数值分析(计算方法)总结

合集下载

数值分析 知识点总结

数值分析  知识点总结

数值分析知识点总结一、数值分析的基本概念1. 数值分析的对象数值分析的对象是现实生活中的数字数据和信息。

这些数据和信息可以来自各个领域,包括自然科学、社会科学、技术工程等。

例如,物理实验中测得的实验数据、经济管理中的统计信息、天气观测中的气象数据等,都是数值分析的对象。

2. 数值分析的目的数值分析的主要目的是通过对数值数据和信息的定量分析,发现其中的规律,提取有用的信息,做出科学的预测和决策。

例如,通过对某种药物的临床试验数据进行数值分析,可以得出这种药物的疗效和毒性情况,为临床医生的治疗决策提供依据。

3. 数值分析的方法数值分析采用数学和计算机科学的方法对数值数据和信息进行处理和分析。

它涉及的具体方法包括数值计算、插值与逼近、数值微分和积分、常微分方程数值解、数值线性代数等。

二、数值分析的基本内容1. 数值计算数值计算是数值分析的基本方法之一,它包括离散化、数值稳定性、误差分析等内容。

离散化是将连续问题转化为离散问题,这是数值计算的基本工作方式。

数值稳定性研究的是数值方法对误差的敏感程度,是评价数值方法好坏的重要指标。

误差分析则研究数值计算中产生的误差的成因和大小。

2. 插值与逼近插值与逼近是数值分析的重要内容之一,它研究如何通过已知的数值数据估计未知函数的值。

插值是通过已知的离散数据点构造一个连续函数,使得这个函数通过这些数据点;逼近则是通过已知的离散数据点构造一个近似函数,使得这个函数与原函数的差尽量小。

3. 数值微分和积分数值微分和积分是数值分析的又一重要内容,它研究如何通过已知的函数值计算函数的导数和定积分值。

数值微分是通过函数值计算函数的导数值;数值积分则是通过函数值计算函数的定积分值。

这两项工作在科学计算中有着广泛的应用。

4. 常微分方程数值解常微分方程数值解也是数值分析的重要内容之一,它研究如何通过数值方法计算常微分方程的近似解。

常微分方程是自然界和技术工程中经常出现的数学模型,因此其数值解的研究有着广泛的应用价值。

数值分析知识点总结

数值分析知识点总结

数值分析知识点总结数值分析是计算数值解的方法和理论,它研究的是如何利用计算机对数学问题进行数值计算和数值逼近。

数值分析包括了数值方法的设计、分析和实现,以及误差分析和计算复杂性分析等方面。

下面是数值分析的一些重要知识点的总结。

1.数值算法:数值算法是解决数学问题的计算方法,它由一系列具体的计算步骤组成。

常见的数值算法有插值、数值积分、数值微分、常微分方程数值解法等。

2.数值稳定性:数值稳定性是指数值算法在计算过程中对误差的敏感程度。

一个数值算法如果对输入数据的微小扰动具有较大的响应,就称为不稳定算法;反之,如果对输入数据的微小扰动具有较小的响应,就称为稳定算法。

3.四舍五入误差:在浮点数计算中,由于计算机表示的限制,涉及舍入运算的计算可能会引入误差。

四舍五入误差是指在进行舍入运算时,取最近的浮点数近似值所引入的误差。

4.条件数:条件数是用来衡量数值问题的不稳定性的一个指标。

它描述了输入数据的微小扰动在计算结果中的放大程度。

条件数的大小决定了数值算法的数值稳定性,通常越大表示问题越不稳定。

5.插值:插值是基于已知数据点,构造插值函数来近似未知数据点的方法。

常用的插值方法有线性插值、多项式插值和样条插值等。

6. 数值积分:数值积分是用数值方法进行积分计算的一种方法。

常见的数值积分方法有梯形法则、Simpson法则和Gauss-Legendre积分法等。

7.数值微分:数值微分是通过数值方法来计算函数的导数的一种方法。

常用的数值微分方法有中心差分法和前向差分法等。

8. 常微分方程数值解法:常微分方程数值解法用于求解常微分方程的近似解。

常用的常微分方程数值解法有Euler法、Runge-Kutta法和Adams法等。

9.误差分析:误差分析是对数值算法计算结果误差的研究。

可以通过理论分析或实验方法来估计误差,并找到减小误差的方法。

10.计算复杂性分析:计算复杂性分析是对数值算法运行时间和计算资源的需求进行评估的方法。

数值分析知识点总结

数值分析知识点总结

数值分析知识点总结数值分析知识点总结:本文提供了数值分析中的一些重要知识点和例题,但更多的例题可以参考老师布置的作业题和课件相关例题。

第1章数值分析与科学计算引论:绝对误差和相对误差是衡量近似值精度的指标,有效数字则是描述近似值精度的一种方式。

其中,相对误差限是绝对误差的上界。

有效数字的计算方法为:如果近似值x的误差限是某一位的半个单位,该位到x的第一位非零数字共有n位,就说x*共有n位有效数字。

一个比较好用的公式是f(x)的误差限:f(x)f'(x)(x)。

第2章插值法:插值多项式的余项表达式可以用来估计截断误差。

三次样条插值与三次分段埃尔米特插值有所不同,但哪一个更优越需要根据实际情况而定。

确定n+1个节点的三次样条插值函数需要多少个参数?为确定这些参数,需加上什么条件?三弯矩法可以用来求解三次样条表达式。

第3章函数逼近与快速傅里叶变换:带权(x)的正交多项式是在特定区间上满足一定条件的多项式,其中[-1,1]上的勒让德多项式具有重要性质。

切比雪夫多项式也有其独特的性质。

用切比雪夫多项式零点做插值点得到的插值多项式与拉格朗日插值有所不同。

最小二乘拟合的法方程可以用来拟合曲线,但当次数n较大时,不直接求解法方程。

第4章数值积分与数值微分:XXX让德求积公式和XXX-XXX求积公式是数值积分中的两种方法,其中高斯求积公式可以用来计算定积分。

勒让德多项式的零点就是高斯点,这种形式的高斯公式被称为XXX让德求积公式。

中点方法是一种数值积分方法,其公式如下:插值型的求导公式有两点公式和三点公式。

第5章介绍了解线性方程组的直接方法,其中包括LU矩阵的推导过程。

相关例题可以在教材第4章作业题和课件中找到。

第6章介绍了解线性方程组的迭代法,判断迭代法是否收敛的条件如下:第7章介绍了非线性方程与方程组的数值解法,其中牛顿法是一种常见的方法。

对于单根且光滑的f(x)=0,牛顿法是局部二阶收敛的。

简化牛顿法和牛顿下山法都是非线性方程组的求解方法。

数值分析的所有知识点总结

数值分析的所有知识点总结

数值分析的所有知识点总结一、数值分析的基本概念1.1 数值分析的定义和作用数值分析是研究利用计算机对数学问题进行数值计算的一门学科。

它旨在发展和分析数值计算方法,以解决实际问题中出现的数学模型。

数值分析的主要作用在于加快科学研究和工程设计的速度,提高计算精度和可靠性,以及发现新的科学规律和工程技术。

1.2 数值计算的基本步骤数值计算通常包括以下基本步骤:建立数学模型、选择适当的数值方法、编写计算程序、进行计算和分析结果。

其中,建立数学模型是数值计算的基础,它将实际问题抽象为数学公式或方程组的形式;选择适当的数值方法是指根据具体问题的特点,选择合适的数值计算方法进行求解;编写计算程序是指将选择的数值方法用计算机程序的形式实现;进行计算和分析结果是指利用计算机进行数值计算,并分析计算结果的准确性和可靠性。

1.3 数值分析的应用范围数值分析广泛应用于科学、工程、经济、金融等领域。

在科学研究中,数值分析常用于数学建模、实验数据处理、科学计算等方面;在工程领域,数值分析常用于工程设计、结构分析、流体力学、传热传质等方面;在经济金融领域,数值分析常用于风险评估、金融工程、市场预测等方面。

二、数值计算方法2.1 插值法插值法是利用已知的离散数据(如实验数据、观测数据)推导出未知的数据值的一种数值计算方法。

常用的插值方法包括拉格朗日插值、牛顿插值、分段插值等。

2.2 数值微分与数值积分数值微分是指利用离散数据计算函数的导数值的数值计算方法。

常用的数值微分方法包括差商法、中心差商法等。

数值积分是指利用离散数据计算函数的积分值的数值计算方法。

常用的数值积分方法包括复合梯形法、复合辛普森法等。

2.3 数值线性代数数值线性代数是研究线性代数问题的数值计算方法。

它涉及到线性方程组的求解、线性方程组的特征值和特征向量的计算、矩阵的LU分解、矩阵的QR分解等内容。

2.4 非线性方程求解非线性方程求解是研究非线性方程的数值计算方法。

数值分析实验报告心得(3篇)

数值分析实验报告心得(3篇)

第1篇在数值分析这门课程的学习过程中,我深刻体会到了理论知识与实践操作相结合的重要性。

通过一系列的实验,我对数值分析的基本概念、方法和应用有了更加深入的理解。

以下是我对数值分析实验的心得体会。

一、实验目的与意义1. 巩固数值分析理论知识:通过实验,将课堂上学到的理论知识应用到实际问题中,加深对数值分析概念和方法的理解。

2. 培养实际操作能力:实验过程中,我学会了使用Matlab等软件进行数值计算,提高了编程能力。

3. 增强解决实际问题的能力:实验项目涉及多个领域,通过解决实际问题,提高了我的问题分析和解决能力。

4. 培养团队协作精神:实验过程中,我与同学们分工合作,共同完成任务,培养了团队协作精神。

二、实验内容及方法1. 实验一:拉格朗日插值法与牛顿插值法(1)实验目的:掌握拉格朗日插值法和牛顿插值法的原理,能够运用这两种方法进行函数逼近。

(2)实验方法:首先,我们选择一组数据点,然后利用拉格朗日插值法和牛顿插值法构造插值多项式。

最后,我们将插值多项式与原始函数进行比较,分析误差。

2. 实验二:方程求根(1)实验目的:掌握二分法、Newton法、不动点迭代法、弦截法等方程求根方法,能够运用这些方法求解非线性方程的根。

(2)实验方法:首先,我们选择一个非线性方程,然后运用二分法、Newton法、不动点迭代法、弦截法等方法求解方程的根。

最后,比较不同方法的收敛速度和精度。

3. 实验三:线性方程组求解(1)实验目的:掌握高斯消元法、矩阵分解法等线性方程组求解方法,能够运用这些方法求解线性方程组。

(2)实验方法:首先,我们构造一个线性方程组,然后运用高斯消元法、矩阵分解法等方法求解方程组。

最后,比较不同方法的计算量和精度。

4. 实验四:多元统计分析(1)实验目的:掌握多元统计分析的基本方法,能够运用这些方法对数据进行分析。

(2)实验方法:首先,我们收集一组多元数据,然后运用主成分分析、因子分析等方法对数据进行降维。

数值分析学习总结感想

数值分析学习总结感想

数值分析学习总结感想在数值分析学习的过程中,我深刻体会到了这门学科的重要性和广泛应用的范围。

通过学习数值分析,我不仅加深了对数学理论的理解,还掌握了一些重要的数值计算方法和算法。

在此过程中,我收获了很多,也产生了许多感想。

首先,数值分析教给我了科学问题解决的方法。

在数值计算中,我们通常无法通过简单的代数运算来求解问题,而是需要借助计算机和数值算法来逼近解。

这种方法可以应用于很多实际问题,例如求解线性方程组、积分、微分方程等。

通过数值分析课程的学习,我掌握了很多常见的数值计算方法,例如高斯消元法、插值方法、数值积分等。

这些方法在实际问题中的应用非常广泛,能够帮助我们解决许多实际问题,提高计算效率和精度。

其次,数值分析也教会了我如何分析和估计误差。

在数值计算中,误差是无法避免的,而且可能会在计算过程中不断累积。

因此,我们需要了解误差的来源,能够进行误差估计和控制。

通过学习数值分析,我学会了如何使用泰勒展开式、理解截断误差和舍入误差等概念,同时也学会了如何使用残差计算和误差估计方法。

这对于判断数值结果的可靠性和计算效果的好坏非常重要,能够帮助我们找到优化方法和改进方案。

另外,数值分析还教会了我如何进行数值模拟和数据处理。

在实际工程和科学研究中,常常需要通过数值模拟来研究分析问题。

通过数值分析的学习,我学会了如何建立数学模型、选择合适的数值方法和算法来模拟求解问题,并能够对模拟结果进行合理的处理和分析。

这对于科学研究和工程设计都非常有价值,能够提高研究效率和解决复杂问题的能力。

最后,数值分析还培养了我一种严谨的科学态度和问题解决的能力。

在数值计算中,一个细微的误差可能会导致完全不同的结果,因此需要我们对问题进行仔细的分析,并保持谨慎的态度。

通过编程实现数值算法,我学会了如何调试代码和检查问题,发现解决bug的方法。

这培养了我的逻辑思维和问题解决能力,也增强了我对科学研究和工程实践的兴趣和热情。

综上所述,通过数值分析的学习,我不仅掌握了一些重要的数值计算方法和算法,还学会了科学问题解决的方法和误差估计的技巧。

数值分析期末知识点总结

数值分析期末知识点总结

数值分析期末知识点总结一、引言数值分析是一门研究如何使用计算机提高数学模型数值计算精度和效率的学科。

它是计算数学的一个重要分支,涉及到数值计算、数值逼近和误差分析等一系列内容。

在数值分析课程中,我们将学习到数值解微分方程、线性代数问题的求解、插值与拟合、积分等一系列内容。

本文将对数值分析期末知识点进行总结,以便帮助大家复习。

二、常见数值计算方法1. 插值与拟合插值与拟合是数值分析中重要的内容,它们用于在给定数据点集上构造一个函数,以便在其他点上进行求值。

插值是通过一些已知数据点来求得一个函数,使得这个函数能够通过这些点,而拟合则是通过已知数据点来求得一个函数,使得这个函数在这些点附近能够比较好地拟合数据。

常见的插值方法包括线性插值、拉格朗日插值、牛顿插值等;而拟合方法包括最小二乘法拟合、多项式拟合等。

2. 数值解微分方程数值解微分方程是数值分析的一个重要内容,它讨论如何使用计算机对微分方程进行数值求解。

微分方程是自然界中描述变化的数学方程,它们在物理学、化学、生物学等领域都有着重要的应用。

数值解微分方程的方法包括欧拉法、中点法、四阶龙格-库塔法等。

3. 数值线性代数数值线性代数是数值分析领域的另一个重要内容,它讨论如何使用数值方法解决线性代数问题。

原始的线性代数问题可能非常大或者非常复杂,因此我们常常需要使用计算机进行数值计算。

数值线性代数的方法包括高斯消元法、LU分解、Jacobi迭代法、Gauss-Seidel 迭代法等。

4. 数值积分数值积分是数值分析的一个重要内容,它讨论如何使用数值方法对积分进行数值求解。

在实际问题中,有很多积分问题是无法解析求解的,因此我们需要使用数值方法进行近似求解。

数值积分的方法包括复合辛普森法、复合梯形法、龙贝格积分法等。

三、数值分析的误差分析在数值计算过程中,我们会遇到误差的问题。

这些误差可能来自于测量、舍入、截断等各种原因。

因此,误差分析是数值分析中一个非常重要的内容。

数值分析实验报告总结

数值分析实验报告总结

一、实验背景数值分析是研究数值计算方法及其理论的学科,是计算机科学、数学、物理学等领域的重要基础。

为了提高自身对数值分析理论和方法的理解,我们进行了数值分析实验,通过实验加深对理论知识的掌握,提高实际操作能力。

二、实验目的1. 理解数值分析的基本理论和方法;2. 掌握数值分析实验的基本步骤和技巧;3. 培养实验设计和数据分析能力;4. 提高编程和计算能力。

三、实验内容本次实验主要分为以下几个部分:1. 线性方程组求解实验:通过高斯消元法、LU分解法等求解线性方程组,并分析算法的稳定性和误差;2. 矩阵特征值问题计算实验:利用幂法、逆幂法等计算矩阵的特征值和特征向量,分析算法的收敛性和精度;3. 非线性方程求根实验:运用二分法、牛顿法、不动点迭代法等求解非线性方程的根,比较不同算法的优缺点;4. 函数插值实验:运用拉格朗日插值、牛顿插值等方法对给定的函数进行插值,分析插值误差;5. 常微分方程初值问题数值解法实验:运用欧拉法、改进的欧拉法、龙格-库塔法等求解常微分方程初值问题,比较不同算法的稳定性和精度。

四、实验过程1. 线性方程组求解实验:首先,编写程序实现高斯消元法、LU分解法等算法;然后,对给定的线性方程组进行求解,记录计算结果;最后,分析算法的稳定性和误差。

2. 矩阵特征值问题计算实验:编写程序实现幂法、逆幂法等算法;然后,对给定的矩阵进行特征值和特征向量的计算,记录计算结果;最后,分析算法的收敛性和精度。

3. 非线性方程求根实验:编写程序实现二分法、牛顿法、不动点迭代法等算法;然后,对给定的非线性方程进行求根,记录计算结果;最后,比较不同算法的优缺点。

4. 函数插值实验:编写程序实现拉格朗日插值、牛顿插值等方法;然后,对给定的函数进行插值,记录计算结果;最后,分析插值误差。

5. 常微分方程初值问题数值解法实验:编写程序实现欧拉法、改进的欧拉法、龙格-库塔法等算法;然后,对给定的常微分方程初值问题进行求解,记录计算结果;最后,比较不同算法的稳定性和精度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 绪论误差来源:模型误差、观测误差、截断误差(方法误差)、舍入误差ε(x )=|x −x ∗|是x ∗的绝对误差,e =x ∗−x 是x ∗的误差,ε(x )=|x −x ∗|≤ε,ε为x ∗的绝对误差限(或误差限) e r =ex =x ∗−x x为x ∗ 的相对误差,当|e r |较小时,令 e r =ex ∗=x ∗−x x ∗相对误差绝对值得上限称为相对误差限记为:εr 即:|e r |=|x ∗−x||x ∗|≤ε|x ∗|=εr绝对误差有量纲,而相对误差无量纲若近似值x ∗的绝对误差限为某一位上的半个单位,且该位直到x ∗的第一位非零数字共有n 位,则称近似值 x ∗有n 位有效数字,或说 x ∗精确到该位。

例:设x=π=3.1415926…那么x ∗=3,ε1(x )=0.1415926…≤0.5×100,则x ∗有效数字为1位,即个位上的3,或说 x ∗精确到个位。

科学计数法:记x ∗=±0.a 1a 2⋯a n ×10m (其中a 1≠0),若|x −x ∗|≤0.5×10m−n ,则x ∗有n 位有效数字,精确到10m−n 。

由有效数字求相对误差限:设近似值x ∗=±0.a 1a 2⋯a n ×10m (a 1≠0)有n 位有效数字,则其相对误差限为12a 1×101−n由相对误差限求有效数字:设近似值x ∗=±0.a 1a 2⋯a n ×10m (a 1≠0)的相对误差限为为12(a 1+1)×101−n 则它有n 位有效数字令x ∗、y ∗是x 、y 的近似值,且|x ∗−x|≤η(x )、|y ∗−y|≤η(y)1. x+y 近似值为x ∗+y ∗,且η(x +y )=η(x )+η(y )和的误差(限)等于误差(限)的和2. x-y 近似值为x ∗−y ∗,且η(x +y )=η(x )+η(y )3. xy 近似值为x ∗y ∗,η(xy )≈|x ∗|∗η(y )+|y ∗|∗η(x)4. η(xy )≈|x ∗|∗η(y )+|y ∗|∗η(x)|y ∗|21.避免两相近数相减2.避免用绝对值很小的数作除数 3.避免大数吃小数 4.尽量减少计算工作量 第二章 非线性方程求根1.逐步搜索法设f (a ) <0, f (b )> 0,有根区间为 (a , b ),从x 0=a 出发, 按某个预定步长(例如h =(b -a )/N )一步一步向右跨,每跨一步进行一次根的搜索,即判别f (x k )=f (a +kh )的符号,若f (x k )>0(而f (x k -1)<0),则有根区间缩小为[x k -1,x k ] (若f (x k )=0,x k 即为所求根), 然后从x k -1出发,把搜索步长再缩小,重复上面步骤,直到满足精度:|x k -x k -1|< 为止,此时取x *≈(x k +x k -1)/2作为近似根。

2.二分法设f (x )的有根区间为[a ,b ]= [a 0,b 0], f (a )<0, f (b )>0.将[a 0,b 0]对分,中点x 0= ((a 0+b 0)/2),计算f (x 0)。

对于给定精度ε,即b−a 2k<ε,可得所需步数k ,k >[ln (b−a )−ln (ε)ln23.比例法一般地,设 [a k ,b k ]为有根区间,过(a k , f (a k ))、 (b k , f (b k ))作直线,与x 轴交于一点x k ,则:x =a −f(a)f (b )−f(a)∗(b −a)1.试位法每次迭代比二分法多算一次乘法,而且不保证收敛。

2.比例法不是通过使求根区间缩小到0来求根,而是在一定条件下直接构造出一个点列(递推公式),使该点列收敛到方程的根。

——这正是迭代法的基本思想。

事先估计:|x ∗−x k |≤L1−L |x 1−x 0| 事后估计|x ∗−x k |≤11−L |x k+1−x k |局部收敛性判定定理:设x ∗为方程x =φ(x )的根,φ(x)′在x ∗的某一邻域内连续, 且|φ(x ∗)′|<1,则该迭代局部收敛局部收敛性定理对迭代函数的要求较弱,但对初始点要求较高,即初始点必须选在精确解的附近Steffensen 迭代格式:x ̃k+1=φ(x k ) x ⃗ k+1=φ(x ̃k+1)x k+1=x k −(x ̃k+1−x k )2x ⃗ k+1−2x ̃k+1+x kNewton 法:x k+1=x k −f(x k )f′(x k )Newton 下山法:x k+1=x k −λf(x k )f′(x k ),λ是下山因子弦割法:x k+1=x k −f (x k )∗(x k −x k−1)f (x k )−f(x k−1)抛物线法:令t =x −x k ,h 0=x k−2−x k ,h 1=x k−1−x k ,可化为y (t )=at 2+bt +c其中:a =(f (x k−2)−c )∗h 1−(f (x k−1)−c )∗h 0h 1∗h 02−h 0∗h 12b =(f (x k−1)−c )∗h 02−(f (x k−2)−c )∗h 12h 1∗h 02−h 0∗h 12c =f(x k )则:x k+1={ x k b +√b 2−4acb >0x k +2c b +√b 2−4acb ≤0设迭代 x k +1 = g (x k ) 收敛到g (x ) 的不动点(根) x * 设 e k = x k x *若lim k→∞|e k+1||e k |p=C ,则称该迭代为p (不小于1)阶收敛,其中 C (不为0)称为渐进误差常数 第三章 解线性方程组直接法列主元LU 分解法:计算主元S i =a ik −∑l ir u rk ,i =k,k +1…n k−1r=1选主元|S ik |=max k≤i≤n{|S i |}{u 1j =a 1j ,(j =1,2…n)l i1=a i1u 11,(i =2,3…n){u kj =a kj −∑l km u mj ,(j =k,k +1,…n ),即为上式主元k−1m=1l ik =1u kk(a ik −∑l im u mk k−1m=1),(i =k +1,k +2,…n )对于Ax=b ,三角分解A=LU ,Doolittle 分解:L 为单位下三角矩阵,U 为上三角矩阵;Crout 分解:L 为下三角矩阵,U 为单位上矩阵。

可分解为: {Ly =b ,下三角方程组Ux =y ,上三角方程组若利用紧凑格式可化为:Ux =y{y 1=b 1y k =b k −∑l km y m ,(k =2,3…n )k−1m=1Cholesky 平方根法:系数矩阵A 必须对称正定AX =b ⇔{Ly =bL T x =y(其中A =L L T ){l 11=√a 11,l i1=a i1l 11(i =2,3…n)l kk =√a kk −∑l km 2k−1m=1,l ik =1l kk (a ik−∑l im l km )(i =k +1,k +2…n ,k =2,3…n)k−1m=1改进Cholesky 分解法:A =LDL TL =[ 1l 211l 31l 321………⋱l n1l n2…l n(n−1)1],D =[ d1d 2⋱⋱d n ]。

由A =L(DL T ) A =[ 1l 211l 31l 321………⋱l n1l n2…l n(n−1)1],D =[d 1d 1l 21d 1l 31…d 1l n1d 2d 2l 32…d 2l n2⋱…d 3l n3⋱⋮d n ],逐行相乘 {l ij =1d j (a ij −∑l ik d k l jk ),(j =1,2…i −1)j−1k=1d i =a ii −∑l ik 2j−1k=1d k ,(i =1,2…n)为减少计算量,令c ij =l ij d j ,可改为:{c ij =a ij −∑c ik l jk j−1k=1l ij =c ij d j d j =a ii −∑c ik l ik i−1k=1(i =2,3…n ,j =1,2…i −1),等价于{Ly =bL T x =D −1y 其中:D−1=[1d 11d 2⋱1d n ] 追赶法:Ax=d(A=LU),可化为Ly=d,Ux=y A =[a 1c 1b 1a 2c 2⋱⋱⋱a n−1b n−1c n−1a nb n ] =[1l 21⋱⋱l n−11l n1] [u 1c 1u 2c 2⋱⋱u n−1c n−1u n ]{u 1=b 1l i =a iu i−1u i =b i −l i c i−1,(i =2,3…n)向量范数::{‖A ‖1=∑|x i |n i=1,1−范数‖A ‖2=√∑x i 2n i=1,2−范数或欧氏范数‖A ‖∞=lim p→+∞‖x ‖p =max 1≤i≤n{|x i |},∞−范数矩阵范数:{‖A ‖1=max 1≤j≤n ∑|a ij |n i=1,列范数‖A ‖2=√λmax (A T A ),谱范数‖A ‖∞=max 1≤i≤n∑|a ij |nj=1,行范数谱半径:ρ(A )=max 1≤i≤n{|λi |}λ为特征值,且ρ(A )≤‖A ‖,若A 为对称阵则:ρ(A )=‖A ‖2收敛条件:谱半径小于1条件数:Cond =‖A −1‖∗‖A ‖,Cond 2(A )=|λmax ||λmin |第四章 解线性方程组的迭代法Jacobi 迭代:x i (k+1)=1a ii(b i −∑a ij x j (k )−∑a ij x j (k ))nj=i+1i−1j=1,(i =1,2…n;k =0,1,2…)基于Jacobi 迭代的Gauss-Seidel 迭代:x i (k+1)=1a ii(b i −∑a ij x j (k+1)−∑a ij x j (k ))nj=i+1i−1j=1,(i =1,2…n;k =0,1,2…) 迭代收敛:谱半径小于1,范数小于1能推出收敛但不能反推逐次超松弛迭代(SOR ):x i (k+1)=x i(k)−ϖa ii(b i −∑a ij x j (k+1)−∑a ij x j (k ))nj=i+1i−1j=1,(i =1,2…n;k =0,1,2…) 或:x i(k+1)=(1−ϖ)x i (k )+ϖa ii(b i −∑a ij x j (k+1)−∑a ij x j (k ))nj=i+1i−1j=1,(i =1,2…n;k =0,1,2…)当ϖ=1时,就是基于Jacobi 迭代的Gauss-Seidel 迭代(加权平均)。

相关文档
最新文档