上海市2015年最新静安青浦九年级数学一模试卷及答案-推荐下载
2015年上海市静安(青浦)区初三一模数学试卷和参考答案

BA D CO(第6题图)S 1S 2S 3S 4静安区/青浦区2015年中考一模模数学试卷(完成时间:100分钟满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)1.下列各式中与32)(a -相等的是(A )5a ;(B )6a ;(C )5a -;(D )6a -.2.下列方程中,有实数解的是(A )12-=-x ;(B )x x -=-2;(C )0242=--x x ;(D )0422=--x x .3.将抛物线2)1(-=x y 向左平移2个单位,所得抛物线的表达式为(A )2)1(+=x y ;(B )2)3(-=x y ;(C )2)1(2+-=x y ;(D )2)1(2--=x y .4.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是(A )两条直角边成正比例;(B )两条直角边成反比例;(C )一条直角边与斜边成正比例;(D )一条直角边与斜边成反比例.5.在四边形ABCD 中,AB=AD ,AC 平分∠DAB ,AC 与BD 相交于点O ,要使四边形ABCD 是菱形,那么还需满足下列条件中的(A )CD=CB ;(B )OB=OD ;(C )OA=OC ;(D )AC ⊥BD .6.如图,已知在梯形ABCD 中,AD ∥BC ,BC=2AD ,如果对角线AC 与BD 相交于点O ,△AOB 、△BOC 、△COD 、△DOA 的面积分别记作S 1、S 2、S 3、S 4,那么下列结论中,不正确的是(A )S 1=S 3;(B )S 2=2S 4;(C )S 2=2S 1;(D )4231S S S S ⋅=⋅.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:02144+-=▲.8.使代数式12-x 有意义的实数x 的取值范围为▲.9.如果关于x 的方程032=+-m x x 有相等的实数根,那么m 的值为▲.10.布袋中有两个红球和两个白球它们除了颜色外其他都相同,从中摸出两个球,那么“摸到一红一白两球”的概率为▲.11.如果抛物线5)3(2-+=x a y 不经过第一象限,那么a 的取值范围是▲.12.已知二次函数的图像经过点(1,3),对称轴为直线1-=x ,由此可知这个二次函数的图像一定经过除点(1,3)外的另一确定的点,这点的坐标是▲.13.如图,已知D 、E 分别是△ABC 的边BC 和AC 上的点,AE=2,CE=3,要使DE ∥AB ,那么BC ∶CD 应等于▲.14.已知点G 是面积为27cm 2的△ABC 的重心,那么△AGC 的面积等于▲cm 2.15.已知在△ABC 中,AD 是边BC 上的中线.设BA a = ,BC b = .那么AD=▲.(用向量a 、b的式子表示);16.在Rt △ABC 中,∠C=90°,点D 是AB 的中点,如果BC=3,CD=2,那么=∠DCB cos ▲.17.已知不等臂跷跷板AB 长为3米.当AB 的一端点A 碰到地面时(如图1),AB 与地面的夹角为30°;当AB 的另一端点B 碰到地面时(如图2),AB 与地面夹角的正弦值为31,那么跷跷板AB 的支撑点O 到地面的距离OH=▲米18.把一个三角形绕其中一个顶点逆时针旋转并放大或缩小(这个顶点不变),我们把这样的三角形运动称为三角形的T-变换,这个顶点称为T-变换中心,旋转角称为T-变换角,放大或缩小后的三角形与原三角形对应边的比称为T-变换比.已知△ABC 在直角坐标平面内,点A (0,-1),B (-3,2),C (0,2),将△ABC 进行T-变换,T-变换中心为点A ,T-变换角为60°,T-变换比为32,那么经过T-变换后点C 所对应的点的坐标为▲.BA CED(第13题图)(第17题图1)(第17题图2)三、解答题:(本大题共7题,满分78分)19.(本题满分10分)化简:221212222-++++--x x xx x x x ,并求当3=x 时的值.20.(本题满分10分)解方程组:⎪⎩⎪⎨⎧=+--=+.022,4222y x y xy y x 21.(本题满分10分)已知直线)0(>=m m x 与双曲线xy 6=和直线2--=x y 分别相交于点A 、B ,且AB=7,求m 的值.22.(本题满分10分)如图,某幢大楼的外墙边上竖直安装着一根旗杆CD .小明在离旗杆下方的大楼底部E 点24米的点A 处放置一台测角仪,测角仪的高度AB 为1.5米,并在点B 处测得旗杆下端C 的仰角为40°,上端D 的仰角为45°,求旗杆CD 的长度.(结果精确到0.1米.参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)23.(本题满分12分,其中第(1)小题5分,第(2)小题7分)已知:如图,D 是△ABC 的边AB 上一点,DE ∥BC ,交边AC 于点E ,延长DE 到点F ,使得EF=DE ,联结BF ,交边AC 于点G ,联结CF .(1)求证:CGEGAC AE =;(2)如果FB FG CF ⋅=2,求证:DE BC CE CG ⋅=⋅.A DBC FE G(第23题图)(第22题图)24.(本题满分12分,其中每小题各4分)已知在平面直角坐标系xOy 中,二次函数bx ax y +=2的图像经过点(1,-3)和点(-1,5).(1)求这个二次函数的解析式;(2)将这个二次函数的图像向上平移,交y 轴于点C ,其纵坐标为m ,请用m 的代数式表示平移后函数图像顶点M 的坐标;(3)在第(2)小题的条件下,如果点P 的坐标为(2,3),CM 平分∠PCO ,求m 的值.25.(本题满分14分,其中第(1)、(2)小题各4分,第(3)小题6分)如图,在矩形ABCD 中,P 是边AD 上的一动点,联结BP 、CP ,过点B 作射线交线段CP 的延长线于点E ,交边AD 于点M ,且使得∠ABE=∠CBP .如果AB=2,BC=5,AP=x ,PM=y .(1)求y 关于x 的函数解析式,并写出它的定义域;(2)当AP=4时,求∠EBP 的正切值;(3)如果△EBC 是以∠EBC 为底角的等腰三角形,求AP 的长.ABCDPME(第25题图)Oxy123412345-1-2-3-1-2-3(第24题图)静安区/青浦区2015年中考一模模数学试卷参考答案一、选择题:1.D ;2.C ;3.A ;4.B ;5.C ;6.B .二、填空题:7.23;8.21≥x ;9.49;10.32;11.a<-3;12.(-3,3);13.35;14.9;15.b a 21+-;16.43;17.53;18.(-3,0).三、解答题:19.解:原式=)1)(2()2()1()1)(1(2-+++-+-x x x x x x x ……………………………………………(4分)=111-+-+x x x x =112-+x x .…………………………………………………(1+1分)当3=x 时,原式=2337)13)(13()13)(132(13132+=+-++=-+.………………(1+1+2分)20.解:由(2)得0)1)(2(=--y y x ,0102=-=-y y x 或,……………………………(4分)原方程可化为⎩⎨⎧==+⎩⎨⎧=-=+.1,4,02,42222y y x y x y x …………………………………………(2分)解得原方程的解是⎪⎪⎩⎪⎪⎨⎧==,552,55411y x ⎪⎪⎩⎪⎪⎨⎧-=-=,552,55422y x ⎪⎩⎪⎨⎧==,1333y x ⎪⎩⎪⎨⎧=-=.1,333y x ……………(4分)21.解:点A 、B 的坐标分别为(mm 6,)、(2,--m m ).……………………………(2分)7)2(6=---m m,…………………………………………………………………(3分)0652=+-m m ,……………………………………………………………………(2分)3,221==m m .………………………………………………………………………(2分)经检验它们都是原方程的根,且符合题意,………………………………………(1分)所以m 的值为2或3.22.解:过点B 的水平线交直线CD 于点H .由题意,得BH=AE=24,∠CBH=40°,∠DBH=45°,∴CH=24tan40°,DH=BH=24.……………………………………………………(6分)∴CD=24-24tan40°≈3.8.…………………………………………………………(3分)答:旗杆CD 的长度约为3.8米.…………………………………………………(1分)23.证明:(1)∵DE ∥BC ,∴BC DE AC AE =,BCEFCG EG =.…………………………(各2分)∵EF=DE ,∴CGEGAC AE =.…………………………………………………………(1分)(2)∵FB FG CF ⋅=2,∴FBCFCF FG =.…………………………………………(1分)∵∠CFG=∠BFC ,∴△CFG ∽△BFC .…………………………………………(1分)∴∠FCG=∠FBC .…………………………………………………………………(1分)∵DE ∥BC ,∴∠FEC=∠ECB .∴△CEF ∽△BCG .…………………………………………………………………(1分)∴CGEFBC CE =.………………………………………………………………………(1分)而EF=DE ,∴CGDEBC CE =.…………………………………………………………(1分)∴DE BC CE CG ⋅=⋅.……………………………………………………………(1分)24.解:(1)∵二次函数bx ax y +=2的图像经过点(1,-3)和点(-1,5),∴⎩⎨⎧-=+=-.5,3b a b a ………………………………………………………………………(1分)解得⎩⎨⎧-==.4,1b a …………………………………………………………………………(2分)∴这个二次函数的解析式是x x y 42-=.………………………………………(1分)(2)∵将这个二次函数的图像向上平移,交y 轴于点C ,其纵坐标为m ,∴这个二次函数的解析式是m x x y +-=42.……………………………………(1分)4)2(422-+-=+-=m x m x x y .………………………………………………(2分)∴这个二次函数图像的顶点M 的坐标为(2,m–4).…………………………(1分)(3)∵点P 的横坐标与顶点M 的横坐标都为2,∴PM ∥y 轴.………………(1分)∴∠PMC=∠OCM .∵CM 平分∠PCO ,∴∠PCM=∠OCM .∴∠PMC=∠PCM .∴PC=PM .…………………………………………………………………………(1分)∴222)7()3(2-=-+m m .………………………………………………………(1分)解得m=29.…………………………………………………………………………(1分)25.解:(1)在矩形ABCD 中,∵AD ∥BC ,∴∠APB=∠CBP .∵∠ABE=∠CBP ,∴∠APB=∠ABE .∵∠A=∠A ,∴△ABP ∽△AMB .…………………………………………………(1分)∴APABAB AM =.∵AB=2,AP=x ,PM=y ,∴x y x 22=-.…………………………………………(1分)∴所求函数的解析式为xx y 4-=.………………………………………………(1分)定义域为52≤<x .…………………………………………………………………(1分)(2)∵AP=4,∴MP=3.…………………………………………………………(1分)∵AP=4,AD=5,∴PD=1.∴CDPDAP AB =.∵∠A=∠D ,∴△ABP ∽△DPC .∴∠APB=∠DCP .∵∠DPC+∠DCP=90°,∴∠DPC+∠APB=90°.∴∠BPE=∠BPC=90°.……………………………………………………………(1分)∵AD ∥BC ,∴BC MPEC EP =,即535=+EP EP .解得523=EP .……………………………………………………………………(1分)又∵AP=4,AB=2,∴52=BP .∴43tan ==∠BP EP EBP .……………………………………………………………(1分)另解:作MH ⊥BP ,垂足为点H .∵AP=4,∴MP=3.…………………………………………………………………(1分)∵AP=4,AB=2,∴52=BP .由△BPM 的面积,可得AB MP MH BP ⋅=⋅,即2352⨯=⋅MH .解得553=MH .…………………………………………………………………(1分)∵AM=1,AB=2,∴5=BM .∴554=BH .………………………………………………………………………(1分)∴43tan ==∠BH MH EBP .…………………………………………………………(1分)(3)(i )当∠EBC=∠ECB 时,可得∠AMB=∠DPC ,△AMB ≌△DPC .∴AM=DP .…………………………………………………………………………(1分)∴x+x-y=5,即54=+xx .…………………………………………………………(1分)解得x=4或x=1(不符合题意,舍去).…………………………………………(1分)(ii )当∠EBC=∠BEC 时,可得EC=BC=5,PE=PM=y .………………………(1分)∴2222)5()5(+-=-x y .整理,得3x 2-10x-4=0.……………………………………………………………(1分)解得3375+=x或3375-=x(不符合题意,舍去).………………………(1分)综上所述,AP的长为4或3375+.。
上海市静安区市西初中九年级数学月考卷(含答案)

市西初级中学九年级第一学期阶段检测数学试卷2024年9月(满分 150分,时间100分钟)一、选择题(本大题共6题,每题4分,满分24分)1.在ΔABC中,点D、E分别在线段AB、AC上,下列比例式中不能判断DE∥BC的是( )A.ADAB = AEACB. ADAE= DBECC. ABDB= ACECD. ADAB= DEBC2. 如图,梯形ABCD中,AB∥CD,AC,BD交于O,下列等式正确的是( )A.SΔAODSΔAOB = ADABB.SΔCODSΔAOB= CDABC.SΔAODSΔBOA= DOOBD.SΔAODSΔBOC= DOOC3. 已知线段a、b、c、d、m,如果ab =cd,m≠0,那么下列各式中成立的是( )A.√a√b =√c√dB.a−mb=c−mdC.a+mb+m=cdD.a2b=c2d4.已知线段a、b、c,求作线段x=acb,下列作图中正确的是( )B.A.C. D.5.下列语句叙述正确的是( )A.有一个角是30°的等腰三角形都相似B.有一个角是30°的直角三角形都相似C.有一个角是30°的锐角三角形都相似D.有一个角是30°的钝角三角形都相似6.如图,DE∥BC,EF∥AB,则下列式子中成立的是( )A. ADDB = BFECB. ABBC= DEACC. EFAB= ACCED. ADDB= BFFC二、填空题(本大题共12题,每题4分,满分48分)7.已知线段a=5cm,b=20mm,则a:b= 。
8.线段AB是线段MN、CD的比例中项,且AB=3cm,MN=4cm,则CD长为 。
9.某班同学要测量学校升国旗的旗杆高度,在同一时刻,量得某同学的身高是1.5米,影长是1米,且旗杆的影长为8米,则旗杆的高度是 米。
10.如图,AE=5,4C=8,AB=10,当BD= 时,DE∥BC。
11.如图,AD∥EF∥BC,AEEB =23,DF=4,则DC= cm。
2015-2016年上海九年级数学一模汇总包含答案

DBE FD B ECA 2015-2016学年第一学期徐汇区学习能力诊断卷数学一、选择题1. 下列两个图形一定相似的是( )A.两个菱形;B.两个矩形;C.两个正方形;D.两个等腰梯形.2. 如图1,如果AB ∥CD ∥EF ,那么下列结论正确的是( )A.;B.;C.;D..3. 将抛物线向右平移2个单位,再向上平移2个单位后所得的抛物线的表达式是() A.;B.;C.;D.4. 点G 是△ABC 的重心,如果AB=AC=5,BC=8,那么AG 的长是()A.1;B.2;C.3;D.4.5. 如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.南偏西30°方向;B.南偏西60°方向;C.南偏东30°方向;D.南偏东60°方向.6. 如图2,梯形ABCD 中,AD ∥BC ,∠DAC =90°,AB=AC ,点E 是边AB 上一点,∠ECD =45°,那么下列结论错误的是( )A.∠AED=∠ECB ;B. ∠ADE=∠ACE ;C.BE=AD ;D.BC=CE.一、 填空题7. 计算:=______________; 8. 如果,那么=__________;9. 已知二次函数,如果y 随x 的增大而增大,那么x 的取值范围是_________; 10. 如果两个相似三角形的面积比是4:9,那么它们对应高的比是_____________; 11. 如图3所示,一皮带轮的坡比是1:2.4,如果将货物从地面用皮带轮送到离地10米高的平台,那么该货物经过的路程是_______米;12. 已知点M (1,4)在抛物线上,如果点N 和点M 关于该抛物线的对称轴对称,那么点N 的坐标是__________;图1图2图3FECDABEADABA E DFE DED 13. 点D 在△ABC 的边AB 上,AC=3,AB =4,∠ACD=∠B ,那么AD 的长是__________; 14. 如图4,在平行四边形ABCD 中,AB=6,AD =4,∠BAD 的平分线AE 分别交BD 、CD 于F 、E ,那么=________;15. 如图5,在△ABC 中,AH ⊥BC 于H ,正方形DEFG 内接于△ABC ,点D 、E 分别在边AB 、AC 上,点G 、F 在边BC 上,如果BC=20,正方形DEFG 的面积为25,那么AH 的长是________;16. 如图6,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,tan ∠ACD =,AB=5,那么CD 的长是_________; 17. 如图7,在梯形ABCD 中,AD ∥BC ,BC=2AD ,点E 是CD 的中点,AC 和BE 交于点F ,那么△ABF 和△CEF的面积比是___________;18. 如图8,在Rt △ABC 中,∠BAC=90°,AB=3,cosB=,将△ABC 绕着点A 旋转得△ADE ,点B 的对应点D落在边BC 上,联结CE ,那么CE 的长是________. 二、 解答题19. 计算:4sin45°-2tan30°cos30°+ 20. 抛物线经过点(2,1). (1) 求抛物线的顶点坐标;(2) 将抛物线沿y 轴向下平移后,所得新抛物线和x 轴交于A 、B 两点,如果AB =2,求新抛物线的表达式。
(完整word版)2015年上海市中考数学试卷及答案(Word版),推荐文档

2015年上海市初中毕业统一学业考试数学试卷考生注意:1 •本试卷含三个大题,共 25题;2 •答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3•除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. -、选择题: (本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置1.下列实数中,是有理数的为()A. 2 ;B . 34 ;C .;D . 0 .2.当a0时, 卞万【【辛二P 宴白&踪皆 TT 槁白&旦 ()下列天于幂的运算正确的是(A.a 1 ;B . a 1a ;22C . aa ;D . a 22.a3.下列 y 关于x 的函数中,是正比例函数的为( )A.2y x厂 2 ;B . y -;xx C . y2 ;x 1D . y24.如果一个正多边形的中心角为 72°,那么这个正多边形的边数是()A . 4;B . 5;C . 6;D . 7.6. 如图,已知在O O 中,AB 是弦,半径OC AB ,垂足为点D ,要使四边形 一个条件,这个条件可以是( )A . AD BD ;B . OD CD ;C . CAD CBD ; D . OCA OCB .二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】 7.计算:| 22 ___________ & 方程• 3x 22的解是 __________9.___________________________________________________ 如果分式有意义,那么x 的取值范围是x 310._______________________________________________________________________________ 如果关于x 的一元二次方程x 24x m 0没有实数根,那么 m 的取值范围是 _________________________________________11.___________________________________ 同一温度的华氏度数y (o F )与摄氏度数x (o c )之间的函数关系是y |x 32 .5.下列各统计量中,表示一组数据波动程度的量是() A .平均数; B .众数; C .方差;D .频率.如果某一温度的摄氏度数是25o C,那么它的华氏度数是°F .12•如果将抛物线y x22x 1向上平移,使它经过点A (0, 3),那么所得新抛物线的表达式是___________________13•某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加此次活动的概率是 _______________ •14年龄(岁)1112131415人数55161512那么“科技创新社团”成员年龄的中位数是______________ 岁.uun IT UULT15址如图T,已知在△ ABC中,D、E分别是边AB、边AC的中点,AB m , AC 量m、n表示为______________________ •16•已知E是正方形ABCD的对角线AC上一点,AE AD,过点E作AC的垂线,交边CD于点F,那么FAD_________________ 度.17•在矩形ABCD中,AB 5 , BC 12,点A在O B上•如果O D与O B相交,且点B在O D内,那么O D的半径长可以等于_______________________ •(只需写出一个符号要求的数)18.已知在厶ABC中,AB AC 8 , BAC 30°•将△ ABC绕点A旋转,使点B落在原△ ABC的点C 处,此时点C落在点D处•延长线段AD,交原△ ABC的边BC的延长线于点E,那么线段DE的长等于三、解答题:(本大题共7题,满分78分)19. (本题满分10分)2先化简,再求值:丁必X口,其中xx 4x 4 x 2 x 220. (本题满分10分)4x 2x 6解不等式组:x ! x !,并把解集在数轴上表示出来.3 921. (本题满分10分,第(1)小题满分4分,第(2)小题满分6分)4已知,如图,在平面直角坐标系 xOy 中,正比例函数y —x 的图像经过点 A ,点A 的纵坐标为4,反比3例函数y m 的图像也经过点A ,第一象限内的点x轴于点C ,且AC AB .求:(1)这个反比例函数的解析式;(2)直线AB 的表达式.22. (本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图,MN 表示一段笔直的高架道路,线段 AB 表示高架道路旁的一排居民楼.已知点 A 到MN 的距离为 15米,BA 的延长线与MN 相交于点D ,且 BDN 30°,假设汽车在高速道路上行驶时,周围 39米以内会 受到噪音的影响.(1) 过点A 作MN 的垂线,垂足为点 H .如果汽车沿着从 M 到N 的方向在MN 上行驶,当汽车到达点 P 处 时,噪音开始影响这一排的居民楼,那么此时汽车与点 H 的距离为多少米?(2) 降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点 Q 时,它与这一排居民楼的距离 QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到 1米)(参考数据:・.3 1.7)B 在这个反比例函数的图像上,过点 B 作BC // x 轴,交y23. (本题满分12分,第(1)小题满分6分,第(2)小题满分6分)已知:如图,平行四边形ABCD的对角线相交于点0,点E在边BC的延长线上,且0E 0B,联结DE .(1) 求证:DE BE ;(2) 如果OE CD,求证:BD CE CD DE .图24. (本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)已知在平面直角坐标系xOy中(如图),抛物线y ax2 4与x轴的负半轴相交于点A,与y轴相交于点B , AB 2 5 •点P在抛物线上,线段AP与y轴的正半轴相交于点C,线段BP与x轴相交于点D •设点P的横坐标为m .x(1)求这条抛物线的解析式;(2)用含m的代数式表示线段CO的长度;3(3)当tan ODC 时,求PAD的正弦值.225. (本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB是半圆0的直径,弦CD // AB,动点P、Q分别在线段0C、CD上,且DQ 4cos AOC .设OP x , △ CPF 的面积为y.5(1)求证:AP OQ ;(2)求y关于x的函数关系式,并写出它的定义域;(3)当厶OPE是直角三角形时,求线段OP的长. OP ,AP的延长线与射线0Q相交于点E,与弦CD相交于点F(点F与点C、D不重合),AB 20 ,图7备用图2015年上海市初中毕业统一学业考试数学试卷参考答案一、选择题1、D ;2、A;3、C ;4、B;5、C ;6、B二、填空题7、4 ;8、:2;9、x 3 ;10、m 4 ;1 Lr 1 r14、14;m n ; 16、22.5 ;17、1422三、解答题2x x 2x 119.解:原式= ' 2(X 2)x x 2x x 1x 2x 227 11、77;12、y x 2x 3 ;13、;50(大于13且小于18的数);18、^3 4 .当lx1时,原式11f—J; 2 1 2 2 120•解:由4x 2x6,得x3x 1 x 1 口由,得x239原不等式组的解集是3x 2.1 1J L IA-3 -2-1 01 2 3x4 一21.解:(1 )•••正比例函数y X的图像经过点A,点A的纵坐标为4,344 — x 二x 3 •••点A 的坐标是(3,4)3•••反比例函数的图像经过点A,12 yx (2)••• AC AB ,•点A 在线段BC 的中垂线上.•/ BC // X 轴,点C 在y 轴上,点A 的坐标是(3,4),•点B 的横坐标为6. •••点B 在反比例函数的图像上,.••点 B 的坐标是(6,2). 22•解:(1)联结 AP.由题意得 AH MN , AH 15(m), AP 39(m).在 Rt APH 中,得 PH 36(m).答:此时汽车与点 H 的距离为36米.(2)由题意可知,PQ 段高架道路旁需要安装隔音板, QC AB ,QDC 30 ,QC 39(m).在 Rt DCQ 中,DQ 2QC 78(m).在 Rt ADH 中,DH AH cot30 15、、3(m),• PQ PH DH DQ 114 15 1.7 88.5 89(m). 答:高架道路旁安装的隔音板至少需要 89米长.23•证明:(1 )••• OE OB, OBE OEB .T 平行四边形 ABCD 的对角线相交于点 0,「.OB OD .• OE OD • ODE OED .在 BDE 中, OBE OEB OED ODE 180 • OEB 0ED BE 90, 即DE BE .(2)T OE CD ,••• CDE DEO 90 .又••• CEO DEO 90 , CDE CEO.m 12•直线AB 的表达式为y 2x 6.3 b 6•••反比例函数的解析式为 设直线AB 的表达式为y kx b ,将点A 、B 代入表达式得:4 3k b 2 6k b k 解得Q OBE OEB, OBE 在 DBE 和 CDE 中:OBE CDEBED DECDBE s CDE.点A 在x 轴的负半轴上,AB 2、. 5,2 抛物线y ax 4与x 轴相交于点A ,这条抛物线的表达式为 y x 24 2 (2):点P 在抛物线上,它的横坐标为m ,「.点P的坐标为(m, m 4) 2由题意,得点P 在第一象限内,因此 m 0,m4 0过点P 作PH 丄x 轴,垂足为H CO AO•/ CO // PH ,PH AHCO 2m 2 4 m 2解得CO 2m 4(3)过点P 作PG 丄y 轴, 垂足为点 G OD BO•/ OD // D G , •PG BG OD 4 口 42,即 ODm m m CO 3在 Rt A ODC 中, •/ ODCOD 2 • 2(2m4) 3 -,解得m 3或m 1 (舍去)。
2015年上海市静安区中考一模数学试卷(解析版)

2015年上海市静安区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.(4分)下列各式中与(﹣a2)3相等的是()A.a5B.a6C.﹣a5D.﹣a62.(4分)下列方程中,有实数解的是()A.=﹣1B.=﹣x C.=0D.=03.(4分)将抛物线y=(x﹣1)2向左平移2个单位,所得抛物线的表达式为()A.y=(x+1)2B.y=(x﹣3)2C.y=(x﹣1)2+2D.y=(x﹣1)2﹣24.(4分)如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是()A.两条直角边成正比例B.两条直角边成反比例C.一条直角边与斜边成正比例D.一条直角边与斜边成反比例5.(4分)在四边形ABCD中,AB=AD,AC平分∠DAB,AC与BD相交于点O,要使四边形ABCD是菱形,那么还需满足下列条件中的()A.CD=CB B.OB=OD C.OA=OC D.AC⊥BD 6.(4分)如图,已知在梯形ABCD中,AD∥BC,BC=2AD,如果对角线AC 与BD相交于点O,△AOB、△BOC、△COD、△DOA的面积分别记作S1、S2、S3、S4,那么下列结论中,不正确的是()A.S1=S3B.S2=2S4C.S2=2S1D.S1•S3=S2•S4二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)计算:+40=.8.(4分)使代数式有意义的实数x的取值范围为.9.(4分)如果方程x2﹣3x+m=0有两个相等的实数根,那么m的值是.10.(4分)布袋中有两个红球和两个白球除了颜色外其他都相同,从中摸出两个球,那么摸到一红一白两球概率为.11.(4分)如果抛物线y=(a+3)x2﹣5不经过第一象限,那么a的取值范围是.12.(4分)已知二次函数的图象经过点(1,3),对称轴为直线x=﹣1,由此可知这个二次函数的图象一定经过除点(1,3)外的另一点,这点的坐标是.13.(4分)如图,已知D,E分别是△ABC的边BC和AC上的点,AE=2,CE =3,要使DE∥AB,那么BC:CD应等于.14.(4分)已知点G是面积为27cm2的△ABC的重心,那么△AGC的面积等于.15.(4分)已知在△ABC中,AD是边BC上的中线.设=,=.那么=.(用向量、的式子表示).16.(4分)在Rt△ABC中,∠C=90°,点D是AB的中点,如果BC=3,CD =2,那么cos∠DCB=.17.(4分)已知不等臂跷跷板AB长为3米,当AB的一端点A碰到地面时(如图1),AB与地面的夹角为30°;当AB的另一端点B碰到地面时(如图2),AB与地面的夹角的正弦值为,那么跷跷板AB的支撑点O到地面的距离OH =米.18.(4分)把一个三角形绕其中一个顶点逆时针旋转并放大或缩小(这个顶点不变),我们把这样的三角形运动称为三角形的T﹣变换,这个顶点称为T﹣变换中心,旋转角称为T﹣变换角,三角形与原三角形的对应边之比称为T﹣变换比;已知△ABC在直角坐标平面内,点A(0,﹣1),B(﹣,2),C(0,2),将△ABC进行T﹣变换,T﹣变换中心为点A,T﹣变换角为60°,T﹣变换比为,那么经过T﹣变换后点C所对应的点的坐标为.三、解答题:(本大题共7题,满分78分)19.(10分)化简:+,并求当x=时的值.20.(10分)解方程组:.21.(10分)已知直线x=m(m>0)与双曲线y=和直线y=﹣x﹣2分别相交于点A、B,且AB=7,求m的值.22.(10分)如图,某幢大楼的外墙边上竖直安装着一根旗杆CD,小明在离旗杆下方大楼底部E点24米的点A处放置一台测角仪,测角仪的高度AB为1.5米,并在点B处测得旗杆下端C的仰角为40°,上端D的仰角为45°,求旗杆CD的长度;(结果精确到0.1米,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)23.(12分)已知如图,D是△ABC的边AB上一点,DE∥BC,交边AC于点E,延长DE至点F,使EF=DE,联结BF,交边AC于点G,联结CF(1)求证:=;(2)如果CF2=FG•FB,求证:CG•CE=BC•DE.24.(12分)已知在平面直角坐标系xOy中,二次函数y=ax2+bx的图象经过点(1,﹣3)和点(﹣1,5);(1)求这个二次函数的解析式;(2)将这个二次函数的图象向上平移,交y轴于点C,其纵坐标为m,请用m 的代数式表示平移后函数图象顶点M的坐标;(3)在第(2)小题的条件下,如果点P的坐标为(2,3),CM平分∠PCO,求m的值.25.(14分)已知在矩形ABCD中,P是边AD上的一动点,联结BP、CP,过点B作射线交线段CP的延长线于点E,交边AD于点M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y;(1)求y关于x的函数解析式,并写出它的定义域;(2)当AP=4时,求∠EBP的正切值;(3)如果△EBC是以∠EBC为底角的等腰三角形,求AP的长.2015年上海市静安区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.(4分)下列各式中与(﹣a2)3相等的是()A.a5B.a6C.﹣a5D.﹣a6【解答】解:(﹣a2)3=﹣a6.故选:D.2.(4分)下列方程中,有实数解的是()A.=﹣1B.=﹣x C.=0D.=0【解答】解:∵,∴x2﹣4=0,∴x=﹣2或2;经检验:x=2是原方程的增根,∴原方程的解为x=﹣2,故选:C.3.(4分)将抛物线y=(x﹣1)2向左平移2个单位,所得抛物线的表达式为()A.y=(x+1)2B.y=(x﹣3)2C.y=(x﹣1)2+2D.y=(x﹣1)2﹣2【解答】解:抛物线y=(x﹣1)2的顶点坐标为(1,0),点(1,0)向左平移2个单位得到对应点的坐标为(﹣1,0),所以平移后抛物线的表达式为y=(x+1)2.故选:A.4.(4分)如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是()A.两条直角边成正比例B.两条直角边成反比例C.一条直角边与斜边成正比例D.一条直角边与斜边成反比例【解答】解:设该直角三角形的两直角边是a 、b ,面积为S .则S =ab .∵S 为定值,∴ab =2S 是定值,则a 与b 成反比例关系,即两条直角边成反比例.故选:B .5.(4分)在四边形ABCD 中,AB =AD ,AC 平分∠DAB ,AC 与BD 相交于点O ,要使四边形ABCD 是菱形,那么还需满足下列条件中的( )A .CD =CB B .OB =ODC .OA =OCD .AC ⊥BD【解答】解:添加条件AO =CO ,∵AB =AD ,AC 平分∠DAB ,∴BO =DO ,∵AO =CO ,∴四边形ABCD 是平行四边形,∵AB =AD ,∴四边形ABCD 是菱形,故选:C .6.(4分)如图,已知在梯形ABCD 中,AD ∥BC ,BC =2AD ,如果对角线AC与BD 相交于点O ,△AOB 、△BOC 、△COD 、△DOA 的面积分别记作S 1、S 2、S 3、S 4,那么下列结论中,不正确的是( )A .S 1=S 3B .S 2=2S 4C .S 2=2S 1D .S 1•S 3=S 2•S 4【解答】解:A 、∵△ABD 和△ACD 同底、同高,则S △ABD =S △ACD ,∴S1=S3,故命题正确;B、∵AD∥BC,∴△AOD∽△COB,又∵BC=2AD,∴=()2=,则S2=2S4正确.故命题错误;C、作MN⊥BC于点N,交AD于点M.∵△AOD∽△COB,又∵BC=2AD,∴==,即=,∴=,则设S△OBC=2x,则S△ABC=3x,则S△AOB=x,即S2=2S1,故命题正确;D、设AD=y,则BC=2y,设OM=z,则ON=2z,则S2=×2y×2z=2yz,S4=×y×z=yz,S△ABC=BC•MN=×2y•3z=3yz,则S1=S3=3yz﹣2yz=yz,则S1•S3=y2z2,S2•S4=y2z2,故S1•S3=S2•S4正确.故选:B.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)计算:+40=.【解答】解:原式=+1=+1=.故答案是:.8.(4分)使代数式有意义的实数x的取值范围为.【解答】解:依题意得2x﹣1≥0,解得.故答案是:.9.(4分)如果方程x2﹣3x+m=0有两个相等的实数根,那么m的值是.【解答】解:∵方程x2﹣3x+m=0有两个相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m=9﹣4m=0,解得:m=.故答案为:.10.(4分)布袋中有两个红球和两个白球除了颜色外其他都相同,从中摸出两个球,那么摸到一红一白两球概率为.【解答】解:画树形图得:共有4×3=12种可能,所以摸到一红一白两球概率为=.故答案为:11.(4分)如果抛物线y=(a+3)x2﹣5不经过第一象限,那么a的取值范围是a<﹣3.【解答】解:∵抛物线y=(a+3)x2﹣5不经过第一象限,∴a+3<0,解得:a<﹣3,故答案为:a <﹣3.12.(4分)已知二次函数的图象经过点(1,3),对称轴为直线x =﹣1,由此可知这个二次函数的图象一定经过除点(1,3)外的另一点,这点的坐标是 (﹣3,3) .【解答】解:点(1,3)关于直线x =﹣1的对称点的坐标为(﹣3,3), 所以这个二次函数的图象一定点(﹣3,3).故答案为(﹣3,3).13.(4分)如图,已知D ,E 分别是△ABC 的边BC 和AC 上的点,AE =2,CE=3,要使DE ∥AB ,那么BC :CD 应等于 .【解答】解:∵DE ∥AB , ∴====. 故答案为.14.(4分)已知点G 是面积为27cm 2的△ABC 的重心,那么△AGC 的面积等于9cm 2 .【解答】解:如图,∵点G 是△ABC 的重心,连结AG 并延长交BC 于点D , ∴AG :GD =2:1,∴S △AGC =2S △CGD ,S △AGC =S △ACD ,∵D 为BC 中点,∴S △ACD =S △ABC ,∴S △AGC =×S △ABC =S △ABC =×27=9(cm 2).故答案为:9cm 2.15.(4分)已知在△ABC中,AD是边BC上的中线.设=,=.那么=﹣.(用向量、的式子表示).【解答】解:如图,∵在△ABC中,AD是边BC上的中线,=,∴==,∴=﹣=﹣.故答案为:﹣.16.(4分)在Rt△ABC中,∠C=90°,点D是AB的中点,如果BC=3,CD=2,那么cos∠DCB=.【解答】解:如图,∵∠BCA=90°,BC=3,CD=2,∴BD=AD=4,∵BD=CD,∴∠DCB=∠DBC,∴cos∠DCB=cos∠DBC==.故答案为.17.(4分)已知不等臂跷跷板AB长为3米,当AB的一端点A碰到地面时(如图1),AB与地面的夹角为30°;当AB的另一端点B碰到地面时(如图2),AB与地面的夹角的正弦值为,那么跷跷板AB的支撑点O到地面的距离OH=米.【解答】解:设OH=x,∵当AB的一端点A碰到地面时,AB与地面的夹角为30°,∴AO=2xm,∵当AB的另一端点B碰到地面时,AB与地面的夹角的正弦值为,∴BO=3xm,则AO+BO=2x+3x=3m,解得;x=.故答案为:.18.(4分)把一个三角形绕其中一个顶点逆时针旋转并放大或缩小(这个顶点不变),我们把这样的三角形运动称为三角形的T﹣变换,这个顶点称为T﹣变换中心,旋转角称为T﹣变换角,三角形与原三角形的对应边之比称为T﹣变换比;已知△ABC在直角坐标平面内,点A(0,﹣1),B(﹣,2),C(0,2),将△ABC进行T﹣变换,T﹣变换中心为点A,T﹣变换角为60°,T﹣变换比为,那么经过T﹣变换后点C所对应的点的坐标为(﹣,0).【解答】解:∵B(﹣,2),C(0,2),∴△ABC为直角三角形,∠BAC=30°,绕点A逆时针旋转60°后,B′A⊥y轴,则点C′在x轴上,T﹣变换比为,AC=3,∴AC′=2,OC′=,∴经过T﹣变换后点C所对应的点的坐标为(﹣,0).三、解答题:(本大题共7题,满分78分)19.(10分)化简:+,并求当x=时的值.【解答】解:原式=+=+=.当x=时,原式===.20.(10分)解方程组:.【解答】解:,由(2)得(x﹣2y)(y﹣1)=0,x﹣2y=0或y﹣1=0,原方程可化为.解两个方程组得:.21.(10分)已知直线x=m(m>0)与双曲线y=和直线y=﹣x﹣2分别相交于点A、B,且AB=7,求m的值.【解答】解:∵直线x=m(m>0)与双曲线y=和直线y=﹣x﹣2分别相交于点A、B,∴点A、B的坐标分别为()、(m,﹣m﹣2),∵AB=7,∴,整理得m2﹣5m+6=0,解得m1=2,m2=3.经检验它们都是原方程的根,且符合题意,所以m的值为2或3.22.(10分)如图,某幢大楼的外墙边上竖直安装着一根旗杆CD,小明在离旗杆下方大楼底部E点24米的点A处放置一台测角仪,测角仪的高度AB为1.5米,并在点B处测得旗杆下端C的仰角为40°,上端D的仰角为45°,求旗杆CD的长度;(结果精确到0.1米,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)【解答】解:过点B作BF⊥DE于点F,则四边形ABFE为矩形,在△BCF中,∵∠CBF=40°,∠CFB=90°,BF=AE=24m,∴=tan40°,∴CF=0.84×24≈20.16(m),在△BDF中,∵∠DBF=45°,∴DF=24m,则CD=DF﹣CF=24﹣20.16=3.84≈3.8(m).故旗杆CD的长为3.8m.23.(12分)已知如图,D是△ABC的边AB上一点,DE∥BC,交边AC于点E,延长DE至点F,使EF=DE,联结BF,交边AC于点G,联结CF(1)求证:=;(2)如果CF2=FG•FB,求证:CG•CE=BC•DE.【解答】证明:(1)∵DE∥BC,∴△ADE∽△ABC,△EFG∽△CBG,∴=,=,又∵DE=EF,∴=,∴=;(2)∵CF2=FG•FB,∴=,又∵∠CFG=∠CFB,∴△CFG∽△BFC,∴=,∠FCE=∠CBF,又∵DF∥BC,∴∠EFG=∠CBF,∴∠FCE=∠EFG,又∵∠FEG=∠CEF,∴△EFG∽△ECF,∴==,∴=,即CG•CE=BC•DE.24.(12分)已知在平面直角坐标系xOy中,二次函数y=ax2+bx的图象经过点(1,﹣3)和点(﹣1,5);(1)求这个二次函数的解析式;(2)将这个二次函数的图象向上平移,交y轴于点C,其纵坐标为m,请用m 的代数式表示平移后函数图象顶点M的坐标;(3)在第(2)小题的条件下,如果点P的坐标为(2,3),CM平分∠PCO,求m的值.【解答】解:(1)由二次函数y=ax2+bx的图象经过点(1,﹣3)和点(﹣1,5),得,解得.二次函数的解析式y=x2﹣4x;(2)y=x2﹣4x的顶点M坐标(2,﹣4),这个二次函数的图象向上平移,交y轴于点C,其纵坐标为m,顶点M坐标向上平移m,即M(2,m﹣4);(3)由待定系数法,得CP的解析式为y=x+m,如图:作MG⊥PC于G,设G(a,a+m).由角平分线上的点到角两边的距离相等,DM=MG.在Rt△DCM和Rt△GCM中,Rt△DCM≌Rt△GCM(HL).CG=DC=4,MG=DM=2,,化简,得8m=36,解得m=.25.(14分)已知在矩形ABCD中,P是边AD上的一动点,联结BP、CP,过点B作射线交线段CP的延长线于点E,交边AD于点M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y;(1)求y关于x的函数解析式,并写出它的定义域;(2)当AP=4时,求∠EBP的正切值;(3)如果△EBC是以∠EBC为底角的等腰三角形,求AP的长.【解答】解:(1)∵四边形ABCD是矩形,∴AB=CD=2,AD=BC=5,∠A=∠D=90°,AD∥BC,∴∠APB=∠PBC.∵∠ABE=∠CBP,∴∠ABM=∠APB.又∵∠A=∠A,∴△ABM∽△APB,∴=,∴=,∴y=x﹣.∵P是边AD上的一动点,∴0≤x≤5.∵y>0,∴x﹣>0,∴x>2,∴函数的定义域为2<x≤5;(2)过点M作MH⊥BP于H,如图.∵AP=x=4,∴y=x﹣=3,∴MP=3,AM=1,∴BM==,BP==2.=MP•AB=BP•MH,∵S△BMP∴MH==,∴BH==,∴tan∠EBP==;(3)①若EB=EC,则有∠EBC=∠ECB.∵AD∥BC,∴∠AMB=∠EBC,∠DPC=∠ECB,∴∠AMB=∠DPC.在△AMB和△DPC中,,∴△AMB≌△DPC,∴AM=DP,∴x﹣y=5﹣x,∴y=2x﹣5,∴x﹣=2x﹣5,解得:x1=1,x2=4.∵2<x≤5,∴AP=x=4;②若CE=CB,则∠EBC=∠E.∵AD∥BC,∴∠EMP=∠EBC=∠E,∴PE=PM=y,∴PC=EC﹣EP=5﹣y,∴在Rt△DPC中,(5﹣y)2﹣(5﹣x)2=22,∴(10﹣x﹣y)(x﹣y)=4,∴(10﹣x﹣x+)(x﹣x+)=4,整理得:3x2﹣10x﹣4=0,解得:x3=,x4=(舍负).∴AP=x=.终上所述:AP的值为4或.。
2015年上海市浦东新区中考数学一模试卷

2015年上海市浦东新区中考数学一模试卷一.选择题(本大题满分4×6=24分)1.(4分)如果把Rt△ABC的三边长度都扩大2倍,那么锐角A的四个三角比的值()A.都扩大到原来的2倍B.都缩小到原来的C.都没有变化D.都不能确定2.(4分)将抛物线y=(x﹣1)2向左平移2个单位,所得抛物线的表达式为()A.y=(x+1)2B.y=(x﹣3)2 C.y=(x﹣1)2+2 D.y=(x﹣1)2﹣23.(4分)一个小球被抛出后,如果距离地面的高度h(米)和运行时间t(秒)的函数解析式为h=﹣5t2+10t+1,那么小球到达最高点时距离地面的高度是()A.1米 B.3米 C.5米 D.6米4.(4分)如图,已知AB∥CD∥EF,AD:AF=3:5,BE=12,那么CE的长等于()A.2 B.4 C.D.5.(4分)已知在△ABC中,AB=AC=m,∠B=α,那么边BC的长等于()A.2m•sinα B.2m•cosαC.2m•tanαD.2m•cotα6.(4分)如图,已知在梯形ABCD中,AD∥BC,BC=2AD,如果对角线AC与BD 相交于点O,△AOB、△BOC、△COD、△DOA的面积分别记作S1、S2、S3、S4,那么下列结论中,不正确的是()A.S1=S3B.S2=2S4C.S2=2S1D.S1•S3=S2•S4二.填空题(本大题满分4×12=48分)7.(4分)已知=,那么=.8.(4分)计算:=.9.(4分)已知线段a=4 cm,b=9 cm,则线段a,b的比例中项为cm.10.(4分)二次函数y=﹣2x2﹣5x+3的图象与y轴的交点坐标为.11.(4分)在Rt△ABC中,∠C=90°,如果AB=6,cosA=,那么AC=.12.(4分)如图,已知D,E分别是△ABC的边BC和AC上的点,AE=2,CE=3,要使DE∥AB,那么BC:CD应等于.13.(4分)如果抛物线y=(a+3)x2﹣5不经过第一象限,那么a的取值范围是.14.(4分)已知点G是面积为27cm2的△ABC的重心,那么△AGC的面积等于.15.(4分)如图,当小杰沿坡度i=1:5的坡面由B到A行走了26米时,小杰实际上升高度AC=米.(可以用根号表示)16.(4分)已知二次函数的图象经过点(1,3),对称轴为直线x=﹣1,由此可知这个二次函数的图象一定经过除点(1,3)外的另一点,这点的坐标是.17.(4分)已知不等臂跷跷板AB长为3米,当AB的一端点A碰到地面时(如图1),AB与地面的夹角为30°;当AB的另一端点B碰到地面时(如图2),AB 与地面的夹角的正弦值为,那么跷跷板AB的支撑点O到地面的距离OH=米.18.(4分)把一个三角形绕其中一个顶点逆时针旋转并放大或缩小(这个顶点不变),我们把这样的三角形运动称为三角形的T﹣变换,这个顶点称为T﹣变换中心,旋转角称为T﹣变换角,三角形与原三角形的对应边之比称为T﹣变换比;已知△ABC在直角坐标平面内,点A(0,﹣1),B(﹣,2),C(0,2),将△ABC进行T﹣变换,T﹣变换中心为点A,T﹣变换角为60°,T﹣变换比为,那么经过T﹣变换后点C所对应的点的坐标为.三.解答题(本大题满分10+10+10+10+12+12+14=78分)19.(10分)已知在直角坐标平面内,抛物线y=x2+bx+6经过x轴上两点A,B,点B的坐标为(3,0),与y轴相交于点C;(1)求抛物线的表达式;(2)求△ABC的面积.20.(10分)如图,已知在△ABC中,AD是边BC上的中线,设=,=;(1)求(用向量,的式子表示);(2)如果点E在中线AD上,求作在,方向上的分向量;(不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的分向量).21.(10分)如图,某幢大楼的外墙边上竖直安装着一根旗杆CD,小明在离旗杆下方大楼底部E点24米的点A处放置一台测角仪,测角仪的高度AB为1.5米,并在点B处测得旗杆下端C的仰角为40°,上端D的仰角为45°,求旗杆CD的长度;(结果精确到0.1米,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)22.(10分)用含30°、45°、60°这三个特殊角的四个三角比及其组合可以表示某些实数,如:可表示为=sin30°=cos60°=tan45°•sin30°=…;仿照上述材料,完成下列问题:(1)用含30°、45°、60°这三个特殊角的三角比或其组合表示,即填空:===…;(2)用含30°、45°、60°这三个特殊角的三角比,结合加、减、乘、除四种运算,设计一个等式,要求:等式中须含有这三个特殊角的三角比,上述四种运算都至少出现一次,且这个等式的结果等于1,即填空:1=.23.(12分)已知如图,D是△ABC的边AB上一点,DE∥BC,交边AC于点E,延长DE至点F,使EF=DE,联结BF,交边AC于点G,联结CF(1)求证:=;(2)如果CF2=FG•FB,求证:CG•CE=BC•DE.24.(12分)已知在平面直角坐标系xOy中,二次函数y=ax2+bx的图象经过点(1,﹣3)和点(﹣1,5);(1)求这个二次函数的解析式;(2)将这个二次函数的图象向上平移,交y轴于点C,其纵坐标为m,请用m 的代数式表示平移后函数图象顶点M的坐标;(3)在第(2)小题的条件下,如果点P的坐标为(2,3),CM平分∠PCO,求m的值.25.(14分)已知在矩形ABCD中,P是边AD上的一动点,联结BP、CP,过点B作射线交线段CP的延长线于点E,交边AD于点M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y;(1)求y关于x的函数解析式,并写出它的定义域;(2)当AP=4时,求∠EBP的正切值;(3)如果△EBC是以∠EBC为底角的等腰三角形,求AP的长.2015年上海市浦东新区中考数学一模试卷参考答案一.选择题(本大题满分4×6=24分)1.C;2.A;3.D;4.C;5.B;6.B;二.填空题(本大题满分4×12=48分)7.;8.;9.6;10.(0,3);11.4;12.;13.a<﹣3;14.9cm2;15.;16.(﹣3,3);17.;18.(﹣,0);三.解答题(本大题满分10+10+10+10+12+12+14=78分)19.;20.;21.;22.=sin60°;cos30°;tan45°•sin60°;(sin30°+cos60°)•tan45°÷cot45°;23.;24.;25.;。
静安区初三数学一模卷

∵EF=DE,∴ AE EG .…………………………………………………………(1 分) AC CG
(2)∵ CF 2 FG FB ,∴ FG CF .…………………………………………(1 分) CF FB
2015 年年上海市静安区中考数学一模试卷
考生注意:
(完成时间:100 分钟 满分:150 分 )
1.本试卷含三个大题,共 25 题.答题时,考生务必按答题要求在答题纸规定的位置上作答,
在草稿纸、本试卷上答题一律无效.
2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计
算的主要步骤.
一、选择题:(本大题共 6 题,每题 4 分,满分 24 分)
1.下列各式中与 (a 2 )3 相等的是
(A) a5 ;
(B) a6 ;
(C) a5 ;
(D) a6 .
2.下列方程中,有实数解的是
(A)
x 2 1 ; (B)
x 2 x ;
(C)
x2 4 x2
0;
(D)
x2 x2 4
第2页共9页
▲. 三、解答题:(本大题共 7 题,满分 78 分) 19.(本题满分 10 分)
化简:
x2 1 x2 2x 1
x2 2x x2 x 2
,并求当
x
3 时的值.
20.(本题满分 10 分)
解方程组:
x2 xy
y2 2y
4, 2 x
2
y
0.
21.(本题满分 10 分) 已知直线 x m(m 0) 与双曲线 y 6 和直线 y x 2 分别相交于点 A、B,且 AB=7, x
上海中考数学一模2015年25题汇编(含答案)

K 満分H分*茎中第(1)小・4拳・0时・55分)(1)矩形AJ3CD 中.ZABCF90Sm = io.\ AF±(T.且点F恳线敕CE的申点kAAE = AC-10.Rl^CBE 中・taiWECB -豆亡=寺./K 口TJJ? - 2710.R T ACBE中,GF«CF• lanZBCB* 寸岂(2)■/ ZABC = ZC*BE = 90a, ^LAGH二Z仇沪.fJG HE AH HC中形ABCD 中*AD HC,(1分》(1分)(1分〉(1分〉(1廿)<1知(I炉2015年上海一模25题集锦1、(2015年一模黄浦25题)25.在矩形ABCD中,= BC = 6.对谢线AC.交于点O,点疋在AB延长线上,联结CE, AF丄CE t分别交线段CE、边BC、对角线*D于点F、G. H(点F不与点C\ E重合};(D当点F是线段CE的中点时.求GF的长;(2〉设BE = x, OH = y.求y关于兀的函数解析式,并写出它的定义域;(3) f flH=BG时山丹=人0昇・5+了 = 6*即;二丫 "斛縛工二3.2' gGH=HG 时MD=AH・过点A作从f丄DH・垂足为H.5 * yRtACBE中^cosZADK = 2•二—j— =3 6 5将"粧晋代入⑴解密忑=£3* ^GH = BHBt.DH-AH- A点H ftAD ®fi平分线上. 此时点F与点C 3tf二書(舍)嫌上所迷BE的K<3或#.2、(2015年一模徐汇25题).如图,梯形ABCD中,AD // BC ,对角线AC _ BC , AD =9 ,AC =12, BC =16,点E是边BC上的一个动点,-EAF - BAC , AF交CD于点F ,交BC 延长线于点G,设BE = x ;(1)试用x的代数式表示FC ;(2)设FGEF-y,求y关于x的函数关系式,并写出定义域;BE的长;[来源学科网]25 (1分) (2分)(1分)BGE3^\DFco\GAl :7当A是等農三角形若,&\DF 也为等腰三角形动点(D 和A 、B所以,BE = 7二不重合),过 D 作DE // BC 交AC 于E ,并以DE 为边向BC 一侧作正方形 DEFG ,设AD = x3( 2015年一模宝山26题).如图在△ ABC 中,AB=BC=10,AC =牛、5,D 为边AB 上一(3) = = t ZG = Zl AD当AF = DF 时,点F 为CD 中点3 Cl = DI0 <16林理得、V100作AH £ DF 于",易得DH m"丸 EEAiUM':.^CAr = ^tiAE* AB UL … 20 A-■ ■—r J » 1■AC - r e 12 ~ rcf C- -A5由弘I HEs 川Ci'得,搜1 £卜'5山报:,^Ai'E二90AF AC 123LI ~ H< ~16~ 斗3 15 25 CF -A =—、 -V -——5 22 当 Al )二w 时, CF =3/. Cl = —A = 6 ? A 5=10(1) 请用X的代数式表示正方形DEFG的面积,并求出当边FG落在BC边上时的x的值;(2) 设正方形DEFG与厶ABC重合部分的面积为y,求y关于x的函数及其定义域;(3) 点D在运动过程中,是否存在D、G、B三点中的两点落在以第三点为圆心的圆上的情况?若存在,请直接写出此时AD的值,若不存在,则请说明理由;4、( 2015年一模崇明25题)(本题满分14分,其中第(1)小题5分,第(2)小题5分,第(3)小题4 分)已知在ABC中,AB =AC =5,BC =6,O为边AB上一动点(不与A、B重合),以0为圆心0B为半径的圆交BC于点D,设OB =x,DC =y .(1)如图1,求y关于x的函数关系式及定义域;(2)当O 0与线段AC有且只有一个交点时,求x的取值范围;(3)如图2,若O O与边AC交于点E (有两个交点时取靠近当DEC与ABC相似时,求x的值.25, Hfd)如图1联站「AB 亚片GGB H QD代= XODB:.or>//A.c* BO_Bp.王-些'' 5 ' 6「* BD- gjr-"I■工+ 6((KX5)(2)如團氛肖与线段A匚有且只育一亍交点时①®0与播2梱切时作OH_LAC.HK丄AGAM丄BC垂圧井劃为H^K y M,JS^OH#BK.AM=4— -BC・AM-A「FK' - —1g-_'r.BK■習3也-0H…丽-賦C的交点),联结DE ,C(备用图ir C1分1分B(备用图•(图£}(2> A ftGO 内,〔不SQO 内时内:.OB>OA”"”*>■5 一 x•">4•rc 不在£50内 /-OB<AB1分,\y<X<5炀匕当工二器或号VY5时◎。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3页共9页
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
求 m 的值.
22.(本题满分 10 分)
如图,某幢大楼的外墙边上竖直安装着一根旗杆 CD.小明在离旗杆下方的大楼底部 E
点 24 米的点 A 处放置一台测角仪,测角仪的高度 AB 为 1.5 米,并在点 B 处测得旗杆下端 C
的仰角为 40°,上端 D 的仰角为 45°,求旗杆 CD 的长度.(结果精确到 0.1 米.
参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)
23.(本题满分 12 分,其中第(1)小题 5 分,第(2)小题 7 分)
已知:如图,D 是△ABC 的边 AB 上一点,DE∥BC,交边 AC 于点 E,延长 DE 到点 F,
使得 EF=DE,联结 BF,交边 AC 于点 G,联结 CF. (1)求证: AE EG ; AC CG
夹角为 30°;当 AB 的另一端点 B 碰到地面时(如图 2),AB 与地面夹角的正弦值为 1 , 3
那么跷跷板 AB 的支撑点 O 到地面的距离 OH= ▲ 米 B
O
A
H
(第 17 题图 1)
18.把一个三角形绕其中一个顶点逆时针旋转并放大或缩小(这个顶点不变),我们把这样的三 角形运动称为三角形的 T-变换,这个顶点称为 T-变换中心,旋转角称为 T-变换角,放大或 缩小后的三角形与原三角形对应边的比称为 T-变换比.已知△ABC 在直角坐标平面内,
20.(本题满分 10 分) x 2 y 2 4,
解方程组: xy 2 y 2 x 2 y 0.
x2 2x x2 x 2
,并求当
x
21.(本题满分 10 分) 已知直线 x m(m 0) 与双曲线 y 6 和直线 y x 2 分别相交于点 A、B,且 AB=7, x
静安区、青浦区 2014 学年第一学期期末教学质量调研
九年级数学试卷
(完成时间:100 分钟 满分:150 分 )
考生注意: 1.本试卷含三个大题,共 25 题.答题时,考生务必按答题要求在答题纸规定的位置上作答,
在草稿纸、本试卷上答题一律无效. 2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计Leabharlann AO
B
H
(第 17 题图 2)
B
D
(第 13 题图)
A E
C
变换角为 60°,T-变换比为 2 ,那么经过 T-变换后点 C 所对应的点的坐标为 ▲ . 3
三、解答题:(本大题共 7 题,满分 78 分) 19.(本题满分 10 分)
化简:
x2 1 x2 2x 1
二、填空题:(本大题共 12 题,每题 4 分,满分 48 分)
第1页共9页
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
点 A(0,-1),B(- 3 ,2),C(0,2),将△ABC 进行 T-变换,T-变换中心为点 A,T-
第2页共9页
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
10.布袋中有两个红球和两个白球它们除了颜色外其他都相同,从中摸出两个球,那么“摸到
一红一白两球”的概率为 ▲ .
11.如果抛物线 y (a 3)x2 5 不经过第一象限,那么 a 的取值范围是 ▲ .
12.已知二次函数的图像经过点(1,3),对称轴为直线 x 1 ,由此可知这个二次函数的图
算的主要步骤.
一、选择题:(本大题共 6 题,每题 4 分,满分 24 分)
1.下列各式中与 (a 2 )3 相等的是
(A) a5 ;