数值分析(计算方法)总结
数值分析(计算方法)总结

第一章绪论误差来源:模型误差、观测误差、截断误差(方法误差)、舍入误差是的绝对误差,是的误差,为的绝对误差限(或误差限)为的相对误差,当较小时,令相对误差绝对值得上限称为相对误差限记为:即:绝对误差有量纲,而相对误差无量纲若近似值的绝对误差限为某一位上的半个单位,且该位直到的第一位非零数字共有n位,则称近似值有n位有效数字,或说精确到该位。
例:设x==…那么,则有效数字为1位,即个位上的3,或说精确到个位。
科学计数法:记有n位有效数字,精确到。
由有效数字求相对误差限:设近似值有n位有效数字,则其相对误差限为由相对误差限求有效数字:设近似值的相对误差限为为则它有n位有效数字令1.x+y近似值为和的误差(限)等于误差(限)的和2.x-y近似值为3.xy近似值为4.1.避免两相近数相减2.避免用绝对值很小的数作除数3.避免大数吃小数4.尽量减少计算工作量第二章非线性方程求根1.逐步搜索法设f (a) <0, f (b)> 0,有根区间为(a, b),从x0=a出发,按某个预定步长(例如h=(b-a)/N)一步一步向右跨,每跨一步进行一次根的搜索,即判别f(x k)=f(a+kh)的符号,若f(x k)>0(而f(x k-1)<0),则有根区间缩小为[x k-1,x k] (若f(x k)=0,x k即为所求根), 然后从x k-1出发,把搜索步长再缩小,重复上面步骤,直到满足精度:|x k-x k-1|<E为止,此时取x*≈(x k+x k-1)/2作为近似根。
2.二分法设f(x)的有根区间为[a,b]= [a0,b0], f(a)<0, f(b)>0.将[a0,b0]对分,中点x0= ((a0+b0)/2),计算f(x0)。
3.比例法一般地,设[a k,b k]为有根区间,过(a k, f(a k))、(b k, f(b k))作直线,与x轴交于一点x k,则:1.试位法每次迭代比二分法多算一次乘法,而且不保证收敛。
数值分析学习公式总结

数值分析学习公式总结数值分析是数学的一个分支,研究如何利用计算机求解数学问题。
数值分析学习过程中会遇到许多公式,下面对其中一些重要的公式进行总结。
1.插值公式:-拉格朗日插值公式:设已知函数 f 在 [a,b] 上的 n+1 个节点,节点分别为x0,x1,...,xn,且在这些节点上 f(x0),f(x1),...,f(xn) 均已知。
则对于任意x∈[a,b],可使用拉格朗日插值公式来估计f(x),公式如下:-牛顿插值公式:牛顿插值公式是通过差商的方法来构造插值多项式的公式。
设已知函数 f 在 [a,b] 上的 n+1 个节点,节点分别为 x0,x1,...,xn,且在这些节点上 f(x0),f(x1),...,f(xn) 均已知。
则对于任意x∈[a,b],可使用牛顿插值公式来估计f(x),公式如下:2.数值积分公式:-矩形公式:矩形公式是用矩形面积来估计曲线下的面积,主要有左矩形公式、右矩形公式和中矩形公式。
以左矩形公式为例,对应区间[a,b],将[a,b]分割成n个等长子区间,取每个子区间左端点的函数值作为矩形的高,子区间长度作为矩形的宽,则曲线下的面积可以近似为各个矩形面积的和,公式如下:-梯形公式:梯形公式是用梯形面积来估计曲线下的面积,主要有梯形公式和复合梯形公式。
以梯形公式为例,对应区间[a,b],将[a,b]分割成n个等长子区间,取每个子区间两个端点对应的函数值作为梯形的底边的两个边长,子区间长度作为梯形的高,则曲线下的面积可以近似为各个梯形面积的和,公式如下:-辛普森公式:辛普森公式是用抛物线面积来估计曲线下的面积,对应区间[a,b],将[a,b]分割成n个等长子区间,取每个子区间三个端点对应的函数值作为抛物线的三个顶点,则曲线下的面积可以近似为各个抛物线面积的和,公式如下:3.线性方程组求解公式:- Cramer法则:Cramer法则适用于 n 个线性方程、n 个未知数的线性方程组。
期末数值分析重点总结

期末数值分析重点总结第一部分:数值逼近(Approximation)数值逼近是数值分析的基础,主要研究如何利用有限的计算资源得到逼近数学问题的有效算法。
数值逼近的主要内容包括多项式逼近、插值和最小二乘等。
1. 多项式逼近多项式逼近是指用一个多项式函数来逼近给定函数的值。
通过选择合适的多项式次数和插值点,可以使得多项式逼近误差最小化。
其中最常用的方法是最小二乘法,它可以通过最小化残差来得到最佳的多项式逼近。
多项式逼近在信号处理、图像处理和计算机图形学等领域中有广泛的应用。
2. 插值插值是指通过已知数据点的函数值来估计在其他点的函数值。
常用的插值方法有拉格朗日插值和牛顿插值。
拉格朗日插值通过构造一个满足插值条件的多项式来逼近给定函数。
牛顿插值则利用差商的概念来构造插值多项式。
插值方法在数值微分和数值积分中有广泛的应用。
3. 最小二乘最小二乘是一种在一组离散数据点上拟合曲线的方法。
通过最小化数据点与拟合曲线之间的欧几里得距离,可以得到最佳拟合曲线。
最小二乘法可以用于曲线拟合、参数估计和数据关联等问题。
第二部分:数值解方程(Numerical Solution of Equations)数值解方程是数值分析的重要内容之一,研究如何通过数值计算来求解非线性方程组和线性方程组。
数值解方程的主要方法有迭代法、常微分方程数值解和偏微分方程数值解等。
1. 迭代法迭代法是求解非线性方程组的常用方法之一。
通过不断迭代逼近方程的根,可以得到方程组的数值解。
常用的迭代法有牛顿迭代法和弦截法。
迭代法在计算机辅助设计、优化和数据分析等领域中有广泛的应用。
2. 常微分方程数值解常微分方程数值解研究如何通过数值计算来求解常微分方程。
常微分方程数值解的主要方法有Euler方法、Runge-Kutta方法和线性多步法等。
常微分方程数值解在物理学、工程学和生物学等领域中有广泛的应用。
3. 偏微分方程数值解偏微分方程数值解研究如何通过数值方法来求解偏微分方程。
数值分析知识点总结

数值分析知识点总结数值分析知识点总结:本文提供了数值分析中的一些重要知识点和例题,但更多的例题可以参考老师布置的作业题和课件相关例题。
第1章数值分析与科学计算引论:绝对误差和相对误差是衡量近似值精度的指标,有效数字则是描述近似值精度的一种方式。
其中,相对误差限是绝对误差的上界。
有效数字的计算方法为:如果近似值x的误差限是某一位的半个单位,该位到x的第一位非零数字共有n位,就说x*共有n位有效数字。
一个比较好用的公式是f(x)的误差限:f(x)f'(x)(x)。
第2章插值法:插值多项式的余项表达式可以用来估计截断误差。
三次样条插值与三次分段埃尔米特插值有所不同,但哪一个更优越需要根据实际情况而定。
确定n+1个节点的三次样条插值函数需要多少个参数?为确定这些参数,需加上什么条件?三弯矩法可以用来求解三次样条表达式。
第3章函数逼近与快速傅里叶变换:带权(x)的正交多项式是在特定区间上满足一定条件的多项式,其中[-1,1]上的勒让德多项式具有重要性质。
切比雪夫多项式也有其独特的性质。
用切比雪夫多项式零点做插值点得到的插值多项式与拉格朗日插值有所不同。
最小二乘拟合的法方程可以用来拟合曲线,但当次数n较大时,不直接求解法方程。
第4章数值积分与数值微分:XXX让德求积公式和XXX-XXX求积公式是数值积分中的两种方法,其中高斯求积公式可以用来计算定积分。
勒让德多项式的零点就是高斯点,这种形式的高斯公式被称为XXX让德求积公式。
中点方法是一种数值积分方法,其公式如下:插值型的求导公式有两点公式和三点公式。
第5章介绍了解线性方程组的直接方法,其中包括LU矩阵的推导过程。
相关例题可以在教材第4章作业题和课件中找到。
第6章介绍了解线性方程组的迭代法,判断迭代法是否收敛的条件如下:第7章介绍了非线性方程与方程组的数值解法,其中牛顿法是一种常见的方法。
对于单根且光滑的f(x)=0,牛顿法是局部二阶收敛的。
简化牛顿法和牛顿下山法都是非线性方程组的求解方法。
数值分析与数值计算方法

数值分析与数值计算方法数值分析与数值计算方法是现代科学与工程领域中的重要学科,它涉及到利用计算机和数值方法解决数学问题的理论和技术。
本文将从数值分析的基本概念、应用领域以及常见的数值计算方法等方面进行探讨。
一、数值分析的基本概念数值分析是一门研究数学算法与计算机实现相结合的学科,旨在通过数学模型的建立和数值计算方法的选择,对实际问题进行定量分析和计算。
它不仅包括了数值计算方法的研究,还包括了误差分析、计算复杂性和算法设计等内容。
数值分析的核心任务是将问题转化为数学模型和计算机可处理的形式,通过数值计算方法求解模型得到近似解。
数值分析的基本思想是通过将连续问题离散化,将其转化为离散的代数问题,然后利用数值计算方法进行求解。
二、数值分析的应用领域数值分析广泛应用于科学和工程领域,例如物理学、化学、生物学、经济学、计算机科学等。
在实际的科学研究和工程应用中,常常需要对现象进行数值建模和计算求解,以获得更加准确的结果。
在物理学中,数值分析用于求解微分方程、积分方程等物理模型,并模拟和预测天体运动、流体流动等自然现象。
在化学和生物学中,数值分析被用于计算分子结构、化学反应动力学等问题。
在经济学中,数值分析可以用于建立经济模型、进行风险评估和决策分析。
三、常见的数值计算方法1. 插值和拟合方法:插值和拟合方法用于根据已知数据点的函数值,构造出一个逼近原函数的函数。
常见的插值方法有拉格朗日插值和牛顿插值;拟合方法包括最小二乘拟合、多项式拟合等。
2. 数值积分方法:数值积分方法用于计算函数在一定区间上的定积分。
常见的数值积分方法有梯形规则、辛普森规则等。
3. 数值微分方法:数值微分方法用于在离散数据点上估计函数的导数。
常见的数值微分方法有中心差分法和向前差分法等。
4. 常微分方程数值解法:常微分方程数值解法用于求解常微分方程的数值解。
常见的数值解法有欧拉法、龙格-库塔法等。
5. 线性方程组的数值解法:线性方程组的数值解法用于求解线性代数方程组的数值解。
数值分析学习总结感想

数值分析学习总结感想在数值分析学习的过程中,我深刻体会到了这门学科的重要性和广泛应用的范围。
通过学习数值分析,我不仅加深了对数学理论的理解,还掌握了一些重要的数值计算方法和算法。
在此过程中,我收获了很多,也产生了许多感想。
首先,数值分析教给我了科学问题解决的方法。
在数值计算中,我们通常无法通过简单的代数运算来求解问题,而是需要借助计算机和数值算法来逼近解。
这种方法可以应用于很多实际问题,例如求解线性方程组、积分、微分方程等。
通过数值分析课程的学习,我掌握了很多常见的数值计算方法,例如高斯消元法、插值方法、数值积分等。
这些方法在实际问题中的应用非常广泛,能够帮助我们解决许多实际问题,提高计算效率和精度。
其次,数值分析也教会了我如何分析和估计误差。
在数值计算中,误差是无法避免的,而且可能会在计算过程中不断累积。
因此,我们需要了解误差的来源,能够进行误差估计和控制。
通过学习数值分析,我学会了如何使用泰勒展开式、理解截断误差和舍入误差等概念,同时也学会了如何使用残差计算和误差估计方法。
这对于判断数值结果的可靠性和计算效果的好坏非常重要,能够帮助我们找到优化方法和改进方案。
另外,数值分析还教会了我如何进行数值模拟和数据处理。
在实际工程和科学研究中,常常需要通过数值模拟来研究分析问题。
通过数值分析的学习,我学会了如何建立数学模型、选择合适的数值方法和算法来模拟求解问题,并能够对模拟结果进行合理的处理和分析。
这对于科学研究和工程设计都非常有价值,能够提高研究效率和解决复杂问题的能力。
最后,数值分析还培养了我一种严谨的科学态度和问题解决的能力。
在数值计算中,一个细微的误差可能会导致完全不同的结果,因此需要我们对问题进行仔细的分析,并保持谨慎的态度。
通过编程实现数值算法,我学会了如何调试代码和检查问题,发现解决bug的方法。
这培养了我的逻辑思维和问题解决能力,也增强了我对科学研究和工程实践的兴趣和热情。
综上所述,通过数值分析的学习,我不仅掌握了一些重要的数值计算方法和算法,还学会了科学问题解决的方法和误差估计的技巧。
数值分析实验报告总结

一、实验背景数值分析是研究数值计算方法及其理论的学科,是计算机科学、数学、物理学等领域的重要基础。
为了提高自身对数值分析理论和方法的理解,我们进行了数值分析实验,通过实验加深对理论知识的掌握,提高实际操作能力。
二、实验目的1. 理解数值分析的基本理论和方法;2. 掌握数值分析实验的基本步骤和技巧;3. 培养实验设计和数据分析能力;4. 提高编程和计算能力。
三、实验内容本次实验主要分为以下几个部分:1. 线性方程组求解实验:通过高斯消元法、LU分解法等求解线性方程组,并分析算法的稳定性和误差;2. 矩阵特征值问题计算实验:利用幂法、逆幂法等计算矩阵的特征值和特征向量,分析算法的收敛性和精度;3. 非线性方程求根实验:运用二分法、牛顿法、不动点迭代法等求解非线性方程的根,比较不同算法的优缺点;4. 函数插值实验:运用拉格朗日插值、牛顿插值等方法对给定的函数进行插值,分析插值误差;5. 常微分方程初值问题数值解法实验:运用欧拉法、改进的欧拉法、龙格-库塔法等求解常微分方程初值问题,比较不同算法的稳定性和精度。
四、实验过程1. 线性方程组求解实验:首先,编写程序实现高斯消元法、LU分解法等算法;然后,对给定的线性方程组进行求解,记录计算结果;最后,分析算法的稳定性和误差。
2. 矩阵特征值问题计算实验:编写程序实现幂法、逆幂法等算法;然后,对给定的矩阵进行特征值和特征向量的计算,记录计算结果;最后,分析算法的收敛性和精度。
3. 非线性方程求根实验:编写程序实现二分法、牛顿法、不动点迭代法等算法;然后,对给定的非线性方程进行求根,记录计算结果;最后,比较不同算法的优缺点。
4. 函数插值实验:编写程序实现拉格朗日插值、牛顿插值等方法;然后,对给定的函数进行插值,记录计算结果;最后,分析插值误差。
5. 常微分方程初值问题数值解法实验:编写程序实现欧拉法、改进的欧拉法、龙格-库塔法等算法;然后,对给定的常微分方程初值问题进行求解,记录计算结果;最后,比较不同算法的稳定性和精度。
数值分析学习公式总结

第一章1霍纳(Horner )方法: n a 1-n a 2-n a ……2a 1a 0a输入=c+ n b *c c b n *1- c b *3 c b *2 c b *1n b 1-n b 2-n b 2b 1b 0bAnswer P (x )=0b该方法用于解决多项式求值问题P (x )=n a n x +1-n a 1-n x +2-n a 2-n x +……+2a 2x +1a x +0a2 注:p ˆ为近似值绝对误差:|ˆ|pp E p -=相对误差:|||ˆ|p pp R p -=有效数字:210|||ˆ|1d p p pp R -<-= (d 为有效数字,为满足条件的最大整数) 3 Big Oh(精度的计算): O(h ⁿ)+O(h ⁿ)=O(h ⁿ);O(h m )+O(h n )=O(h r ) [r=min{p,q}]; O(h p )O(h q )=O(h s ) [s=q+p]; 第二章2.1 求解x=g(x)的迭代法 用迭代规则,可得到序列值{}。
设函数g 。
如果对于所有x ,映射y=g(x)的范围满足y , 则函数g 在内有一个不动点; 此外,设定义在内,且对于所有x ,存在正常数K<1,使得,则函数g 在内有唯一的不动点P 。
定理2.3 设有(i )g ,g ’,(ii )K 是一个正常数,(iii )。
如果对于所有如果对于所有x 在这种情况下,P 成为排斥不动点,而且迭代显示出局部发散性。
. 波尔查诺二分法(二分法定理)<收敛速度较慢>试值(位)法:<条件与二分法一样但改为寻求过点(a,f(a))和(b,f(b))的割线L 与x 轴的交点(c,0)>应注意越来越小,但可能不趋近于0,所以二分法的终止判别条件不适合于试值法.牛顿—拉夫森迭代函数:)(')()(1111-----==k k k k k p f p f p p g p 其中k=1,2,……证明:用泰勒多项式证明第三章线性方程组的解法 对于给定的解线性方程组Ax=b一Gauss Elimination (高斯消元法 )第一步Forward Elimination 第二步 BackSubstitution二LU Factorization第一步 A = LU 原方程变为LUx=y ;第二步 令Ux=y,则Ly = b 由下三角解出y ; 第三步 Ux=y,又上三角解出x ;三Iterative Methods (迭代法)2n n 22221211n n 1212111b x a x a x a b x a x a x a =+++=+++nn nn 22n 11n 2n n 22221211n n 1212111b x a x a x a b x a x a x a b x a x a x a =+++=+++=+++初始值四 Jacobi Method1.选择初始值2.迭代方程为五Gauss Seidel Method1.迭代方程为00201,,,n x x x 00201,,,n x x x nnk n nn k n k n n k n k nn k k kn n k k a x a x a x a bx a x a x a bx a x a x a b x )()()(1122111222121212111212111--++++++-=++-=++-=k k k kn n k k kn n k k a x a x a bx a x a x a bx )()(1112221121212111212111++++++++-=++-=2.选择初始值 判断是否能用Jacobi Method 或者GaussSeidel Method 的充分条件(绝对对角占优原则)第四章 插值与多项式逼近·第一节 泰勒级数和函数计算一些常用函数的泰勒级数展开:for all x for all x for all x -1 -1for00201,,,nx x x定理4.1(泰勒多项式逼近)设,而是固定值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论
误差来源:模型误差、观测误差、截断误差(方法误差)、舍入误差
ε是的绝对误差,是的误差,εε,ε为的绝对误差限(或误差限)
为的相对误差,当较小时,令
相对误差绝对值得上限称为相对误差限记为:ε即:εε
绝对误差有量纲,而相对误差无量纲
若近似值的绝对误差限为某一位上的半个单位,且该位直到的第一位非零数字共有n位,则称近似值有n位有效数字,或说精确到该位。
例:设x=π=3.1415926…那么ε,则有效数字为1位,即个位上的3,或说精确到个位。
科学计数法:记其中若,则有n位有效数字,精确到。
由有效数字求相对误差限:设近似值()有n位有效数字,则其相对误差限为
由相对误差限求有效数字:设近似值()的相对误差限则它有n位有效数字
为为
()
令、是、的近似值,且η、η
1.x+y近似值为且ηηη()和的误差(限)等于误差(限)的
和
2.x-y近似值为且ηηη()
3.xy近似值为ηηη
4.ηηη
1.避免两相近数相减
2.避免用绝对值很小的数作除数
3.避免大数吃小数
4.尽量减少计算工作量
第二章非线性方程求根
1.逐步搜索法
设f (a) <0, f (b)> 0,有根区间为 (a, b),从x0=a出发,按某个预定步长(例如h=(b-a)/N)一步一步向右跨,每跨一步进行一次根的搜索,即判别f(x k)=f(a+kh)的符号,若f(x k)>0(而f(x k-1)<0),则有根区间缩小为[x k-1,x k] (若f(x k)=0,x k即为所求根), 然后从x k-1出发,把搜索步长再缩小,重复上面步骤,直到满足精度:|x k-x k-1|<E为止,此时取x*≈(x k+x k-1)/2作为近似根。
2.二分法
设f(x)的有根区间为[a,b]= [a0,b0], f(a)<0, f(b)>0.将[a0,b0]对分,中点x0= ((a0+b0)/2),计算f(x0)。
对于给定精度ε,即,可得所需步数,ε
3.比例法
一般地,设 [a k,b k]为有根区间,过(a k, f(a k))、 (b k, f(b k))作直线,与x轴交于一点x k,则:
1.试位法每次迭代比二分法多算一次乘法,而且不保证收敛。
2.比例法不是通过使求根区间缩小到0来求根,而是在一定条件下直接构造出一个点列(递推公式),使该点列收敛到方程的根。
——这正是迭代法的基本思想。
事先估计:
事后估计
局部收敛性判定定理:设为方程φ的根,φ′在的某一邻域内连续,且φ′,则该迭代局部收敛
局部收敛性定理对迭代函数的要求较弱,但对初始点要求较高,即初始点必须选在精确解的附近
Steffensen迭代格式:
φ
φ
Newton法:
′
λ是下山因子
Newton下山法:λ
′
弦割法:
抛物线法:令可化为
其中:
则:
设迭代x k+1 = g(x k) 收敛到g(x) 的不动点(根)x* 设e k = x k x*若∞
,则称该迭代为p(不小于1)阶收敛,其中C (不为0)称为渐进误差常数
第三章解线性方程组直接法
列主元LU分解法:计算主元,选主元
,(
,(
,,即为上式主元
,
对于Ax=b,三角分解A=LU,Doolittle分解:L为单位下三角矩阵,U为上三角矩阵;Crout分解:L为下三角矩阵,U为单位上矩阵。
可分解为:
,下三角方程组
若利用紧凑格式可化为:
,上三角方程组
,()
Cholesky平方根法:系数矩阵A必须对称正定其中
,
,,
改进Cholesky分解法:
,。
由
,,逐行相乘
,(
,(
为减少计算量,令,可改为:
,,等价于
其中:
追赶法:Ax=d(A=LU),可化为Ly=d,Ux=y
,(
向量范数::
,范数
,范数或欧氏范数
∞∞
,∞范数
矩阵范数:
,列范数
λ,谱范数∞
,行范数
谱半径:ρλλ为特征值且ρ若为对称阵则:ρ收敛条件:谱半径小于1
条件数:,λ
λ
第四章解线性方程组的迭代法
Jacobi迭代:
基于Jacobi迭代的Gauss-Seidel迭代:
迭代收敛:谱半径小于1,范数小于1能推出收敛但不能反推
逐次超松弛迭代(SOR):
或:
当=1时,就是基于Jacobi迭代的Gauss-Seidel迭代(加权平均)。
第五章插值法
Lagrange插值法:
,
,
,则
构造插值函数:,,令
则:
若记:()
则可改为:
′,则
′
则插值余项:ξ
逐次线性插值法Aitken (埃特金法):
Newton插值法:
N(x)=a0+a1(x-x0)+a2(x-x0)(x-x1)+…+an(x-x0)(x-x1)…(x-xn)并满足N(x)=f(x) 差商的函数值表示:
差商与导数的关系:ξ
则:
等距节点Newton插值公式:
Newton向前插值:,其中
余项:ξ,
Newton向后插值:
余项:ξ
Hermite插值:αβ′
α,β
可得:
α
β
插值余项:ξ
待定系数:
三次样条插值:(三弯矩构造法)
记′′对积分两次并满足插值条件,,λ,μ对于附加弯矩约束条件:
μ
λμ
λ
μ
λ
λ,
,
μ
λμ对于附加转角边界条件:
λμ
λμ
λμ,,
对于附加周期性边界条件:
λμ
λμ
λμ
λμμλ,,
上式保证了s(x)在相邻两点的连续性
第六章函数逼近与曲线拟合
主要求法方程
第七章数值积分与数值微分
求积公式具有m次代数精度的充要条件:
,,
插值型求积公式求积系数公式:, Newton-Cotes(等分)
梯形求积公式(n=1),具有1次代数收敛精度
误差公式:′′η
抛物型求积公式(Simpson求积公式,n=2),具有3次代数收敛精度
误差公式()η
Newton求积公式(Simpon3/8法则)具有3次代数收敛精度
,
Cotes求积公式(n=4),具有5次收敛精度
,
误差公式(()η
节点数为奇数时,代数精度为n;为偶数时,代数精度为n+1。
代数精度都是奇数。
复化梯形求积公式:
截断误差:′′η
复化Simpson公式:
截断误差:η
复化Cotes求积:
截断误差:η
若一个复化积分公式的误差满足∞且C 0,则称该公式是p阶收敛的。
复化求积公式(需要2n+1个求积节点)
Romberg求积算法:
复化梯形求积公式:
复化Cotes求积公式:
Gauss型求积公式:
内积公式:ωωρ
截断误差:ηωρ,η()
高斯求积公式代数精度为2n+1
Gauss-Legendre求积公式(注意区间(-1,1),变换可得):形如:
求积系数可通过代数精度或插值型求积公式求积系数公式求出,亦可由下式求得:
,
′
截断误差:η,η()
Gauss-Chebyshev求积公式:形如:
求积系数:π(必为正)
截断误差:πη,η() Gauss-Laguerre求积公式:形如:∞
求积系数:
′
,
截断误差:
η,η(,∞)
∞
∞
求积系数:
π
′
,
截断误差:π
η,η(∞,∞)
三点数值微分公式:′′′′ξ,ξ(
泰勒级数展开:′
第八章常微分方程求解
Euler法:,为一阶法(f(x,y)为y的导数)梯形方法(改进Euler法):,,四级四阶经典Runge-Kutta公式
,
,
,
,。