2016-2017学年上海市浦东新区杨思高中高一(上)期中数学试卷(解析版)

合集下载

上海市高一(上)期中数学试卷(解析版)

上海市高一(上)期中数学试卷(解析版)

2015-2016学年上海市格致中学高一(上)期中数学试卷一、填空题B= .1.已知全集U=R,,则A∩∁U2.若函数,则f(x)•g(x)= .3.函数y=的定义域是.4.不等式ax+b<0的解集A=(﹣2,+∞),则不等式bx﹣a≥0的解集为.5.已知函数f(x)=x2﹣(a﹣1)x+5在区间(,1)上为增函数,那么f(2)的取值范围是.6.已知集合A={x|x≥2},B={x||x﹣m|≤1},若A∩B=B,则实数m的取值范围是.7.“若a+b>2,则a>2或b>2”的否命题是.8.设f(x)是R上的偶函数,f(1)=0,且在(0,+∞)上是增函数,则(x﹣1)f(x﹣1)>0的解集是.9.已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是.10.已知定义在R上的偶函数f(x)在[0,+∞)上是增函数,且f(2)=1,若f(x+a)≤1对x∈[﹣1,1]恒成立,则实数a的取值范围是.11.已知的解集为[m,n],则m+n的值为.二、选择题12.给出下列命题:(1)∅={0};(2)方程组的解集是{1,﹣2};(3)若A∪B=B∪C,则A=C;B.(4)若U为全集,A,B⊆U,且A∩B=∅,则A⊆∁U其中正确命题的个数有()A.1 B.2 C.3 D.413.“﹣2≤a≤2”是“一元二次方程x2+ax+1=0没有实根”的()A.充要条件 B.必要非充分条件C.充分非必要条件D.非充分非必要条件14.已知a∈R,不等式的解集为P,且﹣4∉P,则a的取值范围是()A.a≥﹣4 B.﹣3<a≤4C.a≥4或a≤﹣3 D.a≥4或a<﹣315.函数f(x)=,若f(0)是f(x)的最小值,则a的取值范围为()A.[﹣1,2] B.[﹣1,0] C.[1,2] D.[0,2]三、解答题(8+8+10+14分)16.记关于x的不等式的解集为P,不等式|x﹣1|≤1的解集为Q.(Ⅰ)若a=3,求P;(Ⅱ)若Q⊆P,求正数a的取值范围.17.设α:A={x|﹣1<x<1},β:B={x|b﹣a<x<b+a}.(1)设a=2,若α是β的充分不必要条件,求实数b的取值范围;(2)在什么条件下,可使α是β的必要不充分条件.18.设函数f(x)=3ax2﹣2(a+c)x+c(a>0,a,c∈R)(1)设a>c>0,若f(x)>c2﹣2c+a对x∈[1,+∞]恒成立,求c的取值范围;(2)函数f(x)在区间(0,1)内是否有零点,有几个零点?为什么?19.已知集合M是满足下列性质的函数f(x)的全体:在定义域(0,+∞)内存在x0,使函数f(x+1)≤f(x)f(1)成立;(1)请给出一个x的值,使函数;(2)函数f(x)=x2﹣x﹣2是否是集合M中的元素?若是,请求出所有x组成的集合;若不是,请说明理由;(3)设函数,求实数a的取值范围.2015-2016学年上海市格致中学高一(上)期中数学试卷参考答案与试题解析一、填空题B= {0} .1.已知全集U=R,,则A∩∁U【考点】交、并、补集的混合运算.【专题】计算题;集合.B={x|x≤},最后根据交集定义运算得出结果.【分析】先确定集合A={0,3},再确定CU【解答】解:因为A={x|x2﹣3x=0}={0,3},而B={x|x>},且U=R,B={x|x≤},所以,CU所以,{x|x≤}∩{0,3}={0},B={0},即A∩CU故答案为:{0}.【点评】本题主要考查了集合间交集,补集的混合运算,涉及一元二次方程的解法,交集和补集的定义,属于基础题.2.若函数,则f(x)•g(x)= x(x>0).【考点】函数解析式的求解及常用方法.【专题】计算题;函数思想;函数的性质及应用.【分析】直接利用函数的解析式化简求解即可.【解答】解:函数,则f(x)•g(x)==x,x>0.故答案为:x(x>0).【点评】本题考查函数的解析式的求法,考查计算能力.3.函数y=的定义域是{x|﹣1≤x<1或1<x≤4}.【考点】函数的定义域及其求法.【专题】计算题;函数思想;转化思想;函数的性质及应用.【分析】利用分母不为0,开偶次方被开方数方法,列出不等式组求解可得函数的定义域.【解答】解:要使函数有意义,可得:,解得:﹣1≤x<1或1<x≤4.函数的定义域为:{x|﹣1≤x<1或1<x≤4}.故答案为:{x|﹣1≤x<1或1<x≤4}.【点评】本题考查函数的定义域的求法,是基础题.4.不等式ax+b<0的解集A=(﹣2,+∞),则不等式bx﹣a≥0的解集为(﹣∞,] .【考点】其他不等式的解法.【专题】方程思想;综合法;不等式的解法及应用.【分析】由题意可得a<0,且﹣2a+b=0,解得b=2a,代入要解的不等式可得.【解答】解:∵不等式ax+b<0的解集A=(﹣2,+∞),∴a<0,且﹣2a+b=0,解得b=2a,∴不等式bx﹣a≥0可化为2ax﹣a≥0,两边同除以a(a<0)可得2x﹣1≤0,解得x≤故答案为:(﹣∞,].【点评】本题考查不等式的解集,得出a的正负是解决问题的关键,属基础题.5.已知函数f(x)=x2﹣(a﹣1)x+5在区间(,1)上为增函数,那么f(2)的取值范围是[﹣7,+∞).【考点】二次函数的性质.【专题】函数的性质及应用;不等式的解法及应用.【分析】求得二次函数的对称轴,由题意可得≤,求得a的范围,再由不等式的性质,可得f(2)的范围.【解答】解:函数f(x)=x2﹣(a﹣1)x+5的对称轴为x=,由题意可得≤,解得a≤2,则f(2)=4﹣2(a﹣1)+5=11﹣2a≥﹣7.故答案为:[﹣7,+∞).【点评】本题考查二次函数的单调性的运用,考查不等式的性质,属于中档题.6.已知集合A={x|x≥2},B={x||x﹣m|≤1},若A∩B=B,则实数m的取值范围是[3,+∞).【考点】交集及其运算.【专题】计算题;转化思想;定义法;集合.【分析】先求出集合B,再利用交集定义和不等式性质求解.【解答】解:∵集合A={x|x≥2},B={x||x﹣m|≤1}={x|m﹣1≤x≤m+1},A∩B=B,∴m﹣1≥2,解得m≥3,∴实数m的取值范围是[3,+∞).故答案为:[3,+∞).【点评】本题考查实数的取值范围的求法,是基础题,解题时要认真审题,注意不等式性质的合理运用.7.“若a+b>2,则a>2或b>2”的否命题是“若a+b≤2,则a≤2且b≤2”.【考点】四种命题.【专题】演绎法;简易逻辑.【分析】根据否命题的定义,结合已知中的原命题,可得答案.【解答】解:“若a+b>2,则a>2或b>2”的否命题是“若a+b≤2,则a≤2且b≤2”,故答案为:“若a+b≤2,则a≤2且b≤2”【点评】本题考查的知识点是四种命题,熟练掌握四种命题的概念,是解答的关键.8.设f(x)是R上的偶函数,f(1)=0,且在(0,+∞)上是增函数,则(x﹣1)f(x﹣1)>0的解集是(0,1)∪(2,+∞).【考点】奇偶性与单调性的综合.【专题】转化思想;数形结合法;函数的性质及应用;不等式的解法及应用.【分析】根据函数奇偶性和单调性的关系先求出f(x)>0和f(x)<0的解集,进行求解即可.【解答】解:∵f(x)是R上的偶函数,f(1)=0,且在(0,+∞)上是增函数,∴f(﹣1)=f(1)=0,则函数f(x)对应的图象如图:即当x>1或x<﹣1时,f(x)>0,当0<x<1或﹣1<x<0时,f(x)<0,则不等式(x﹣1)f(x﹣1)>0等价为或,即或,即或,即x>2或0<x<1,即不等式的解集为(0,1)∪(2,+∞),故答案为:(0,1)∪(2,+∞)【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性的关系,利用数形结合求出f(x)>0和f(x)<0的解集是解决本题的关键.9.已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0).【考点】二次函数的性质.【专题】函数的性质及应用.【分析】由条件利用二次函数的性质可得,由此求得m 的范围.【解答】解:∵二次函数f(x)=x2+mx﹣1的图象开口向上,对于任意x∈[m,m+1],都有f(x)<0成立,∴,即,解得﹣<m<0,故答案为:(﹣,0).【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于基础题.10.已知定义在R上的偶函数f(x)在[0,+∞)上是增函数,且f(2)=1,若f(x+a)≤1对x∈[﹣1,1]恒成立,则实数a的取值范围是[﹣1,1] .【考点】函数恒成立问题;奇偶性与单调性的综合.【专题】计算题.【分析】先利用f(x)是R上的偶函数,且f(2)=1,得到f(2)=f(﹣2)=1;再由f(x)在[0,+∞)上是增函数,f(x+a)≤1对x∈[﹣1,1]恒成立,导出﹣2﹣x≤a≤2﹣x在x∈[﹣1,1]上恒成立,由此能求出实数a的取值范围.【解答】解:∵f(x)是R上的偶函数,且f(2)=1,∴f(2)=f(﹣2)=1;∵f(x)在[0,+∞)上是增函数,f(x+a)≤1对x∈[﹣1,1]恒成立,∴﹣2≤x+a≤2,即﹣2﹣x≤a≤2﹣x在x∈[﹣1,1]上恒成立,∴﹣1≤a≤1,故答案为:[﹣1,1].【点评】本题考查函数恒成立问题,解题时要认真审题,仔细解答,注意函数的奇偶性、单调性的灵活运用.11.已知的解集为[m,n],则m+n的值为 3 .【考点】根与系数的关系.【专题】计算题;方程思想;综合法;不等式的解法及应用.【分析】利用二次函数的单调性、一元二次不等式的解法即可得出.【解答】解:解:∵ x2﹣2x+3=(2x2﹣6x+9)= [(x﹣3)2+x2]≥,令n2﹣2n+3=n,得2n2﹣9n+9=0,解得n=(舍去),n=3;令x2﹣2x+3=3,解得x=0或3.取m=0.∴m+n=3.故答案为:3.【点评】本题考查了二次函数的单调性、一元二次不等式的解法,属于基础题.二、选择题12.给出下列命题:(1)∅={0};(2)方程组的解集是{1,﹣2};(3)若A∪B=B∪C,则A=C;B.(4)若U为全集,A,B⊆U,且A∩B=∅,则A⊆∁U其中正确命题的个数有()A.1 B.2 C.3 D.4【考点】命题的真假判断与应用.【专题】计算题;集合思想;数形结合法;集合.【分析】由集合间的关系判断(1);写出方程组的解集判断(2);由A∪B=B∪C,可得A=C或A、C均为B的子集判断(3);画图说明(4)正确.【解答】解:(1)∅⊆{0}.故(1)错误;(2)方程组的解集是{(1,﹣2)}.故(2)错误;(3)若A∪B=B∪C,则A=C或A、C均为B的子集.故(3)错误;(4)若U为全集,A,B⊆U,且A∩B=∅,如图,则A⊆∁B.故(4)正确.U∴正确命题的个数是1个.故选:A.【点评】本题考查命题的真假判断与应用,考查了集合的表示法及集合间的关系,是基础题.13.“﹣2≤a≤2”是“一元二次方程x2+ax+1=0没有实根”的()A.充要条件 B.必要非充分条件C.充分非必要条件D.非充分非必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】方程思想;判别式法;简易逻辑.【分析】一元二次方程x2+ax+1=0没有实根,则△<0.解出即可判断出.【解答】解:若一元二次方程x2+ax+1=0没有实根,则△=a2﹣4<0.解得﹣2<a<2.∴“﹣2≤a≤2”是“一元二次方程x2+ax+1=0没有实根”必要不充分条件.故选:B.【点评】本题考查了一元二次方程有实数根与判别式的关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.14.已知a∈R,不等式的解集为P,且﹣4∉P,则a的取值范围是()A.a≥﹣4 B.﹣3<a≤4C.a≥4或a≤﹣3 D.a≥4或a<﹣3【考点】其他不等式的解法.【专题】计算题;方程思想;定义法;不等式的解法及应用.【分析】原不等式化为<0,分类讨论即可得到答案.【解答】解:化为式﹣1>0,即>0,即<0,当a+3>0时,即a>﹣3时,原不等式为x+a<0,即x<﹣a,∵﹣4∉P,∴a≥4;当a+3<0时,即a<﹣3时,原不等式为x+a>0,即x>﹣a,∴﹣4∉P,∴a<﹣3;当a+3=0时,即x∈∅,∴﹣4∉P,综上所述:a的取值范围为a≥4,或a≤﹣3,故选:C.【点评】本题考查分式不等式解法的运用,关键是分类讨论,属于与基础题.15.函数f(x)=,若f(0)是f(x)的最小值,则a的取值范围为()A.[﹣1,2] B.[﹣1,0] C.[1,2] D.[0,2]【考点】函数的最值及其几何意义.【专题】综合题;函数的性质及应用.【分析】由分段函数可得当x=0时,f(0)=a2,由于f(0)是f(x)的最小值,则(﹣∞,0]为减区间,即有a≥0,则有a2≤x++a,x>0恒成立,运用基本不等式,即可得到右边的最小值2+a,解不等式a2≤2+a,即可得到a的取值范围.【解答】解:由于f(x)=,则当x=0时,f(0)=a2,由于f(0)是f(x)的最小值,则(﹣∞,0]为减区间,即有a≥0,则有a2≤x++a,x>0恒成立,由x+≥2=2,当且仅当x=1取最小值2,则a2≤2+a,解得﹣1≤a≤2.综上,a的取值范围为[0,2].故选:D.【点评】本题考查分段函数的应用,考查函数的单调性及运用,同时考查基本不等式的应用,是一道中档题三、解答题(8+8+10+14分)16.记关于x的不等式的解集为P,不等式|x﹣1|≤1的解集为Q.(Ⅰ)若a=3,求P;(Ⅱ)若Q⊆P,求正数a的取值范围.【考点】集合的包含关系判断及应用;其他不等式的解法;绝对值不等式的解法.【分析】(I)分式不等式的解法,可转化为整式不等式(x﹣a)(x+1)<0来解;对于(II)中条件Q⊆P,应结合数轴来解决.【解答】解:(I)由,得P={x|﹣1<x<3}.(II)Q={x||x﹣1|≤1}={x|0≤x≤2}.由a>0,得P={x|﹣1<x<a},又Q⊆P,结合图形所以a>2,即a的取值范围是(2,+∞).【点评】对于条件Q⊆P的问题,应结合数轴来解决,这样来得直观清楚,便于理解.17.设α:A={x|﹣1<x<1},β:B={x|b﹣a<x<b+a}.(1)设a=2,若α是β的充分不必要条件,求实数b的取值范围;(2)在什么条件下,可使α是β的必要不充分条件.【考点】充要条件.【专题】转化思想;集合思想;简易逻辑.【分析】(1)若α是β的充分不必要条件,则A⊊B,即,解得实数b的取值范围;(2)若α是β的必要不充分条件,则B⊊A,即且两个等号不同时成立,进而得到结论.【解答】解:(1)∵a=2,∴β:B={x|b﹣2<x<b+2}.若α是β的充分不必要条件,则A⊊B,即,解得:b∈[﹣1,1];(2)若α是β的必要不充分条件,则B⊊A,即且两个等号不同时成立,即a<1,b≤|a﹣1|【点评】本题考查的知识点是充要条件,正确理解并熟练掌握充要条件的概念,是解答的关键.18.设函数f(x)=3ax2﹣2(a+c)x+c(a>0,a,c∈R)(1)设a>c>0,若f(x)>c2﹣2c+a对x∈[1,+∞]恒成立,求c的取值范围;(2)函数f(x)在区间(0,1)内是否有零点,有几个零点?为什么?【考点】函数零点的判定定理;二次函数的性质.【专题】综合题;函数的性质及应用.【分析】(1)由题意可得:二次函数的对称轴为x=,由条件可得:2a>a+c,所以x=<<1,进而得到f(x)在区间[1,+∞)是增函数,求出函数的最小值,即可得到答案.(2)二次函数的对称轴是x=,讨论f(0)=c>0,f(1)=a﹣c>0,而f()=﹣<0,根据根的存在性定理即可得到答案.【解答】解:(1)因为二次函数f(x)=3ax2﹣2(a+c)x+c的图象的对称轴x=,因为由条件a>c>0,得2a>a+c,所以x=<<1,所以二次函数f(x)的对称轴在区间[1,+∞)的左边,且抛物线的开口向上,所以f(x)在区间[1,+∞)是增函数.所以f(x)min=f(1)=a﹣c,因为f(x)>c2﹣2c+a对x∈[1,+∞]恒成立,所以a﹣c>c2﹣2c+a,所以0<c<1;(2)二次函数f(x)=3ax2﹣2(a+c)x+c图象的对称轴是x=.若f(0)=c>0,f(1)=a﹣c>0,而f()=﹣<0,所以函数f(x)在区间(0,)和(,1)内分别有一零点.故函数f(x)在区间(0,1)内有两个零点;若f(0)=c<0,f(1)=a﹣c>0,而f()=﹣<0,故函数f(x)在区间(0,1)内有一个零点.【点评】解决此类问题的关键是熟练掌握二次函数的有关性质,以及根的存在性定理.19.已知集合M是满足下列性质的函数f(x)的全体:在定义域(0,+∞)内存在x0,使函数f(x+1)≤f(x)f(1)成立;(1)请给出一个x的值,使函数;(2)函数f(x)=x2﹣x﹣2是否是集合M中的元素?若是,请求出所有x组成的集合;若不是,请说明理由;(3)设函数,求实数a 的取值范围.【考点】元素与集合关系的判断.【专题】应用题;新定义;函数思想.【分析】(1)取值带入即可;(2)根据函数f (x )的定义求解x 0即可;(3)利用函数的思想求解.【解答】解:(1)令x 0=2,则,成立;(2)假设函数f (x )=x 2﹣x ﹣2是集合M 中的元素,则存在x 0,使f (x 0+1)≤f(x 0)f (1)成立,即(x 0+1)2﹣(x 0+1)﹣2≤()(﹣2),解得:, 故x 0组成的集合是:{x 0|}; (3)∵函数f (x )=,∴,设g (x )==,∴0<g (x )<3,2a=0时显然成立,当a >0时,a >g (x ),∴a>3;a <0时,a <g (x ),∴a<0;综上,a≤0或a >3【点评】本题考查新定义及运用,考查运算和推理能力,考查函数的性质和应用,正确理解定义是迅速解题的关键,属于中档题。

2016-2017年上海市上海中学高一上期中数学试卷

2016-2017年上海市上海中学高一上期中数学试卷

上海中学高一期中数学卷2016.11一. 填空题1. 设集合{0,2,4,6,8,10}A =,{4,8}B =,则A C B =2. 已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则A B =I3. “若1x =且1y =,则2x y +=”的逆否命题是4. 若2211()f x x x x +=+,则(3)f = 5. 不等式9x x>的解是 6. 若不等式2(1)0ax a x a +++<对一切x R ∈恒成立,则a 的取值范围是7. 不等式2(3)30x --<的解是8. 已知集合{|68}A x x =-≤≤,{|}B x x m =≤,若A B B ≠U 且A B ≠∅I ,则m 的 取值范围是9. 不等式1()()25a x y x y++≥对任意正实数,x y 恒成立,则正实数a 的最小值为 10. 设0a >,0b >,且45ab a b =++,则ab 的最小值为 11. 已知二次函数22()42(2)21f x x p x p p =----+,若在区间[1,1]-内至少存在一个 实数c ,使()0f c >,则实数p 的取值范围是 12. 已知0a >,0b >,2a b +=,则2221a b a b +++的最小值为二. 选择题1. 不等式||x x x <的解集是( )A. {|01}x x <<B. {|11}x x -<<C. {|01x x <<或1}x <-D. {|10x x -<<或1}x >2. 若A B ⊆,A C ⊆,{0,1,2,3,4,5,6}B =,{0,2,4,6,8,10}C =,则这样的A 的个数 为( )A. 4B. 15C. 16D. 323. 不等式210ax bx ++>的解集是11(,)23-,则a b -=( ) A. 7- B. 7 C. 5- D. 54. 已知函数2()f x x bx =+,则“0b <”是“(())f f x 的最小值与()f x 的最小值相等” 的( )条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要三. 解答题1. 解不等式:(1)|2||23|4x x -+-<; (2)2232x x x x x -≤--;2. 已知,,,a b c d R ∈,证明下列不等式:(1)22222()()()a b c d ac bd ++≥+; (2)222a b c ab bc ca ++≥++;3. 已知二次函数2()1f x ax bx =++,,a b R ∈,当1x =-时,函数()f x 取到最小值,且 最小值为0;(1)求()f x 解析式;(2)关于x 的方程()|1|3f x x k =+-+恰有两个不相等的实数解,求实数k 的取值范围;4. 设关于x 的二次方程2(1)10px p x p +-++=有两个不相等的正根,且一根大于另一根 的两倍,求p 的取值范围;5. 已知二次函数2()f x ax bx c =++(0)a ≠,记[2]()(())fx f f x =,例:2()1f x x =+, 则[2]222()(())1(1)1f x f x x =+=++;(1)2()f x x x =-,解关于x 的方程[2]()fx x =; (2)记2(1)4b ac ∆=--,若[2]()fx x =有四个不相等的实数根,求∆的取值范围;参考答案一. 填空题1. {0,2,6,10}2. {1,0,1}-3. 若2x y +≠,则1x ≠或1y ≠;4. 75. (3,0)(3,)-+∞U6. 1(,)3-∞-7. (0,6)8. [6,8)- 9. 16 10. 25 11. 3(3,)2- 12. 2+二. 选择题1. C2. C3. C4. A三. 解答题1.(1)1(,3)3;(2)(1,0]{1}(2,)-+∞U U ;2. 略;3.(1)2()21f x x x =++;(2)3k <或134k =; 4. 107p <<; 5.(1)0x =或2x =;(2)4∆>;。

上海市高一上学期期中考试数学试卷含答案(共3套,word版)

上海市高一上学期期中考试数学试卷含答案(共3套,word版)

上海市高一上学期期中考试试卷数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}1,2,3,4,5,6U =,集合{}2,3,4A =,{}3,4,5B =,则()UA B =( )A .{}1,2B .{}3,4C .{}1,2,3,4D .{}1,2,5,62.已知集合{|1}A x x =<,{|31}xB x =<,则( ) A .{|0}A B x x =< B .A B =RC .{|1}AB x x =>D .AB =∅3.下列各组函数中,表示同一函数的是( ) A .()1f x =,0()g x x = B .()1f x x =-,21()1x g x x -=+C .()f x x =,()g x =D .()||f x x =,2()g x =4.下列函数在其定义域内既是奇函数,又是减函数的是( ) A .1()f x x=B .2()log f x x =-C .3()f x x =-D .1(0)()1(0)x x f x x x -+<⎧=⎨--≥⎩5.已知函数()y f x =的定义域是[8,1]-,则函数(21)()2f xg x x +=+的定义域是( )A .(,2)(2,3]-∞--B .[8,2)(2,1]---C .9[,2)(2,0]2--- D .9[,2]2--6.已知函数log (1)4(0a y x a =-+>且1)a ≠的图象恒过定点P ,点P 在幂函数()y f x =的 图象上,则()()lg 2lg 5f f +=( ) A .2-B .2C .1-D .17.已知函数2()2f x ax bx a b =++-是定义在[3,2]a a -的偶函数,则()()f a f b +=( )A .5B .5-C .0D .20198.函数2ln ||()x f x x=的图象大致为( ) A . B .C .D .9.已知2log 3.23a =,4log 23b =,log 25c =,则( ) A .b a c >> B .a c b >>C .a b c >>D .c a b >>10.已知函数212()log (4)f x x ax a =-+在区间[2,)+∞上单调递减,则实数a 的取值范围为( ) A .(2,4]-B .[2,4]-C .(,4]-∞D .[4,)+∞11.若函数()f x 的零点与2()log 21g x x x =++的零点之差的绝对值不超过0.25,则()f x 可以是( ) A .5()42x f x x =+- B .()1xf x e =- C .2()(1)f x x =-D .1()ln()2f x x =-12.设函数()||f x x x bx c =-+,则下列命题中正确的个数是( ) ①当0b >时,函数()f x 在R 上有最小值; ②当0b <时,函数()f x 在R 是单调增函数; ③若(2019)(2019)2020f f +-=,则1010c =; ④方程()0f x =可能有三个实数根. A .1B .2C .3D .4第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分. 13.函数21(01)x y aa a +=+>≠且的图象恒过的定点是 .14.函数1()|lg |x f x x e=-的零点个数为 . 15.函数22()log (2)f x x ax a =-+的值域为R ,则实数a 的取值范围是 .16.函数()y f x =是定义域为R 的偶函数,当0x ≥时,2,(02)16()51,(2)2x x x f x x ⎧≤≤⎪⎪=⎨⎪->⎪⎩,若关于x 的方程2[()]()0f x af x b ++=,a ,b ∈R ,有且仅有6个不同实数根,则实数a 的取值范围是 .三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(10分)计算:(11421()0.252-+⨯; (2)7log 2334log lg25lg47log 8log +-+⋅18.(12分)已知函数()(0,1)xf x a b a a =+>≠,其中a ,b 均为实数. (1)若函数()f x 的图象经过点(0,2)A ,(1,3)B ,求函数1()y f x =的值域; (2)如果函数()f x 的定义域和值域都是[1,0]-,求a b +的值.19.(12分)已知函数22()log ()log (2)4xf x x =⋅的定义域为[2,8]. (1)设2log t x =,求t 的取值范围;(2)求()f x 的最大值与最小值及相应的x 的值.20.(12分)已知集合22{|log (22)}A x y mx x ==-+,{24}xB x =≤≤.(1)若A =R ,求实数m 的取值范围; (2)若A B ≠∅,求实数m 的取值范围.21.(12分)已知()f x 是定义在区间[1,1]-上的奇函数,且()11f =,若a ,[1,1]b ∈-,0a b +≠时,有()()0f a f b a b+>+.(1)判断函数()f x 在[1,1]-上是增函数,还是减函数,并证明你的结论;(2)若2()55f x m mt ≤--对所有[1,1]x ∈-,[1,1]t ∈-恒成立,求实数m 的取值范围.22.(12分)对于函数1()f x ,2()f x ,()h x ,如果存在实数a ,b ,使得12()()()h x a f x b f x =⋅+⋅,那么称()h x 为1()f x 与2()f x 的生成函数.(1)当1a b ==,()xh x e =时,是否存在奇函数1()f x ,偶函数2()f x ,使得()h x 为1()f x 与2()f x 的生成函数?若存在,请求出1()f x 与2()f x 的解析式,若不存在,请说明理由;(2)设函数21()ln(65)f x x x =++,2()ln(23)f x x a =-,1a =,1b =-,生成函数()h x ,若函数()h x 有唯一的零点,求实数a 的取值范围.数学答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】D 【解析】全集{}1,2,3,4,5,6U =,集合{}2,3,4A =,{}3,4,5B =,{}3,4A B ∴=,{}()1,2,5,6U A B ∴=,故选D .2.【答案】A 【解析】集合{|1}A x x =<,{|31}{|0}xB x x x =<=<,{|0}AB x x ∴=<,故A 正确,D 错误;{|1}A B x x =<,故B 和C 错误,故选A . 3.【答案】C【解析】A 中,()1f x =定义域为R ,0()g x x =,定义域为{|0}x x ≠,定义域不同,不是同一函数;B 中()1f x x =-,定义域为R ,21()1(1)1x g x x x x -==-≠-+,定义域不同不是同一函数,C 中,()f x x =,定义域为R ,()g x x ==,定义域为R ,定义域相同,对应法则相同,是同一函数;D 中,()||f x x =,定义域为R ,2()g x x ==,定义域为{|0}x x >,两者定义域不同,不是同一函数, 故选C . 4.【答案】C【解析】A 错,在(,0)-∞,(0,)+∞递减,不是整个定义域递减; B 错,不是奇函数;C 对,3()()f x x f x -=-=-,且为R 上的减函数; D 错,(0)1f =-不等于0,不是奇函数, 故选C .【解析】由题意得8211x -≤+≤,解得902x -≤≤; 由20x +≠,解得2x ≠-, 故函数的定义域是9[,2)(2,0]2---,故选C .6.【答案】B【解析】函数log (1)4a y x =-+中,令11x -=,解得2x =, 此时log 144a y =+=,所以函数y 的图象恒过定点(2,4)P ,又点P 在幂函数()y f x x α==的图象上,所以24α=,解得2α=,所以2()f x x =,所以()()()()()22lg 2lg 5lg 25lg 252lg102f f f f +==⨯==⎡⎤⎣⎦,故选B .7.【答案】A 【解析】函数是偶函数,∴定义域关于原点对称,则320a a -+=,得33a =,得1a =, 则22()22f x ax bx a b x bx b =++-=++-, 则函数关于y 轴对称,则02b-=,则0b =,即2()2f x x =+, 则()()()()1012025f a f b f f +=+=+++=,故选A . 8.【答案】D【解析】函数的定义域为(,0)(0,)-∞+∞,22ln ||ln ||()()()x x f x f x x x--===-,()f x ∴为偶函数, ()f x ∴的图象关于y 轴对称,当01x <<时,ln 0x <,()0f x ∴<; 当1x >时,ln 0x >,()0f x ∴>; 当1x =时,()0f x =, 故选D .【解析】因为24log 3.21log 2>>,所以24log 3.2log 233a b =>=;因为log 5c ==41log 2233b ===,所以b c >,所以a b c >>,故选C . 10.【答案】A 【解析】函数212()log (4)f x x ax a =-+在区间[2,)+∞上单调递减,则24y x ax a =-+在区间[2,)+∞上单调递增,且满足0y >,故有224240aa a ⎧≤⎪⎨⎪-+>⎩,求得24a -<≤,故选A .11.【答案】A【解析】2()log 21g x x x =++,因为221111117()()(log 21)(log 21)1()02422444g g ⋅=+⋅+⋅+⋅+=⋅-<, 所以()g x 的零点区间是11(,)42.A 中,5()42x f x x =+-的零点12,两者的零点之差的绝对值不超过0.25,符合条件,所以A 正确;B 中,()1xf x e =-的零点是0,两者的零点之差的绝对值超过0.25,不符合条件,所以B 不正确; C 中,2()(1)f x x =-的零点为1,两者的零点之差的绝对值超过0.25,不符合条件,所以,C 不正确; D 中,1()ln()2f x x =-的零点是32,两者的零点之差的绝对值超过0.25,不符合条件,所以D 不正确, 故选A . 12.【答案】C【解析】①当0b >时,22,0()||,0x bx c x f x x x bx c x bx c x ⎧-+≥=-+=⎨--+<⎩,值域是R ,故函数()f x 在R 上没有最小值;②当0b <时,22,0()||,0x bx c x f x x x bx c x bx c x ⎧-+≥=-+=⎨--+<⎩,由解析式可知函数()f x 在R 上是单调增函数;③22(2019)(2019)20192019(20192019)22020f f b c b c c +-=-++-++==, 解得1010c =,故③对;④令2b =-,0c =,则()||20f x x x x =-=,解得0x =,2,2-,故④正确, 故选C .第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分. 13.【答案】(2,2)-【解析】令20x +=,求得2x =-,2y =, 可得函数21(01)x y aa a +=+>≠且的图象恒过定点(2,2)-,故答案为(2,2)-. 14.【答案】2【解析】令()0f x =,则1|lg |x x e =,1()xxh x e e-==,()|lg |g x x =,如下图所示, 所以两函数有两个交点,即函数()f x 有两个零点, 故答案为2.15.【答案】(][),08,-∞+∞【解析】设22t x ax a =-+,要使()f x 的值域为R , 则22t x ax a =-+值域(0,)A ⊇+∞, 即判别式280Δa a =-≥,得8a ≥或0a ≤, 即实数a 的取值范围是(][),08,-∞+∞,故答案为(][),08,-∞+∞.16.【答案】111(,1)(,)424--- 【解析】由题意,作函数()f x 的图象如下,由图象可得()10()24f x f ≤≤=, 关于x 的方程2[()]()0f x af x b ++=,a ,b ∈R 有且仅有6个不同实数根,∴方程20x ax b ++=有两个根,不妨设为1x ,2x ,且114x =,2104x <<或者110x -<<,2104x <<; 1211(,)42x x ∴+∈或者121(1,)4x x +∈-,又12a x x -=+,111(,1)(,)424a ∴∈---,故答案为111(,1)(,)424---.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)7-;(2)2. 【解析】(1)原式4181(2)72=--+⨯-=-. (2)原式32332131log 3lg1002(3log 2)(log 3)222622=+-+⋅=+-+=. 18.【答案】(1)(0,1);(2)32-. 【解析】(1)函数()(0,1)xf x a b a a =+>≠,其中a ,b 均为实数, 函数()f x 的图象经过点(0,2)A ,(1,3)B ,123b a b +=⎧∴⎨+=⎩,21a b =⎧∴⎨=⎩,∴函数()211xf x =+>,函数111()21x y f x ==<+. 又110()21x f x =>+,故函数1()y f x =的值域为(0,1). (2)如果函数()f x 的定义域和值域都是[1,0]-,若1a >,函数()xf x a b =+为增函数, 1110b a b ⎧+=-⎪∴⎨⎪+=⎩,求得a ,b 无解;若01a <<,函数()xf x a b =+为减函数,111b a b ⎧+=⎪∴⎨⎪+=-⎩,求得122a b ⎧=⎪⎨⎪=-⎩,32a b ∴+=-.19.【答案】(1)1[,3]2;(2)x =()f x 有最小值254-,8x =时,()f x 有最大值4-. 【解析】(1)由题意可得x ∈,21log 32x ∴≤≤, 即t 的取值范围为1[,3]2.(2)22222()log )2(log 2)(1log )(log 4)(1log )f x x x x x =⋅=+=-+, 令2log t x =,则22325(4)(1)34()24y t t t t t =-+=--=--,其中1[,3]2t ∈,所以,当32t =,即x =()f x 有最小值254-,当3t =,即8x =时,()f x 有最大值4-. 20.【答案】(1)1(,)2+∞;(2)(4,)-+∞.【解析】(1)因为函数22log (22)y mx x =-+的定义域为R , 所以2220mx x -+>在R 上恒成立,当0m =时,1x <,不在R 上恒成立,故舍去; 当0m ≠时,则有0480m Δm >⎧⎨=-<⎩,解得12m >,综上所述,实数m 的取值范围为1(,)2+∞.(2)易得1[,2]2B =,若AB ≠∅,所以2220mx x -+>在1[,2]2上有解,22221112()22m x x x ∴>-+=--+在1[,2]2上有解,当12x =,即12x =时,min 222()4x x-+=-,所以4m >-, ∴实数m 的取值范围为(4,)-+∞.21.【答案】(1)增函数,证明见解析;(2)(][),66,-∞-+∞.【解析】(1)函数()f x 在[1,1]-上是增函数, 设1211x x -≤<≤,()f x 是定义在[1,1]-上的奇函数,2121()()()()f x f x f x f x ∴-=+-.又1211x x -≤<≤,21()0x x ∴+->, 由题设2121()()0()f x f x x x +->+-,有21()()0f x f x +->,即12()()f x f x <,所以函数()f x 在[1,1]-上是增函数. (2)由(1)知()max ()11f x f ==,2()55f x m mt ∴≤--对任意[1,1]x ∈-恒成立,只需2155m mt ≤--对[1,1]t ∈-恒成立,即2560m mt --≥对[1,1]t ∈-恒成立,设2()56g t m mt =--,则22(1)061560(1)016560g m m m m g m m m m -≥⎧≤-≥⎧+-≥⎧⇔⇔⎨⎨⎨≥≤-≥--≥⎩⎩⎩或或,解得6m ≤-或6m ≥,m ∴的取值范围是(][),66,-∞-+∞.22.【答案】(1)存在,1()2x x e e f x --=,2()2x x e e f x -+=;(2)102[,)33--.【解析】(1)依题意可知,12()()xf x f x e +=---------------① 将x -代替x ,得12()()xf x f x e--+-=,因为1()f x 是奇函数,2()f x 是偶函数,所以有12()()xf x f x e--+=----------②由①、②可得1()2x x e e f x --=,2()2x xe ef x -+=.(2)依题意可得,2()ln(65)ln(23)h x x x x a =++--,令()0h x =,可得226506523x x x x x a⎧++>⎨++=-⎩,即2453(5x x a x ++=-<-或1)x >-,令2()45(5g x x x x =++<-或1)x >-, 结合图象可知,当2310a <-≤时,()y g x =的图象与直线3y a =-只有一个交点, 所以,实数a 的取值范围为102[,)33--.上海市高一上学期期中考试数学卷一、填空题(本大题满分40分)本大题共有10小题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.已知集合{1,2,3,4}A =,{2,4,6,8}B =,则A B ⋃=_____. 2.2log (21)x -有意义x 的取值范围是________.3.已知,x y R +∈,且满足341x y +=,则xy 的最大值为_________. 4.用有理指数幂的形式表示:3a a =_______. 5.函数20192020x y a+=+(其中a 为常数且0,1a a >≠)的图像恒过定点_________.6.已知关于x 的一元二次方程20x px p ++=的两个实数根分别为,αβ,且223αβ+=,则实数p =____. 7.已知3log 7a =,7log 4b =,用a 、b 表示7log 42为______. 8.如果幂函数()22279919mm y m m x --=-+图像不经过原点,则实数m =__________.9.已知等式(2)(12)430x m x n x ++-+-=对x R ∈恒成立,则m n +=_______.10.若关于x 的不等式()24(4)0kx k x ---<有且只有一个整数解,则实数k 的取值范围是________.二、选择题(本大题共有4题,满分12分)每题有且只有一个正确答案,考生应在答题纸的相应编号的空格内填入代表答案的序号,选对得3分,否则一律得零分.11.已知0a b <<,则2222a b a b +-和a b a b+-的大小关系是( )A .2222a b a b a b a b ++>--B .2222a b a b a b a b ++<--C .2222a b a b a b a b ++≥--D .2222a b a ba b a b++≤-- 12.下图表示图形阴影部分的是( )A .()ABC ⋂⋃ B .()A B C ⋂⋃ C .()A B C ⋃⋃D .()A B C ⋃⋂13.设a 为非零实数,则“1a >”是“11a<”的什么条件?( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既不是充分条件也不是必要条件 14.非空集合A 具有下列性质:①若,x y A ∈,则xA y∈;②若,x y A ∈,则x y A +∈,下列判断一定成立的是( ) (1)1A -∉(2)20202021A ∈(3)若,x y A ∈,则xy A ∈(4)若,x y A ∈,则x y A -∉ A .(1)(3)B .(1)(4)C .(1)(2)(3)D .(2)(3)(4)三、解答题(本大题共有5题,满分48分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.15.(本题满分8分)(1)若关于x 的不等式2(1)40x k x +-+>的解集为R ,求k 的取值范围; (2)若关于x 的不等式|1||1|x x m +-->对任意实数x 恒成立,求m 的取值范围. 16.(本题满分8分)若,,,a b c d R ∈,且2()ac b d =+,求证:一元二次方程20x ax b ++=和20x cx d ++=中至少有一个方程有实根. 17.(本题满分8分)已知集合{23}A x x x =-≤,集合{1}B x ax =>,若A B ⋂=∅,求实数a 的取值范围. 18.(本题满分10分)本题共有2个小题,第1小题满分6分,第2小题满分4分.运货卡车以每小时x 千米的速度匀速行驶300千米,按交通法规限制50100x ≤≤(单位:千米/小时),假设柴油的价格是每升6元,而汽车每小时耗油24420x ⎛⎫+ ⎪⎝⎭升,司机的工资是每小时46元. (1)求这次行车总费用y 关于x 的表达式(总费用为油费与司机工资的总和); (2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.19.(本题满分14分)本题共有4个小题,第1小题满分2分,第2小题满分5分,第3小题满分3分,第4小题满分4分.设函数1||1 yx=-(1)求定义域D;(2)在下图平面直角坐标系中画出函数的图像;(3)试说明函数关于y轴对称;(4)解不等式1||1xx>-.参考答案一、填空题(本大题满分40分)本大题共有10小题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.【答案】:{1,2,3,4,6,8} 2.【答案】:1,2⎛⎫+∞⎪⎝⎭3.【答案】:1484.【答案】:12a5.【答案】:(2019,2021)- 6.【答案】:1- 7.【答案】:112ba ++ 8.【答案】:39.【答案】:3- 10.【答案】:[3(4,3-⋃+二、选择题(本大题共有4题,满分1分)每题有且只有一个正确答案,考生应在答题纸的相应编号的空格内填入代表答案的序号,选对得3分,否则一律得零分.11.B 12.A 13.A 14.C三、解答题(本大题共有5题,满分48分)解答下列各题必须在答题纸相应编号的规定区域内写岀必要的步骤.15.【答案】:(1)∵2(1)40x k x +-+>的解集为R ,2(1)160k ∆=--<,解得35k -<<,故k 的取值范围的是(3,5)-(2)根据三角不等式可得|1||2||12||1|x x x ++-≥+-=-,当且仅当10x +≤,即1x ≤-,等号成立. 所以|1||1|2x x +--≥-,因为|1||1|x x m +-->对任意实数x 恒成立,所以2m <-,故m 的取值范围是(,2)-∞-. 16.【答案】:证明:假设一元二次方程20x ax b ++=和20x cx d ++=都没有实根 设20x ax b ++=的判别式为1∆,20x cx d ++=的判别式为2∆,则2140a b ∆=-<,2240c d ∆=-<,则22440a b c d -+-<,即2244a c b d +<+根据基本不等式222a c ac +≥,所以22244ac a c b d ≤+<+,即2()ac b d <+,与题设2()ac b d =+矛盾,故假设不成立,即一元二次方程20x ax b ++=和20x cx d ++=中至少有一个方程有实根. 17.【答案】:|23|2313x x x x x x -≤⇒-≤-≤⇒≤≤,故{3}[1,3]A x x x =-≤=若0a =,B =∅,满足A B ⋂=∅ 若0a <,1,B a ⎛⎫=-∞ ⎪⎝⎭,满足A B ⋂=∅; 若0a >,1,B a ⎛⎫=+∞⎪⎝⎭,则13a ≥,即13a ≤,所以103a <≤综上,实数a 的取值范围是1,3⎛⎤-∞ ⎥⎝⎦.18.【答案】(1)设行车所用的时间为t ,则300t x=小时,行车总费用为y ; 根据行车总费用=耗费柴油的费用+司机的工资,可得:23003006446,50100420x y x x x ⎛⎫=⋅⋅++⋅≤≤ ⎪⎝⎭ 化简整理可得,2100030,501007xy x x =+≤≤ 故这次行车总费用y 关于x 的表达式为:2100030,501007xy x x =+≤≤ (2)由(1)可知,2100030,501007xy x x =+≤≤∴2300600y ≥=⨯=,当且仅当21000307x x =,即70x =时取“=”,故当70x =时,这次行车的总费用最低为600元.19.【答案】:(1)根据题意得||10x -≠,所以(,1)(1,1)(1,)D =-∞-⋃-⋃+∞(2)(3)若()00,x y 在图像上,则关于y 轴对称点()00,x y -,也符合函数解析式,故也在图像上.(4)若1x >时,11x x >-,即210x x --<1515x -+<<,所以151x +<< 若11x -<<,11||1x ≤--,则1||1x x ≤-恒成立,所以1||1x x >-无解,若1x <-,10||1x >-,则1||1x x <-恒成立,所以成立,综上,1||1x x >-的解集是15(,1)1,2⎛+-∞-⋃ ⎝⎭.上海市高一上学期期中考试试卷数学第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{0,1,2}A =,那么( )A .0A ⊆B .0A ∈C .{1}A ∈D .{0,1,2}A2.集合{|14}A x x =∈-<<N 的真子集个数为( )A .7B .8C .15D .163.命题“x ∀∈R ,||10x x -+≠”的否定是( )A .x ∃∈R ,||10x x -+≠B .x ∃∈R ,||10x x -+=C .x ∀∈R ,||10x x -+=D .x ∀∉R ,||10x x -+≠4.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )A .62%B .56%C .46%D .42% 5.已知集合{|10}A x x =-≥,2{|280}B x x x =--≥,则()A B =R ( ) A .[2,1]- B .[1,4] C .(2,1)- D .(,4)-∞6.甲、乙两人沿着同一方向从A 地去B 地,甲前一半的路程使用速度1v ,后一半的路程使用速度2v ;乙前一半的时间使用速度1v ,后一半的时间使用速度2v ,关于甲,乙两人从A 地到达B 地的路程与时间的函数图像及关系(其中横轴t 表示时间,纵轴s 表示路程12v v <)可能正确的图示分析为( )A .B .C .D . 7.若函数24()43x f x mx mx -=++的定义域为R ,则实数m 的取值范围是( ) A .3(0,]4 B .3[0,]4 C .3[0,)4 D .3(0,)48.若定义在R 的奇函数()f x 在(,0)-∞单调递减,且(2)0f =,则满足(1)0xf x -≥的x 的取值范围是( )A .[1,1][3,)-+∞B .[3,1][0,1]--C .[1,0][1,)-+∞D .[1,0][1,3]-二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.21x ≤的一个充分不必要条件是( )A .10x -≤<B .1x ≥C .01x <≤D .11x -≤≤ 10.下列各项中,()f x 与()g x 表示的函数不相等的是( )A .()f x x =,2()g x xB .()f x x =,2())g x x =C .()f x x =,2()x g x x = D .()|1|f x x =-,1(1)()1(1)x x g x x x -≥⎧=⎨-<⎩11.若函数22,1()4,1x a x f x ax x ⎧-+≤-=⎨+>-⎩在R 上是单调函数,则a 的取值可能是( ) A .0 B .1 C .32 D .312.下列函数中,既是偶函数又在(0,3)上是递减的函数是( )A .21y x =-+B .3y x =C .1y x =-+D .y x =第Ⅱ卷三、填空题:本大题共4小题,每小题5分.13.若{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20182018a b +=________. 14.已知(1)f x +的定义域为[2,3)-,则(2)f x -的定义域是 .15.若12a b <-≤,24a b ≤+<,则42a b -的取值范围_________.16.已知函数21()234f x x x =-++,3()|3|2g x x =-,若函数(),()()()(),()()f x f x g x F x g x f x g x <⎧=⎨≥⎩, 则(2)F = ,()F x 的最大值为 .四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)设集合{25}A x x =-≤≤,{121}B x m x m =-≤≤+. (1)若AB =∅,求m 的范围; (2)若AB A =,求m 的范围.18.(12分)已知命题:p x ∃∈R ,2(1)(1)0m x ++≤,命题:q x ∀∈R ,210x mx ++>恒成立. 若,p q 至少有一个为假命题,求实数m 的取值范围.19.(12分)已知函数26,0()22,0x x f x x x x +≤⎧=⎨-+>⎩.(1)求不等式()5f x >的解集;(2)若方程2()02m f x -=有三个不同实数根,求实数m的取值范围.20.(12分)已知奇函数222,0()0,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩. (1)求实数m 的值;(2)画出函数的图像;(3)若函数()f x 在区间[1,||2]a --上单调递增,试确定a 的取值范围.21.(12分)在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x台(x是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费.f x;(1)求该月需用去的运费和保管费的总费用()(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.22.(12分)已知()f x 是定义在[5,5]-上的奇函数,且(5)2f -=-,若对任意的m ,[5,5]n ∈-,0m n +≠,都有()()0f m f n m n+>+. (1)若(21)(33)f a f a -<-,求a 的取值范围;(2)若不等式()(2)5f x a t ≤-+对任意[5,5]x ∈-和[3,0]a ∈-都恒成立,求t 的取值范围.答案第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【解析】∵集合{0,1,2}A =,∴0A ∈,故A 错误,B 正确;又∵{1}A ⊆,∴C 错误;而{0,1,2}A =,∴D 错误.2.【答案】C【解析】{0,1,2,3}A =中有4个元素,则真子集个数为42115-=.3.【答案】B【解析】全称量词命题的否定是存在量词命题.4.【答案】C【解析】由Venn 图可知,既喜欢足球又喜欢游泳的学生所占比60%82%96%46%X =+-=, 故选C .5.【答案】C【解析】∵{|10}{|1}A x x x x =-≥=≥,2{|280}{|2B x x x x x =--≥=≤-或4}x ≥, ∴{|2A B x x =≤-或1}x ≥,则()(2,1)A B =-R .6.【答案】A【解析】因为12v v <,故甲前一半路程使用速度1v ,用时超过一半,乙前一半时间使用速度1v , 行走路程不到一半.7.【答案】C【解析】2430mx mx ++≠,所以0m =或000m m Δ≠⎧⇒=⎨<⎩或2030416120m m m m ≠⎧⇒≤<⎨-<⎩. 8.【答案】D 【解析】∵()f x 为R 上奇函数,在(,0)-∞单调递减,∴(0)0f =,(0,)+∞上单调递减.由(2)0f =,∴(2)0f -=,由(1)0xf x -≥,得0(1)0x f x ≥⎧⎨-≥⎩或0(1)0x f x ≤⎧⎨-≤⎩,解得13x ≤≤或10x -≤≤,∴x 的取值范围是[1,0][1,3]-,∴选D .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.【答案】AC【解析】∵不等式21x ≤,∴11x -≤≤,“01x <≤”和“10x -≤<”是不等式21x ≤成立的一个充分不必要条件.10.【答案】ABC【解析】A ,可知()||g x x =,()f x x =,两个函数对应关系不一样,故不是同一函数;B ,()f x x =,x ∈R ,2()g x x ==,0x ≥,定义域不一样;C ,()f x x =,x ∈R ,2()x g x x=,0x ≠,定义域不一样; D ,1(1)()|1|1(1)x x f x x x x -≥⎧=-=⎨-<⎩与()g x 表示同一函数. 11.【答案】BC【解析】当1x ≤-时,2()2f x x a =-+为增函数,所以当1x >-时,()4f x ax =+也为增函数, 所以0124a a a >⎧⎨-+≤-+⎩,解得503a <≤. 12.【答案】AC【解析】A :21y x =-+是偶函数,且在(0,3)上递减,∴该选项正确; B :3y x =是奇函数,∴该选项错误;C :1y x =-+是偶函数,且在(0,3)上递减,∴该选项错误;D :y =第Ⅱ卷三、填空题:本大题共4小题,每小题5分.13.【答案】1 【解析】由集合相等可知0b a=,则0b =, 即{}{}21,,00,,a a a =,故21a =, 由于1a ≠,故1a =-,则20182018101a b +=+=.14.【答案】[)1,6【解析】∵(1)f x +的定义域为[2,3)-,∴23x -≤<,∴114x -≤+<, ∴()f x 的定义域为[1,4)-;∴124x -≤-<,∴16x ≤<,∴(2)f x -的定义域为[1,6).15.【答案】(5,10)【解析】由题设42()()a b x a b y a b -=-++,42()()a b x y a y x b -=++-, 则42x y y x +=⎧⎨-=-⎩,解得31x y =⎧⎨=⎩,所以423()()a b a b a b -=-++,12a b <-≤,33()6a b <-≤,24a b ≤+<,所以53()()10a b a b <-++<,故54210a b <-<.16.【答案】0,6【解析】因为(2)6f =,(2)0g =,所以(2)0F =,画出函数()F x 的图象(实线部分), 由图象可得,当6x =时,()F x 取得最大值6.四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)6m >或32m <-;(2)2m <-或12m -≤≤. 【解析】(1)已知{25}A x x =-≤≤,{121}B x m x m =-≤≤+. 当B =∅时,有121m m ->+,即2m <-,满足AB =∅;当B ≠∅时,有121m m -≤+,即2m ≥-, 又AB =∅,则15m ->或212m +<-,即6m >或322m -≤<-, 综上可知,m 的取值范围为6m >或32m <-. (2)∵A B A =,∴B A ⊆, 当B =∅时,有121m m ->+,即2m <-,满足题意;当B ≠∅时,有121m m -≤+,即2m ≥-,且12215m m -≥-⎧⎨+≤⎩,解得12m -≤≤, 综上可知,m 的取值范围为2m <-或12m -≤≤.18.【答案】2m ≤-或1m >-.【解析】当命题p 为真时,10m +≤,解得1m ≤-;当命题q 为真时,24110Δm =-⨯⨯<,解得22m -<<,当命题p 与命题q 均为真时,则有12122m m m ≤-⎧⇒-<≤-⎨-<<⎩,命题q 与命题p 至少有一个为假命题,所以此时2m ≤-或1m >-.19.【答案】(1)(1,0](3,)-+∞;(2)(2,2)(2,2)-.【解析】(1)当0x ≤时,由65x +>,得10x -<≤;当0x >时,由2225x x -+>,得3x >,综上所述,不等式的解集为(1,0](3,)-+∞.(2)方程2()02m f x -=有三个不同实数根, 等价于函数()y f x =与函数22m y =的图像有三个不同的交点,如图所示, 由图可知,2122m <<,解得22m -<<-或22m <<, 所以实数m 的取值范围为(2,2)(2,2)--.20.【答案】(1)2m =;(2)图像见解析;(3)[3,1)(1,3]--. 【解析】(1)当0x <时,0x ->,22()()2()2f x x x x x -=--+-=--,又因为()f x 为奇函数,所以()()f x f x -=-,所以当0x <时,2()2f x x x =+,则2m =. (2)由(1)知,222,0()0,02,0x x x f x x x x x ⎧-+>⎪==⎨⎪+<⎩,函数()f x 的图像如图所示.(3)由图像可知()f x 在[1,1]-上单调递增,要使()f x 在[1,||2]a --上单调递增, 只需1||21a -<-≤,即1||3a <≤,解得31a -≤<-或13a <≤,所以实数a 的取值范围是[3,1)(1,3]--. 21.【答案】(1)144()4f x x x=+(036x <≤,*x ∈N );(2)只需每批购入6张书桌,可以使资金够用. 【解析】(1)设题中比例系数为k ,若每批购入x 台,则共需分36x批,每批价值为20x 元, 由题意36()420f x k x x=⋅+⋅, 由4x =时,()52f x =,得161805k ==, 所以144()4f x x x=+(036x <≤,*x ∈N ). (2)由(1)知,144()4f x x x=+(036x <≤,*x ∈N ),所以()48f x ≥=(元),当且仅当1444x x=,即6x =时,上式等号成立, 故只需每批购入6张书桌,可以使资金够用.22.【答案】(1)8(2,]3;(2)3(,]5-∞.【解析】(1)设任意1x ,2x 满足1255x x -≤<≤, 由题意可得12121212()()()()()0()f x f x f x f x x x x x +--=-<+-,即12()()f x f x <, 所以()f x 在定义域[5,5]-上是增函数,由(21)(33)f a f a -<-,得521553352133a a a a -≤-≤⎧⎪-≤-≤⎨⎪-<-⎩,解得823a <≤, 故a 的取值范围为8(2,]3.(2)由以上知()f x 是定义在[5,5]-上的单调递增的奇函数,且(5)2f -=-,得在[5,5]-上max ()(5)(5)2f x f f ==--=,在[5,5]-上不等式()(2)5f x a t ≤-+对[3,0]a ∈-都恒成立,所以2(2)5a t ≤-+,即230at t -+≥,对[3,0]a ∈-都恒成立, 令()23g a at t =-+,[3,0]a ∈-,则只需(3)0(0)0g g -≥⎧⎨≥⎩,即530230t t -+≥⎧⎨-+≥⎩,解得35t ≤, 故t 的取值范围为3(,]5-∞.。

【数学】上海市浦东新区杨思高中2016-2017学年高一(上)期中试卷(附答案)

【数学】上海市浦东新区杨思高中2016-2017学年高一(上)期中试卷(附答案)

上海市浦东新区杨思高中2016-2017学年高一(上)期中数学试卷一、填空题(本大题12小题,每题3分,共36分)1.(3分)集合A={a,b,c,d,e},B={d,f,g},则A∩B=.2.(3分)已知全集U=R,集合A={x|﹣1≤x<2},则集合∁U A=.3.(3分)命题“若x>1且y<﹣3,则x﹣y>4”的等价命题是.4.(3分)已知x<0,﹣1<y<0,用不等号将x,xy,xy2从大到小排列得.5.(3分)设集合A={x|﹣<x<2},B={x|x2≤1},则A∪B=.6.(3分)设全集U={2,4,3﹣a2},P={2,a2﹣a+2},∁U P={﹣1},则a=.7.(3分)若a>0,b>0,2a+b=1,则ab的最大值为.8.(3分)已知x>﹣1,当x=时,x+的值最小.9.(3分)x,y为实数,使x>y且>同时成立的一个充要条件是.10.(3分)若不等式|x﹣1|<a成立的充分条件是0<x<4,则实数a的取值范围是.11.(3分)若关于x的不等式>0的解集为R,则k的范围为.12.(3分)已知集合P={x|1≤x≤6,x∈N},对它的非空子集A,将A中每个元素k,都乘以(﹣1)k再求和(如A={1,3,6},可求得和为(﹣1)•1+(﹣1)3•3+(﹣1)6•6=2,则对M的所有非空子集,这些和的总和是.二、选择题(本大题4小题,每题3分,共12分)13.(3分)已知集合A、B,若A不是B的子集,则下列命题中正确的是()A.对任意的a∈A,都有a∉B B.对任意的b∈B,都有b∈AC.存在a0,满足a0∈A,a0∉B D.存在a0,满足a0∈A,a0∈B14.(3分)若a、b、c∈R,a>b,则下列不等式成立的是()A.B.a2>b2C.D.a|c|>b|c|15.(3分)若a,b∈R,且ab>0,则下列不等式中恒成立的是()A.B.a2+b2>2ab C. D.16.(3分)设全集为U,定义集合M与N的运算:M*N={x|x∈M∪N且x∉M∩N},则N*(N*M)=()A.M B.N C.M∩∁U N D.N∩∁U M三、解答题(本大题5小题,共52分)17.(8分)比较与()2的大小.18.(10分)已知集合A={x|12﹣5x﹣2x2>0},B={x|x2﹣ax+b≤0}满足A∩B=∅,A∪B=(﹣4,8],求实数a,b的值.19.(10分)已知集合A={x||2x﹣1|≤3},集合B={x|x2+(4﹣a)x﹣4a>0},若A∩B=A,求实数a的取值范围.20.(12分)某商场一年购进某种货物900吨,每次都购进x吨,运费为每次9万元,一年的总存储费用为9x万元.(1)要使一年的总运费与总存储费用之和最小,则每次购买多少吨?(2)要使一年的总运费与总存储费用之和不超过585万元,则每次购买量在什么范围?21.(12分)设全集U=R.(1)解关于x的不等式|x﹣1|+a﹣1>0(a∈R);(2)记A为(1)中不等式的解集,B为不等式组的整数解集,若(∁U A)∩B恰有三个元素,求a的取值范围.参考答案一、填空题(本大题12小题,每题3分,共36分)1.{d}2.{x|x<﹣1或x≥2}3.“若x﹣y≤4,则x≤1或y≥﹣3”4.xy>xy2>x5.{x|﹣1≤x<2}6.27.8.19.xy<010.[3,+∞)11.[1,9)12.96二、选择题(本大题4小题,每题3分,共12分)13.C14.C.15.D16.A三、解答题(本大题5小题,共52分)17.解:﹣()2=﹣(a2+b2+2ab)=(a2+b2﹣2ab)=(a﹣b)2≥0,∴≥()2.18.解:∵集合A={x|12﹣5x﹣2x2>0}={x|﹣4<x<},B={x|x2﹣ax+b≤0},满足A∩B=∅,A∪B=(﹣4,8],∴B={x|x2﹣ax+b≤0}={x|},∴,8是方程|x2﹣ax+b=0的两个根,∴,解得a=,b=12.19.解:由题意:集合A={x||2x﹣1|≤3}={x|﹣1≤x≤2}集合B={x|x2+(4﹣a)x﹣4a>0}={x|(x+4)(x﹣a)>0},∵A∩B=A∴A⊆B.解法一:令f(x)=x2+(4﹣a)x﹣4a>0,∵﹣1≤x≤2,根据一元二次方程的根的分布:可得:或解:a≤﹣1故得实数a的取值范围是:(﹣∞,﹣1].解法二,讨论思想:当a=﹣4时,B={x∈R|x≠﹣4},满足A⊆B.当a>﹣4时,B={x|x>a或x<﹣4},要使A⊆B成立,则:a≤﹣1.当a<﹣4时,B={x|x<a或x>﹣4},满足A⊆B.故得实数a的取值范围是:(﹣∞,﹣1].20.解:(1)设每次都购买x吨,则需要购买次,∵运费为9万/次,一年的总存储费用为9x万元,∴一年的总运费与总存储费用之和为9×+9x万元∵9×+9x≥540,当且仅当9×=9x时取等号∴x=30吨时,一年的总运费与总存储费用之和最小;(2)由题意,9×+9x≤585,得20≤x≤45.∴每次购买量在大于或等于20吨且小于或等于45吨的范围内.21.解:(1)由|x﹣1|+a﹣1>0 得|x﹣1|>1﹣a,当a>1时,解集是R;当a≤1时,解集是{x|x<a,或x>2﹣a}.(2)解不等式组,得:﹣4<x≤,故B={﹣3,﹣2,﹣1,0,1,2,3,4},当a>1时,C U A=∅,不满足条件.当a≤1时,C U A={x|a≤x≤2﹣a},∴2﹣a≥1,若(∁U A)∩B恰有三个元素,则,解得:﹣1<a≤0.。

上海市浦东新区2016-2017学年高一上学期期中考试数学试卷(解析版)

上海市浦东新区2016-2017学年高一上学期期中考试数学试卷(解析版)

2016-2017学年上海市浦东新区高一(上)期中数学试卷一. 填空题1. 用∈或∉填空:0 ∅2. {|1,}A x x x R =≤∈,则R C A =3. 满足条件M {1,2}的集合M 有 个4. 不等式2(1)4x ->的解集是5. 不等式2210x mx -+≥对一切实数x 都成立,则实数m 的取值范围是 6. 集合{|1}A x x =≤,{|}B x x a =≥,A B R = ,则a 的取值范围是 7. 若1x >,92x x+-取到的最小值是 8. 如果0x <,01y <<,那么2y x,y x ,1x 从小到大的顺序是9. 一元二次不等式20x bx c ++≤的解集为[2,5]-,则bc =10. 全集为R ,已知数集A 、B 在数轴上表示如下图,那么“x B ∉”是“x A ∈”的 条件11. 已知U 是全集,A 、B 是U 的两个子集,用交、 并、补关系将右图中的阴影部分表示出来12. 若规定集合12{,,,}n M a a a =⋅⋅⋅*()n N ∈的子集12{,,,}m i i i a a a ⋅⋅⋅*()m N ∈为M 的第k 个子集,其中12111222m i i i k ---=++⋅⋅⋅+,则M 的第25个子集是二. 选择题13. 集合{,,}A a b c =中的三个元素是△ABC 的三边长,则△ABC 一定不是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形 14. 已知0a ≠,下列各不等式恒成立的是( )A. 12a a +> B. 12a a +≥ C. 12a a +≤- D. 1||2a a+≥15. 集合*1{|,}2m A x x m N ==∈,若1x A ∈,2x A ∈,则( ) A. 12()x x A +∈ B. 12()x x A -∈ C. 12()x x A ∈ D. 12x A x ∈ 16. 设,,x y a R +∈,且当21x y +=时,3a x y+的最小值为121x y +=时,3x ay +的最小值是( )A. 6 C. 12D.三. 解答题17. 已知实数a 、b ,原命题:“如果2a <,那么24a <”,写出它的逆命题、否命题、逆 否命题;并分别判断四个命题的真假性;18. 集合2{|0,}2x A x x R x +=≤∈-,{||1|2,}B x x x R =-<∈; (1)求A 、B ; (2)求()U B C A ;19. 设:127m x m α+≤≤+()m R ∈,:13x β≤≤,若α是β的必要不充分条件,求实 数m 的取值范围;20. 某农户计划建造一个室内面积为2800m 的矩形蔬菜温室, 在温室外,沿左、右两侧与后侧各保留1m 宽的通道,沿前侧 保留3m 宽的空地(如图所示),当矩形温室的长和宽分别为 多少时,总占地面积最小?并求出最小值;21. 集合{||1|4}A x x =+<,{|(1)(2)0}B x x x a =--<; (1)求A 、B ;(2)若A B B = ,求实数a 的取值范围;2016-2017学年上海市浦东新区高一(上)期中数学试卷参考答案与试题解析一、填空题1.(2016秋•浦东新区期中)用∈或∉填空:0∉∅.【考点】元素与集合关系的判断.【专题】转化思想;集合.【分析】根据元素与集合的关系进行判断【解答】解:∵0是一个元素,∅是一个集合,表示空集,里面没有任何元素.∴0∉∅故答案为:∉.【点评】本题主要考查元素与集合的关系,属于基础题2.(2016秋•浦东新区期中)A={x|x≤1,x∈R},则∁R A={x|x>1} .【考点】补集及其运算.【专题】计算题;集合思想;定义法;集合.【分析】根据集合A,以及全集R,求出A的补集即可.【解答】解:∵A={x|x≤1,x∈R},∴∁R A={x|x>1}.故答案为:{x|x>1}.【点评】此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.3.(2016秋•浦东新区期中)满足条件M⊊{1,2}的集合M有3个.【考点】子集与真子集.【专题】综合题;综合法;集合.【分析】根据题意判断出M是集合{1,2}的真子集,写出所有满足条件的集合M,可得答案.【解答】解:由M⊊{1,2}得,M是集合{1,2}的真子集,所以M可以是∅,{1},{2},共3个,故答案为:3.【点评】本题考查子集与真子集的定义,写子集时注意按一定的顺序,做到不重不漏,属于基础题.4.(2016秋•浦东新区期中)不等式(x﹣1)2>4的解集是{x|x<﹣1或x>3} .【考点】一元二次不等式的解法.【专题】对应思想;定义法;不等式的解法及应用.【分析】根据平方数的定义,把不等式化为x﹣1<﹣2或x﹣1>2,求出解集即可.【解答】解:不等式(x﹣1)2>4可化为:x﹣1<﹣2或x﹣1>2,解得x<﹣1或x>3,所以该不等式的解集是{x|x<﹣1或x>3}.故答案为:{x|x<﹣1或x>3}.【点评】本题考查了一元二次不等式的解法与应用问题,是基础题目.5.(2016秋•浦东新区期中)不等式x2﹣2mx+1≥0对一切实数x都成立,则实数m的取值范围是﹣1≤m≤1.【考点】一元二次不等式的解法.【专题】对应思想;定义法;不等式的解法及应用.【分析】根据不等式x2﹣2mx+1≥0对一切实数x都成立,△≤0,列出不等式求出解集即可.【解答】解:不等式x2﹣2mx+1≥0对一切实数x都成立,则△≤0,即4m2﹣4≤0,解得﹣1≤m≤1;所以实数m的取值范围是﹣1≤m≤1.故答案为:﹣1≤m≤1.【点评】本题考查了一元二次不等式恒成立的应用问题,是基础题目.6.(2016秋•浦东新区期中)集合A={x|x≤1},B={x|x≥a},A∪B=R,则a的取值范围是a≤1.【考点】并集及其运算;集合的包含关系判断及应用.【专题】计算题;集合思想;定义法;集合.【分析】利用数轴,在数轴上画出集合,数形结合求得两集合的并集.利用数轴,在数轴上画出集合,数形结合求得两集合的并集.【解答】解:∵A={x|x≤1},B={x|x≥a},且A∪B=R,如图,故当a≤1时,命题成立.故答案为:a≤1.【点评】本题考查集合关系中的参数问题,属于以数轴为工具,求集合的并集的基础题,本题解题的关键是借助于数轴完成题目.7.(2016秋•浦东新区期中)若x>1,x+﹣2取到的最小值是4.【考点】基本不等式.【专题】转化思想;分析法;不等式的解法及应用.【分析】由x>1,运用基本不等式可得最小值,注意等号成立的条件.【解答】解:由x>1,可得x+﹣2≥2﹣2=4.当且仅当x=,即x=3时,取得最小值4.故答案为:4.【点评】本题考查基本不等式的运用:求最值,注意一正二定三等的条件,考查运算能力,属于基础题.8.(2016秋•浦东新区期中)如果x<0,0<y<1,那么,,从小到大的顺序是<<.【考点】不等式的基本性质.【专题】转化思想;不等式的解法及应用.【分析】由0<y<1,可得0<y2<y<1,由x<0,即可得出大小关系.【解答】解:∵0<y<1,∴0<y2<y<1,∵x<0,∴<<.故答案为:<<.【点评】本题考查了不等式的基本性质,考查了推理能力与计算能力,属于基础题.9.(2016秋•浦东新区期中)一元二次不等式x2+bx+c≤0的解集为[﹣2,5],则bc=30.【考点】一元二次不等式的解法.【专题】对应思想;定义法;不等式的解法及应用.【分析】根据一元二次不等式与对应方程的关系,利用根与系数的关系即可求出b、c的值.【解答】解:一元二次不等式x2+bx+c≤0的解集为[﹣2,5],所以对应一元二次方程x2+bx+c=0的实数根为﹣2和5,由根与系数的关系得,解得b=﹣3,c=﹣10;所以bc=30.故答案为:30.【点评】本题考查了一元二次不等式与对应方程的关系以及根与系数的关系的应用问题,是基础题目.10.(2016秋•浦东新区期中)全集为R,已知数集A、B在数轴上表示如图所示,那么“x∉B”是“x ∈A”的充分不必要条件.【考点】必要条件、充分条件与充要条件的判断.【专题】转化思想;定义法;简易逻辑.【分析】根据数轴结合充分条件和必要条件的定义进行判断即可.【解答】解:由数轴得A={x|x≥1或x≤﹣1},B={x|﹣2≤x≤1},则∁R B={x|x>1或x<﹣2},则∁R B⊊A,即“x∉B”是“x∈A”的充分不必要条件,故答案为:充分不必要.【点评】本题主要考查充分条件和必要条件的判断,根据数轴关系求出对应的集合,根据集合关系进行判断是解决本题的关键.11.(2016秋•浦东新区期中)已知U是全集,A、B是U的两个子集,用交、并、补关系将图中的阴影部分表示出来B∩(∁U A)【考点】V enn图表达集合的关系及运算.【专题】对应思想;待定系数法;集合.【分析】根据Venn图和集合之间的关系进行判断.【解答】解:由Venn图可知,阴影部分的元素为属于B当不属于A的元素构成,所以用集合表示为B∩(∁U A).故答案为:B∩(∁U A).【点评】本题主要考查Venn图表达集合的关系和运算,比较基础.12.(2016秋•浦东新区期中)若规定集合M={a1,a2,…,a n}(n∈N*)的子集{a,a,…a}(m∈N*)为M的第k个子集,其中k=2+2+…+2,则M的第25个子集是{a1,a4,a5} .【考点】子集与真子集.【专题】新定义;综合法;集合.【分析】根据定义将25表示成2n和的形式,由新定义求出M的第25个子集.【解答】解:由题意得,M的第k个子集,且k=2+2+ (2)又25=20+23+24=21﹣1+24﹣1+25﹣1,所以M的第25个子集是{a1,a4,a5},故答案为:{a1,a4,a5}.【点评】本小题主要考查子集与真子集、新定义的应用,考查分析问题、解决问题的能力,属于基础题.二、选做题13.(2014•万州区校级模拟)若集合M={a,b,c}中的元素是△ABC的三边长,则△ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【考点】集合的确定性、互异性、无序性.【分析】根据集合元素的互异性,在集合M={a,b,c}中,必有a、b、c互不相等,则△ABC不会是等腰三角形.【解答】解:根据集合元素的互异性,在集合M={a,b,c}中,必有a、b、c互不相等,故△ABC一定不是等腰三角形;选D.【点评】本题较简单,注意到集合的元素特征即可.14.(2016秋•浦东新区期中)已知a≠0,下列各不等式恒成立的是()A.a+>2 B.a+≥2 C.a+≤﹣2 D.|a+|≥2【考点】基本不等式.【专题】转化思想;分析法;不等式的解法及应用.【分析】可取a<0,否定A,B;a>0,否定C;运用|a+|=|a|+,由基本不等式即可得到结论.【解答】解:取a<0,则选项A,B均不恒成立;取a>0,则选项C不恒成立;对于D,|a+|=|a|+≥2=2,当且仅当|a|=1时,等号成立.故选:D.【点评】本题考查不等式恒成立问题的解法,注意运用反例法和基本不等式,属于基础题.15.(2016秋•浦东新区期中)设集合A={x|x=,m∈N*},若x1∈A,x2∈A,则()A.(x1+x2)∈A B.(x1﹣x2)∈A C.(x1x2)∈A D.∈A【考点】元素与集合关系的判断.【专题】集合.【分析】利用元素与集合的关系的进行判定【解答】解:设x1=,x2=,x1x2=•=,p、q∈N,x1x2∈A,故选:B【点评】本题主要考查元素与集合的关系的判定,属于基础题.16.(2016秋•浦东新区期中)设x,y,a∈R*,且当x+2y=1时,+的最小值为6,则当+=1时,3x+ay的最小值是()A.6 B.6 C.12 D.12【考点】基本不等式.【专题】转化思想;分析法;不等式的解法及应用.【分析】由题设条件,可在+上乘以x+2y构造出积为定值的形式,由基本不等式求得+的最小值为3+2a+2,从而得到3+2a+2=6,同理可得当+=1时,3x+ay 的最小值是3+2a+2,即可求得3x+ay 的最小值是6.【解答】解:由题意x,y,a∈R+,且当x+2y=1 时,+的最小值为6,由于+=(+)(x+2y)=3+2a++≥3+2a+2,等号当=时取到.故有3+2a+2=6,∴3x+ay=(3x+ay )(+)=3+2a++≥3+2a+2=6,等号当=时取到.故选A.【点评】本题考查基本不等式在最值问题中的应用,及构造出积为定值的技巧,解题的关键是由题设条件构造出积为定值的技巧,从而得出3+2a+2=6,本题中有一疑点,即两次利用基本不等式时,等号成立的条件可能不一样,此点不影响利用3+2a+2求出3x+ay 的最小值是6,这是因为3+2a+2是一个常数,本题是一个中档题目.三、解答题17.(14分)(2016秋•浦东新区期中)已知实数a、b,原命题:“如果a<2,那么a2<4”,写出它的逆命题、否命题、逆否命题;并分别判断四个命题的真假性.【考点】四种命题.【专题】对应思想;定义法;简易逻辑.【分析】根据四种命题的形式与之间的关系,分别写出原命题的逆命题、否命题和逆否命题;并判断这四个命题的真假性即可.【解答】解:原命题:“如果a<2,那么a2<4”,是假命题;逆命题:“如果a2<4,那么a<2”,是真命题;否命题:“如果a≥2,那么a2≥4”,是真命题;逆否命题:“如果a2≥4,那么a≥2”,是假命题.【点评】本题考查了四种命题之间的关系以及命题真假性的判断问题,是基础题目.18.(14分)(2016秋•浦东新区期中)集合A={x|≤0,x∈R},B={x||x﹣1|<2,x∈R}.(1)求A、B;(2)求B∩(∁U A).【考点】交、并、补集的混合运算;集合的表示法.【专题】对应思想;定义法;集合.【分析】化简集合A、B,根据补集与交集的定义计算即可.【解答】解:(1)A={x|≤0,x∈R}={x|(x+2)(x﹣2)≤0,且x﹣2≠0}={x|﹣2≤x<2},B={x||x﹣1|<2,x∈R}={x|﹣2<x﹣1<2}={x|﹣1<x<3};(2)∁U A={x|x<﹣2或x≥2},∴B∩(∁U A)={x|2≤x<3}.【点评】本题考查了集合的化简与运算问题,是基础题目.19.(14分)(2016秋•浦东新区期中)设α:m+1≤x≤2m+7(m∈R),β:1≤x≤3,若α是β的必要不充分条件,求实数m的取值范围.【考点】必要条件、充分条件与充要条件的判断.【专题】转化思想;定义法;简易逻辑.【分析】根据必要不充分条件的定义建立不等式关系进行求解即可.【解答】解:设α对应的集合为A,β对应的集合为B,若α是β的必要不充分条件,则B⊊A,则,即,得﹣2≤m≤0.【点评】本题主要考查充分条件和必要条件的应用,根据充分条件和必要条件的定义建立不等式关系是解决本题的关键.20.(14分)(2016秋•浦东新区期中)某农户计划建造一个室内面积为800m2的矩形蔬菜温室,在温室外,沿左、右两侧与后侧各保留1m宽的通道,沿前侧保留3m的空地(如图所示),当矩形温室的长和宽分别为多少时,总占地面积最大?并求出最大值.【考点】基本不等式在最值问题中的应用.【专题】应用题;转化思想;综合法;函数的性质及应用.【分析】设出矩形的长为a与宽b,建立蔬菜面积关于矩形边长的函数关系式S=(a﹣4)(b﹣2)=ab ﹣4b﹣2a+8=800﹣2(a+2b).利用基本不等式变形求解.【解答】解:设矩形温室的左侧边长为am,后侧边长为bm,则ab=800.蔬菜的种植面积S=(a﹣4)(b﹣2)=ab﹣4b﹣2a+8=808﹣2(a+2b).=648(m2).所以S≤808﹣4=648(m2),当且仅当a=2b,即a=40(m),b=20(m)时,S最大值答:当矩形温室的左侧边长为40m,后侧边长为20m时,蔬菜的种植面积最大,最大种植面积为648m2.【点评】本题考查函数的模型的选择与应用,基本不等式的应用,基本知识的考查.21.(14分)(2016秋•浦东新区期中)集合A={x||x+1|<4},B={x|(x﹣1)(x﹣2a)<0}.(1)求A、B;(2)若A∩B=B,求实数a的取值范围.【考点】集合的包含关系判断及应用.【专题】计算题;分类讨论;集合.【分析】(1)通过解绝对值不等式得到集合A,对于集合B,需要对a的取值进行分类讨论:(2)A∩B=B,则B是A的子集,据此求实数a的取值范围.【解答】解:(1)A={x||x+1|<4}={x|﹣5<x<3},当a>0.5时,B={x|1<x<2a}.当a=0.5时,B=∅.当a<0.5时,B={x|2a<x<1}.(2)由(1)知,A={x|﹣5<x<3},∵A∩B=B,∴B⊆A,①当a>0.5时,B={x|1<x<2a}.此时,,则<a≤1.5;②当a=0.5时,B=∅.满足题意;③当a<0.5时,B={x|2a<x<1}.此时,则﹣2.5≤a<0.5.综上所述,实数a的取值范围是[﹣2.5,1.5].【点评】本题考查集合的表示方法,两个集合的交集的定义和求法,绝对值不等式,一元二次不等式的解法,求出A和B,是解题的关键.。

2016-2017学年上海市上海中学高一上学期期中考试数学试卷含详解

2016-2017学年上海市上海中学高一上学期期中考试数学试卷含详解

上海中学高一期中数学卷1.设集合{}0,2,4,6,8,10A =,{}4,8B =,则A B =ð_______________.2.已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则A B =________.3.“若1x =且1y =,则2x y +=”的逆否命题是________4.若2211(f x x x x +=+,则(3)f =________5.不等式9x x >的解是________6.若不等式2(1)0ax a x a +++<对一切x ∈R 恒成立,则a 的取值范围是________7.不等式2(3)30x --<的解集是________8.已知集合{|68}A x x =-≤≤,{|}B x x m =≤,若A B B ≠ 且A B ⋂≠∅,则m 的取值范围是________9.不等式1()()25a x y x y++≥对任意正实数,x y 恒成立,则正实数a 的最小值为________10.设0a >,0b >,且45ab a b =++,则ab 的最小值为________11.若函数()22()42221f x x p x p p =----+在区间[]1,1-上至少存在一个实数c ,使()0f c >,则实数p 的取值范围为________.12.已知,a b 为正实数,且2a b +=,则2221a b a b +++的最小值为___________.13.不等式||x x x <的解集是()A.{|01}x x << B.{|11}x x -<<C.{|01x x <<或1}x <- D.{|10x x -<<或1}x >14.若A B ⊆,A C ⊆,{0,1,2,3,4,5,6}B =,{0,2,4,6,8,10}C =,则这样的A 的个数为()A.4 B.15 C.16 D.3215.不等式210ax bx ++>的解集是11(,)23-,则a b -=()A.7-B.7C.5- D.516.已知函数f(x)=x 2+bx ,则“b <0”是“f(f(x))的最小值与f(x)的最小值相等”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件17.解不等式:(1)|2||23|4x x -+-<;(2)2232x x x x x -≤--;18.已知,,,a b c d R ∈,证明下列不等式:(1)22222()()()a b c d ac bd ≥+++;(2)222a b c ab bc ca ++≥++;19.已知二次函数2()1f x ax bx =++,,a b ∈R ,当1x =-时,函数()f x 取到最小值,且最小值为0;(1)求()f x 解析式;(2)关于x 的方程()|1|3f x x k =+-+恰有两个不相等的实数解,求实数k 的取值范围;20.设关于x 的二次方程2(1)10px p x p +-++=有两个不相等的正根,且一根大于另一根的两倍,求p 的取值范围;21.已知二次函数2()f x ax bx c =++(0)a ≠,记[2]()(())f x f f x =,例:2()1f x x =+,则[2]222()(())1(1)1f x f x x =+=++;(1)2()f x x x =-,解关于x 的方程[2]()f x x =;(2)记2(1)4b ac ∆=--,若[2]()f x x =有四个不相等的实数根,求∆的取值范围;上海中学高一期中数学卷1.设集合{}0,2,4,6,8,10A =,{}4,8B =,则A B =ð_______________.【答案】{}0,2,6,10【分析】利用补集的定义可得出集合A B ð.【详解】 集合{}0,2,4,6,8,10A =,{}4,8B =,因此,{}0,2,6,10A B =ð.故答案为:{}0,2,6,10.【点睛】本题考查补集的计算,熟悉补集的定义是计算的关键,考查计算能力,属于基础题.2.已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则A B =________.【答案】{-101},,【分析】化简集合A ,由交集运算即可求解.【详解】因为{|22}A x x =-<<,所以A B ⋂={1,0,1}-,故填{1,0,1}-.【点睛】本题主要考查了集合的交集运算,属于中档题.3.“若1x =且1y =,则2x y +=”的逆否命题是________【答案】若2x y +≠,则1x ≠或1y ≠【分析】根据已知中的原命题及逆否命题的定义,可得答案.【详解】解:“若1x =且1y =,则2x y +=”的逆否命题是“若2x y +≠,则1x ≠或1y ≠”,故答案为:“若2x y +≠,则1x ≠或1y ≠”【点睛】本题考查的知识点是四种命题,熟练掌握逆否命题的定义,是解答的关键,属于基础题.4.若2211(f x x x x +=+,则(3)f =________【答案】7【分析】利用换元法求出函数的解析式,然后求解函数值即可.【详解】解:2221112f x x x x x x ⎛⎫⎛⎫+=+=+- ⎪ ⎪⎝⎭⎝⎭ ,因为当0x >时,12x x +≥=;当0x <时,112x x x x ⎛⎫+=--+≤-=- ⎪-⎝⎭;所以2()2f x x =-,(][),22,x ∈-∞-+∞ ,则()37f =.故答案为:7.【点睛】本题考查函数的解析式的求法,函数值的求法,考查计算能力,属于基础题.5.不等式9x x>的解是________【答案】(3,0)(3,)-⋃+∞【分析】首先通分化简分式不等式,最后化简为整式不等式,利用穿根法解答即可.【详解】解:原不等式等价于290x x->等价于(3)(3)0x x x +->,数轴标根,穿针引线得如下图形:则原不等式的解30x -<<或3x >即不等式的解集为(3,0)(3,)-⋃+∞;故答案为:(3,0)(3,)-⋃+∞;【点睛】本题考查了分式不等式的解法;关键是转化为整式不等式解之;运用穿根法使得解集易得,属于中档题.6.若不等式2(1)0ax a x a +++<对一切x ∈R 恒成立,则a 的取值范围是________【答案】1(,3-∞-【分析】若不等式2(1)0ax a x a +++<对一切x ∈R 恒成立,则220(1)40a a a <⎧⎨∆=+-<⎩,解得a 的取值范围.【详解】解:若不等式2(1)0ax a x a +++<对一切x ∈R 恒成立,当0a =时,0x <,不满足条件;则220(1)40a a a <⎧⎨∆=+-<⎩,解得:13a <-,即1,3a ⎛⎫∈-∞- ⎪⎝⎭,故答案为:1,3⎛⎫-∞- ⎪⎝⎭.【点睛】本题考查的知识点是函数恒成立问题,二次函数的图象和性质,转化思想,属于中档题.7.不等式2(3)30x --<的解集是________【答案】(0,6)t =,则原不等式化为2230t t --<,(0)t ,解关于t 的不等式,然后解出x 范围.t =,(0)t ,则原不等式化为2230t t --<,解得13t -<<所以03t ≤<,即[)0,3t ∈[)0,3,所以2(3)9x -<,解得333x -<-<,所以06x <<,故原不等式的解集为()0,6;故答案为:()0,6.【点睛】本题考查了利用换元法解不等式,属于基础题.8.已知集合{|68}A x x =-≤≤,{|}B x x m =≤,若A B B ≠ 且A B ⋂≠∅,则m 的取值范围是________【答案】[6,8)-【分析】根据集合的并集和集合的交集得到关于m 的不等式组,解出即可.【详解】解:{|68}A x x =-,{|}B x x m =,若A B B ≠ 且A B ⋂≠∅,则68m m -⎧⎨<⎩,解得68m -≤<,即[)6,8m ∈-故答案为:[)6,8-.【点睛】本题考查了集合的交集、并集的定义,属于基础题.9.不等式1()()25a x y x y++≥对任意正实数,x y 恒成立,则正实数a 的最小值为________【答案】16【分析】利用基本不等式进行求解,先求出()1a x y x y ⎛⎫++ ⎪⎝⎭的最小值为)21+,然后解不等式即可.【详解】解:())211111a y ax x y a a a x y x y ⎛⎫++=+++++++ ⎪⎝⎭,当且仅当y ax x y =时取等号,即()1a x y x y ⎛⎫++ ⎪⎝⎭的最小值为)21+,若不等式()125a x y x y ⎛⎫++≥ ⎪⎝⎭对任意正实数x ,y 恒成立,)2125∴+,即154,则16a ,即正实数a的最小值为16,故答案为:16.【点睛】本题主要考查基本不等式的应用,利用基本不等式先求出()1a x y x y ⎛⎫++ ⎪⎝⎭的最小值为)21+是解决本题的关键,属于中档题.10.设0a >,0b >,且45ab a b =++,则ab 的最小值为________【答案】25【分析】利用基本不等式可将45ab a b =++转化为ab 的不等式,求解不等式可得ab 的最小值.【详解】解:0a > ,0b >,45a b ab ∴++=,可得55ab +=+,当且仅当4a b =时取等号.)150∴+,∴51-(舍去).25ab ∴.故ab 的最小值为25;故答案为:25.【点睛】本题考查基本不等式,将212ab a b =++转化为不等式是关键,考查等价转化思想与方程思想,属于中档题.11.若函数()22()42221f x x p x p p =----+在区间[]1,1-上至少存在一个实数c ,使()0f c >,则实数p 的取值范围为________.【答案】3(3,2-【分析】直接计算,需分多种情况讨论,故先求题干的否定,即对于区间[]1,1-上任意一个x ,都有()0f x ≤,只需满足(1)0(1)0f f ≤⎧⎨-≤⎩,列出不等式组,求解即可得答案.【详解】函数()f x 在区间[]1,1-上至少存在一个实数c ,使()0f c >的否定为:对于区间[]1,1-上任意一个x ,都有()0f x ≤,则(1)0(1)0f f ≤⎧⎨-≤⎩,即2242(2)21042(2)210p p p p p p ⎧----+≤⎨+---+≤⎩,整理得222390210p p p p ⎧+-≥⎨--≥⎩,解得32p ≥或3p ≤-,所以函数()f x 在区间[]1,1-上至少存在一个实数c ,使()0f c >的实数p 的取值范围是3(3,)2-.故答案为:3(3,)2-【点睛】本题考查二次方程根的分布与系数的关系,解题的要点在于求解题干的否定,再求得答案,考查分析理解,求值计算的能力,属中档题.12.已知,a b 为正实数,且2a b +=,则2221a b a b +++的最小值为___________.【答案】63+【详解】试卷分析:因为,a b 为正实数,且2a b +=,所以22222112121(1)111111a b b a a b a b a b b a b a b +-+=+++=++-+=++++++[]()2+121(1)121111(1)=1+3+133131b a b a a b a b a b a b ⎡⎤++⎛⎫⎛⎫++=+++++⎢⎥ ⎪ ⎪+++⎝⎭⎝⎭⎣⎦(161333+≥++=当且仅当()2+11b a a b =+即1)a b =+时取等号,所以2221a b a b +++的最小值为63+.考点:基本不等式.【名师点睛】本主要考查基本不等式的应用以及构造基本不等式的拆项、拼凑等基本方法,属难题.第一难点是将2221a b a b +++正确拆分为2111a b +++形式,第二难点是211a b ++乘以(1)3a b ++进行变形拼凑基本不等式()2+11b a a b ++的形式,最后利用基本不等式求最小值时还得注意应用基本不等式的条件,即保证两个数均为正数、乘积为定值且能取到等号,得到正确结果.13.不等式||x x x <的解集是()A.{|01}x x << B.{|11}x x -<<C.{|01x x <<或1}x <- D.{|10x x -<<或1}x >【答案】C【分析】原不等式即()||10x x -<,等价转化为①010x x >⎧⎨-<⎩,或②010x x <⎧⎨->⎩.分别求得①、②的解集,再取并集,即得所求.【详解】解:不等||x x x <,即()||10x x -<,∴①010x x >⎧⎨-<⎩或②010x x <⎧⎨->⎩.解①可得01x <<,解②可得1x <-.把①②的解集取并集,即得原不等式的解集为{|01x x <<或1}x <-,故选:C .【点睛】本题主要考查绝对值不等式的解法,体现了分类讨论和等价转化的数学思想,属于中档题.14.若A B ⊆,A C ⊆,{0,1,2,3,4,5,6}B =,{0,2,4,6,8,10}C =,则这样的A 的个数为()A.4B.15C.16D.32【答案】C【分析】利用A B ⊆,A C ⊆,可得()A B C ⊆ ,求出B C ⋂,即可得出结论.【详解】解:A B ⊆ ,A C ⊆,()A B C ∴⊆ ,{0,1,2,3,4,5,6}B = ,{0,2,4,6,8,10}C =,{}0,2,4,6B C ∴= ,则B C ⋂的子集有4216=个;A ∴的个数为16,故选:C .【点睛】本题考查集合的运算与关系,考查学生的计算能力,属于基础题.15.不等式210ax bx ++>的解集是11(,)23-,则a b -=()A.7- B.7 C.5- D.5【答案】C【分析】根据不等式的解集构造不等式,化简后于已知得不等式对比即可求出a 与b 的值,进而求出-a b 的值.【详解】解:由不等式210ax bx ++>的解集是11,23⎛⎫- ⎪⎝⎭,构造不等式11023x x ⎛⎫⎛⎫+-< ⎪⎪⎝⎭⎝⎭,整理得:2610x x +-<,即2610x x --+>,与210ax bx ++>对比得:6a =-,1b =-,则615a b -=-+=-,故选:C .【点睛】此题考查学生理解不等式解集的意义,会根据解集构造不等式,属于基础题.16.已知函数f(x)=x 2+bx ,则“b <0”是“f(f(x))的最小值与f(x)的最小值相等”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【详解】试卷分析:由题意知222()()24b b f x x bx x =+=+-,最小值为24b -.令2=+t x bx ,则2222(())()(),244b b b f f x f t t bt t t ==+=+-≥-,当0b <时,(())f f x 的最小值为24b -,所以“0b <”能推出“(())f f x 的最小值与()f x 的最小值相等”;当0b =时,4(())=f f x x 的最小值为0,()f x 的最小值也为0,所以“(())f f x 的最小值与()f x 的最小值相等”不能推出“0b <”.故选A .考点:充分必要条件.17.解不等式:(1)|2||23|4x x -+-<;(2)2232x x x x x -≤--;【答案】(1)1(,3)3;(2)(1,0]{1}(2,)-+∞ 【分析】(1)通过讨论x 的范围,求出各个区间上的x 的范围,从而求出不等式的解集即可;(2)通过讨论x 的范围得到10x -=或0(2)(2)0x x x ⎧⎨-+>⎩或0(2)(1)0x x x <⎧⎨-+<⎩,解出即可.【详解】解:(1)因为|2||23|4x x -+-<当2x 时,2234x x -+-<,解得:3x <,即23x ≤<;当322x <<时,2234x x -+-<,解得:4x <,即322x <<;当32x时,2324x x -+-<,解得:13x >,即1332x <≤;综上可得不等式的解集是:1|33x x ⎧⎫<<⎨⎬⎩⎭即1,33x ⎛⎫∈ ⎪⎝⎭;(2) 2232x x x x x ---,∴2(1)0(2)(1)x x x x --+,10x ∴-=或0(2)(2)0x x x ⎧⎨-+>⎩或0(2)(1)0x x x <⎧⎨-+<⎩解得:10x -<或1x =或2x >,故不等式的解集是{}(1,0]1(2,)-+∞ .【点睛】本题考查了解绝对值不等式问题,考查解分式不等式以及分类讨论思想,属于中档题.18.已知,,,a b c d R ∈,证明下列不等式:(1)22222()()()a b c d ac bd ≥+++;(2)222a b c ab bc ca ++≥++;【答案】(1)证明见解析(2)证明见解析【分析】(1)根据不等式的左边减去右边化简结果为2()0ad bc -,可得不等式成立;(2)从不等式的左边入手,左边对应的代数式的二倍,分别写成两两相加的形式,在三组相加的式子中分别用均值不等式,整理成最简形式,得到右边的2倍,两边同时除以2,得到结果.【详解】(1)证明:22222()()()a b c d ac bd ++-+ ()()2222222222222a c a d b c b d a c abcd b d =+++-++()20ad bc =-,22222()()()a b c d ac bd ∴+++成立;(2)因为222a b ab +≥,222a c ac +≥,222c b cb +≥,当且仅当a b c ==时取等号;所以222a b c ++2222221()2a b c a b c =+++++1(222)2ab ca bc ab bc ca ++=++,当且仅当a b c ==时取等号;222a b c ab bc ca ∴++++.【点睛】本题主要考查用比较法证明不等式,考查均值不等式的应用,考查不等式的证明方法,把差变为因式乘积的形式,是解题的关键,属于中档题.19.已知二次函数2()1f x ax bx =++,,a b ∈R ,当1x =-时,函数()f x 取到最小值,且最小值为0;(1)求()f x 解析式;(2)关于x 的方程()|1|3f x x k =+-+恰有两个不相等的实数解,求实数k 的取值范围;【答案】(1)2(1)2f x x x =++;(2)3k <或134k =;【分析】(1)根据函数的对称轴和函数的最值,即可求出函数的解析式,(2)设|1|x t +=,0t ,得到230t t k -+-=,由x 的方程()|1|3f x x k =+-+恰有两个不相等的实数解,得到关于t 的方程由两个相等的根或有一个正根,解得即可.【详解】解:(1)1x =-时,函数()f x 取到最小值,且最小值为0,12b a∴-=-,(1)10f a b -=-+=,解得1a =,2b =,2()21f x x x ∴=++,(2)()|1|3f x x k =+-+,221|1|3x x x k ∴++=+-+,即2(1)|1|3x x k +=+-+,设|1|x t +=,0t ,230t t k ∴-+-=,x 的方程()|1|3f x x k =+-+恰有两个不相等的实数解,∴关于t 的方程由两个相等的根或有一个正根,∴14(3)0k ∆=--=或14(3)030k k ∆=-->⎧⎨-<⎩解得134k =或3k <,故有k 的取值范围为13{|4k k =或3}k <【点睛】本题考查了二次函数的性质,以及参数的取值范围,关键是换元,属于中档题.20.设关于x 的二次方程2(1)10px p x p +-++=有两个不相等的正根,且一根大于另一根的两倍,求p 的取值范围;【答案】107p <<【分析】根据根与系数的关系和判别式即可求出p 的范围.【详解】解:关于x 的二次方程2(1)10px p x p +-++=有两个不相等的正根,则22(1)4(1)3610p p p p p ∆=--+=--+>,解得23231133p --<<-+,当1210p x x p -+=>,及1210p x x p +=>时,方程的两根为正,解得01p <<.故013p <<-.记1x =2x =,由212x x >,并注意0p >,得10p >->,2285280p p ∴+-<,即271320p p +-<.127p ∴-<<.综上得p 的取值范围为1|07p p ⎧⎫<<⎨⎬⎩⎭.【点睛】本题考查了一元二次方程根与系数的关系,属于中档题.21.已知二次函数2()f x ax bx c =++(0)a ≠,记[2]()(())f x f f x =,例:2()1f x x =+,则[2]222()(())1(1)1f x f x x =+=++;(1)2()f x x x =-,解关于x 的方程[2]()f x x =;(2)记2(1)4b ac ∆=--,若[2]()f x x =有四个不相等的实数根,求∆的取值范围;【答案】(1)0x =或2x =;(2)4∆>【分析】(1)根据新类型的定义,求解[2]()f x ,再解方程即可.(2)换元思想,根据新类型的定义:(())f f x x =,令()f x x t -=,则()f x t x -=,()f x t x =+,则有:()()f t x f x t +=-.带入二次函数2()(0)f x ax bx c a =++≠,求出t ,t 又是二次函数的值,即2ax bx c t ++=函数必有两个根,0∆>.化简可得2(1)4b ac --的取值范围.【详解】解:(1)由题意:当2()f x x x =-时,则:[2]22243()()()2f x x x x x x x x =---=-+;那么:[2]()f x x =;即:432x x x x -+=;解得:0x =或2x =.(2)根据新类型的定义:(())f f x x =,令()f x x t -=,则()f x t x -=,()f x t x =+,则有:()()f t x f x t +=-.即22()()a t x b t x c ax bx c t ++++=++-,化简可得:2(21)0at ax b t +++=,解得:0t =或21ax b t a++=-.当0t =时,即2ax bx c x ++=,有两个不相同的实数根,可得2(1)40b ac -->.当21ax b t a ++=-时,221ax b ax bx c x a ++++=+,整理可得:21(1)0b ax b x c a+++++=,∴2221(1)4()(1)44(1)(1)44b b a c b ac b b ac a +∆=+-+=+-++=--- 有两个不相同的实数根0∆>.2(1)440b ac ∴--->,即2(1)44b ac -->.综上所得2(1)4b ac ∆=--的取值范围是(4,)+∞.【点睛】本题考查了新定义的应用和理解,反函数的利用和构造思想.换元的代换是解决此题的关键.属于难题.。

2016-2017学年上海市浦东新区高三(上)期中数学试卷及解析

2016-2017学年上海市浦东新区高三(上)期中数学试卷及解析

2016-2017学年上海市浦东新区高三(上)期中数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题)=(a ﹣1)•a x 在定义域内为增函数”的( )条件. A.充分不必要 B.必要不充分 C.充要D.既不充分也不必要2.如图,直线a 、b 相交于点O 且a 、b 成60°角,过点O 与a 、b 都成60°角的直线有( )A.1条B.2条C.3条D.4条3.有5本不同的书,其中语文书2本,数学书2本,物理书1本,若将其随机地并排放到书架的同一层上,则同一科目的书都相邻的概率为( ) A.15 B.25 C.14 D.164.已知三个球的半径R 1、R 2、R 3满足R 1+2R 2=3R 3 , 则它们的表面积S 1、S 2、S 3满足的等量关系是( ) A.S 1+2S 2=3S 3B.√s 1 + √2s 2 = √3s 3C.√s 1 +2 √s 2 =3 √s 3D.√s 1 +4 √s 2 =9 √s 35.已知函数 f(x)={x +2,x ≤0−x +2,x >0,则不等式f (x )≥x 2的解集是( )A.[﹣1,1]B.[﹣2,2]C.[﹣2,1]D.[﹣1,2]6.我们定义渐近线:已知曲线C,如果存在一条直线,当曲线C上任意一点M 沿曲线运动时,M可无限趋近于该直线但永远达不到,那么这条直线称为这条曲线的渐近线:下列函数:①y= x 13;②y=2x﹣1;③y=lg(x﹣1);④y=x+1 2x−1;其中有渐近线的函数的个数为()A.1B.2C.3D.4第II卷(非选择题)二、解答题的半圆纸片卷成一个最大的无底圆锥,放在水平桌面上,被一阵风吹倒,如图所示,求它的最高点到桌面的距离.8.已知全集U=R,集合A={x|4x﹣9•2x+8<0},B={x| 5x+2≥1 },C={x||x﹣2|<4},求A∪B,CUA∩C.9.甲厂以x千克/小时的速度运输生产某种产品(生产条件要求1≤x≤10),每小时可获得利润是100(5x+1﹣3x )元.(1)写出生产该产品t(t≥0)小时可获得利润的表达式;(2)要使生产该产品2 小时获得的利润不低于3000元,求x的取值范围.10.已知函数f(x)=|x+ 1x |﹣|x﹣1x|;(1)作出函数f(x)的图象;(3)关于x的方程f2(x)+m|f(x)|+n=0(m,n∈R)恰有6个不同的实数解,求n的取值范围.三、填空题11.设全集U=R,集合A={x|x<2},B={y|y=x2+1},则A∪∁UB= .12.函数f(x)=x2﹣1(x≥0)的反函数为f﹣1(x),则f﹣1(2)= .13.x>1,则函数y=x+ 1x−1的值域是.14.已知集合A={x||x|≤2,x∈R},B={x| √x≤4,x∈Z},则A∩B=15.如图,正三棱柱ABC﹣A1B1C1中,有AB=AA1,则AC1与平面BB1C1C所成的角的正弦值为.16.已知一组数据7、8、9、x、y的平均数是8,则这组数据的中位数是.17.若不等式|3x﹣b|<4的解集中的整数有且仅有1,2,3,则b的取值范围.18.(1+x)7的展开式中x2的系数是.19.从总体中抽取一个样本:3、7、4、6、5,则总体标准差的点估计值为.20.已知f(x)=loga (x+1),g(x)=loga(1﹣x),a>0且a≠1,则使f(x)﹣g(x)>0成立的x的集合是.21.在Rt△ABC中,两直角边分别为a、b,设h为斜边上的高,则1ℎ2 = 1a2+1 b2,由此类比:三棱锥S﹣ABC中的三条侧棱SA,SB,SC两两垂直,且长度分别为a、b、c,设棱锥底面ABC上的高为h,则.参考答案1.A【解析】1.解:当a>1时,a﹣1>0,a x在定义域内为增函数,则“f(x)=(a﹣1)•a x在定义域内为增函数”成立,即充分性成立,若0<a<1,a﹣1<0,a x在定义域内为减函数,满足“f(x)=(a﹣1)•a x在定义域内为增函数”,此时a>1不成立,即必要性不成立,故“a>1”是“f(x)=(a﹣1)•a x在定义域内为增函数”的充分不必要条件,故选:A2.C【解析】2.解:在a、b所确定的平面内有一条如图,平面外有两条.如图故选C【考点精析】关于本题考查的异面直线及其所成的角,需要了解异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系才能得出正确答案.3.A【解析】3.解:有5本不同的书,其中语文书2本,数学书2本,物理书1本,将其随机地并排放到书架的同一层上,基本事件总数n= A55 =120,同一科目的书都相邻包含的基本事件个数m= A33A22A22 =24,∴同一科目的书都相邻的概率为p= m n =24120 = 15. 故选:A . 4.C【解析】4.解:因为S 1=4πR 12 , 所以 √s 1 =2 √πR 1 , 同理: √s 2 =2 √πR 2 , √s 3 =2 √πR 3 , 由R 1+2R 2=3R 3 , 得 √s 1 +2 √s 2 =3 √s 3 . 故选:C . 5.A【解析】5.解:①当x≤0时;f (x )=x+2, ∵f(x )≥x 2 , ∴x+2≥x 2 , x 2﹣x ﹣2≤0,解得,﹣1≤x≤2, ∴﹣1≤x≤0;②当x >0时;f (x )=﹣x+2, ∴﹣x+2≥x 2 , 解得,﹣2≤x≤1, ∴0<x≤1,综上①②知不等式f (x )≥x 2的解集是:﹣1≤x≤1, 故选A .【考点精析】通过灵活运用解一元二次不等式,掌握求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边即可以解答此题. 6.C【解析】6.解:对于:①y= x13 ,根据渐近线的定义,不存在渐近线;对于②y=2x +1是由y=2x 的图象向上平移1个单位得到,其渐近线方程为y=1; 对于③y=log 2(x ﹣1)是由y=log 2x 向右平移一个单位得到,其渐近线方程为x=1; 对于④y=x+12x−1 = 12 (1﹣ 32x−1),其渐近线方程为x= 12 ,y= 12;综上,有渐近线的个数为3个 故选:C .7.解:如图所示,设PAB 为轴截面,过点A 作AD⊥PB,π•AB=10π,解得AB=10,∴△PAB 是等边三角形, ∴AD=AB•sin60°=10×=5. ∴它的最高点到桌面的距离为5cm .【解析】7.如图所示,设PAB为轴截面,过点A作AD⊥PB,利用圆的周长公式π•AB=10π,解得AB=10,可得△PAB是等边三角形,即可得出.【考点精析】解答此题的关键在于理解旋转体(圆柱、圆锥、圆台)的相关知识,掌握常见的旋转体有:圆柱、圆锥、圆台、球.8.解:由1<2x<8,得A=(0,3).由,得B=(﹣2,3].由|x﹣2|<4⇒﹣2<x<6,得C=(﹣2,6).所以A∪B=(﹣2,3],CUA∩C=(﹣2,0]∪[3,6)【解析】8.由1<2x<8,得A=(0,3).由5x+2≥1⇒x−3x+2≤0,得B=(﹣2,3].由|x﹣2|<4⇒﹣2<x<6,得C=(﹣2,6).由此能求出A∪B,CuA∩C.【考点精析】根据题目的已知条件,利用交、并、补集的混合运算的相关知识可以得到问题的答案,需要掌握求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法.9.(1)解:设生产该产品t(t≥0)小时可获得利润为f(t),则f(t)=100t(5x+1﹣3x)元,t≥0,1≤x≤10(2)解:由题意可得:100×2×(5x+1﹣3x )≥3000,化为:5x2﹣14x﹣3≥0,1≤x≤10.解得3≤x≤10.∴x的取值范围是[3,5]【解析】9.(1)设生产该产品t(t≥0)小时可获得利润为f(t),可得f(t)=100t(5x+1﹣3x )元.(2)由题意可得:100×2×(5x+1﹣3x)≥3000,解出即可得出.10.(1)解:函数f(x)=|x+ 1x |﹣|x﹣1x|= {2x,x≥12x,0<x<1−2x,−1≤x<0−2x,x<−1,作出函数f(x)的图象如图:(2)解:由函数的图象得函数的定义域为{x|x≠0},函数的值域为(0,2],在(﹣∞,﹣1]和(0,1)上单调递增,在[1,+∞)和(﹣1,0),单调递减,函数关于y轴对称,是偶函数,函数与x轴没有交点,无零点(3)解:∵0<f(x)≤2,且函数f(x)为偶函数,∴令t=f(x),则方程等价为t2+mt+n=0,则由图象可知,当0<t<2时,方程t=f(x)有4个不同的根,当t=2时,方程t=f(x)有2个不同的根,当t≤0或t>2时,方程t=f(x)有0个不同的根,若方程f2(x)+m|f(x)|+n=0(m,n∈R)恰有6个不同的实数解,等价为方程f2(x)+mf(x)+n=0(m,n∈R)恰有6个不同的实数解,即t2+mt+n=0有两个不同的根,其中t1=2,0<t2<2,则n=t1t2∈(0,4).【解析】10.(1)利用分段函数求出f(x)的表达式,然后作出函数f(x)的图象,(2)结合函数的图象判断相应的性质,(3)根据图象利用换元法将条件进行转化,利用数形结合即可得到结论.11.(﹣∞,2)【解析】11.解:∵集U=R,集合A={x|x<2}=(﹣∞,2),B={y|y=x2+1}=[1,+∞),∴∁UB=(﹣∞,1),∴A∪(∁UB)=(﹣∞,2),所以答案是:(﹣∞,2).【考点精析】本题主要考查了交、并、补集的混合运算的相关知识点,需要掌握求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法才能正确解答此题.12.√3【解析】12.解:根据函数与它的反函数的定义域和值域互换, 令函数f (x )=x 2﹣1=2,其中x≥0, 解得x= √3 ;所以f ﹣1(2)= √3. 所以答案是: √3 . 13.[3,+∞)【解析】13.解:∵x>1,则,x ﹣1>0, 1x−1>0 ; 那么:函数y=x+ 1x−1 =x ﹣1+ 1x−1 +1≥ 2√(x −1)⋅1x−1+1 =3,当且仅当x=2时取等号.所以函数y 的值域是[3,+∞).【考点精析】本题主要考查了函数的值域的相关知识点,需要掌握求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的才能正确解答此题. 14.{0,1,2}【解析】14.解:∵集合A={x||x|≤2,x∈R}={x|﹣2≤x≤2},B={x| √x ≤4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},∴A∩B={0,1,2}.所以答案是:{0,1,2}.【考点精析】掌握集合的交集运算是解答本题的根本,需要知道交集的性质:(1)A∩B A ,A∩B B ,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则A B ,反之也成立.15.√64【解析】15.解:取BC 的中点E ,连接C 1E ,AE 则AE⊥BC,正三棱柱ABC ﹣A 1B 1C 1中, ∴面ABC⊥面BB 1C 1C , 面ABC∩面BB 1C 1C=BC , ∴AE⊥面BB 1C 1C ,∴∠AC 1E 就是AC 1与平面BB 1C 1C 所成的角, 在Rt△AC 1E 中,∵AB=AA 1 ,sin ∠AC 1E= AEAC1=√32√2=√64.所以答案是: √64 .【考点精析】掌握空间角的异面直线所成的角是解答本题的根本,需要知道已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则.16.8【解析】16.解:由题意知:(7+8+9+x+y)÷5=8,化简可得又因为该组数据为5个,则中位数对应位置(5+1)÷2=3.①当x=y时,得x=y=8.显然,改组数据中位数为8.②当x≠y时,不妨设x<y,又因为x+y=16,可以得到x<8<y,此时中位数也为8.【考点精析】关于本题考查的平均数、中位数、众数,需要了解⑴平均数、众数和中位数都是描述一组数据集中趋势的量;⑵平均数、众数和中位数都有单位;⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系,所以最为重要,应用最广;⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据才能得出正确答案.17.5<b<7【解析】17.解:因为,又由已知解集中的整数有且仅有1,2,3,故有.所以答案是5<b<7.【考点精析】通过灵活运用绝对值不等式的解法,掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号即可以解答此题.18.21= C7r x r【解析】18.解:由题意,二项式(1+x)7的展开式通项是Tr+1故展开式中x2的系数是C72 =21所以答案是:21.19.√2【解析】19.解:样本数据:3、7、4、6、5的平均数为:x¯ = 15×(3+7+4+6+5)=5,方差为s2= 15×[(3﹣5)2+(7﹣5)2+(4﹣5)2+(6﹣5)2+(5﹣5)2]=2,所以标准差为s= √2.所以答案是:√2.【考点精析】掌握极差、方差与标准差是解答本题的根本,需要知道标准差和方差越大,数据的离散程度越大;标准差和方程为0时,样本各数据全相等,数据没有离散性;方差与原始数据单位不同,解决实际问题时,多采用标准差.20.当0<a<1时,原不等式的解集为{x|﹣1<x<0};当a>1时,原不等式的解集为{x|0<x<1}【解析】20.解:f(x)﹣g(x)>0,即 loga (x+1)﹣loga(1﹣x)>0,loga (x+1)>loga(1﹣x).当0<a<1时,上述不等式等价于{x+1>01−x>0x+1<1−x,解得﹣1<x<0;当a>1时,原不等式等价于{x+1>01−x>0x+1<1−x,解得0<x<1.综上所述,当0<a<1时,原不等式的解集为{x|﹣1<x<0};当a>1时,原不等式的解集为{x|0<x<1}.所以答案是:当0<a<1时,原不等式的解集为{x|﹣1<x<0};a>1时,原不等式的解集为{x|0<x<1}.21.1ℎ2=1a2+1b2+1c2【解析】21.解:∵PA、PB、PC两两互相垂直,∴PA⊥平面PBC.设PD在平面PBC内部,且PD⊥BC,由已知有:PD=√b2+c2,h=PO=√a2+PD2,∴ ,即1ℎ2=1a2+1b2+1c2.所以答案是:1ℎ2=1a2+1b2+1c2.【考点精析】通过灵活运用类比推理,掌握根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理即可以解答此题.。

2016-2017学年上海市杨浦区高一上学期期中数学试卷和解析

2016-2017学年上海市杨浦区高一上学期期中数学试卷和解析

2016-2017学年上海市杨浦区高一(上)期中数学试卷一、填空题1.(5分)不等式|x﹣1|<1的解是.2.(5分)设集合P={﹣3,0,2,4],集合Q={x|﹣1<x<3},则P∩Q=.3.(5分)命题“若x2=1,则x=1”的否命题是.4.(5分)已知x,y∈R+,且x+4y=1,则xy的最大值为.5.(5分)已知f(2x+1)=x2﹣2x,则f(3)=.6.(5分)若全集U=R,函数y=的定义域为集合A,则∁U A=.7.(5分)已知集合M⊊{4,7,8},则这样的集合M共有个.8.(5分)若ab<0,则+的最大值为.9.(5分)若不等式ax2+5x﹣2>0的解集是,则不等式ax2﹣5x+(a2﹣1)>0的解集是.10.(5分)设α:1≤x≤3,β:m+1≤x≤2m+4,m∈R,若α是β的充分条件,则m的取值范围是.11.(5分)设x,y均为正实数,且xy﹣2x﹣2y=12,则xy的取值范围为.12.(5分)定义实数a,b间的计算法则如下:a△b=,则函数y=(1△x)△x﹣(2△x)的值域为(其中﹣2≤x≤2)二、选择题13.(5分)若x∈R,则“x>2”是“x2>4”的()条件.A.充分不必要B.必要不充分C.充分必要D.既不充分也不必要14.(5分)三国时期赵爽在《勾股方圆图注》中对勾股定理的证明可用现代数学表述为如图所示,我们教材中利用该图作为“()”的几何解释.A.如果a>b,b>c,那么a>cB.如果a>b>0,那么a2>b2C.对任意实数a和b,有a2+b2≥2ab,当且仅当a=b时等号成立D.如果a>b,c>0那么ac>bc15.(5分)已知x∈R,则下列f(x)与g(x)表示同一个函数的是()A.f(x)=x,g(x)=B.f(x)=1,g(x)=(x﹣1)0C.f(x)=,g(x)=D.f(x)=,g(x)=x﹣316.(5分)若,有下面四个不等式:①|a|>|b|;②a<b;③a+b<ab,④a3>b3,不正确的不等式的个数是()A.0 B.1 C.2 D.3三、解答题.17.(12分)已知a∈R.(1)求证:a2≥2a﹣1;(2)解关于x的不等式(x﹣2)(x﹣a)<0.18.(12分)若不等式|x﹣2|﹣2<0的解集为A,函数g(x)=的定义域为B,U=R,求A、B及A∪∁U B.19.(12分)已知f(x)=kx+2,不等式|f(x)|<3的解集为(﹣1,5),不等式≥1的解集为A;(1)求实数k的值;(2)设集合B={x|ax2﹣2x+2>0},若A∩B≠∅,求实数a的取值范围.20.(12分)如图,设计一幅矩形宣传画,要求画面面积为96cm2,画面上下边要留3cm空白,左右要留2cm空白,怎样确定画面的高与宽的尺寸,才能使宣传画所用纸张面积最小?21.(12分)对于函数f(x),称满足f(x0)=x0的x0为f(x)的“不动点”,称满足f[f(x0)]=x0的x0为f(x)的“稳定点”.(1)求函数f(x)=x2的“不动点”;(2)求函数f(x)=|x﹣1|的“稳定点”;(3)已知函数y=f(x)=(a≠0,a≠±1,a≠2)有无数个“稳定点”,若x ∈{x|1≤x≤2且x≠﹣b},求y的取值范围.(用a表示).2016-2017学年上海市杨浦区高一(上)期中数学试卷参考答案与试题解析一、填空题1.(5分)不等式|x﹣1|<1的解是{x|0<x<2} .【解答】解:∵不等式|x﹣1|<1,∴﹣1<x﹣1<1,解得0<x<2.∴不等式|x﹣1|<1的解是{x|0<x<2}.故答案为:{x|0<x<2}.2.(5分)设集合P={﹣3,0,2,4],集合Q={x|﹣1<x<3},则P∩Q={0,2} .【解答】解:∵P={﹣3,0,2,4],集合Q={x|﹣1<x<3},∴P∩Q={0,2},故答案为:{0,2}3.(5分)命题“若x2=1,则x=1”的否命题是若x2≠1,则x≠1.【解答】解:命题的否命题是同时对条件与结论进行否定.命题“若x2=1,则x=1”的否命题是:若x2≠1,则x≠1;故答案为:若x2≠1,则x≠1;4.(5分)已知x,y∈R+,且x+4y=1,则xy的最大值为.【解答】解:,当且仅当x=4y=时取等号.故应填.5.(5分)已知f(2x+1)=x2﹣2x,则f(3)=﹣1.【解答】解:【方法一】∵f(2x+1)=x2﹣2x,设2x+1=t,则x=,∴f(t)=﹣2×=t2﹣t+,∴f(3)=×32﹣×3+=﹣1.【方法二】∵f(2x+1)=x2﹣2x,令2x+1=3,解得x=1,∴f(3)=12﹣2×1=﹣1.故答案为:﹣1.6.(5分)若全集U=R,函数y=的定义域为集合A,则∁U A=(﹣∞,1).【解答】解:由x﹣1≥0,得x≤1,即A=[1,+∞)又U=R,所以∁U A=(﹣∞,1).故答案为:(﹣∞,1).7.(5分)已知集合M⊊{4,7,8},则这样的集合M共有7个.【解答】解:∵M⊊{4,7,8},∴这样的集合M共有23﹣1=7(个),故答案为:78.(5分)若ab<0,则+的最大值为﹣2.【解答】解:∵ab<0,则+=﹣≤﹣2=﹣2,当且仅当a=﹣b<0时取等号.故答案为:﹣2.9.(5分)若不等式ax2+5x﹣2>0的解集是,则不等式ax2﹣5x+(a2﹣1)>0的解集是.【解答】解:∵ax2+5x﹣2>0的解集是,∴a<0,且,2是方程ax2+5x﹣2=0的两根韦达定理×2=,解得a=﹣2;则不等式ax2﹣5x+a2﹣1>0即为﹣2x2﹣5x+3>0,解得故不等式ax2﹣5x+a2﹣1>0的解集.故答案为:10.(5分)设α:1≤x≤3,β:m+1≤x≤2m+4,m∈R,若α是β的充分条件,则m的取值范围是﹣≤m≤0.【解答】解:∵α:1≤x≤3,β:m+1≤x≤2m+4,m∈R,若α是β的充分条件,令α:{x|1≤x≤3},β:{x|m+1≤x≤2m+4,m∈R,}∴集合α⊆β,得即,∴故答案为:,11.(5分)设x,y均为正实数,且xy﹣2x﹣2y=12,则xy的取值范围为[36,+∞).【解答】解:∵x,y均为正实数,且xy﹣2x﹣2y=12,则xy=12+2x+2y≥12+2×,化为:﹣4﹣12≥0,即≥0,解得≥6,∴xy≥36.当且仅当x=y=6时取等号.xy的取值范围为[36,+∞).故答案为:[36,+∞).12.(5分)定义实数a,b间的计算法则如下:a△b=,则函数y=(1△x)△x﹣(2△x)的值域为[﹣1,2] (其中﹣2≤x≤2)【解答】解:由新计算法则(1△x)=,2△x=2函数y=(1△x)△x﹣(2△x)=函数的值域为[﹣1,2].故答案为[﹣1,2].二、选择题13.(5分)若x∈R,则“x>2”是“x2>4”的()条件.A.充分不必要B.必要不充分C.充分必要D.既不充分也不必要【解答】解:若x>2,则x2>4,是充分条件,若x2>4,则x>2,不是必要条件,故选:A.14.(5分)三国时期赵爽在《勾股方圆图注》中对勾股定理的证明可用现代数学表述为如图所示,我们教材中利用该图作为“()”的几何解释.A.如果a>b,b>c,那么a>cB.如果a>b>0,那么a2>b2C.对任意实数a和b,有a2+b2≥2ab,当且仅当a=b时等号成立D.如果a>b,c>0那么ac>bc【解答】解:可将直角三角形的两直角边长度取作a,b,斜边为c(c2=a2+b2),则外围的正方形的面积为c2,也就是a2+b2,四个阴影面积之和刚好为2ab,对任意正实数a和b,有a2+b2≥2ab,当且仅当a=b时等号成立.故选:C.15.(5分)已知x∈R,则下列f(x)与g(x)表示同一个函数的是()A.f(x)=x,g(x)=B.f(x)=1,g(x)=(x﹣1)0C.f(x)=,g(x)=D.f(x)=,g(x)=x﹣3【解答】解:f(x)=x与g(x)==x解析式与定义域均相同,是同一函数;f(x)=1与g(x)=(x﹣1)0,(x≠1)定义域不同,不是同一函数;f(x)==1,(x≥0)与g(x)==1,(x>0)定义域不同,不是同一函数;f(x)==x﹣3,(x≠﹣3)与g(x)=x﹣3定义域不同,不是同一函数;故选:A.16.(5分)若,有下面四个不等式:①|a|>|b|;②a<b;③a+b<ab,④a3>b3,不正确的不等式的个数是()A.0 B.1 C.2 D.3【解答】解:由,可得0>a>b,∴|a|<|b|,故①②不成立;∴a+b<0<ab,a3>b3都成立,故③④一定正确,故选:C.三、解答题.17.(12分)已知a∈R.(1)求证:a2≥2a﹣1;(2)解关于x的不等式(x﹣2)(x﹣a)<0.【解答】(1)证明:a2≥2a﹣1;令y=a2﹣2a+1=(a﹣1)2≥0,即a2≥2a﹣1;解:(2)不等式(x﹣2)(x﹣a)<0.可得方程(x﹣2)(x﹣a)=0的两个根分别为x1=2,x2=a.当a<2时,原不等式的解集为{x|a<x<2};当a=2时,即(x﹣2)2(<0.原不等式无解.当a>2时,原不等式的解集为{x|2<x<a};18.(12分)若不等式|x﹣2|﹣2<0的解集为A,函数g(x)=的定义域为B,U=R,求A、B及A∪∁U B.【解答】解:不等式|x﹣2|﹣2<0,即有|x﹣2|<2,即﹣2<x﹣2<2,即0<x<4,A={x|0<x<4};而B={x|x2+x﹣2≥0}={x|x≥1或x≤﹣2},∁U B={x|﹣2<x<1},则A∪∁U B={x|﹣2<x<4}.19.(12分)已知f(x)=kx+2,不等式|f(x)|<3的解集为(﹣1,5),不等式≥1的解集为A;(1)求实数k的值;(2)设集合B={x|ax2﹣2x+2>0},若A∩B≠∅,求实数a的取值范围.【解答】解:(1)不等式|f(x)|<3的解集为(﹣1,5),即﹣3<kx+2<3.可得:﹣5<kx<1,∵不等式的解集为(﹣1,5),则k=﹣1.(2)由不等式≥1,即,可得:等价于(2x﹣2)(2﹣x)≥0,且2﹣x≠0.可得不等式的解集A={x|1<x<2}.集合B={x|ax2﹣2x+2>0},令g(x)=ax2﹣2x+2∵A∩B≠∅,当a=0,可得2>2x,则x<1,此时A∩B=∅,当a≠0,当A∩B=∅,则或解得:a<0,那么A∩B≠∅,则a≥0.综上可得a>0.即实数a的取值范围是(0,+∞).20.(12分)如图,设计一幅矩形宣传画,要求画面面积为96cm2,画面上下边要留3cm空白,左右要留2cm空白,怎样确定画面的高与宽的尺寸,才能使宣传画所用纸张面积最小?【解答】解:设画面高为xcm,宽为ycm,依意有xy=96,x>0,y>0,则所需纸张面积S=(x+6)(y+4)=xy+6y+4x+24,即S=120+6y+4x,∵x>0,y>0,xy=96∴6y+4x≥2=96,当且仅当6y=4x,即x=12,y=8时等号成立.即当画面高为12cm,宽为8cm时,所需纸张面积最小为216cm2.21.(12分)对于函数f(x),称满足f(x0)=x0的x0为f(x)的“不动点”,称满足f[f(x0)]=x0的x0为f(x)的“稳定点”.(1)求函数f(x)=x2的“不动点”;(2)求函数f(x)=|x﹣1|的“稳定点”;(3)已知函数y=f(x)=(a≠0,a≠±1,a≠2)有无数个“稳定点”,若x ∈{x|1≤x≤2且x≠﹣b},求y的取值范围.(用a表示).【解答】解:(1)令f(x)=x,即x2=x解得:x=0,或x=1,即函数f(x)=x2的“不动点”为0和1;(2)令f[f(x)]=x,即||x﹣1|﹣1|=x易得:x≥0当x∈[0,1]时,||x﹣1|﹣1|=|1﹣x﹣1|=|﹣x|=x恒成立,当x∈[1,+∞)时,||x﹣1|﹣1|=|x﹣1﹣1|=|x﹣2|=x恒不成立,故[0,1]上的每一个数均为函数f(x)=|x﹣1|的“稳定点”;(3)若函数y=f(x)=(a≠0,a≠±1,a≠2)有无数个“稳定点”,即=x有无数个解,即(a+b)x2+(b2﹣a2)x=0有无数个解,故a+b=0,即a=﹣b,则f(x)===a+,当x∈{x|1≤x≤2且x≠﹣b},即x∈{x|1≤x≤2且x≠a}时,f(x)为减函数,故当x=1时,函数取最大值,故当x=2时,函数取最小值,故y∈[,]赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年上海市浦东新区杨思高中高一(上)期中数学试卷一、填空题(本大题12小题,每题3分,共36分)1.(3分)集合A={a,b,c,d,e},B={d,f,g},则A∩B=.2.(3分)已知全集U=R,集合A={x|﹣1≤x<2},则集合∁U A=.3.(3分)命题“若x>1且y<﹣3,则x﹣y>4”的等价命题是.4.(3分)已知x<0,﹣1<y<0,用不等号将x,xy,xy2从大到小排列得.5.(3分)设集合A={x|﹣<x<2},B={x|x2≤1},则A∪B=.6.(3分)设全集U={2,4,3﹣a2},P={2,a2﹣a+2},∁U P={﹣1},则a=.7.(3分)若a>0,b>0,2a+b=1,则ab的最大值为.8.(3分)已知x>﹣1,当x=时,x+的值最小.9.(3分)x,y为实数,使x>y且>同时成立的一个充要条件是.10.(3分)若不等式|x﹣1|<a成立的充分条件是0<x<4,则实数a的取值范围是.11.(3分)若关于x的不等式>0的解集为R,则k的范围为.12.(3分)已知集合P={x|1≤x≤6,x∈N},对它的非空子集A,将A中每个元素k,都乘以(﹣1)k再求和(如A={1,3,6},可求得和为(﹣1)•1+(﹣1)3•3+(﹣1)6•6=2,则对M的所有非空子集,这些和的总和是.二、选择题(本大题4小题,每题3分,共12分)13.(3分)已知集合A、B,若A不是B的子集,则下列命题中正确的是()A.对任意的a∈A,都有a∉B B.对任意的b∈B,都有b∈AC.存在a0,满足a0∈A,a0∉B D.存在a0,满足a0∈A,a0∈B14.(3分)若a、b、c∈R,a>b,则下列不等式成立的是()A.B.a2>b2C.D.a|c|>b|c|15.(3分)若a,b∈R,且ab>0,则下列不等式中恒成立的是()A.B.a2+b2>2ab C. D.16.(3分)设全集为U,定义集合M与N的运算:M*N={x|x∈M∪N且x∉M∩N},则N*(N*M)=()A.M B.N C.M∩∁U N D.N∩∁U M三、解答题(本大题5小题,共52分)17.(8分)比较与()2的大小.18.(10分)已知集合A={x|12﹣5x﹣2x2>0},B={x|x2﹣ax+b≤0}满足A∩B=∅,A∪B=(﹣4,8],求实数a,b的值.19.(10分)已知集合A={x||2x﹣1|≤3},集合B={x|x2+(4﹣a)x﹣4a>0},若A∩B=A,求实数a的取值范围.20.(12分)某商场一年购进某种货物900吨,每次都购进x吨,运费为每次9万元,一年的总存储费用为9x万元.(1)要使一年的总运费与总存储费用之和最小,则每次购买多少吨?(2)要使一年的总运费与总存储费用之和不超过585万元,则每次购买量在什么范围?21.(12分)设全集U=R.(1)解关于x的不等式|x﹣1|+a﹣1>0(a∈R);(2)记A为(1)中不等式的解集,B为不等式组的整数解集,若(∁U A)∩B恰有三个元素,求a的取值范围.2016-2017学年上海市浦东新区杨思高中高一(上)期中数学试卷参考答案与试题解析一、填空题(本大题12小题,每题3分,共36分)1.(3分)集合A={a,b,c,d,e},B={d,f,g},则A∩B={d} .【解答】解:∵集合A={a,b,c,d,e},B={d,f,g},∴A∩B={d}.故答案为:{d}.2.(3分)已知全集U=R,集合A={x|﹣1≤x<2},则集合∁U A={x|x<﹣1或x ≥2} .【解答】解:全集U=R,集合A={x|﹣1≤x<2},则集合∁U A={x|x<﹣1或x≥2},故答案为:{x|x<﹣1或x≥2}.3.(3分)命题“若x>1且y<﹣3,则x﹣y>4”的等价命题是“若x﹣y≤4,则x≤1或y≥﹣3”.【解答】解:根据原命题与它的逆否命题是互为等价的命题,所以命题“若x>1且y<﹣3,则x﹣y>4”的等价命题是:“若x﹣y≤4,则x≤1或y≥﹣3”.故答案为:“若x﹣y≤4,则x≤1或y≥﹣3”.4.(3分)已知x<0,﹣1<y<0,用不等号将x,xy,xy2从大到小排列得xy >xy2>x.【解答】解:∵x<0,﹣1<y<0,∴0<y2<1,xy>0,x<xy2<0,即xy>xy2>x,故答案为:xy>xy2>x5.(3分)设集合A={x|﹣<x<2},B={x|x2≤1},则A∪B={x|﹣1≤x<2} .【解答】解:B=x|x2≤1=x|﹣1≤x≤1,A∪B={x|﹣1≤x<2},故答案为:{x|﹣1≤x<2}.6.(3分)设全集U={2,4,3﹣a2},P={2,a2﹣a+2},∁U P={﹣1},则a=2.【解答】解:根据补集的定义和性质U=P∪(C U P),由于全集U={2,4,3﹣a2},P={2,a2﹣a+2},∁U P={﹣1},所以{2,4,3﹣a2}={2,a2﹣a+2,﹣1},根据集合相等的定义,得出a2﹣a+2=4,且3﹣a2=﹣1,解得a=2故答案为:27.(3分)若a>0,b>0,2a+b=1,则ab的最大值为.【解答】解:∵a>0,b>0,∴2a+b=1,化为ab≤,当且仅当b=2a=时取等号.则ab的最大值为.故答案为:.8.(3分)已知x>﹣1,当x=1时,x+的值最小.【解答】解:∵x>﹣1,∴x+1>0,∴x+=x+1+﹣1≥﹣1=3,当且仅当x=1时取等号.故答案为:1.9.(3分)x,y为实数,使x>y且>同时成立的一个充要条件是xy<0.【解答】解:由>得﹣=>0,∵x>y,∴x﹣y>0,y﹣x<0,则xy<0,即x>y且>同时成立的一个充要条件是xy<0,故答案为:xy<010.(3分)若不等式|x﹣1|<a成立的充分条件是0<x<4,则实数a的取值范围是[3,+∞).【解答】解:|x﹣1|<a⇒1﹣a<x<a+1由题意可知﹣≤x<0 0<x<4是1﹣a<x<a+1成立的充分不必要条件∴解得a≥3∴实数a的取值范围是[3,+∞)故答案为:[3,+∞)11.(3分)若关于x的不等式>0的解集为R,则k的范围为[1,9).【解答】解:∵关于x的不等式>0的解集为R,x2+x+1=+>0,∴(k﹣1)x2+(k﹣1)x+2>0的解集为R.当k=1时,2>0恒成立,因此k=1满足条件.当k≠0时,可得,解得1<k<9,综上可得:k的范围为[1,9).故答案为:[1,9).12.(3分)已知集合P={x|1≤x≤6,x∈N},对它的非空子集A,将A中每个元素k,都乘以(﹣1)k再求和(如A={1,3,6},可求得和为(﹣1)•1+(﹣1)3•3+(﹣1)6•6=2,则对M的所有非空子集,这些和的总和是96.【解答】解:∵M={x|1≤x≤6,x∈N}={1,2,…,6},∴M中所有非空子集中含有1的有6类:①单元素集合只有{1}含有1,即1出现了C50次;②双元素集合有1的有{1,2},{1,3},…{1,6},即1出现了C51次;③三元素集合中含有1的有{1,2,3},{1,2,4},…{1,5,16}即1出现了C52次;…⑩含有6个元素{1,2,…}1出现了C55次;∴1共出现C50+C51+…+C55=25;同理2,3,4,…6各出现25次,∴M的所有非空子集中,这些和的总和是25•[(﹣1)1+2×(﹣1)2+…+6×(﹣1)6]=25×3=96.故答案为:96.二、选择题(本大题4小题,每题3分,共12分)13.(3分)已知集合A、B,若A不是B的子集,则下列命题中正确的是()A.对任意的a∈A,都有a∉B B.对任意的b∈B,都有b∈AC.存在a0,满足a0∈A,a0∉B D.存在a0,满足a0∈A,a0∈B【解答】解:根据子集的定义,若∀x∈A,都有x∈B,则A是B的子集,∴A不是B的子集,有存在a0,满足a0∈A,a0∉B,故选:C.14.(3分)若a、b、c∈R,a>b,则下列不等式成立的是()A.B.a2>b2C.D.a|c|>b|c|【解答】解:对于A,取a=1,b=﹣1,即知不成立,故错;对于B,取a=1,b=﹣1,即知不成立,故错;对于D,取c=0,即知不成立,故错;对于C,由于c2+1>0,由不等式基本性质即知成立,故对;故选:C.15.(3分)若a,b∈R,且ab>0,则下列不等式中恒成立的是()A.B.a2+b2>2ab C. D.【解答】解:例如a=﹣2,b=﹣1时,选项A,C不成立例如a=b=2时,a2+b2=2ab,选项B不成立由ab>0可知,,由基本不等式可得,=2故选:D.16.(3分)设全集为U,定义集合M与N的运算:M*N={x|x∈M∪N且x∉M∩N},则N*(N*M)=()A.M B.N C.M∩∁U N D.N∩∁U M【解答】解:如图所示,由定义可知N*M为图中的阴影区域,∴N*(N*M)为图中阴影Ⅰ和空白的区域,∴N*(N*M)=M.故选:A.三、解答题(本大题5小题,共52分)17.(8分)比较与()2的大小.【解答】解:﹣()2=﹣(a2+b2+2ab)=(a2+b2﹣2ab)=(a﹣b)2≥0,∴≥()2.18.(10分)已知集合A={x|12﹣5x﹣2x2>0},B={x|x2﹣ax+b≤0}满足A∩B=∅,A∪B=(﹣4,8],求实数a,b的值.【解答】解:∵集合A={x|12﹣5x﹣2x2>0}={x|﹣4<x<},B={x|x2﹣ax+b≤0},满足A∩B=∅,A∪B=(﹣4,8],∴B={x|x2﹣ax+b≤0}={x|},∴,8是方程|x2﹣ax+b=0的两个根,∴,解得a=,b=12.19.(10分)已知集合A={x||2x﹣1|≤3},集合B={x|x2+(4﹣a)x﹣4a>0},若A∩B=A,求实数a的取值范围.【解答】解:由题意:集合A={x||2x﹣1|≤3}={x|﹣1≤x≤2}集合B={x|x2+(4﹣a)x﹣4a>0}={x|(x+4)(x﹣a)>0},∵A∩B=A∴A⊆B.解法一:令f(x)=x2+(4﹣a)x﹣4a>0,∵﹣1≤x≤2,根据一元二次方程的根的分布:可得:或解:a≤﹣1故得实数a的取值范围是:(﹣∞,﹣1].解法二,讨论思想:当a=﹣4时,B={x∈R|x≠﹣4},满足A⊆B.当a>﹣4时,B={x|x>a或x<﹣4},要使A⊆B成立,则:a≤﹣1.当a<﹣4时,B={x|x<a或x>﹣4},满足A⊆B.故得实数a的取值范围是:(﹣∞,﹣1].20.(12分)某商场一年购进某种货物900吨,每次都购进x吨,运费为每次9万元,一年的总存储费用为9x万元.(1)要使一年的总运费与总存储费用之和最小,则每次购买多少吨?(2)要使一年的总运费与总存储费用之和不超过585万元,则每次购买量在什么范围?【解答】解:(1)设每次都购买x吨,则需要购买次,∵运费为9万/次,一年的总存储费用为9x万元,∴一年的总运费与总存储费用之和为9×+9x万元∵9×+9x≥540,当且仅当9×=9x时取等号∴x=30吨时,一年的总运费与总存储费用之和最小;(2)由题意,9×+9x≤585,得20≤x≤45.∴每次购买量在大于或等于20吨且小于或等于45吨的范围内.21.(12分)设全集U=R.(1)解关于x的不等式|x﹣1|+a﹣1>0(a∈R);(2)记A为(1)中不等式的解集,B为不等式组的整数解集,若(∁U A)∩B恰有三个元素,求a的取值范围.【解答】解:(1)由|x﹣1|+a﹣1>0 得|x﹣1|>1﹣a,当a>1时,解集是R;当a≤1时,解集是{x|x<a,或x>2﹣a}.(2)解不等式组,得:﹣4<x≤,故B={﹣3,﹣2,﹣1,0,1,2,3,4},当a>1时,C U A=∅,不满足条件.当a≤1时,C U A={x|a≤x≤2﹣a},∴2﹣a≥1,若(∁U A)∩B恰有三个元素,则,解得:﹣1<a≤0.。

相关文档
最新文档