE ED ∠===,得 1.5AE =,∴4 1.5 2.5EC AC AE =-=-=,∵AC BC DE AC ⊥⊥,,∴90BCF DEF ∠=∠=︒,∵BFC DFE ∠=∠,∴BCF DEF ∽,即BC CF DE EF=,∴23 2.5CF CF =-,解得1CF =.22.小明为测量河对岸大楼的高度,利用量角器和铅锤自制了一个简易测角仪,如图1所示.测量方法:如图2,人眼在P 点观察所测物体最高点C ,量角器零刻度线上A B 、两点均在视线PC 上,将铅锤悬挂在量角器的中心点O .当铅锤静止时,测得视线PC 与铅垂线OD 所夹的角为α,且此时的仰角为β.实践操作:如图3,小明利用上述工具测量河对岸垂直于水平地面的大楼EF 的高度.他先站在水平地面的点H 处,视线为GE ,此时测角仪上视线与铅垂线的夹角为60︒;然后他向前走10米靠近大楼站在水平地面的点R 处,视线为QE ,此时测角仪上视线与铅垂线的夹角为45︒.问题解决:(1)请用含α的代数式表示仰角β;(2)如果GH QR EF 、、在同一平面内,小明的眼晴到水平地面的距离为1.6米,求大楼EF 的高度.(结果保留根号)【答案】(1)90βα=︒-(2)()6.6米【分析】本题考查了解直角三角形−仰角俯角问题,列代数式,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.(1)延长OD 交PK 于L ,根据题意可得:OL PK ⊥,从而可得:90OLP ∠=︒,然后利用直角三角形的两个锐角互余进行计算,即可解答;(2)延长GQ 交EF 于点M ,根据题意可得: 1.6GM EF GH QR MF ⊥===,米,10GQ HR ==米,然后设EM x =米,分别在Rt EGM 和Rt EQM 中,利用锐角三角函数的定义求出GM 和QM 的长,从而列出关于x 的方程,进行计算即可解答.【小问1详解】解:如图:延长OD 交PK 于L ,由题意得:OL PK ⊥,∴90OLP ∠=︒,∵POD α∠=,∴9090OPL POD α∠=︒-∠=︒-,∴90βα=︒-;【小问2详解】解:延长GQ 交EF 于点M ,由题意得: 1.610GM EF GH QR MF GQ HR ⊥=====,m,m ,设EM x =米,在Rt EGM 中,60GEM ∠=︒,∴tan60GM EM =⋅︒=(米),在Rt EQM 中,45QEM ∠=︒,∴45QM EM tan x =⋅︒=(米),∵GM QM GQ -=,10x -=解得:5x =∴()5EM =米,∴()5 1.6 6.6EF EM FM =+=+=米,∴大楼EF 的高度为()6.6+米.23.如图,在ABC 中,点,D E 分别是,BC AD 的中点,且AD AC =,连接CE 并延长交AB 于点F .(1)证明:ABC ECD ∽;(2)证明:4BF EF =.【答案】(1)见解析(2)见解析【分析】本题主要考查相似三角形的判定和性质,等腰三角形的判定和性质:(1)根据等边对等角可得EDC ACB ∠=∠,再证这组夹角的两边成比例即可;(2)作DH CF ∥交AB 于点H ,可证BHD BFC ∽,AFE AHD ∽,推出12HD BD FC BC ==,12FE AE HD AD ==,进而可得4FC EF =,再根据ABC DCE ∽得出FBC FCB ∠=∠,推出CF BF =,等量代换可证4BF EF =.【小问1详解】证明: AD AC =,∴ADC ACD ∠=∠,即EDC ACB ∠=∠,又 点,D E 分别是,BC AD 的中点,∴12DC CB =,1122ED AD AC ==,∴12DC ED CB AC ==,∴AC ED CB DC=,∴ABC ECD ∽;【小问2详解】证明:如图,作DH CF ∥交AB 于点H ,DH CF ∥,∴BHD BFC ∠=∠,BDH BCF ∠=∠;AFE AHD ∠=∠,AEF ADH ∠=∠,∴BHD BFC ∽,AFE AHD ∽,又 点,D E 分别是,BC AD 的中点,∴12HD BD FC BC ==,12FE AE HD AD ==,∴2FC HD =,2HD FE =,∴4FC EF =,由(1)得ABC ECD ∽,∴ABC ECD ∠=∠,即FBC FCB ∠=∠,∴CF BF =,∴4BF EF =.24.已知抛物线212y x bx c =++与x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C ,直线6y x =--经过点A 与点C .(1)求抛物线的表达式;(2)点P 在线段AC 下方的抛物线上,过点P 作BC 的平行线交线段AC 于点D ,交y 轴于点E .①如果C F 、两点关于抛物线的对称轴对称,联结DF ,当DF CF ⊥时,求PDF ∠的正切值;②如果:3:5PD DE =,求点P 的坐标.【答案】(1)21262y x x =+-(2)①13②1532⎛⎫- ⎪⎝⎭,【分析】(1)先由一次函数求出()()6060A C --,,,,再运用待定系数法求二次函数解析式,即可作答.(2)①依题意,得DF CF ⊥,PE BC PDF ACB ∠=∠ ,,根据角的等量代换,即PDF OCB ∠=∠,先求出点B 的坐标.PDF ∠的正切值等于21tan 63OB OCB OC ∠===;②先表达出21062E p p ⎛⎫-- ⎪⎝⎭,,22111168484D p p p p ⎛⎫-+-- ⎪⎝⎭,,21262P p p p ⎛⎫+- ⎪⎝⎭,,23438EN p p -=,3EM p =-再根据相似三角形的性质与判定,列式化简计算,即可作答.【小问1详解】解:∵直线6y x =--经过点A 与点C则当06x y ==-,;06y x ==-,∴()()6060A C --,,,∴60186c b c =-⎧⎨=-+⎩,,解得62c b =-⎧⎨=⎩21262y x x =+-;【小问2详解】解:①如图:∵()()6060A C --,,,,且C F 、两点关于抛物线21262y x x =+-的对称轴对称,∴6F c y y ==-,221222b x a =-=-=-⨯则4F x =-∵DF CF⊥∴DF y ∥轴则FDC OCA∠=∠∵过点P 作BC 的平行线交线段AC 于点D ,交y 轴于点E .∴PE BC PDF ACB∠=∠ ,则PDF OCB∠=∠∵21262y x x =+-x 轴交于A B 、两点(点A 在点B 的左侧),∴210262x x =+-∴6x =-,2x =∴()20B ,∵PDF OCB∠=∠则PDF ∠的正切值等于21tan 63OB OCB OC ∠===;②设21262P p p p ⎛⎫+- ⎪⎝⎭,,BC 的解析式为y mx n =+∴把()()0620C B -,,,代入y mx n =+得602n m n=-⎧⎨=+⎩解得63n m =-⎧⎨=⎩∵过点P 作BC 的平行线交线段AC 于点D ,交y 轴于点E∴设PE 的解析式为3y x b=+把21262P p p p ⎛⎫+- ⎪⎝⎭,代入3y x b =+得2162p p b =--∴21623y x p p =--+令0x =,2162p p y =--即21062E p p ⎛⎫-- ⎪⎝⎭,当261362y x y x p p =--⎧⎪⎨=+--⎪⎩解得21184x p p +=-则把21184x p p +=-代入21623y x p p =--+得211684y p p =--∴22111168484D p p p p ⎛⎫-+-- ⎪⎝⎭,∵过点P 作PM y ⊥轴,过点D 作DN y ⊥轴,∴EDN EPM∽∴EN DE EM EP=∵:3:5PD DE =∴58EN EM =∶∶∵21062E p p ⎛⎫-- ⎪⎝⎭,,22111168484D p p p p ⎛⎫-+-- ⎪⎝⎭,,21262P p p p ⎛⎫+- ⎪⎝⎭,∴222111336628484EN p p p p p p ⎛⎫=-----=- ⎪⎝⎭,2211626322EM p p p p p ⎛⎫=---+-=- ⎪⎝⎭∴23358348p p p --=∶∶解得1103p p ==-,∵点P 在线段AC 下方的抛物线上,∴10p =(舍去)∴3p =-.把3p =-代入21262y p p =+-∴19241592362222y =⨯-⨯-=-=∴点P 的坐标1532⎛⎫- ⎪⎝⎭,【点睛】本题考查了二次函数的几何综合,相似三角形的判定与性质,解直角三角形,勾股定理等,综合性强,难度较大,正确掌握相关性质内容是解题的关键.25.已知ABC 中,2ABC C ∠=∠,BG 平分ABC ∠,8AB =,163AG =,点D ,E 分别是边BC ,AC 上的点(点D 不与点B ,C 重合),且ADE ABC =∠∠,AD ,BG 相交于点F .(1)求BC 的长;(2)如图1,如果2BF CE =,求:BF GF 的值;(3)如果ADE V 是以AD 为腰的等腰三角形,求BD 长.【答案】(1)10(2)278(3)325【分析】(1)证明ABG CAB ∽ ,再根据相似三角形的性质,等腰三角形的判定与性质,即可得到答案;(2)过点F 作FM AB ⊥于点M ,FN BD ⊥于点N ,先证明ABF DCE ∽ ,进一步求得6BD =,接着利用面积法证明4=3AF DF ,设4AF x =,证明FAG EAD ∽ ,求得3221FG =,即可进一步求得答案;(3)先证明CDE CBG ∽ ,可得32CD CE =,再利用等腰三角形的判定与性质以及平行线的性质逐步求得43FG =,最后证明AFG ADE ∽ ,进一步求出125CE =,即可得到答案.【小问1详解】BG 平分ABC ∠,22ABC ABG GBC ∴∠=∠=∠,2ABC C ∠=∠ ,ABG C GBC ∴∠=∠=∠,BAG CAB ∠=∠ ,ABG ACB ∴∽ ,AB AG BG AC AB CB ∴==,16838BG AC CB ∴==,12AC ∴=,32BC BG =,16201233CG AC AG ∴=-=-=,C GBC ∠=∠ ,203BG CG ∴==,3102BC BG ∴==;【小问2详解】过点F 作FM AB ⊥于点M ,FN BD ⊥于点N ,ADE ABC ∠=∠ ,ADE CDE ABC FAB ∠+∠=∠+∠,FAB EDC ∴∠=∠,又ABG C ∠=∠ ,ABF DCE ∴∽ ,AB AF BF CD DE CE∴==,2BF CE = ,142CD AB ∴==,2AF DE =,1046BD BC CD ∴=-=-=,BG 平分ABC ∠,FM FN ∴=,142132ABF DBF AB FM S AF S DF BD FN ⋅∴===⋅ ,设4AF x =,则3DF x =,7AD x =,2DE x =,2AGF GBC C C ABC ∠=∠+∠=∠=∠ ,ADE ABC =∠∠,AGF ADE ∴∠=∠,又FAG EAD ∠=∠ ,FAG EAD ∴∽ ,AG FG AD ED ∴=,16372FG x x ∴=,3221FG ∴=,367BF BG FG ∴=-=,3627732821BF GF ∴==;【小问3详解】ADE 是以AD 为腰的等腰三角形,AD AE ∴=,ADE AED ∴∠=∠,AGF ADE ∠=∠ ,AGF AED ∴∠=∠,BG DE ∴∥,CDE CBG ∴∽ ,CE CD CG CB ∴=,20103CE CD ∴=,32CD CE ∴=,BG DE ∥ ,AFG ADE ∴∠=∠,GBC EDC ∠=∠,AFG AGF ∴∠=∠,163AF AG ∴==,FAB EDC ∠=∠ ,ABG GBC C ∠=∠=∠,FAB ABG ∴∠=∠,EDC C ∠=∠,163BF AF ∴==,CE DE =,43FG BG BF ∴=-=,BG DE ∥ ,AFG ADE ∴∽ ,AG FG AE DE ∴=,1643312CE CE ∴=-,解得125CE =,3321225BD BC CD CE ∴=-=-=.【点睛】本题考查了相似三角形的判定与性质,等腰三角形的判定与性质,平行线的判定与性质,利用面积比求线段比等知识与方法,灵活运用相关知识与方法是解答本题的关键.。
2006年宁夏中考数学试卷 (2答案

宁夏回族自治区2006年课程改革实验区初中毕业暨高中阶段招生数学参考答案及评分标准A 卷B 卷17、解:x 531-x -≤ )x 3(51x -≤- ……………………2分4x ≤∴ ……………………………4分解集在数轴上表示正确.………………6分18、原式化简得:a2………………………………………4分当222,2===原式时a . ……………………6分注:直接将a 的值代入求值正确的,相应得分.19、解法一:解得: x =-1 …………………2分解得: y=2 ……………4分 ∴ x -y =-3. ………………………6分解法二:解得: 2x -2y=-6 …………… 4分 ∴ x -y =-3. ………………………6分 20、解: (1)48 ………………………2分 (2)12 ………………………3分 0.25………………………4分 (3)70.5~80.5……………6分四、解答题(6+6+8+8+10+10=48分)21、命题一:条件:AB 是圆的直径,D 是BC 的中点.…………………1分 结论:AB=AC .…………………………………2分 证明:连接AD . …………………………3 分 ∵AB 是圆的直径, ∴∠ADB=90°, 即AD ⊥BC . ……………………… 4分 ∵D 是BC 的中点, ∴BD=DC ,……………………………5分 ∴AB=AC .……………………………6分 命题二:条件:AB 是圆的直径,AB=AC . 结论:D 是BC 的中点.命题三:条件:AB=AC ,D 是BC 的中点. 结论:AB 是圆的直径. 注:命题二、三得分与命题一相同.22、解:∵Rt △ABC 中,∠C=90°,∠A=30°, ∴∠ABC=60°. ……………………………………………1分 ∵BD 是∠ABC 的平分线, ∴∠ABD=∠DBC=30°,………………………………………2分 ∴∠ABD=∠A , ∴BD=AD=20.…………………………………………………3分 在Rt △DBC 中,BD BC DBC cos =∠,…………………… 4分∴3102320cos =⨯=∠⋅=DBC BD BC ..…………6分23、解:(1)小强制定的游戏不公平. …………1分32128)(==小强获胜P ..……………………………………4分(2)修改方案:将数字6改成奇数.…………………………8分24、解:(1)D.……………………………………2分 (2)B. ……………………………………4分 (3)AE=1×t=t ,AH=6-t ,36t 12t 2t)6(t 222222+-=-+=+== AH AE EH S .………………6分∵ 183)2(t 2+-=S .当运动3秒钟时,S 有最小值为18cm 2.………… 8分 注:(3)解法二:AE=1×t=t ,AH=6-t ,36t 12t 24t)6(t 21622+-=⨯--= S .…………6分 322122a b t =⨯--=-=当时,1824)12(36244a b -4ac 22=⨯--⨯⨯==最小S .当运动3秒钟时,S 有最小值为18cm 2.………… 8分25、解:(1)y=[5×400×2+x×680×1+(5-x)×250×2.6]×1.4 ∴y = 42x+ 10150.……………………………………………3分 (2(3)根据函数关系式得出:采用种植方案四:小麦种5亩,玉米种4亩,黄豆种1亩,可使总销售价最高,最高价为10318元. …………………………7分(4)总成本c 与x 的函数关系式为:c=5×200+x×130+(5-x)×50=80x+1250.总利润p 与x 的函数关系式为:p= y -c= 42x+10150-(80x+1250)= -38x+8900.根据函数关系式得出:采用种植方案一:小麦种5亩,玉米种1亩,黄豆种4亩,可使总利润最大,最大利润为8862元. ………………………10分26、解:(1)过点B 作BC ⊥OA 于C ,则OC=1,BC=2,在Rt △BCO 中,522=+=OC BC BO .………………………1分又△ABO 绕点O 旋转90°, 所以点B 所经过的路径长是 25180590180R n πππ=⋅=⋅=l .……………2分 (2)由△BCO ∽△ABO 或利用三角函数求得 AO=5. ……………………3分又OA 1=OA ,点A 1在y 轴的正半轴上,所以点A 1的坐标为(0,5).………4分 通过旋转或三角形全等求得点B 1的坐标为(2,1).…………………………6分 (3)由旋转可知52OB OA AB B A 2211=-==.…………7分证得△B 1MA 1∽△BMO ,…………………………………………9分 ∴2552OB B A OM M A 111===.……………………………10分 注:(3)解法二: 求得直线BB 1的解析式35x 31y +-=.……………8分∴点M 的坐标为(0,35),………………………………………9分∴21=OMM A .…………………………………10分。
2006年中考全真模拟试卷参考答案-中考数学试题、初中数学中考试卷、模拟题、复习资料-初中数学试卷-

2006年中考全真模拟试卷参考答案-中考数学试题、初中数学中考试卷、模拟题、复习资料-初中数学试卷-试卷下载---------------------------------------2006年中考全真模拟试卷(一)参考答案一、选择题题号123456789101112答案BACABDDDBCCB二、填空题13、2.4×101114、略(所举事件应在抛两枚骰子的情境下,且不应出现“不可能”等判断性词语)15、2016、∠ACE的度数和线段BD的长17、9018、17元三、解答下列各题19、原式====当x=时原式=20、∠如图见右图∠四边形OCED为菱形证明:∠DE∠OC,CE∠OD∠四边形OCED为平行四边形∠四边形ABCD为矩形∠AC=BD,OA=OC=1/2AC,OB=OD=1/2BD∠OC=OD(2分)∠四边形OCED为平行四边形且OC=OD∠四边形OCED为菱形21、∠68%,74%,78%,69%,70.5%,70.1%∠当n很大时,频率将会接近70%∠获得可乐的概率为30%,圆心角约为360º×30%=108º∠模拟实验方案:在一不透明口袋内放置红球3个、蓝球7个,搅均后从中随机摸出一个球,摸出红球获得可乐,摸出蓝球获得铅笔. (本方案仅供参考,其他方案酌情加分)22、∠直线BE垂直平分线段AC;C为BD中点(或C为半圆圆心),点A放在角的一边上,角的另一边与半圆相切,BE经过角的顶点.∠∠BE垂直平分AC∠EA=EC∠EA=EC且EB∠AC∠∠AEB=∠BEC∠EF为半圆切线∠CF∠EF∠CB∠EB,CF∠EF且CB=CF∠∠BEC=∠CEF∠∠AEB=∠BEC=∠CEF23、∠设抛物线解析式为y=a(x-14)2+32/3∠经过点M(30,0)∠a=-1/24∠y=-1/24(x-14)2+32/3当x=0时y=5/2∠y=2.5>2.44∠球不会进球门∠当x=2时,y=14/3∠y=14/3>2.75∠守门员不能在空中截住这次吊射.24、图形不唯一,符合要求即可.25、∠5n+21-8(n-1)>05n+21-8(n-1)<5解得8<n<29/3∠n为整数∠n=9∠物资总吨数=5×9+21=66吨∠设载重量5吨的汽车辆数为x, 载重量8吨的汽车辆数为y, 则5x+8y=66,200x+300y=2600解得x=10y=2∠载重量5吨的汽车10辆, 载重量8吨的汽车2辆.∠设汽车总辆数为y,载重量5吨的汽车辆数为x(x≥0)则y=x+(66-5x)/8=(3x+66)/8由函数解析式知当x最小且使3x+66为8的倍数时y最小∠当x最小=2时y最小=926、(1) (2) D(3) 符合条件的点M存在, 或2006年中考全真模拟试卷(二)参考答案一、选择题题号123456789101112答案BCCABACCCDBA二、填空题13、x≥314、a=12或-12, b为一个完全平方数15、略(形式为y=,k<0)16、∠A=∠D或∠ABC=∠DCB或AC=DB17、内切18、20三、解答下列各题19、因为原式=0与x的取值无关.所以x=2004错抄成x=2040不影响结果.20、四边形AEBC为平行四边形, 证明略.21、(1)由中位数可知,8 5分排在第2 5位以后,从位次讲不能说8 5分是上游;但也不能单纯以位次来判定学习的好差,小刚得8 5分,说明他对这阶段的学习内容掌握较好,从掌握学习内容讲也可以说属于上游.(2)初三(1)班成绩的中位数为8 7分,说明高于8 7分的人数占一半以上,而均分为7 9分,标准差又很大,说明低分也多,两极分化严重,建议加强对学习困难者的帮助.初三(2)班成绩的中位数和均分都为7 9分,标准差又小,说明学生之间差别较小,学习很差的学生少,但学习优异的学生也少,建议采取措施提高优生率.22、(1)A(1,0),B(0,2)易证∠ADC∠∠BOA得AD=OB=2(2)易得抛物线对称轴为直线x=2∠设抛物线解析式为y=a(x-2)2 +k∠过点A(1,0)、B(0,2)∠a+k=0 ,4a+k=2∠a=,k=-,解析式为y=(x-2)2-23、(1) 树状图如下:列表如下:有6种可能结果:(A,D),(A,E),(B,D),(B,E),(C,D),(C,E).(2) 因为选中A型号电脑有2种方案,即(A,D)(A,E),所以A型号电脑被选中的概率是(3) 由(2)可知,当选用方案(A,D)时,设购买A型号、D型号电脑分别为x,y台,根据题意,得解得经检验不符合题意,舍去;当选用方案(A,E)时,设购买A型号、E型号电脑分别为x,y台,根据题意,得解得所以希望中学购买了7台A型号电脑.24、∠同学乙的方案较为合理,因为相似的等腰三角形底角和顶角大小不变, 保证了相似三角形的“正度”相等;而同学甲的方案不能保证相似三角形的“正度”相等.∠同学甲的方案可修改为:用式子来表示“正度”,的值越小,表示等腰三角形越接近正三角形(仅供参考, 方案合理即可);∠用式子、、、来表示“正度”,“正度”的值越小,表示等腰三角形越接近正三角形(仅供参考,方案合理即可).25、(1)设存水量y与放水时间x的解析式为y=kx+b把(2,17)、(12,8)代入y=kx+b得解得k=-,b=y=-x+(2≤x≤)(2)由图可得每个同学接水量是0.25升,则前22个同学需接水0.25×22=5.5升存水量y=18-5.5=12.5升∠12.5=-x+∠x=7∠前22个同学接水共需7分钟.(3)当x=10时存水量y=-×10+= ,用去水18-=8.2升8.2÷0.25=32.8∠课间10分钟最多有32人及时接完水.或设课间10分钟最多有z人及时接完水,由题意可得0.25z≤8.2z≤32.826、(1),(2)不变,(3)(),(3)存在,30°、90°、133.2°或346.8°2006年中考全真模拟试卷(三)参考答案题号123456789101112答案ABBBCCDBDBCB二、填空题:13. x(xy +2)(xy -2)14. 1/515. 3a16.17. 三18.(2,5)或(4,4)19、去分母,得20. 说明:本题共有四个命题,其中命题二、命题三是真命题,命题一、命题四是假命题.命题一:在∠ABC和∠DEF中,B、E、C、F在同一直线上,AB=DE,AC = DF,∠ABC=∠DEF。
上海市长宁区九年级数学期终质量调研试卷

长宁区2012学年第一学期九年级数学期终质量调研试卷(满分150分,考试时间100分钟) 2013.1.16 考生注意:1. 本试卷含三个大题,共25题;2. 考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效; 3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤。
一. 选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是符合题目要求的,请把符合题目要求的选项的代号填涂在答题纸的相应位置上.】1. 已知△ABC 中,︒=∠90C ,则cos A 等于( ) A.ABBCB. ACBCC. ACABD.ABAC2. 如图,在平行四边形ABCD 中,如果AB a =u u u r r ,AD b =u u u r r,那么a b +r r 等于( ) A .BD u u u rB .AC u u u rC .DB u u u rD .CA u u u r3. 如图,圆O 的弦AB 垂直平分半径OC ,则四边形OACB 一定是( ) A . 正方形 B .长方形 C . 菱形 D .梯形4. 已知抛物线21(5)33y x =--+,下列说法正确的是( )A .开口向下,顶点坐标(53),B .开口向上,顶点坐标(53),C .开口向下,顶点坐标(53)-,D .开口向上,顶点坐标(53)-,5. 如图,△ABC 是等边三角形,被一平行于BC 的矩形所截(即:FG//BC ),若AB 被截成三等分,则图中阴影部分的面积是△ABC 的面积的 ( ) A.91 B.92 C.31 D.946.在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图像可能..是 ( ) DCBA 第2题图EHF GCBA 第5题图第3题图A .B .C.D .第14题图第17题图第12题图第16题图 E PDA二.填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】 7.已知实数x 、y 满足23=y x ,则=+yyx 22 . 8. 已知,两个相似的△ABC 与△DEF 的最短边的长度之比是3:1,若△ABC 的周长是27,则△DEF 的周长为 . 9. 已知△ABC 中,G 是△ABC 的重心,则=∆∆ABCABGS S . 10. 在直角坐标平面内,抛物线y =-x 2+2x +2沿y 轴方向向下平移3个单位后,得到新的抛物线解析式为 .11.在直角坐标平面内,抛物线y =-x 2+c 在y 轴 侧图像上升(填“左”或“右”). 12. 正八边形绕其中心至少要旋转 度,就能与原来的图形重合.13. 已知圆⊙O 的直径为10,弦AB 的长度为8,M 是弦AB 上一动点,设线段OM =d ,则d 的取值范围是 .14. 如图,某人顺着山坡沿一条直线型的坡道滑雪,当他滑过130米长的路程时,他所在位置的竖直高度下降了50米,则该坡道的坡比是 .15.已知两圆相切,圆心距为2 cm ,其中一个圆的半径是6 cm ,则另一个圆的半径是____ cm. 16.已知△ABC 中,AB=6,AC=9,D 、E 分别是直线AC 和AB 上的点,若ABAEAC AD =且AD=3,则BE= .17. 如图,已知Rt △ABC ,︒=∠90ACB ,︒=∠30B ,D 是AB 边上一点,△ACD 沿CD 翻折,A 点恰好落在BC 边上的E 点处,则EDB cot ∠= .18. 2 = .三、解答题:(本大题共7题,第19--22题,每题10分;第23、24题,每题12分;25题14分;满分78分)19.计算:︒⋅︒+︒30345245tan -sin tan .20.如图,在正方形网格中,每一个小正方形的边长都是1,已知向量a 和b 的起点、终点都是小正方形的顶点.请完成下列问题:(1)设:()()b a b a m 41213143---=, ()()3252635+-+=. 判断向量n m 、是否平行,说明理由; (2)在正方形网格中画出向量:a b 234-,并写出a b 234- 的模.(不需写出做法,只要写出哪个向量是所求向量).21.如图,等腰梯形ABCD 中,AD//BC ,AB=CD ,AD =3,BC =7,∠B =45º, P 在BC 边上,E 在CD 边上,∠B =∠APE .(1)求等腰梯形的高; (2)求证:△ABP ∽△PCE.x -2 -1 0 1 2 3 4 5 y5-3-4-3512D E O A C B D C M A BO yx22.由于连日暴雨导致某路段积水,有一辆卡车驶入该积水路段。
2006学年第二学期素质检测九年级数学试卷(200743)

2006学年第二学期素质检测九年级数学试卷(2007.4.3)出卷人桐乡八中:沈建松〔卷首提示语〕亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获. 教师一直投给你信任的目光.请认真审题,看清要求,仔细答题,祝你考出好成绩。
第Ⅰ卷 选择题 (共40分)一、选择题:(本题共10小题,每小题4分,满分40分)1.下列运算中,结果正确的是 ..........................................( * )(A) 0(0= (B) 133-=-= (D 6)3(2-=-2.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是.....( * ) (A )012=+x(B )0122=++x x (C )0322=++x x (D )0322=-+x x3..如图是由5个大小相同的正方体摆成的立方体图形,它的左视图...是............( * )(A) (B) (C) (D) 4.一次函数y=2x-1的图象经过 ................( * )(A ) 第1、2、3象限 (B) 第2、3、4象限 (C) 第1、2、4象限 (D) 第1、3、4象限5.如果四边形的对角线相等,且互相垂直平分,则它一定是( * ) (A) 矩形 (B) 菱形 (C)正方形 (D)等腰梯形 6.不等式组⎩⎨⎧>->-03042x x 的解集为.......( ).A .x >2B .x <3C .x >2或 x <-3D .2<x <3 7.如图:圆的直径AB 垂直弦CD 于P ,且P 是半径OB 的中点,BA第7题y =6CD cm =,则直径AB 的长是..( * )(A)(B)(C)(D)8.右边给出的是2004年3月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能是( * ) (A)69 (B) 54 (C) 27 (D)409..二次函数211y ax x =-+的图像与222y x =-图像的形状、开口方向相同,只是位置不同,则二次函数1y 的顶点坐标是........................( * ) (A) (19,48--) (B) (19,48-) (C) (19,48) (D) (19,48-) 10. 如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′处,那么tan ∠BAD ′等于............................( * )(A) 1(B)2 (C)22(D)22 第Ⅱ卷一、填空题:(本题共6小题,每小题5分,满分30分)11.因式分解:=-222x *12.函数 的自变量x 的取值范围是 * .那么这些城市5月9日的最高气温的中位数和众数分别是 * . 14. 如图, //AB DC , 要使四边形ABCD 是平行四边形,还需补充一个条件是 * .15. 亮亮想制作一个圆锥模型,这个模型的侧面是用一个半径为9cm ,圆心角为240°的扇形铁皮制作的,再用一块圆形铁皮做底。
长宁中考数学试卷答案

一、选择题(本大题共10小题,每小题3分,共30分)1. 下列各数中,是无限不循环小数的是()A. 0.5B. 0.333…C. 0.625D. 0.666…答案:D 解析:无限不循环小数是指小数部分无限且不重复的小数。
A、B、C选项均为有限小数,只有D选项为无限不循环小数。
2. 已知二次函数y=ax^2+bx+c的图象开口向上,且顶点坐标为(-1,2),则下列选项中,符合条件的是()A. a=1,b=2,c=3B. a=1,b=-2,c=3C. a=1,b=2,c=1D. a=1,b=-2,c=1答案:B 解析:二次函数的顶点坐标为(-b/2a,c-b^2/4a),代入顶点坐标(-1,2)得:a=1,b=-2,c=3。
3. 在直角坐标系中,点A(2,3)关于x轴的对称点为()A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,6)答案:A 解析:点A关于x轴的对称点,其横坐标不变,纵坐标取相反数,故对称点为(2,-3)。
4. 下列等式中,正确的是()A. (-3)^2=9B. 3^2=9C. (-3)^3=-9D. (-3)^3=27答案:A 解析:A选项为平方运算,(-3)^2=9;B选项为平方运算,3^2=9;C选项为立方运算,(-3)^3=-27;D选项为立方运算,(-3)^3=-27。
只有A选项正确。
5. 已知a+b=10,ab=15,则a^2+b^2的值为()A. 85B. 95C. 105D. 115答案:A 解析:根据公式(a+b)^2=a^2+2ab+b^2,代入a+b=10,ab=15得:a^2+b^2=(10)^2-2×15=85。
6. 下列函数中,为一次函数的是()A. y=2x+3B. y=x^2-1C. y=3x-4D. y=5x^2-2答案:A 解析:一次函数的图像为一条直线,A选项的函数图像为直线,故A选项为一次函数。
7. 在△ABC中,∠A=45°,∠B=90°,则∠C的度数为()A. 45°B. 45°C. 90°D. 135°答案:A 解析:三角形内角和为180°,∠A+∠B+∠C=180°,代入∠A=45°,∠B=90°得:∠C=180°-45°-90°=45°。
2006-1-2九年级数学考试卷

新世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。
版权所有@新世纪教育网1E FC(图3)2006-1-2九年级数学考试卷说明:本卷总分150分,考试时间120分钟一、选择题(每小题4分,共48分)1.下列二次根式中,最简二次根式是---------- -------------------( )A 22xB 12+bC a 4 Dx12.在一个暗箱里放入除颜色外其他都相同的3个红球和11个黄球,搅拌均匀后,任取一个球,取到的球是红球的概率是----------------------------------------( ) A311 B 811 C 1114 D 3143.下列平面图形中,既是轴对称图形,又是中心对称图形的是--------( )4.数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O 旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°; 丁同学说:135°。
以上四位同学的回答中,错误的是------------------------( ) A 甲 B 乙 C 丙 D 丁 5.如图3,A 、B 、C 是⊙O 上的三个点,当OA 平分∠BOC 时,错误的结论是( )A 、AB AC = B 、弧AC=弧AB C 、AO 、AC AO =第4题6.气象台预报“本市明天降水概率是80 %”.对此信息,下列说法正确的是-----( ) A 本市明天将有80%的地区降水 B 本市明天将有80%的时间降水 C 明天肯定下雨 D 明天降水的可能性比较大7.一种产品原来每件的成本是100元,由于连续两次降低成本,现在每件的成本是81元,则平均每次降低成本------------------------------------( )A 8.5%B 9%C 10%D 9.5% 8.关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,则a 的值为( ) A 1 B 1- C 1或1- D 0.59.如图, AB 是⊙O 直径,∠AOC=120°,则∠A .15° B. 30° C. 45 ° D. 60 °10.当a 、c 异号时,一元二次方程ax2+bx+c=0(a ≠0)--------------- ( )A 有两个不相等的实数根B 有两个相等的实数根C 无实数根D 不能确定11. 使分式2)2)(1(--+x x x 值为0的x 值为( )A 、2B 、-2C 、-1或2D 、-1 12.如图,8×8方格纸上的两条对称轴EF 、MN 相交于中心点O ,对△ABC 分别作下列变换: ①先以点A 为中心顺时针方向旋转90°,再向右平移4格、 向上平移4格;②先以点O 为中心作中心对称图形,再以点A 的对应点为中心逆时针方向旋转90°; ③先以直线MN 为轴作轴对称图形,再向上平移4格,再以点A 的对应点为中心顺时针方向旋转90°.其中,能将△ABC 变换成△PQR 的是 ----------( ) A ①② B ①③ C ②③ D ①②③ 二、填空题(每小题5分,共30分)13.若22+-x 有意义,则x 的取值范围是 . 14.已知2<x<5, 化简22)5()2(-+-x x =___________. 15. 若a+4 +a+2b -2 =0,则ab = 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2006年长宁初三年级教育质量检测数学试卷
一、填空题(3’×12=36’)
1.__________421
=.
2.在等号左边填一个合适的数,再分解因式:_____________________2=--x x .
3.2005年全国普通高中招生878万人,用科学记数法可表示为_____________人. 4.两线段长分别是1cm 和2cm ,它们的比例中项是_______cm . 5.函数1
1-=
x y 的定义域是___________________.
6.方程112-=-+x x 的根是________________.
7.国际市场1月底原油价格为每桶60美元。
连续两个月价格
增长率都为x ,则3月底原油价格为______________美元。
8.如图,直升机飞行时,高度保持为100米。
飞机在点A
处看到地面控制点C 的俯角为110
18’。
从点A 到达控
制点C 上空B 处,飞机还要飞_______米.
(sin11018’=0.196,cos11018’=0.981,tg11018’=0.200,ctg11018’≈5.00) 9.如果三角形的重心到一条边的距离为1,那么这条边上的高为________. 10.如果三角形的三边长分别为3、4、5,那么这个三角形的内切圆
半径等于___________.
11.如图,如果将弓形ACB 沿AB 弦翻折,弧ACB 恰好过圆心O 。
那么∠AOB=__________ 度.
12.如图,Rt △ABC 中,∠C=900,AC=1,BC=2。
将△ABC 绕顶 点C 旋转,点A 转到BC 边上的点A ’ 处,点B 转到点B ’处。
延长B ’ A ’交AB 于点D ,则S △BA ’D =_____________. 二、单项选择题(4’×4=16’): 13、下列实数中,是无理数的是( )
A 、∙
6.0 B 、
3
1 C 、8 D 、4
14、将二次函数y=2(x -1)2
+3的图象向左平移1个单位,再向上平移2个单位后,其解析式为( ) A 、y=2(x -2)2+5 B 、y=2x 2+5 C 、y=2x 2+1 D 、y=2(x -2)2+1 15、已知x >y >0,则下列不等式中错误..的是( ) A 、
y
x 11> B 、y x -<- C 、2
2y x > D 、y x >
16、如果等腰三角形中的两条边长分别是2和5,那么底角的余弦为( ) A 、5
2 B 、
5
1或
4
5 C 、
4
5 D 、
5
1
C
A
B 11018’
三、简答题(9’×2+10’×3=48’): 17、解方程:042)1(51
2=-+-+x
x x x
18、我国丁俊晖荣获英国斯诺克锦标赛冠军。
我们来研究台球碰壁一次进袋的路径。
如图,若要将球P 碰FD 壁一次进C 袋,关键是要在边FD 上找到合适的碰撞点Q ,只有当∠PQF=∠CQD 时,球P 碰Q 点后才能反弹进C 袋。
我们在图中标明了点Q 确定的过程:以FD 所在直线为对称轴,找到点C 关于该对称轴的对称点C ’ 。
连结PC ’,交FD 边于点Q ,PQ 、QC 即球P 进C 袋的路线。
如果要将球P 碰AC 壁一次进F 袋,试用作图法确定碰撞点R 的位置:
(1)画出准确的图形;
(2)指出图形中所有以R 为顶点的相等的角(不必说明理由)。
19.全班40名学生为山区贫困学生捐款购买学习用具,全班共捐款500元。
其中团员与非团员捐款额占全班捐款额的比例如扇形图所示。
若团员平均每人比非团员多捐10元,求该班团员与非团员人数。
20、(1)九年级教材中有米勒的研究成果:肺癌患者中吸烟者的比例高达95.2 %,而对照组中吸
烟者的比例是74.4%。
由此可知吸烟者比不吸烟者得肺癌的可能性更____。
(填“大”或“小”) (2)中法网报道,研究者王国桢曾对上海某职校高二的一个班的学生的吸烟情况作了调查,发现该班吸烟学生比例达3
2以上。
能否以此推断上海所
有高二学生中有
3
2以上学生吸烟? 答:_____(填“能”
或“不能”).
(3)搜狐新闻(news .sohu .com )报道,上海市中学生中经常吸烟的学生的比例为1.3%。
按我市中学生总数57万计算,经常吸烟的学生人数约有________人。
(4)对某班40名学生吸烟情况调查结果是:吸过烟的学生有11人,其中..经常吸烟的有1人,试画出条形图。
非团员 捐款 60%
团员 捐款
40%
捐款比例图
21.如图,⊙O 半径为1,点P 在射线OA 上。
⊙p 半径为2,交⊙O 于Q 、R 两点。
设OP=x 。
(1)x 的取值范围是__________________; (2)当x=3时,∠QPR=___________;
(3)当QR=1时,PQ 、QO 、OR 、RP 围成的图形面积为___________.
四、解答题(12’×3+14’×1=50’)
22.如图,点A 是反比例函数在第一象限图象上的一点。
AB 、AC 分别与x 轴、y 轴垂直,B 、C 为垂足。
矩形ABOC 的面积为3。
点D 横坐标为-2,直线AD 交y 轴于E 。
点E 在线段OC 上,且CE ∶OE=1∶2。
(1)求反比例函数解析式; (2)求点A 坐标; (3)求直线AD 的解析式。
23.已知:如图,点E 、F 分别在矩形ABCD 的边AB 、AD 上。
EF//BD ,EC 、FC 分别交BD 于点G 、H 。
求证:(1)
DG
BG AB
EB =
; (2)
CH
FH DG
BG =
;
(3)BG=DH .
C
24.如图,∠PAB=300,PA=2。
把三角尺300角的顶点固定在点P 上,转动三角尺,300
角两边交直线AB 于点Q 与点R (点Q 在点R 左边)。
设AR=x ,QR=y ,PR=z 。
(1)求证:z 2=y x
(2)三角尺转动时,找出所有符合题意的等腰三角形APQ ,分别求出这些等腰三角形的底角的正切值。
(3)写出y 与x 的函数解析式及定义域。
25、数学兴趣小组在学习二次函数图象中,发现了一条性质。
请你按(1)~(4)的步骤自己发现这条性质,并用类比的方法扩展这一发现(以下计算要有过程,但不用说理)。
如图,二次函数图象与x 轴交于点A (t ,0)(t >0)和点B ,顶点为D (0,1)。
点P 是二次函数图象上的点,其横坐标为nt (0<n <1)。
作PQ ⊥x 轴,垂足为Q 。
PQ 交射线DA 于点R 。
(1)求二次函数的解析式(解析式的系数可用t 表示);
(2)求PQ 、RQ 与PR 的长,并计算
QR
PR 。
寻找PR 、
RQ 、OQ 、OA 四条线段之间的比例关系。
(3)将原题中“(0<n <1)”改为“(n >1)”,(2)中的
结论仍成立吗?试通过计算说明。
(4)将原题中“D (0,1)”改为“D (0,h )(h>0)”,(2)中的结论仍成立吗?试在
0<n <1的条件下,通过计算说明。
P
B A
A Q R。