人教版七年级第二学期期中教学质量调研测试数学试题

合集下载

人教版数学七年级下册《期中检测卷》(含答案)

人教版数学七年级下册《期中检测卷》(含答案)

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10道题,每题2分,共20分)1. 9的算术平方根是( )A. ﹣3B. ±3C. 3D. 32.在平面直角坐标系中,点A (﹣2,4)位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 3.将一直角三角板与两边平行的纸条如图放置.若∠1=50°,则∠2的度数为( )A 30° B. 40° C. 50° D. 60°4.如图,AB ∥CD ,∠AGE=126°,HM 平分∠EHD ,则∠MHD 的度数是( )A. 44°B. 25°C. 26°D. 27° 5.下列说法正确的是( )A. 相等的角是对顶角B. 一个角的补角必是钝角C. 同位角相等D. 一个角的补角比它的余角大90°6.点()1,3-向右平移个单位后的坐标为( )A ()4,3- B. ()1,6- C. ()2,3 D. ()1,0- 7.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”意思是:现有一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有个人,这个物品价格是元.则可列方程组为( )A. 83,74x y x y =+⎧⎨=-⎩B. 83,74x y x y =-⎧⎨=+⎩C. 84,73x y x y =+⎧⎨=-⎩D. 84,73x y x y =-⎧⎨=+⎩ 8.下列说法正确的是( )A. 的平方根是B. 的平方根C. 的平方根D. 的平方根9.过A(4,-2)和B(-2,-2)两点的直线一定()A. 垂直于x轴B. 与y轴相交但不平行于x轴C. 平行于x轴D. 与x轴,y轴平行10.二元一次方程2x+y=8的正整数解有( )个.A. 1B. 2C. 3D. 4二、填空题(共8道题,每题2分,共16分)11.在22,0, 3.141592,2.95,,25,3,0.2020020002...72π-+-(两个非零数之间依次多一个0),其中无理数有_______个12.16的平方根是.13.若25.36=5.036,253.6=15.906,则253600=__________.14.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________15.319127-=_____.16.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.17.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有BC∥AE;③如果∠1=∠2=∠3,则有BC∥AE;④如果∠2=45°,必有∠4=∠E.其中正确的有_____(填序号).18.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA 2B 2变换成△OA 3B 3,…,将△OAB 进行n 次变换,得到△OA n B n ,观察每次变换中三角形顶点坐标有何变化,找出规律,推测A 2020的坐标是__三、解答题(第19-26题,共64分)19.计算 (1)231981416⎛⎫-+-+ ⎪⎝⎭(2)3232--20.解方程组:(1)23321x y x y -=⎧⎨+=⎩. (2)222529x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩21.如图,在平面直角坐标系中,三角形ABC 的顶点坐标分别为()2,4A -,B(51)--,,(01)C ,,把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.(1)画出三角形ABC 和平移后’’’A B C 的图形;(2)写出三个顶点,,的坐标;(3)求三角形ABC 的面积.22.在某体育用品商店,购买50根跳绳和80个毽子共用1120元,购买30根跳绳和50个毽子共用680元.(1)跳绳、毽子单价各是多少元?(2)该店在“元旦”节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1700元,该店的商品按原价的几折销售?23.如图,AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE,请你将下面解答过程填写完整.解:∵AB∥CD,∴∠4= ()∵∠3=∠4∴∠3= (等量代换)∵∠1=∠2∴∠1+∠CAF=∠2+∠CAE 即∠BAE= .∴∠3= ()∴AD∥BE().24.已知,如图,AD∥BC,∠A=∠C.求证:∠1=∠2.25.如图1,点A、B直线1l上,点C、D在直线2l上,AE平分∠BAC,CE平分∠ACD,∠EAC+∠ACE=90°.(1)请判断1l与2l位置关系并说明理由;(2)如图2,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(不与点C重合)∠CPQ+∠CQP与∠BAC有何数量关系?请说明理由.26.小明在拼图时,发现8个一样大小的长方形恰好可以拼成一个大的长方形,如图(1),小红看见了,说:“我来试一试”结果小红七拼八凑,拼成了如图(2)的正方形,中间还留下一个洞,恰好边长是2mm的小正方形,你能计算出每个长方形的长和宽吗?答案与解析一、选择题(共10道题,每题2分,共20分)1. 9的算术平方根是( )A. ﹣3B. ±3C. 3D. 3[答案]C[解析]试题分析:9的算术平方根是3.故选C.考点:算术平方根.2.在平面直角坐标系中,点A(﹣2,4)位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限[答案]B[解析][分析]根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.[详解]解:由﹣2<0,4>0得点A(﹣2,4)位于第二象限,故选:B.[点睛]本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.将一直角三角板与两边平行的纸条如图放置.若∠1=50°,则∠2的度数为( )A. 30°B. 40°C. 50°D. 60°[答案]B[解析][分析]先根据∠1=50°,∠FEG=90°,求得∠3的度数,再根据平行线的性质,求得∠2的度数即可.[详解]解:如图,∵∠1=50°,∠FEG=90°,∴∠3=40°,∵AB∥CD,∴∠2=∠3=40°.故选:B.[点睛]本题主要考查的是平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.4.如图,AB∥CD,∠AGE=126°,HM平分∠EHD,则∠MHD的度数是()A. 44°B. 25°C. 26°D. 27°[答案]D[解析][分析]由题意可由平行线的性质,求出∠EHD的度数,再由HM平分∠EHD,即可求出∠MHD的度数.[详解]解:由题意得:∠AGE=∠BGF=126°,∵AB∥CD,∴∠EHD=180°−∠BGF=54°,又∵HM平分∠EHD,∴∠MHD=12∠EHD=27°.故选D.[点睛]本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.5.下列说法正确的是( )A. 相等的角是对顶角B. 一个角的补角必是钝角C. 同位角相等D. 一个角的补角比它的余角大90°[答案]D[解析][分析]根据对顶角的定义,余角与补角的关系,对各选项分析判断后利用排除法求解.[详解]解:A 、对顶角相等,相等的角不一定是对顶角,故本选项错误;B 、锐角的补角是钝角,直角的补角是直角,钝角的补角是锐角,故本选项错误;C 、只有两直线平行,同位角才相等,故本选项错误;D 、一个角α的补角为180°﹣α,它的余角为90°﹣α,(180°﹣α)﹣(90°﹣α)=90°,故本选项正确. 故选D .[点睛]本题综合考查了余角、补角、对顶角,是基本概念题,熟记概念与性质是解题的关键.6.点()1,3-向右平移个单位后坐标为( )A ()4,3-B. ()1,6-C. ()2,3D. ()1,0-[答案]C[解析][分析]直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.[详解]解:把点(−1,3)向右平移3个单位后所得的点的坐标为:(−1+3,3),即(2,3),故选C .[点睛]本题主要考查了坐标与图形变化−平移,平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.7.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”意思是:现有一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有个人,这个物品价格是元.则可列方程组为( ) A. 83,74x y x y =+⎧⎨=-⎩B. 83,74x y x y =-⎧⎨=+⎩C. 84,73x y x y =+⎧⎨=-⎩D. 84,73x y x y =-⎧⎨=+⎩[答案]A[解析][分析] 根据等量关系:每人出8元,还余3元;每人出7元,还差4元即可列出方程组.[详解]根据题意有83,74x y x y =+⎧⎨=-⎩故选:A.[点睛]本题主要考查二元一次方程组的应用,读懂题意,找到等量关系是解题的关键.8.下列说法正确的是()A. 的平方根是B. 的平方根C. 的平方根D. 的平方根[答案]A[解析]分析]根据平方根性质,逐一判定即可.[详解]A选项,的平方根是,正确;B选项,的平方根是,错误;C选项,的平方根是,错误;D选项,没有平方根,错误;故选:A.[点睛]此题主要考查对平方根的理解,熟练掌握,即可解题.9.过A(4,-2)和B(-2,-2)两点的直线一定()A. 垂直于x轴B. 与y轴相交但不平行于x轴C. 平行于x轴D. 与x轴,y轴平行[答案]C[解析][分析]根据平行于x轴的直线上两点的坐标特点解答.[详解]∵A,B两点的纵坐标相等,∴过这两点的直线一定平行于x轴.故选C.[点睛]解答此题的关键是掌握平行于坐标轴的直线上的点的坐标的特点.10.二元一次方程2x+y=8的正整数解有( )个.A. 1B. 2C. 3D. 4[答案]C[解析][分析]由于二元一次方程2x+y=8中y的系数是1,可先用含x的代数式表示y,然后根据此方程的解是正整数,那么把最小的正整数x=1代入,算出对应的y的值,再把x=2代入,再算出对应的y的值,依此可以求出结果.[详解]解:∵2x +y =8,∴y =8﹣2x ,∵x 、y 都是正整数,∴x =1时,y =6;x =2时,y =4;x =3时,y =2.∴二元一次方程2x +y =8的正整数解共有3对.故选:C .[点睛]由于任何一个二元一次方程都有无穷多个解,求满足二元一次方程的正整数解,即此方程中两个未知数的值都是正整数,这是解答本题的关键.注意最小的正整数是1.二、填空题(共8道题,每题2分,共16分)11.在22,0, 3.141592,2.95,0.2020020002 (72)π-+-(两个非零数之间依次多一个0),其中无理数有_______个[答案]3[解析][分析]无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.[详解]解:无理数有2π−0.2020020002…(两个非零数之间依次多一个0),共3个, 故答案为3.[点睛]此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.2020020002…(相邻两个2之间0的个数逐次加1)等有这样规律的数.的平方根是 .[答案]±2.[解析][详解]±2. 故答案为±2.13.=5.036,=15.906,__________.[答案]503.6[解析][分析]根据平方根的计算方法和规律计算即可[详解]解:253600=25.3610000⨯=5.036×100=503.6.故答案为503.6.14.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________[答案]15°[解析][分析]如下图,过点E作EF∥BC,然后利用平行线的性质结合已知条件进行分析解答即可.[详解]由题意可得AD∥BC,∠DAE=∠1+45°,∠AEB=90°,∠EBC=30°,过点E作EF∥BC,则AD∥EF∥BC,∴∠AEF=∠DAE=∠1+45°,∠FEB=∠EBC=30°,又∵∠AEF=∠AEB-∠FEB,∴∠AEF=90°-30°=60°,∴∠1+45°=60°,∴∠1=60°-45°=15°.故答案为:15°.319127-_____.[答案]2 3[解析][分析]根据是实数的性质即可化简.[详解]解:原式=331982127273-==. 故答案为23. [点睛]此题主要考查二次根式的化简,解题的关键是熟知实数的性质.16.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.[答案]如果两个角是对顶角,那么这两个角相等[解析][分析]命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.[详解]解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.[点睛]本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.17.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有BC ∥AE ;③如果∠1=∠2=∠3,则有BC ∥AE ;④如果∠2=45°,必有∠4=∠E .其中正确的有_____(填序号).[答案]①③[解析][分析]根据平行线的判定和性质解答即可.[详解]解:∵∠EAD=∠CAB=90°,∴∠1=∠3,故①正确,当∠2=30°时,∠3=60°,∠4=45°,∴∠3≠∠4,故AE与BC不平行,故②错误,当∠1=∠2=∠3时,可得∠3=∠4=45°,∴BC∥AE,故③正确,∵∠E=60°,∠4=45°,∴∠E≠∠4,故④错误,故答案为:①③.[点睛]此题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解决本题的关键.18.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,…,将△OAB进行n次变换,得到△OA n B n,观察每次变换中三角形顶点坐标有何变化,找出规律,推测A2020的坐标是__[答案](22020,3)[解析][分析]根据图形写出点A系列的坐标与点B系列的坐标,根据具体数值找到规律即可.[详解]∵A(1,3),A1(2,3),A2(4,3),A3(8,3)…纵坐标不变为3,横坐标都和2有关,为2n,∴An(2n,3);∴A2020(22020,3)故答案为:(22020,3)[点睛]依次观察各点的横纵坐标,得到规律是解决本题的关键.三、解答题(第19-26题,共64分)19.计算(1(2)[答案](1)12-;(2).[解析][分析](1)直接利用立方根以及平方根的性质分别化简得出答案;(2)直接利用绝对值的定义化简得出答案;[详解](11512442 =-+=-(2)==[点睛]考查了实数的混合运算以及二次根式的加减混合运算,正确化简各数是解题关键.20.解方程组:(1)23321x yx y-=⎧⎨+=⎩.(2)222529x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩[答案](1)11xy=⎧⎨=-⎩;(2)521xyz=⎧⎪=-⎨⎪=⎩.[解析][分析](1)首先由①×2+②,消去y,然后解关于x的方程即可求解.(2)由①+②+③得到x+y+z=4④,再由①-④得到y的值,②-④得到z的值,③-④得到x的值.[详解](1)23 321 x yx y①②-=⎧⎨+=⎩由①×2+②,得7x=7,解得x=1,把x=1 代入①式,得2﹣y=3,解得y=﹣1所以原方程组的解为11 xy=⎧⎨=-⎩.(2)2 2....2 5....29.... x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩①②③①+②+③ 得4x+4y+4z=16 即 x+y+z=4 ④①-④ 得y= -2②-④ 得z= 1③-④ 得x= 5所以原方程组的解为521x y z =⎧⎪=-⎨⎪=⎩[点评]考查了解二元一次方程组和解三元一次方程组,解方程组的基本思想是消元,基本方法是代入消元和加减消元.21.如图,在平面直角坐标系中,三角形ABC 的顶点坐标分别为()2,4A -,B(51)--,,(01)C ,,把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.(1)画出三角形ABC 和平移后’’’A B C 的图形;(2)写出三个顶点,,的坐标;(3)求三角形ABC 的面积.[答案](1)图见解析(2)点A ′的坐标为(0,0)、B'的坐标为(-3,−5)、C ′的坐标为(2,−3)(3)192[解析][分析](1)依据所得点的坐标,描点后首尾顺次连接即可求解;(2)根据点的坐标的平移规律即可求解;(3)根据割补法及三角形的面积公式可得答案.[详解](1)如图,△ABC 和△’’’A B C 为所求; (2)∵把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.∴点A ′的坐标为(0,0)、B'的坐标为(-3,−5)、C ′的坐标为(2,−3);(3)三角形ABC 的面积=5×5-12×3×5-12×3×2-12×2×5=25-152-3-5=192.[点睛]本题主要考查作图−平移变换,解题的关键是掌握平移变换的定义和性质,并根据平移变换的定义和性质得出变换后的对应点位置.22.在某体育用品商店,购买50根跳绳和80个毽子共用1120元,购买30根跳绳和50个毽子共用680元.(1)跳绳、毽子的单价各是多少元?(2)该店在“元旦”节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1700元,该店的商品按原价的几折销售?[答案](1)跳绳的单价为16元,毽子的单价为4元;(2)商品按原价的八五折销售.[解析][分析](1)可设跳绳的单价为x 元,毽子的单价为y 元,根据题意列出关于x,y 的二元一次方程组,解方程组即可;(2)设商品按原价的z 折销售,根据第(1)问求出来的跳绳和毽子的单价,根据题意列出方程,解方程即可.[详解](1)设跳绳的单价为x 元,毽子的单价为y 元,根据题意有508011203050680x y x y +=⎧⎨+=⎩ ,解得164x y =⎧⎨=⎩所以跳绳的单价为16元,毽子的单价为4元;(2)设商品按原价的z 折销售,根据题意得(164)100170010z +⨯⨯= 解得8.5z = 所以商品按原价的八五折销售.[点睛]本题主要考查一元一次方程及二元一次方程组的应用,读懂题意,列出方程及方程组是解题的关键. 23.如图,AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE,请你将下面解答过程填写完整.解:∵AB∥CD,∴∠4= ()∵∠3=∠4∴∠3= (等量代换)∵∠1=∠2∴∠1+∠CAF=∠2+∠CAE 即∠BAE= .∴∠3= ()∴AD∥BE().[答案]∠BAE;两直线平行,同位角相等;∠BAE;∠CAD;∠CAD;等量代换;内错角相等,两直线平行.[解析][分析]根据平行线的性质得出∠4=∠BAE,由此∠3=∠BAE,根据∠2=∠1可得∠BAE=∠CAD,从而得出∠3=∠CAD,根据平行线的判定定理得出即可.[详解]解:∵AB∥CD,∴∠4=∠BAE( 两直线平行,同位角相等),∵∠3=∠4,∴∠3=∠BAE(等量代换),∵∠1=∠2,∴∠1+∠CAF=∠2+∠CAE,即∠BAE=∠CAD,∴∠3=∠CAD( 等量代换),∴AD∥BE( 内错角相等,两直线平行).[点睛]本题考查平行线的性质和判定.熟记平行线的性质和判定定理,并能正确识图完成角度之间的转换是解决此题的关键.24.已知,如图,AD∥BC,∠A=∠C.求证:∠1=∠2.[答案]见解析.[解析][分析]根据两直线平行,同旁内角互补得到∠A+∠ABC=180°,再根据∠A=∠C得到∠C+∠ABC=180°,根据同旁内角互补,两直线平行得到DC∥AB,再利用两直线平行,内错角相等得到∠1=∠2.[详解]∵AD∥BC,∴∠A+∠ABC=180°,又∵∠A=∠C,∴∠C+∠ABC=180°,∴DC∥AB,∴∠1=∠2.[点睛]考查了直线平行的判定与性质:同位角相等,两直线平行;两直线平行,内错角相等.25.如图1,点A、B在直线1l上,点C、D在直线2l上,AE平分∠BAC,CE平分∠ACD,∠EAC+∠ACE=90°.(1)请判断1l与2l的位置关系并说明理由;(2)如图2,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(不与点C重合)∠CPQ+∠CQP与∠BAC有何数量关系?请说明理由.[答案](1)1l∥2l;(2)①当Q在C点左侧时,∠BAC=∠CQP +∠CPQ,②当Q在C点右侧时,∠CPQ+∠CQP+∠BAC=180°.[解析]分析](1)先根据CE 平分∠ACD ,AE 平分∠BAC 得出∠BAC=2∠1,∠ACD=2∠2,再由∠1+∠2=90°可知∠BAC+∠ACD=180,故可得出结论;(2)分两种情况讨论:①当Q 在C 点左侧时;②当Q 在C 点右侧时.[详解]解:(1)1l ∥2l .理由如下:∵AE 平分∠BAC ,CE 平分∠ACD(已知),∴∠BAC=2∠1,∠ACD=2∠2(角平分线的定义);又∵∠1+∠2=90°(已知), ∴∠BAC+∠ACD=2∠1+2∠2=2(∠1+∠2)=180°(等量代换)∴1l ∥2l (同旁内角互补,两直线平行)(2)①当Q 在C 点左侧时,过点P 作PE ∥1l .∵1l ∥2l (已证),∴PE ∥2l (同平行于一条直线的两直线互相平行),∴∠1=∠2,(两直线平行,内错角相等),∠BAC=∠EPC ,(两直线平行,同位角相等),又∵∠EPC=∠1+∠CPQ ,∴∠BAC=∠CQP +∠CPQ (等量代换)②当Q 在C 点右侧时,过点P 作PE ∥1l .∵1l ∥2l (已证),∴PE ∥2l (同平行于一条直线的两直线互相平行),∴∠1=∠2,∠BAC=∠APE ,(两直线平行,内错角相等),又∵∠EPC=∠1+∠CPQ ,∠APE+∠EPC=180°(平角定义)∴∠CPQ+∠CQP+∠BAC=180°.[点睛]本题考查了平行线的性质,根据题意作出平行线是解答此题的关键.26.小明在拼图时,发现8个一样大小的长方形恰好可以拼成一个大的长方形,如图(1),小红看见了,说:“我来试一试”结果小红七拼八凑,拼成了如图(2)的正方形,中间还留下一个洞,恰好边长是2mm 的小正方形,你能计算出每个长方形的长和宽吗?[答案]小长方形的长为10mm ,宽为6mm .[解析][分析]设每个小长方形的长为xmm ,宽为 ymm ,根据图形给出的信息可知,长方形的5个宽与其3个长相等,两个长加2的和等于一个长与两个宽的和,于是得方程组,解出即可.[详解]设每个长方形的长为xmm ,宽为 ymm ,由题意得35222x yx x y=⎧⎨+=+⎩,解得:106xy=⎧⎨=⎩.答:小长方形的长为10mm,宽为6mm.[点睛]考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时根据矩形和正方形的长与宽的关系建立方程组是关键.。

人教版七年级第二学期教学质量监测(下)期中测试数学试题

人教版七年级第二学期教学质量监测(下)期中测试数学试题

人教版七年级第二学期教学质量监测(下)期中测试数学试题姓名:________ 班级:________ 成绩:________一、单选题1 . 如图,已知,下面结论不正确的是()A.B.C.D.2 . 点P(-1,5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3 . 小麦做这样一道题“计算”、其中“□”是被墨水污染看不清的一个数,他翻开后面的答案,得知该题计算结果是8,那么”□”表示的数是()A.5B.-5C.11D.-5或114 . 已知一个正方体的表面积为,则这个正方体的棱长为A.B.C.D.5 . 如图,在数轴上,点A表示1,现将点A沿数轴做如下移动:第一次将点A向左移动3个单位长度到达点A1,第二次将点A向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种移动规律移动下去,第n次移动到点An,如果点An与原点的距离不小于20,那么n的最小值是()A.12B.13C.14D.156 . 如图,下列条件能判断两直线的是()A.B.C.D.7 . 下列说法正确的是()A.同旁内角相等,两直线平行B.两直线平行,同位角互补C.相等的角是对顶角D.等角的余角相等8 . 在平面直角坐标系中,将点(-2,-3)向上平移3个单位长度,则平移后的点的坐标为()A.(-2,0)B.(-2,1)C.(0,-2)D.(1,-1)9 . 已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为()A.45°, 135°B.60°, 120°C.90°, 90°D.30°, 150°10 . 下列各式计算正确的是()A.B.C.D.二、填空题11 . 如图,将一副三角尺的直角顶点重合,且使AB∥CD,则∠DEB的度数是_______°.12 . 已知P(1,-2),则点P关于轴的对称点的坐标是.13 . 36的算术平方根是_______. 的平方根是______.14 . 如图,点C在线段AB的延长线上,,,则的度数是_____________15 . 如图,已知A C⊥BC于C,CD⊥AB于D,BC=8,AC=6,CD=4.8,BD=6.4,AD=3.6.则:(1)点A到直线CD的距离为_________;(2)点A到直线BC的距离为_________;(3)点B到直线CD的距离为_________;(4)点B到直线AC的距离为_________;(5)点C到直线AB的距离为_________.16 . 有六个数:0.123,(﹣1.5)3,3.1416,,﹣2π,0.1020020002,若其中无理数的个数为x,正数的个数为y,则x+y=_____.17 . 如图所示,直线AB分别交射线CA,CE于点A,E,∠1=85°,∠ACD=95°,∠2=134°,则AB与CD的位置关系是________,∠ECD=________°.三、解答题18 . 已知点A在数轴上对应的数是a,点B在数轴上对应的数是b,且|a+4|+(b﹣1)2=0,现将A、B之间的距离记作|AB|,定义|AB|=|a﹣b|.(1)求2019b+a的值;(2)求|AB|的值;(3)设点P在数轴上对应的数是x,当|PA|﹣|PB|=2时,求x的值.19 . 若、互为相反数,、互为倒数,并且的立方等于它本身.(1)试求值;(2)若,且,,试求的值.(3)若,试讨论:为有理数时,是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.20 . 如图,平行四边形ABCD中,AB=4,BC=2.若把它放在平面直角坐标系中,使AB在x轴上,点C在y轴上,如果点A的坐标为(-3,0),求点B,C,D的坐标.21 . 如图:在中,为上一点.(1)利用尺规作图:以点为顶点,射线为一边,在内部作,使;(保留作图痕迹,不写作法)(2)在1.的条件下,与平行吗?依据是什么?22 . 如图1,把两个全等的三角板ABC、EFG叠放在一起,使三角板EFG的直角边FG经过三角板ABC的直角顶点C,垂直AB于G,其中∠B=∠F=30°,斜边AB和EF均为4.现将三角板EFG由图1所示的位置绕G点沿逆时针方向旋转(0<<90°),如图2,EG交AC于点K,GF交BC于点H.在旋转过程中,请你解决以下问题:(1)求证:△CGH∽△AGK;(2)连接HK,求证:KH∥EF;(3)设AK=x,△CKH的面积为y,求y关于x的函数关系式,并求出y的最大值.23 . 如图是一个平均被分成6等分的圆,每一个扇形中都标有相应的数字,甲乙两人分别转动转盘,设甲转动转盘后指针所指区域内的数字为x,乙转动转盘后指针所指区域内的数字为y(当指针在边界上时,重转一次,直到指向一个区域为止).(1)直接写出甲转动转盘后所指区域内的数字为负数的概率;(2)用树状图或列表法,求出点(x,y)落在第二象限内的概率.24 . 已知∠1=∠2,求∠3+∠4的度数.25 . 如图是某市市区几个旅游景点的平面示意图(比例尺为1∶20 000,图中每个小方格的长度为1 cm).(1)选取某一个景点为坐标原点,建立平面直角坐标系;(2)根据所建立的平面直角坐标系,写出其他各景点的坐标.参考答案一、单选题1、2、3、4、5、6、7、8、9、10、二、填空题1、2、3、4、5、6、7、三、解答题1、2、3、4、5、6、7、8、。

人教版数学七年级下册《期中检测试题》附答案解析

人教版数学七年级下册《期中检测试题》附答案解析

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共有10小题,每小题3分,共30分)1. 如图,1∠与2∠是对顶角的是( ) A. B. C. D.2. 下列计算正确的是( )A. x 6÷x 3=x 2B. 2x 3﹣x 3=2C. x 2•x 3=x 6D. (x 3)3=x 9 3. 把0.00000156用科学记数法表示为( )A. 815610⨯B. 715.610C. 1.56×10-5D. 61.5610-⨯ 4. 一个角度数是40°,那么它的余角的补角度数是( )A. 130°B. 140°C. 50°D. 90°5. 等腰三角形的两边长分别为4和9,则它的周长 ( )A. 17B. 22C. 17或22D. 216. 下列乘法中,不能运用平方差公式进行运算的是( )A. ()()x a x a +-B. ()()a b a b +--C. ()()x b x b ---D. ()()b m m b +-7. 如图,用直尺和圆规作一个角等于已知角,能得出A O B AOB '''∠=∠的依据是( )A. SASB. SSSC. ASAD. AAS 8. 在下列长度的三条线段中,能组成三角形的是( )A. 3cm ,5cm ,8cmB. 8cm ,8cm ,18cmC. 1cm , 1cm ,1cmD. 3cm ,4cm ,8cm 9. 已知a+b=﹣5,ab=﹣4,则a 2﹣ab+b 2=( )A. 29B. 37C. 21D. 3310. 某人骑车上路,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上路时间,于是就加快了车速.如图s 表示此人离家距离,t 表示时间,在下面给出的四个表示s 与t 的关系的图象中,符合以上情况的是( ) A. B. C. D.二.填空题(本大题共有8小题,每小题4分,共32分)11. 计算(-2a 2b)(3ab)=____________________.12. 对于圆的周长公式c=2πr ,其中自变量是______,因变量是______.13. 如图,在△ABC 中,∠A=40°,点D 是∠ABC 和∠ACB 角平分线的交点,则∠BDC 为________14. 一辆汽车以35千米/时的速度匀速行驶,行驶路程S (千米)与行驶时间t (时)之间的关系式为_______ 15. 如图,已知AB=AD ,那么添加下列一个条件后,能利用“SSS”判定△ABC ≌△ADC 的是_____.16. 若102m =,103n =,则210m n +=_________.17. 若226m n -=,且3m n -=,则m n +=___.18. 观察下列等式①223415-⨯=,②225429-⨯=,③2274313-⨯=,…根据上述规律,第n 个等式是________________.(用含有n 的式子表示)三、解答题19. 如图,在ΔABC 中,D 是AB 边上一点.(1)求作:∠ADE=∠ABC ,交AC 边于点E .(要求:尺规作图,不写作法,保留作图痕迹)(2)DE 与BC 位置关系是______________20. 计算:(1)022120182()2-+- (2)()()32231223a b ab a b -÷-⋅ (3)()()()2122m m m m -+-- (4)()()22a b a b +++-21. 一个角与它的补角的度数之比为1:8,求这个角的余角的度数.22. 请将下列证明过程补充完整:已知:∠1=∠E ,∠B =∠D . 求证:AB ∥CD证明:∵ ∠1=∠E ( 已知 )∴ ∥ ( )∴ ∠D +∠2=180°( ) ∵ ∠B =∠D ( 已知 )∴ ∠B + ∠2= 180°( ) ∴ AB ∥CD ( )23. 如图表示玲玲骑自行车离家的距离与时间的关系.她9点离开家,15点回到家,请根据图象回答下列问题:(1)玲玲到达离家最远的地方是什么时间?她离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)第一次休息时,她离家多远?(4)11点~12点她骑车前进了多少千米?24. 如图,AB=DE,AC=DF,点E、C在直线BF上,且BE=CF.试说明AB∥DE.25. 已知如图,A、E、F、C四点共线,BF=DE,AB=CD.(1)请你添加一个条件,使△DEC≌△BFA;(2)在(1)基础上,求证:DE∥BF.26. 如图:BD平分∠ABC,∠ABD=∠ADB,∠ABC=50°,请问:(1)∠BDC+∠C 度数是多少?并说明理由.(2)若P点是BC上的一动点(B点除外),∠BDP与∠BPD之和是一个确定的值吗?如果是,求出这个确定的值.如果不是,说明理由.27. 如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于多少?(2)请用两种不同的方法求图2中阴影部分的面积:(3)观察图2你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m-n)2,mn.(4)根据第(3)问题中的等量关系,解决如下问题:若a+b=7,ab=5,则(a-b)2的值是多少?答案与解析一、选择题(本大题共有10小题,每小题3分,共30分)1. 如图,1∠与2∠是对顶角的是( ) A. B. C. D.[答案]B[解析][分析]根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角,依次判定即可得出答案.[详解]解: A.∠1与∠2有一条边在同一条直线上,另一条边不在同一条直线上,不是对顶角;B.∠1与∠2的两边互为反向延长线, 只有一个公共顶点,是对顶角;C.∠1与∠2有两个公共顶点,不是对顶角;D. ∠1与∠2有一条边在同一条直线上,另一条边不在同一条直线上,不是对顶角;故选B .[点睛]本题主要考查了对顶角的定义,对顶角是相对与两个角而言,是指的两个角的一种位置关系..它是在两直线相交的前提下形成的.2. 下列计算正确的是( )A. x 6÷x 3=x 2B. 2x 3﹣x 3=2C. x 2•x 3=x 6D. (x 3)3=x 9[答案]D[解析][分析]根据同底数幂相除,底数不变指数相减;合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.[详解]A 、应x 6÷x 3=x 3,故本选项错误;B 、应为2x 3﹣x 3=x 3,故本选项错误;C 、应为x 2•x 3=x 5,故本选项错误;D 、(x 3)3=x 9,正确.[点睛]本题考查同底数幂的除法,合并同类项法则,同底数幂的乘法,幂的乘方,熟练掌握运算性质和法则是解题的关键.3. 把0.00000156用科学记数法表示为( )A. 815610⨯B. 715.610C. 1.56×10-5D. 61.5610-⨯[答案]D[解析][分析]科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.[详解]0.00000156的小数点向右移动6位得到1.56,所以0.00000156用科学记数法表示为1.56×10-6,故选D .[点睛]本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4. 一个角的度数是40°,那么它的余角的补角度数是( )A. 130°B. 140°C. 50°D. 90° [答案]A[解析][分析]若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.依此求出度数.[详解]40°角的余角是:90°−40°=50°,50°角的补角是:180°−50°=130°.故选:A.[点睛]考查余角与补角的相关计算,掌握余角与补角的定义是解题的关键.5. 等腰三角形的两边长分别为4和9,则它的周长 ( )A. 17B. 22C. 17或22D. 21 [答案]B[解析]由题意分该等腰三角形的腰长分别为4和9两种情况结合三角形三边间的关系进行讨论,然后再根据三角形的周长公式进行计算即可.详解:由题意分以下两种情况进行讨论:(1)当该等腰三角形的腰长为4时,因为4+4<9,围不成三角形,所以这种情况不成立;(2)当该等腰三角形的腰长为9时,因为4+9>9,能够围成三角形,此时该等腰三角形的周长=9+9+4=22. 综上所述,该等腰三角形的周长为22.故选B.点睛:当已知等腰三角形其中两边长,求第三边长或周长时,通常要分“已知两边分别为等腰三角形的腰长”两种情况,结合三角形三边间的关系进行讨论.6. 下列乘法中,不能运用平方差公式进行运算的是( )A. ()()x a x a +-B. ()()a b a b +--C. ()()x b x b ---D. ()()b m m b +-[答案]B[解析][分析]根据平方差公式的特点:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数解答.[详解]解:、、符合平方差公式的特点,故能运用平方差公式进行运算;、两项都互为相反数,故不能运用平方差公式进行运算.故选:.[点睛]本题主要考查了平方差公式的结构.注意两个二项式中有一项完全相同,另一项互为相反数,并且相同的项和互为相反数的项必须同时具有.7. 如图,用直尺和圆规作一个角等于已知角,能得出A O B AOB '''∠=∠的依据是( )A. SASB. SSSC. ASAD. AAS[答案]B我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS ,答案可得.[详解]解:作图的步骤:①以为圆心,任意长为半径画弧,分别交OA 、OB 于点、;②任意作一点,作射线O A '',以为圆心,OC 长为半径画弧,交O A ''于点;③以为圆心,CD 长为半径画弧,交前弧于点D ';④过点D '作射线O B ''.所以AOB ∠'''就是与AOB ∠相等的角; 在OCD ∆与△OCD ''',O C OC ''=,O D OD ''=,C D CD ''=,OCD ∴∆≅△()O C D SSS ''',AO B AOB ∴∠'''=∠,显然运用的判定方法是SSS .故选B .[点睛]本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.8. 在下列长度的三条线段中,能组成三角形的是( )A. 3cm ,5cm ,8cmB. 8cm ,8cm ,18cmC. 1cm , 1cm ,1cmD. 3cm ,4cm ,8cm[答案]C[解析][分析]根据三角形的三边关系进行判断.[详解]A 、 3+5=8 ,不能组成三角形;B 、 8+8<18,不能组成三角形;C 、 1+1>1 ,能组成三角形;D 、 3+4<8 ,不能组成三角形;故选:C .[点睛]本题考查三角形的三边关系,一般用两条较短的线段相加,如果大于最长那条就能够组成三角形. 9. 已知a+b=﹣5,ab=﹣4,则a 2﹣ab+b 2=( )A. 29B. 37C. 21D. 33 [答案]B先根据完全平方公式进行变形,再代入求出即可.[详解]∵a+b=−5,ab=−4,∴a2−ab+b2=(a+b)2−3ab=(−5)2−3×(−4)=37,故选:B.[点睛]本题考查完全平方公式,能灵活运用完全平方公式进行变形是解此题的关键.10. 某人骑车上路,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上路时间,于是就加快了车速.如图s表示此人离家的距离,t表示时间,在下面给出的四个表示s与t的关系的图象中,符合以上情况的是( )A. B. C. D.[答案]C[解析][分析]根据修车时,路程没变化,可得答案.[详解]∵停下修车时,路程没变化,观察图象,A、B、D的路程始终都在变化,故错误;C、修车是的路程没变化,故C正确;故选:C.[点睛]本题考查函数图象,观察图象是解题关键,注意修车时路程没有变化.二.填空题(本大题共有8小题,每小题4分,共32分)11. 计算(-2a2b)(3ab)=____________________.[答案]-6a3b2[解析][分析]根据单项式与单项式相乘的运算法则进行计算即可得到答案.[详解]解:(-2a2b)(3ab)=-6a3b2.故答案为-6a3b2.[点睛]本题考查单项式乘单项式,解题的关键是掌握单项式乘单项式的运算法则.12. 对于圆的周长公式c=2πr,其中自变量是______,因变量是______.[答案] (1). r (2). c[解析]试题解析:∵圆的周长随着圆的半径的变化而变化,∴对于圆的周长公式2πC r ,其中自变量是,因变量是 .故答案为,.r C13. 如图,在△ABC 中,∠A=40°,点D 是∠ABC 和∠ACB 角平分线的交点,则∠BDC 为________[答案]110°[解析][分析]由D 点是∠ABC 和∠ACB 角平分线的交点可推出∠DBC +∠DCB =70°,再利用三角形内角和定理即可求出∠BDC 的度数.[详解]解:∵D 点是∠ABC 和∠ACB 角平分线的交点,∴∠CBD =∠ABD =12∠ABC ,∠BCD =∠ACD =12∠ACB , ∵∠A=40°,∴∠ABC +∠ACB =180°−40°=140°,∴∠DBC +∠DCB =70°,∴∠BDC =180°−70°=110°,故答案为:110°.[点睛]此题主要考查学生对角平分线性质,三角形内角和定理,熟记三角形内角和定理是解决问题的关键. 14. 一辆汽车以35千米/时的速度匀速行驶,行驶路程S (千米)与行驶时间t (时)之间的关系式为_______[答案]S=35t[解析][分析]根据路程=速度×时间列出函数关系式即可.[详解]解:根据路程=速度×时间得:汽车所走的路程S (千米)与所用的时间t (时)的关系表达式为:s=35t . 故答案为:S=35t .[点睛]本题考查函数关系式,解题的关键是明确路程=速度×时间,据此表示出关系式.15. 如图,已知AB=AD ,那么添加下列一个条件后,能利用“SSS”判定△ABC ≌△ADC 的是_____.[答案]CB =CD[解析][分析]要判定△ABC ≌△ADC ,已知AB =AD ,AC 是公共边,具备了两组边对应相等,则由题意根据SSS 可添加CB =CD .[详解]已知AB =AD ,AC 是公共边,具备了两组边对应相等,则由题意根据SSS 能判定△ABC ≌△ADC ,则需添加CB =CD ,故答案为:CB =CD .[点睛]本题考查三角形全等的判定方法,解题的关键是掌握判定两个三角形全等的一般方法(SSS ). 16. 若102m =,103n =,则210m n +=_________.[答案][解析]∵10m =2,10n =3,∴10m+2n =10m •102n =2×32=18.故答案是:18.17. 若226m n -=,且3m n -=,则m n +=___.[答案]2[解析][分析]将m 2−n 2 利用平方差公式变形,将m-n=3代入计算即可求出m+n 的值.[详解]解:∵m 2-n 2=(m+n)(m-n)=6,且m-n=3,∴m+n=2.故答案为:2.[点睛]本题考查利用平方差公式因式分解,熟练掌握公式及法则是解本题的关键.18. 观察下列等式①223415-⨯=,②225429-⨯=,③2274313-⨯=,…根据上述规律,第n 个等式是________________.(用含有n 的式子表示)[答案](2n+1) −4×n=4n+1.[解析][分析]由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.[详解]由题意知, ①223415-⨯=,②225429-⨯=,③2274313-⨯=,则第④个等式为9−4×4=17,故第n 个等式为(2n+1) −4×n=4n+1左边=4n+4n+1−4n=4n+1=右边,∴(2n+1) −4×n=4n+1故答案为(2n+1) −4×n=4n+1.[点睛]此题考查规律型:数字的变化类,解题关键在于理解题意找到规律. 三、解答题19. 如图,在ΔABC 中,D 是AB 边上一点.(1)求作:∠ADE=∠ABC ,交AC 边于点E .(要求:尺规作图,不写作法,保留作图痕迹)(2)DE 与BC 的位置关系是______________[答案](1)见解析;(2)DE 平行BC.理由见解析.[解析][分析](1)由题意作∠ADE=∠ABC ,DE 与AC 边交于点E ,即可得到图形;(2)根据同位角两直线平行进行判定即可得到答案.[详解](1)作∠ADE=∠ABC ,DE 与AC 边交于点E ,如图所示:∠ADE 即为所求;(2)DE 平行BC.理由:由(1)可知∠ADE=∠ABC ,根据同位角相等,两直线平行可得DE 平行BC.[点睛]本题考查作图—基本作图和平行线的判定,解题的关键是掌握作图基本方法和平行线的判定方法. 20. 计算:(1)022120182()2-+- (2)()()32231223a b ab a b -÷-⋅ (3)()()()2122m m m m -+-- (4)()()22a b a b +++-[答案](1)1;(2)43a 7b 5;(3)-m ²+3m−2;(4)a ²+2ab+b ²-4; [解析][分析](1)直接利用负整数指数幂的性质以及零指数幂的性质分别化简得出答案;(2)先算括号里面的,再根据单项式乘单项式的运算法则计算,然后合并同类项即可;(3)根据多项式乘多项式和单项式乘多项式的运算法则并合并同类项计算即可;(4)把a+b 当成一项,根据平方差公式计算,在展开合并化简即可. [详解](1)原式=1+14−14=1; (2)原式=-8a 6b 3÷(-2ab)13a ²b 3=43a 7b 5; (3)原式=m ²−m−2−2m ²+4m=-m ²+3m−2;(4)原式=(a+b)²-4=a ²+2ab+b ²-4.[点睛]本题考查了整式混合运算,熟练掌握整式的混合运算是解题的关键,计算时要注意符号的正确处理. 21. 一个角与它的补角的度数之比为1:8,求这个角的余角的度数.[答案]70°[解析]分析]设这个角是x ,表示出它的补角为(180°−x ),然后列出方程求出x ,再根据余角的定义计算即可得解.[详解]设这个角是x ,则它的补角=180°−x ,根据题意得,x ∶(180°−x)=1∶8,解得x =20°,90°−20°=70°.答:这个角的余角是70°.[点睛]本题考查了余角和补角,熟记定义并表示这个角的补角,然后列出方程是解题的关键.22. 请将下列证明过程补充完整:已知:∠1=∠E,∠B=∠D.求证:AB∥CD证明:∵∠1=∠E(已知)∴∥()∴∠D+∠2=180°()∵∠B=∠D(已知)∴∠B+ ∠2= 180° ( )∴AB∥CD()[答案]∵∠1=∠E(已知),∴AD∥BE(内错角相等,两直线平行),∴∠D+∠2=180°(两直线平行,同旁内角互补);∵∠B=∠D(已知),∴∠B+∠2=180°(等量代换)∴AB∥CD(同旁内角互补,两直线平行)[解析][分析]根据∠1=∠E可判定AD∥BE,可得∠D和∠2为同旁内角互补;结合∠B=∠D,可推得∠2和∠B也互补,从而判定AB平行于CD.[详解]证明:∵∠1=∠E(已知),∴AD∥BE(内错角相等,两直线平行),∴∠D+∠2=180°(两直线平行,同旁内角互补);∵∠B=∠D(已知),∴∠B+∠2=180°,∴AB∥CD.[点睛]本题考查了平行线的性质和平行线的判定,同学们要熟练掌握.23. 如图表示玲玲骑自行车离家的距离与时间的关系.她9点离开家,15点回到家,请根据图象回答下列问题:(1)玲玲到达离家最远的地方是什么时间?她离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)第一次休息时,她离家多远?(4)11点~12点她骑车前进了多少千米?[答案](1) 30千米;(2)10时30分,休息了半小时;(3) 17.5千米;(4) 12.5千米.[解析]试题分析:(1)(3)小题,观察图象,结合题意即可得到对应的答案;(4)观察图象可得:11点时,玲玲距家17.5km,12点时玲玲距家30km,由此可得1112点玲玲骑车前进了30-17.5=12.5(km).试题解析:(1)观察图象可得:玲玲是在12点时到达距家最远的地方的,此时她距家30km;(2)观察图象可得:玲玲10点30分开始第一次休息,休息了30分钟;(3)观察图象可得:玲玲第一次休息时,距家17.5km;(4)观察图象可得:11点时,玲玲距家17.5km,12点时玲玲距家30km,∴11点12点,玲玲骑车行驶了:30-17.5=12.5(km).点睛:解答这类题的关键有以下两点:(1)弄清图象中点的横坐标和纵坐标所代表的量的意义;(2)弄清图象中各个转折点(如图中的点C、D、E、F)的意义.24. 如图,AB=DE,AC=DF,点E、C在直线BF上,且BE=CF.试说明AB∥DE.[答案]见解析[解析][分析]证明△ABC ≌△DEF 得到∠B=∠DEF ,即可推出AB ∥DE.[详解]∵BE=CF ,∴BE+CE=CF+CE,即BC=EF ,在△ABC 和△DEF 中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,∴△ABC ≌△DEF,∴∠B=∠DEF ,∴AB ∥DE.[点睛]此题考查三角形全等的判定及性质,根据题中的已知条件证得△ABC ≌△DEF 是解题的关键. 25. 已知如图,A 、E 、F 、C 四点共线,BF=DE ,AB=CD .(1)请你添加一个条件,使△DEC ≌△BFA ;(2)在(1)的基础上,求证:DE ∥BF .[答案](1)添加的条件为:AE=CF (答案不唯一);(2)证明见解析;[解析][分析](1)添加的条件AE=CF ,因此可得AF=CE ,即可证明△DEC ≌△BFA ;(2) 由(1)知△DEC ≌△BFA ,得到∠DEC=∠BFA ,根据直线平行的判定,即可证明;[详解]解:(1)添加的条件为:AE=CF ,证明:∵AE=CF ,∴AE+EF=CF+EF ,即:AF=CE ,又∵BF=DE ,AB=CD ,∴在△DEC 和△BFA 中,AB CD BF DE AF CE =⎧⎪=⎨⎪=⎩∴△DEC ≌△BFA (SSS );(2)由(1)知△DEC ≌△BFA ,∴∠DEC=∠BFA(全等三角形对应角相等),∴DE ∥BF (内错角相等,两直线平行).[点睛]本题主要考查了三角形全等的判定以及三角形全等的性质、直线平行的·判定,掌握内错角相等两直线平行是解题的关键.26. 如图:BD 平分∠ABC ,∠ABD=∠ADB ,∠ABC=50°,请问:(1)∠BDC +∠C 度数是多少?并说明理由.(2)若P 点是BC 上的一动点(B 点除外),∠BDP 与∠BPD 之和是一个确定的值吗?如果是,求出这个确定的值.如果不是,说明理由.[答案](1)∠BDC+∠C=155°,理由见解析,(2)∠BDP 与∠BPD 之和是一个确定的值,∠BDP+∠BPD=155°,理由见解析.[解析][分析](1)由BD 平分∠ABC ,∠ABD=∠ADB ,可得出AD ∥BC ,在△BCD 中,∠DBC=25°,从而可得答案,(2)因为∠DBC 大小固定,ADB ∠的大小就固定,所以无论P 点如何移动,∠BDP 与∠BPD 之和为一定值.[详解]解:(1)∠BDC+∠C=155°. 理由如下:∵BD 平分∠ABC ,∠ABC=50°,∴∠ABD=∠CBD=25°; 又∠ABD=∠ADB=25°,∠BDC+∠C=180°-∠CBD=155°.(2)是确定的值. 理由如下:∵∠ADB=∠CBD ,∴AD∥BC,∴∠ADP+∠BPD=180°;∴∠BDP+∠BPD=180°-∠ADB=155°.[点睛]本题考查的是角平分线的性质,三角形的内角和定理,平行线的判定与性质,熟练掌握平行线的判定定理及性质和三角形内角和公式是解题的关键.27. 如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于多少?(2)请用两种不同的方法求图2中阴影部分的面积:(3)观察图2你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m-n)2,mn.(4)根据第(3)问题中的等量关系,解决如下问题:若a+b=7,ab=5,则(a-b)2的值是多少?[答案](1)m-n;(2)(m-n)(m-n)=(m-n)2,(m+n)2-4mn=(m-n)2;(3)(m+n)2-4mn=(m-n)2;(4)29[解析][分析](1)观察得到长为m,宽为n的长方形的长宽之差即为阴影部分的正方形的边长;(2)可以用大正方形的面积减去4个长方形的面积得到图2中的阴影部分的正方形面积;也可以直接利用正方形的面积公式得到;(3)利用(2)中图2中的阴影部分的正方形面积得到(m+n)2-4mn=(m-n)2;(4)根据(3)的结论得到(a-b)2=(a+b)2-4ab,然后把a+b=7,ab=5代入计算.[详解]解:(1)观察图形可得正方形的边长=m-n;(2)方法一:(m-n)(m-n)=(m-n)2 ;方法二:(m+n)2-4mn=(m-n)2 ;(3)利用(2)中的方法二可得:(m+n)2-4mn=(m-n)2 ;⨯=.(4)根据(3)的结论可得:(a-b)2=(a+b)2-4ab=27-4529[点睛]本题考查了完全平方公式与图形之间的关系,从几何的图形来解释完全平方公式的意义.解此类题目的关键是正确的分析图列,找到组成图形的各个部分,并用面积的两种求法作为相等关系列式子.。

人教版数学七年级下册《期中检测试卷》及答案解析

人教版数学七年级下册《期中检测试卷》及答案解析

人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10小题)1.2﹣1的值是()A. 12B. 2C. 4D. 82.下列调查中,适宜采用全面调查的是()A. 对某班学生制作校服前的身高调查B. 对某品牌灯管寿命的调查C. 对浙江省居民去年阅读量的调查D. 对现代大学生零用钱使用情况的调查3.812﹣81肯定能被()整除.A. 79B. 80C. 82D. 834.下列计算正确的是()A. a2+a2=a4B. a2•a3=a6C. a6÷a2=a3D. (a4)2=a85.下列等式从左到右的变形,属于因式分解是()A. a(4﹣y2)=4a﹣ay2B ﹣4x2+12xy﹣9y2=﹣(2x﹣3y)2C. x2+3x﹣1=x(x+3)﹣1D x2+y2=(x+y)2﹣2xy6.如图,AB∥CD,EF⊥CD,∠1=60°,则∠2等于()A. 60°B. 40°C. 30°D. 35°7.若二元一次方程组45ax bybx ay+=⎧⎨+=⎩的解为21xy=⎧⎨=⎩,则a+b的值是()A. 9B. 6C. 3D. 18.如图,△ABC沿BC所在的直线平移到△DEF的位置,且C点是线段BE的中点,若AB=5,BC=2,AC=4,则AD的长是()A. 5B. 4C. 3D. 29.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使每天的工作效率是原来的2倍,结果共用6天完成了任务.若设该厂原来每天加工x个零件,则由题意可列出方程()A. 10050062x x+= B.10050062x x+=C. 10040062x x+= D.10040062x x+=10.有下列说法:①在同一平面内,过直线外一点有且只有一条直线与已知直线平行;②无论k取任何实数,多项式x2﹣ky2总能分解成两个一次因式积形式;③若(t﹣3)3﹣2t=1,则t可以取的值有3个;④关于x,y的方程组为252ax yx ay a+=-⎧⎨-+=⎩,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当a每取一个值时,就有一个确定的方程,而这些方程总有一个公共解,则这个公共解是31 xy=⎧⎨=-⎩.其中正确说法是()A. ①④B. ①③④C. ②③D. ①②二、填空题(共6小题)11.因式分解:a2﹣4=_____.12.当x=____时,分式321xx--的值为0.13.已知x2+1,则代数式x2﹣2x+1的值为____.14.某学校在“你最喜爱的课外活动项目”调查中,随机调查了若干名学生(每名学生只选一个活动项目),并根据调查结果绘制了如图所示的扇形统计图.已知选最喜爱“体操”的学生是9人,则最喜爱“3D打印”学生数为____.15.已知∠A 与∠B 的两边分别平行,其中∠A 为x °,∠B 的为(210﹣2x )°,则∠A =____度. 16.现有1角、5角、1元硬币共16枚,总值8元.则5角的硬币是____枚.三、解答题(共7小题)17.计算与化简: (1)02000(21)(1)-+-; (2)(10a 2﹣5a )÷(5a ). 18.解方程或方程组: (1)24342x y x y +=⎧⎨-=⎩;(2)33233x x x-=--. 19.某市在今年三月份启动实施“明眸皓齿”工程.根据安排,某校对于学生使用电子产品的一周用时情况进行了抽样调查,绘制成以下频数分布直方图.请根据图中提供的信息,解答下列问题: (1)这次共抽取了 名学生进行调查.(2)用时在2.45﹣3.45小时这组的频数是 ,频率是 ;(3)如果该校有1200名学生,请估计一周电子产品用时在0.45﹣3.45小时的学生人数.20.(1)分解因式:2mx2﹣4mxy+2my2.(2)先化简,再求值:211122-⎛⎫-÷⎪++⎝⎭xx x,其中x=2020.21.(1)已知x2+y2=34,x﹣y=2,求(x+y)2的值.(2)设y=kx(x≠0),是否存在实数k,使得(3x﹣y)2﹣(x﹣2y)(x+2y)+6xy化简为28x2?若能,请求出满足条件的k 的值;若不能,请说明理由.22.某电器超市销售每台进价为80元、200元的A,B两种型号的电风扇,如表所示是六月份前2周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)销售时段销售数量销售收入A种型号B种型号第一周 6 5 2100元第二周 4 10 3400元(1)求A、B两种型号的电风扇的销售单价.(2)若超市一共采购这两种型号的电风扇共120台,售完后该超市能否实现利润为8000元的目标?若能,请给出相应的采购方案;若不能,请说明理由.23.小明同学在完成七年级下册数学第1章的线上学习后,遇到了一些问题,请你帮他解决一下.(1)如图1,已知AB∥CD,则∠AEC=∠BAE+∠DCE成立吗?请说明理由.(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.BE、DE所在直线交于点E,若∠F AD=50°,∠ABC=40°,求∠BED的度数.(3)将图2中的线段BC沿DC所在的直线平移,使得点B在点A的右侧,若∠F AD=m°,∠ABC=n°,其他条件不变,得到图3,请你求出∠BED的度数(用含m,n的式子表示).答案与解析一、选择题(共10小题)1.2﹣1的值是()A. 12B. 2C. 4D. 8[答案]A[解析][分析]根据负整数指数幂的运算法则解答即可.[详解]解:1122-=.故选:A.[点睛]本题考查了负整数指数幂的运算法则,属于基础题型,熟练掌握运算法则是解题关键.2.下列调查中,适宜采用全面调查的是()A. 对某班学生制作校服前的身高调查B. 对某品牌灯管寿命的调查C. 对浙江省居民去年阅读量的调查D. 对现代大学生零用钱使用情况的调查[答案]A[解析][分析]由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.[详解]A.对某班学生制作校服前的身高调查,适宜采用全面调查,故此选项符合题意;B.对某品牌灯管寿命的调查,具有破坏性,应采用抽样调查,故此选项不合题意;C.对浙江省居民去年阅读量的调查,工作量大,应采用抽样调查,故此选项不合题意D.对现代大学生零用钱使用情况的调查,人数众多,应采用抽样调查,故此选项不合题意.故选:A.[点睛]本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.812﹣81肯定能被()整除.A. 79B. 80C. 82D. 83[答案]B[解析][分析]原式提取公因式分解因式后,判断即可.[详解]解:原式=81×(81﹣1)=81×80,则812﹣81肯定能被80整除.故选:B.[点睛]本题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解题的关键.4.下列计算正确的是()A. a2+a2=a4B. a2•a3=a6C. a6÷a2=a3D. (a4)2=a8[答案]D[解析][分析]直接利用幂指数的运算法则和合并同类项法则即可得到答案.[详解]A.a2+a2=2a2,故本选项不合题意;B.a2•a3=a5,故本选项不合题意;C.a6÷a2=a4,故本选项不合题意;D.(a4)2=a8,故本选项符合题意.故选:D.[点睛]考查了同底数幂的乘法、同底数幂的除法、幂的乘方与积的乘方以及合并同类项.准确掌握法则是解题的关键.5.下列等式从左到右的变形,属于因式分解是()A. a(4﹣y2)=4a﹣ay2B. ﹣4x2+12xy﹣9y2=﹣(2x﹣3y)2C. x2+3x﹣1=x(x+3)﹣1D. x2+y2=(x+y)2﹣2xy[答案]B[解析][分析]根据因式分解的意义,可得答案.[详解]解:A.属于整式乘法运算,不属于因式分解;B.﹣4x2+12xy﹣9y2=﹣(2x﹣3y)2,属于因式分解;C.右边不是几个整式积的形式,不属于因式分解;D.右边不是几个整式积的形式,不属于因式分解.故选:B.[点睛]本题考查了因式分解的意义,利用因式分解的意义是解题关键.6.如图,AB∥CD,EF⊥CD,∠1=60°,则∠2等于()A. 60°B. 40°C. 30°D. 35°[答案]C[解析][分析]先根据平行线的性质,可得∠AEG的度数,根据EF⊥CD可得EF⊥AB,再根据垂直和平角的定义可得到∠2的度数.[详解]解:∵AB∥CD,∠1=60°,∴∠AEG=60°.∵EF⊥CD,∴EF⊥AB,∴∠2=180°﹣60°﹣90°=30°.故选:C.[点睛]本题主要考查了平行线的性质的运用,解题时注意:两条平行线被第三条直线所截,同位角相等.7.若二元一次方程组45ax bybx ay+=⎧⎨+=⎩的解为21xy=⎧⎨=⎩,则a+b的值是()A. 9B. 6C. 3D. 1 [答案]C[解析]分析]根据二元一次方程组的解及解二元一次方程组即可解答. [详解]解:将21x y =⎧⎨=⎩代入方程组45ax by bx ay +=⎧⎨+=⎩得2425a b b a +=⎧⎨+=⎩解得:12a b =⎧⎨=⎩∴a +b =1+2=3. 故选:C .[点睛]此题主要考查二元一次方程组的解和解二元一次方程组,正确理解二元一次方程组的解和灵活选择消元法解二元一次方程组是解题关键.8.如图,△ABC 沿BC 所在的直线平移到△DEF 的位置,且C 点是线段BE 的中点,若AB =5,BC =2,AC =4,则AD 的长是( )A. 5B. 4C. 3D. 2[答案]B [解析] [分析]利用平移的性质解决问题即可. [详解]解:由平移的性质可知,AD=BE . ∵BC=CE ,BC=2, ∴BE=4, ∴AD=4. 故选:B .[点睛]本题考查平移的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.9.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使每天的工作效率是原来的2倍,结果共用6天完成了任务.若设该厂原来每天加工x 个零件,则由题意可列出方程()A. 10050062x x+= B.10050062x x+=C. 10040062x x+= D.10040062x x+=[答案]D[解析]分析]根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400个用的时间=6,即可列出方程.[详解]解:设该厂原来每天加工x个零件,根据题意得:10040062x x+=.故选D.[点睛]此题考查了由实际问题抽象出分式方程,分析题意,根据关键描述语,找到合适的等量关系是解决问题的关键.10.有下列说法:①在同一平面内,过直线外一点有且只有一条直线与已知直线平行;②无论k取任何实数,多项式x2﹣ky2总能分解成两个一次因式积的形式;③若(t﹣3)3﹣2t=1,则t可以取的值有3个;④关于x,y的方程组为252ax yx ay a+=-⎧⎨-+=⎩,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当a每取一个值时,就有一个确定的方程,而这些方程总有一个公共解,则这个公共解是31 xy=⎧⎨=-⎩.其中正确的说法是()A. ①④B. ①③④C. ②③D. ①②[答案]A[解析][分析]利用平行公理对①判断,利用平方差公式的特点对②分析,③通过0指数、底数为1,底数为-1对代数式进行分类讨论得结果,④抓住a取每一个值方程的解都相同,求出x、y的值.[详解]①按照平行公理可判断在同一平面内,过直线外一点有且只有一条直线与已知直线平行,故本选项正确;②当k为负值时,多项式x2﹣ky2不能分解成两个一次因式积的形式,故本选项不正确;③当t=4、32时,(t ﹣3)3﹣2t =1,故本选项不正确; ④新方程(a ﹣1)x+(a+2)y=2a ﹣5.∵a 每取一个值时,就有一个方程,而这些方程总有一个公共解,∴当a=1时,y=﹣1,当a=﹣2时,x=3,∴公共解是31x y =⎧⎨=-⎩.综上正确的说法是①④. 故选:A .[点睛]本题考查了平行公理、因式分解、零指数幂和二元一次方程组的解等知识点,熟练掌握相关性质定理及运算法则是解题的关键.二、填空题(共6小题)11.因式分解:a 2﹣4=_____. [答案](a+2)(a ﹣2). [解析]试题分析:直接利用平方差公式分解因式a 2﹣4=(a+2)(a ﹣2).故答案为(a+2)(a ﹣2). [考点]因式分解-运用公式法. 12.当x =____时,分式321x x --的值为0. [答案]3 [解析] [分析]根据分式的值为0可得30x -=,由此可得出x 的值,再代入分式的分母进行检验即可. [详解]由题意得:30x -=, 解得3x =,当3x =时,2123150x -=⨯-=≠, 则当3x =时,分式321x x --的值为0, 故答案为:3.[点睛]本题考查了分式的值为0、分式有意义的条件,掌握分式的值为0的求值方法是解题关键.13.已知x +1,则代数式x 2﹣2x +1的值为____. [答案]2. [解析]利用完全平方公式将所求的代数式进行变形,然后代入求值即可.[详解]解:原式为:2x-2x+12=(x-1),将x=21代入上式,=(x-1)=(2+1-1)=2原式22故答案为:2.[点睛]此题考察了完全平方公式的计算,二次根式的性质.利用完全平方公式将所求代数式进行变形是解答此题的关键.14.某学校在“你最喜爱的课外活动项目”调查中,随机调查了若干名学生(每名学生只选一个活动项目),并根据调查结果绘制了如图所示的扇形统计图.已知选最喜爱“体操”的学生是9人,则最喜爱“3D打印”学生数为____.[答案]24.[解析][分析]先根据最喜爱体操的学生所占百分比及其对应的人数求出总人数,然后用总人数乘以最喜爱“3D打印”的学生所占百分比即得答案.[详解]解:∵选最爱体操的学生所占百分比为1﹣(10%+35%+40%)=15%,其对应人数为9人,∴被调查的总人数为9÷15%=60(人),∴最喜爱“3D打印”学生数为60×40%=24(人).故答案为:24.[点睛]本题考查了扇形统计图的相关知识,属于基本题型,读懂统计图提供的信息、掌握求解的方法是关键.15.已知∠A与∠B的两边分别平行,其中∠A为x°,∠B的为(210﹣2x)°,则∠A=____度.[答案]70或30.[解析]分∠A=∠B 与∠A+∠B=180°两种情况进行讨论即可求解.详解]解:根据题意,有两种情况:(1)当∠A=∠B ,可得:x=210﹣2x ,解得:x=70;(2)当∠A+∠B=180°时,可得:x+210﹣2x=180,解得:x=30.故答案为:70或30.[点睛]本题考查的是平行线的性质,在解答此题时要注意分类讨论.16.现有1角、5角、1元硬币共16枚,总值8元.则5角的硬币是____枚.[答案]7.[解析][分析]设1角的硬币有x 枚,5角的硬币有y 枚,则1元的硬币有(16-x-y )枚,根据这些硬币的总值为8元(即80角),即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数即可得出结论.[详解]解:设1角的硬币有x 枚,5角的硬币有y 枚,则1元的硬币有(16﹣x ﹣y )枚,依题意,得:x +5y +10(16﹣x ﹣y )=80,∴y =16﹣95x . ∵x ,y 均为正整数,∴x =5,y =7.故答案为:7.[点睛]本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.三、解答题(共7小题)17.计算与化简:(1)020001)(1)-+-;(2)(10a 2﹣5a )÷(5a ).[答案](1)2;(2)2a ﹣1.[解析](1)分别根据0指数幂的意义和﹣1的偶次幂计算每一项,再合并即可;(2)根据多项式除以单项式的法则解答即可.[详解]解:(1)020001)(1)+-=1+1=2;(2)(10a2﹣5a)÷(5a)=2a﹣1.[点睛]本题考查了0指数幂、实数的混合运算以及多项式除以单项式等知识,属于常见题型,熟练掌握上述基础知识是解题的关键.18.解方程或方程组:(1)24 342 x yx y+=⎧⎨-=⎩;(2)33233xx x-=--.[答案](1)21xy=⎧⎨=⎩;(2)x=﹣9.[解析][分析](1)方程组利用加减消元法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解..[详解](1)24342x yx y+=⎧⎨-=⎩①②,①×2+②得:5x=10,解得:x=2,把x=2代入①得:y=1,则方程组的解为21 xy=⎧⎨=⎩;(2)分式方程整理得:33xx-﹣2=﹣33x-,去分母得:3x﹣2(x﹣3)=﹣3, 去括号得:3x﹣2x+6=﹣3,解得:x=﹣9,经检验x=﹣9是分式方程的解.[点睛]本题考查了解分式方程,以及解二元一次方程组,熟练掌握各自的解法是解题的关键.19.某市在今年三月份启动实施“明眸皓齿”工程.根据安排,某校对于学生使用电子产品的一周用时情况进行了抽样调查,绘制成以下频数分布直方图.请根据图中提供的信息,解答下列问题:(1)这次共抽取了名学生进行调查.(2)用时在2.45﹣3.45小时这组的频数是,频率是;(3)如果该校有1200名学生,请估计一周电子产品用时在0.45﹣3.45小时的学生人数.[答案](1)400;(2)108,0.27;(3)678人.[解析][分析](1)将频数直方图内所有的频数求和,即可算得参加调查的总人数;(2)由频数直方图可查用时在2.45-3.45小时的频数是108,频率=频数总人数;(3)在400人中,求出用时在0.45-3.45小时频率,再乘以1200,即可求得全校电子产品用时在0.45-3.45小时的人数.[详解]解:(1)这次共抽取了50+68+108+82+52+40=400(人),故答案为:400;(2)由直方图可得:用时在2.45-3.45小时这组的频数是108,频率是108÷400=0.27;故答案为:108,0.27;(3)用时在0.45-3.45小时频率是(50+68+108)÷400=0.565,(人),1200人中用时在0.45-3.45小时的人数为:12000.565=678答:一周电子产品用时在0.45﹣3.45小时的学生有678人.[点睛]本题考察了频数与频率之间的关系以及用样本的某种“率”推测总体的“率”,解题的关键在于掌握频率=频数总人数.20.(1)分解因式:2mx 2﹣4mxy +2my 2.(2)先化简,再求值:211122-⎛⎫-÷ ⎪++⎝⎭x x x ,其中x =2020. [答案](1)2m (x ﹣y )2;(2)11x -,12009. [解析][分析](1)原式先提取公因式,再运用完全平方公式分解;(2)括号内先通分化简,再计算除法,然后把x 的值代入化简后的式子计算即可.[详解]解:(1)2mx 2﹣4mxy +2my 2=2m (x 2﹣2xy +y 2)=2m (x ﹣y )2; (2)211122-⎛⎫-÷ ⎪++⎝⎭x x x =()()112122x x x x x +-+-÷++ =()()12211x x x x x ++⋅++- =11x -, 当x =2020时,原式=11202012019=-. [点睛]本题考查了多项式的因式分解和分式的化简求值,属于常考题型,熟练掌握分解因式的方法和分式的混合运算法则是解题的关键.21.(1)已知x 2+y 2=34,x ﹣y =2,求(x +y )2的值.(2)设y =kx (x ≠0),是否存在实数k ,使得(3x ﹣y )2﹣(x ﹣2y )(x +2y )+6xy 化简为28x 2?若能,请求出满足条件的k 的值;若不能,请说明理由.[答案](1)64;(2)k =2或﹣2[解析][分析](1)先利用完全平方公式求得2xy的值,再根据(x+y)2=x2+y2+2xy即可求得;(2)先根据完全平方公式和平方差公式将多项式进行化简,再将y=kx代入,整理,根据结果为28x2即可求得k 的值.[详解]解:(1)把x﹣y=2两边平方得:(x﹣y)2=4,即x2﹣2xy+y2=4.∵x2+y2=34,∴2xy=30,则(x+y)2=x2+y2+2xy=34+30=64;(2)原式=9x2﹣6xy+y2﹣x2+4y2+6xy=8x2+5y2,把y=kx代入得:原式=8x2+5k2x2=(5k2+8)x2=28x2,∴5k2+8=28,即k2=4,开方得:k=2或﹣2,则存在实数k=2或﹣2,使得(3x﹣y)2﹣(x﹣2y)(x+2y)+6xy化简为28x2.[点睛]本题考查平方差公式和完全平方公式.熟记公式,并能灵活运用对公式进行变形解题关键.22.某电器超市销售每台进价为80元、200元的A,B两种型号的电风扇,如表所示是六月份前2周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价.(2)若超市一共采购这两种型号的电风扇共120台,售完后该超市能否实现利润为8000元的目标?若能,请给出相应的采购方案;若不能,请说明理由.[答案](1)A种型号的电风扇的销售单价为100元,B种型号的电风扇的销售单价为300元;(2)能实现利润为8000元的目标,可采购A种型号的电风扇50台,B种型号的电风扇70台.[解析][分析](1)设A 种型号的电风扇的销售单价为x 元,B 种型号的电风扇的销售单价为y 元,根据前两周的销售数量及销售收入,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设采购A 种型号的电风扇m 台,B 种型号的电风扇n 台,根据该超市一共采购这两种型号的电风扇共120台且销售完毕后可获得8000元利润,即可得出关于m ,n 的二元一次方程组,解之即可得出结论.[详解](1)设A 种型号的电风扇的销售单价为x 元,B 种型号的电风扇的销售单价为y 元,依题意,得:6521004103400x y x y +=⎧⎨+=⎩, 解得:100300x y =⎧⎨=⎩. 答:A 种型号的电风扇的销售单价为100元,B 种型号的电风扇的销售单价为300元.(2)设采购A 种型号的电风扇m 台,B 种型号的电风扇n 台,依题意,得:()()120100803002008000m n m n +=⎧⎨-+-=⎩, 解得:5070m n =⎧⎨=⎩. 答:能实现利润为8000元的目标,可采购A 种型号的电风扇50台,B 种型号的电风扇70台.[点睛]本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 23.小明同学在完成七年级下册数学第1章的线上学习后,遇到了一些问题,请你帮他解决一下.(1)如图1,已知AB ∥CD ,则∠AEC =∠BAE +∠DCE 成立吗?请说明理由.(2)如图2,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC .BE 、DE 所在直线交于点E ,若∠F AD =50°,∠ABC =40°,求∠BED 的度数.(3)将图2中的线段BC 沿DC 所在的直线平移,使得点B 在点A 的右侧,若∠F AD =m °,∠ABC =n °,其他条件不变,得到图3,请你求出∠BED 的度数(用含m ,n 的式子表示).[答案](1)成立,理由见解析;(2)45°;(3)∠BED 的度数改变,∠BED =180°﹣12n °+12m °. [解析][分析](1)根据平行线的性质即可得到结论;(2)先过点E作EH∥AB,根据平行线的性质和角平分线的定义,即可得到结论;(3)过E作EG∥AB,根据平行线的性质和角平分线的定义,即可得到结论.[详解]解:(1)如图1中,作EF∥AB,则有EF∥CD,∴∠1=∠BAE,∠2=∠DCE,∴∠AEC=∠1+∠2=∠BAE+∠DCE.(2)如图2,过点E作EH∥AB,∵AB∥CD,∠F AD=50°,∴∠F AD=∠ADC=50°.∵DE平分∠ADC,∠ADC=50°,∴∠EDC=12∠ADC=25°.∵BE平分∠ABC,∠ABC=40°,∴∠ABE=12∠ABC=20°.∵AB∥CD,∴AB∥CD∥EH,∴∠ABE=∠BEH=20°,∠CDE=∠DEH=25°, ∴∠BED=∠BEH+∠DEH=45°.(3)∠BED的度数改变.过点E作EG∥AB.∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=∠GAD=m°,∴∠ABE=12∠ABC=12n°,∠CDE=12∠ADC=12m°∵AB∥CD,∴AB∥CD∥EG,∴∠BEG=180°﹣∠ABE=180°﹣12n°,∠CDE=∠DEG=12m°,∴∠BED=∠BEG+∠DEG=180°﹣12n°+12m°.故答案为:180°﹣12n°+12m°.[点睛]本题主要考查了平移的性质,平行线的性质以及角平分线的定义的运用,解决问题的关键是正确的作出辅助线.。

人教版数学七年级下学期《期中检测试题》附答案

人教版数学七年级下学期《期中检测试题》附答案

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.下列计算正确的是( )A. ()011-=-B. ()111-=C. ()()221a a -÷-=D. 3322a a -= 2.已知某种植物花粉的直径为0.000035米,那么用科学记数法可表示为( )A. 43.510⨯米B. 53.510-⨯米C. 43.510-⨯米D. 53.510⨯米 3.点P 为直线外一点,点A 、B 、C 为直线上三点,PA =4cm ,PB=5cm ,PC=3cm ,则点P 到直线距离为( )A. 4cmB. 5cmC. 小于3cmD. 不大于3cm 4.如图,若AB ∥CD ,则∠A 、∠E 、∠D 之间是( )A. ∠A +∠E +∠D =180°B. ∠A +∠E -∠D =180°C. ∠A -∠E +∠D =180°D. ∠A +∠E +∠D =270°5.在方程组2131x y y z -=⎧⎨=+⎩,231x y x =⎧⎨-=⎩,035x y x y +=⎧⎨-=⎩,123xy x y =⎧⎨+=⎩,111y x y ⎧=⎪⎨⎪+=⎩中,是二元一次方程组的有( )个.A 2 B. 3 C. 4 D. 56.如图,下列说法一定正确的是( )A. ∠1和∠4是内错角B. ∠1和∠3是同位角C. ∠3和∠4是同旁内角D. ∠1和∠C 是同位角 7.时钟显示为8:30时,时针与分针所夹锐角是( )A. 65︒B. 70︒C. 75︒D. 85︒8.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是( )A. 60°B. 50°C. 40°D. 30° 9.若35m =,34n =,则23m n -等于( ) A. 52 B. 254 C. 6 D. 2010.若方程组23345x y x y -=⎧⎨+=⎩的解是 2.20.4x y =⎧⎨=-⎩,则方程组(2012)2(2013)33(2012)4(2013)5a b a b +--=⎧⎨++-=⎩的解是( ) A. 2.20.4a b =⎧⎨=-⎩ B. 2014.22012.6a b =⎧⎨=⎩ C. 2009.82012.6a b =-⎧⎨=⎩ D. 2014.22013.4a b =⎧⎨=⎩ 11.若将一副三角板按如图所示的方式放置,则下列结论不正确的是( )A. 13∠=∠B. 如果230∠=︒,则有//AC DEC. 如果230∠=︒,则有//BC ADD. 如果230∠=︒,必有4C ∠=∠12.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意得( )A. 11910813x y y x x y =⎧⎨+-+=⎩()() B. 10891311y x x y x y +=+⎧⎨+=⎩C. 91181013x y x y y x ()()=⎧⎨+-+=⎩D. 91110813x y y x x y =⎧⎨+-+=⎩()() 二、填空题13.已知∠1=30°,则∠1的余角的补角度数是_________.14.计算:()()32p p -⋅-=________15.已知80AOB ∠=︒,20AOC ∠=︒,则BOC ∠的度数为______.16.如果方程组45x by ax =⎧⎨+=⎩解与方程组32y bx ay =⎧⎨+=⎩的解相同,则a+b 的值为______. 17.如图,已知,GF AB ⊥12,B AGH ∠=∠∠=∠.则下列结论:①//GH BC ;②D F =∠∠;③HE 平分AHG ∠;④HE AB ⊥.其中正确的是________(把你认为正确答案的序号都填上)18.新定义一种运算,其法则为32a c a d bc b d =÷,则223x x x x--=__________ 三、解答题19.计算:(1)()02311233-⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭ (2)()52632x x x x -÷+⋅(3)232213112346x y x y x y ⎛⎫-⋅-+⎪⎝⎭ (4)()()221x x x +-+20.解方程组(1)128x y x y =+⎧⎨+=⎩(2)11233210x y x y +⎧-=⎪⎨⎪+=⎩ 21.已知:如图,AD BC ⊥于点,EF BC ⊥于点,3E ∠=∠,求证:AD 平分BAC ∠.22.如图,//EF AB ,70DCB ∠=︒,20CBF ∠=︒,130EFB ∠=︒.(1)直线CD 与AB 平行吗?为什么?(2)若68CEF ∠=︒,求ACB ∠的度数.23.如图,直线AB 、CD 、MN 相交与点O ,FO ⊥BO ,OM 平分∠DOF(1)请直接写出图中所有与∠AON 互余的角: .(2)若∠AOC=52∠FOM ,求∠MOD 与∠AON 的度数.24.如图,EF ∥AD ,AD ∥BC ,CE 平分∠BCF ,∠DAC =120°,∠ACF =20°,求∠FEC 的度数.25.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如下表:现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,货主应付运费多少元?选做题:26.九个小朋友围坐在一张圆桌旁,每人想好一个数,并告诉坐在两旁的人,然后将他两旁人告诉他的数的平均数报出来,每人报的结果如右图所示,那么报11的人想的数是多少?答案与解析一、选择题1.下列计算正确的是( )A. ()011-=-B. ()111-=C. ()()221a a -÷-=D. 3322a a -= [答案]D[解析][分析]根据幂的运算性质,对四个选项进行判断即可.[详解]解: A.(-1)0=1,∴A 错误; B.11(1)11--==--,∴B 错误; C .()()()22221a aa a -÷-=÷-=-,∴C 错误. D .3331222a a a -=⋅=,∴D 正确. 故选D . [点睛]此题主要考查了零指数幂和负整数指数幂,关键是掌握负整数指数为正整数指数倒数;任何非0数的0次幂等于1.2.已知某种植物花粉的直径为0.000035米,那么用科学记数法可表示为( )A. 43.510⨯米B. 53.510-⨯米C. 43.510-⨯米D. 53.510⨯米[答案]B[解析][分析]绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.[详解]0.000035米=3.5×10-5米;故选B .[点睛]本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.点P 为直线外一点,点A 、B 、C 为直线上三点,PA =4cm ,PB=5cm ,PC=3cm ,则点P 到直线的距离为( )A. 4cmB. 5cmC. 小于3cmD. 不大于3cm [答案]D[详解]解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,∴点P到直线的距离≤PC,即点P到直线的距离不大于3cm.故选:D.4.如图,若AB∥CD,则∠A、∠E、∠D之间的是( )A ∠A+∠E+∠D=180° B. ∠A+∠E-∠D=180°C. ∠A-∠E+∠D=180° D. ∠A+∠E+∠D=270°[答案]B[解析][分析]作EF∥AB,则EF∥CD∥AB,根据平行线的性质即可求解.[详解]作EF∥AB,则EF∥CD∥AB,∴∠A+∠AEF=180°,∠D=∠DEF,又∠AED=∠AEF+∠DEF,故∠A+∠E-∠D=180°选B.[点睛]此题主要考查平行线的性质,解题的关键是熟知平行线的性质.5.在方程组2131x yy z-=⎧⎨=+⎩,231xy x=⎧⎨-=⎩,35x yx y+=⎧⎨-=⎩,123xyx y=⎧⎨+=⎩,111yx y⎧=⎪⎨⎪+=⎩中,是二元一次方程组的有()个.A. 2B. 3C. 4D. 5 [答案]A[解析]根据二元一次方程组的定义逐一分析即可.[详解]2131x y y z -=⎧⎨=+⎩含有三个未知数,故不是二元一次方程组; 231x y x =⎧⎨-=⎩是二元一次方程组; 035x y x y +=⎧⎨-=⎩是二元一次方程组; 123xy x y =⎧⎨+=⎩中1xy =是二元二次方程,故该方程组不是二元一次方程组; 111y x y ⎧=⎪⎨⎪+=⎩中11y =不是整式方程,故该方程组不是二元一次方程组; 综上,是二元一次方程组的只有231x y x =⎧⎨-=⎩和035x y x y +=⎧⎨-=⎩. 故选:A .[点睛]本题考查二元一次方程组的定义,要求熟悉二元一次方程组的形式及其特点:含有2个未知数,最高次项的次数是1的整式方程.6.如图,下列说法一定正确的是( )A. ∠1和∠4是内错角B. ∠1和∠3是同位角C. ∠3和∠4是同旁内角D. ∠1和∠C 是同位角[答案]D[解析][分析] 根据内错角、同位角以及同旁内角的定义进行判断即可.[详解]解:A 、∠2和∠4是内错角,故本选项错误;B 、∠1和∠C 是同位角,故本选项错误;C 、∠3和∠4是邻补角,故本选项错误;D 、∠1和∠C 是同位角,故本选项正确;故选D .[点睛]本题考查了同位角、内错角、同旁内角.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.7.时钟显示为8:30时,时针与分针所夹的锐角是( )A. 65︒B. 70︒C. 75︒D. 85︒[答案]C[解析][分析]根据钟面平均分成2份,可得每份的度数,根据时针与分针相距的份数乘以每份的度数,可得答案.[详解]解:钟面每份是30°,8点30分时针与分针相距2.5份,8点30分时,时钟的时针与分针所夹的锐角是30°×2.5=75°,故选:C .[点睛]本题考查了钟面角,利用了时针与分针相距的份数乘以每份的度数等于钟面角.8.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是( )A. 60°B. 50°C. 40°D. 30°[答案]C[解析] [详解]解:∵FE ⊥DB ,∵∠DEF=90°,∵∠1=50°,∴∠D=90°﹣50°=40°,∵AB ∥CD ,∴∠2=∠D=40°. 故选C .[点睛]本题考查平行线的性质.9.若35m =,34n =,则23m n -等于( ) A. 52 B. 254 C. 6 D. 20[答案]B[解析][分析]运用同底数幂的除法进行分解22n 3=33-÷m n m ,把值代入求职即可;[详解]由题可得()222n 3=33=33-÷÷m n m m n , 把35m =,34n =代入上式得:原式=22554=254=4÷÷. 故答案选B .[点睛]本题主要考查了整式乘法中幂的运算性质逆运算公式,准确应用公式是解题的关键. 10.若方程组23345x y x y -=⎧⎨+=⎩的解是 2.20.4x y =⎧⎨=-⎩,则方程组(2012)2(2013)33(2012)4(2013)5a b a b +--=⎧⎨++-=⎩的解是( ) A. 2.20.4a b =⎧⎨=-⎩ B. 2014.22012.6a b =⎧⎨=⎩ C. 2009.82012.6a b =-⎧⎨=⎩ D. 2014.22013.4a b =⎧⎨=⎩[答案]C[解析][分析]将2012+a 和2013-b 分别看作整体,则可分别对应x ,y 的值,分别解方程即可求得结果.[详解]解:令 2012+=a m ,2013-=b n ,则方程组(2012)2(2013)33(2012)4(2013)5a b a b +--=⎧⎨++-=⎩可化为23345m n m n -=⎧⎨+=⎩, ∵方程组23345x y x y -=⎧⎨+=⎩的解是 2.20.4x y =⎧⎨=-⎩, ∴方程组23345m n m n -=⎧⎨+=⎩的解是 2.20.4m n =⎧⎨=-⎩, 即2012 2.220130.4a b +=⎧⎨-=-⎩, 解得:2009.82012.6a b =-⎧⎨=⎩, 故选:C .[点睛]本题考查了二元一次方程组的解,掌握整体思想的运用是解题的关键.11.若将一副三角板按如图所示的方式放置,则下列结论不正确的是( )A. 13∠=∠B. 如果230∠=︒,则有//AC DEC. 如果230∠=︒,则有//BC ADD. 如果230∠=︒,必有4C ∠=∠[答案]C[解析][分析]根据两种三角板的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案.[详解]解:A 、∵∠CAB =∠EAD =90°,∴∠1=∠CAB−∠2,∠3=∠EAD−∠2,∴∠1=∠3;故该选项正确,B 、∵∠2=30°,∴∠1=90°−30°=60°,∵∠E =60°,∴∠1=∠E ,∴AC ∥DE ;故该选项正确,C 、∵∠2=30°,∴∠3=90°−30°=60°,∵∠B =45°,∴BC 不平行于AD ;故该选项错误;D 、由AC ∥DE 可得∠4=∠C ;故该选项正确,故选:C.[点睛]此题主要考查了学生对平行线判定与性质、余角和补角的理解和掌握,解答此题时要明确两种三角板各角的度数.12.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )A.11910813x yy x x y=⎧⎨+-+=⎩()()B.108 91311y x x y x y+=+⎧⎨+=⎩C.91181013x yx y y x ()()=⎧⎨+-+=⎩D91110813 x yy x x y=⎧⎨+-+=⎩()()[答案]D[解析][分析]根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.[详解]设每枚黄金重x两,每枚白银重y两,由题意得:91110813x yy x x y=⎧⎨+-+=⎩()(),故选D.[点睛]此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.二、填空题13.已知∠1=30°,则∠1的余角的补角度数是_________.[答案]120°[解析][分析]根据余角和补角概念计算即可.[详解]∵∠1=30°,∴∠1的余角=90°﹣∠1=90°﹣30°=60°,则∠1的余角的补角=180°﹣∠1的余角=180°﹣60°=120°.故答案为:120°.[点睛]本题考查了余角和补角,解答本题的关键是熟练掌握互余两角之和等于90°,互补两角之和等于180°.14.计算:()()32p p-⋅-=________[答案]p 5[解析][分析]根据同底数幂的乘法法则解答即可.[详解]解:原式=-p 3·(-p 2)=p 5.故答案为:p 5.[点睛]本题主要考查了同底数幂的乘法,同底数幂相乘,底数不变,指数相加.15.已知80AOB ∠=︒,20AOC ∠=︒,则BOC ∠的度数为______.[答案]100︒或60︒[解析][分析]先画图形,注意先画较大的角,分情况:当OC 在AOB ∠的内部时,当OC 在AOB ∠的外部时,从而利用角的和差可得答案.[详解]解:当OC 在AOB ∠的内部时,如图,此时:60,BOC AOB AOC ∠=∠-∠=︒当OC 在AOB ∠的外部时,如图,此时:100.BOC AOB AOC ∠=∠+∠=︒故答案为:100︒或60︒[点睛]本题考查是角的和差运算,画好符合题意的图形是解题的关键.16.如果方程组45x by ax =⎧⎨+=⎩的解与方程组32y bx ay =⎧⎨+=⎩的解相同,则a+b 的值为______. [答案]1[解析][分析]根据题意,把43x y =⎧⎨=⎩代入方程组52by ax bx ay +=⎧⎨+=⎩,得到一个关于a ,b 的方程组,将方程组的两个方程左右两边分别相加,整理即可得出a+b 的值.[详解]解:根据题意把43x y =⎧⎨=⎩代入方程组52by ax bx ay +=⎧⎨+=⎩,得 345432b a b a +⎧⎨+⎩=①=②, ①+②,得:7(a+b )=7,则a+b=1,故答案为:1.[点睛]此题主要考查了二元一次方程组的解的定义以及加减消元法解方程组.一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.注意两个方程组有相同的解时,往往需要将两个方程组进行重组解题.17.如图,已知,GF AB ⊥12,B AGH ∠=∠∠=∠.则下列结论:①//GH BC ;②D F =∠∠;③HE 平分AHG ∠;④HE AB ⊥.其中正确的是________(把你认为正确答案的序号都填上)[答案]①④[解析][分析]根据平行线的性质定理与判定定理,即可解答.[详解]∵∠B=∠AGH ,∴GH ∥BC ,即①正确;∴∠1=∠MGH ,又∵∠1=∠2,∴∠2=∠MGH ,∴DE ∥GF ,∵GF ⊥AB ,∴DE ⊥AB ,即④正确;∠D=∠F ,HE 平分∠AHG ,都不一定成立;故答案为:①④.[点睛]此题考查平行线的性质定理与判定定理,解题的关键是熟记平行线的性质定理与判定定理.18.新定义一种运算,其法则为32a c a d bc b d =÷,则223x x x x--=__________ [答案][解析][分析]按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得.[详解]222322333()()x x x x x x x xx--=-⋅÷-⋅= 故答案为: [点睛]本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解.三、解答题19.计算:(1)()02311233-⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭ (2)()52632x x x x -÷+⋅(3)232213112346x y x y x y ⎛⎫-⋅-+⎪⎝⎭ (4)()()221x x x +-+[答案](1)0;(2)9x ;(3)53422492x y x y x y -+-;(4)34+x[解析][分析](1)原式利用乘方的意义,零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用幂的乘方与积的乘方运算法则,以及单项式乘以单项式法则计算,合并即可得到结果;(3)原式利用幂的乘方与积的乘方运算法则,以及单项式乘以多项式法则计算即可得到结果;(4)原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号合并即可得到结果. [详解]解:(1)()02311233-⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭ 819=--+0=;(2)()52632x x x x -÷+⋅1092x x x =-÷+992x x =-+9x =;(3)232213112346x y x y x y ⎛⎫-⋅-+ ⎪⎝⎭ 232222131121212346x y x y x y x y x y =-⋅+⋅-⋅ 53422492x y x y x y =-+-;(4)()()221x x x +-+ ()()()222x x x x =++-+2244x x x x =++--34x =+;[点睛]此题考查了整式的混合运算,零指数幂、负整数指数幂,熟练掌握运算法则及公式是解本题的关键. 20.解方程组(1)128x y x y =+⎧⎨+=⎩(2)11233210x y x y +⎧-=⎪⎨⎪+=⎩ [答案](1)32x y =⎧⎨=⎩;(2)312x y =⎧⎪⎨=⎪⎩[解析][分析](1)利用代入消元法求解即可;(2)方程组整理后,利用加减消元法求解即可.[详解]解:(1)128x y x y =+⎧⎨+=⎩①②, 把①式代入②中,得:()218y y ++=,解这个方程得:y=2,把y=2代入①中,得x=3,所以方程组的解为32x y =⎧⎨=⎩; (2)11233210x y x y +⎧-=⎪⎨⎪+=⎩, 原方程组可变为:3283210x y x y -=⎧⎨+=⎩①②, ①+②得:6x=18,解这个方程得:x=3,把x=3代入①中,得: y=12, 所以方程组的解为312x y =⎧⎪⎨=⎪⎩. [点睛]此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.21.已知:如图,AD BC ⊥于点,EF BC ⊥于点,3E ∠=∠,求证:AD 平分BAC ∠.[答案]见解析[解析][分析]因为∠ADB=∠EFB ,由同位角相等证明AD ∥EF ,则有∠1=∠E ,∠2=∠3,又因为∠3=∠1,所以有∠1=∠2,故AD 平分∠BAC .[详解]证明:∵AD BC ⊥于点,EF BC ⊥于点(已知),∴90EFC ADC ∠=∠=︒(垂直定义),∴ EF AD ∥(同位角相等,两直线平行),∴1E ∠=∠(两直线平行,同位角相等),32∠=∠(两直线平行,内错角相等).又∵3E ∠=∠(已知),∴12∠=∠(等量代换),∴AD 平分BAC ∠(角平分线定义).[点睛]此题是一道把平行线性质和判定、角平分线的定义结合求解的综合题.有利于培养学生综合运用数学知识的能力.22.如图,//EF AB ,70DCB ∠=︒,20CBF ∠=︒,130EFB ∠=︒.(1)直线CD 与AB 平行吗?为什么?(2)若68CEF ∠=︒,求ACB ∠的度数.[答案](1)平行,理由见解析;(2)∠ACB=42°.[解析][分析](1)根据两直线平行、同旁内角互补求出∠ABF ,得到∠ABC ,根据内错角相等、两直线平行证明;(2)根据两直线平行、同旁内角互补求出∠DCE ,计算即可.[详解]解:(1)平行,理由如下:∵//EF AB ,130EFB ∠=︒,∴18013050ABF ∠=︒-︒=︒,∵20CBF ∠=︒,∴70CBA ABF CBF ∠=∠+∠=︒,∵70DCB ∠=︒,∴∠CBA =∠DCB ,∴//CD AB ;(2)∵//EF AB ,68CEF ∠=︒,∴68A ∠=︒,由(1)知://CD AB ,∴180ACD A ∠+∠=︒,∴180********ACD A ∠=︒-∠=︒-︒=︒,又∵70DCB ∠=︒,∴1127042ACB ACD DCB ∠=∠-∠=︒-︒=︒.[点睛]本题考查的是平行线的判定和性质,掌握平行线的判定定理和性质定理是解题的关键.23.如图,直线AB 、CD 、MN 相交与点O ,FO ⊥BO ,OM 平分∠DOF(1)请直接写出图中所有与∠AON互余的角:.(2)若∠AOC=52∠FOM,求∠MOD与∠AON的度数.[答案](1)∠FOM,∠MOD,∠CON;(2)20°,70°[解析][分析](1)根据垂直的定义可得∠BOF=∠AOF=90°,由角平分线的定义和对顶角相等可得与∠AON互余的角有:∠FOM,∠MOD,∠CON;(2)设∠MOD的度数为x°,用含x的式子表示出∠FOD和∠AOC的度数,然后由∠AOC=∠BOD,得出∠FOD+∠AOC=90°,据此列方程求解,再由(1)中∠MOD与∠AON互余可得出∠AON的度数.[详解]解:(1)∵FO⊥BO,∴∠BOF=∠AOF=90°,∴∠BOM+∠FOM=90°,又∠BOM=∠AON,∴∠AON+∠FOM=90°.∵OM平分∠DOF,∴∠DOM=∠FOM,又∵∠DOM=∠CON,∴与∠AON互余的角有:∠FOM,∠MOD,∠CON;(2)设∠MOD的度数为x°,∵OM平分∠FOD,∴∠MOD=∠FOM=x°,∴∠FOD=2x°,∠AOC=52∠FOM=5x2°,又∵FO⊥BO,∠AOC=∠BOD, ∴∠FOD+∠AOC=90°,即2x+5x2=90,解得:x=20.即∠MOD=20°,由(1)可知∠MOD与∠AON互余,∴∠AON=90°-∠MOD=90°-20°=70°.故∠MOD的度数为20°,∠AON的度数为70°.[点睛]本题考查了垂直的定义,角的平分线的定义,余角的定义与性质以及对顶角相等,正确理解相关概念是关键.24.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.[答案]20°[解析][分析]推出EF∥BC,根据平行线性质求出∠ACB,求出∠FCB,根据角平分线求出∠ECB,根据平行线的性质推出∠FEC=∠ECB,代入即可.[详解]∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB−∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.[点睛]本题考查了平行线的性质和判定,平行公理及推论,注意:平行线的性质有①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.25.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如下表:现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,货主应付运费多少元?[答案]货主应该付运输费735元.[解析]试题分析:本题需知道1辆甲种货车,1辆乙种货车一次运货吨数.等量关系为:2辆甲种货车运货吨数+3辆乙种货车运货吨数=15.5;5辆甲种货车运货吨数+6辆乙种货车运货吨数=35.试题解析:设甲、乙两种货车每辆每次分别运货x吨、y吨,根据题意,得2315.5, {5635.x yx y+=+=解这个方程组,得4 {2.5 xy==则所运货物有3×4+5×2.5=24.5(吨),所以货主应该付运输费为24.5×30=735(元).答:货主应该付运输费735元.[点睛]应根据条件和问题知道应设的未知量是直接未知数还是间接未知数.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:2辆甲种货车运货吨数+3辆乙种货车运货吨数=15.5;5辆甲种货车运货吨数+6辆乙种货车运货吨数=35.列出方程组,再求解.选做题:26.九个小朋友围坐在一张圆桌旁,每人想好一个数,并告诉坐在两旁的人,然后将他两旁人告诉他的数的平均数报出来,每人报的结果如右图所示,那么报11的人想的数是多少?[答案]7[解析][分析]设报11的人心想的数是a ,用b ,c ,d 到i 分别表示顺指针其余8个小朋友所想的数,通过图可以分别表示出各字母之间的代数式,最后通过整合代数式列出方程,解方程即可.[详解]解:设、、、、、f 、、、分别表示9个小朋友所想的数,则有:248a c c =⨯-=-,21632b d d =⨯-=-,224c e e =⨯-=-,21326d f f =⨯-=-,2612e g g =⨯-=-,2128f h h =⨯-=-,2714g i i =⨯-=-,21021h a a =⨯-=-,21122i b b =⨯-=-,整合884441214a c e e g a =-=-+=+=+-==- 可得7a =,∴报11的人心想的数是7,故答案为:7.[点睛]正确理解题意,用方程的思想解决问题.要注意代数式的表示方法.。

人教版数学七年级下册《期中检测题》(含答案)

人教版数学七年级下册《期中检测题》(含答案)

人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题2分,共20分)1. 据悉,世界上最小开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00000009克,用科学记数法表示此数正确的是( )A. 9.0×10﹣8B. 9.0×10﹣9C. 9.0×108D. 0.9×1092. 下列运算正确的是( )A. (﹣x﹣y)2=x2﹣2xy+y2B. (﹣2x3)3=﹣6x9C. x•x2=x3D. (x+2)2=x2+43. 下列各式中,不能用平方差公式是( )A. (3x﹣2y)(3x+2y)B. (a+b+c)(a﹣b+c)C. (a﹣b)(﹣b﹣a)D. (﹣x+y)(x﹣y)4. 下列说法错误的个数( )①过一点有且只有一条直线与已知直线垂直;②不相交两条直线必平行;③三角形的三条高线交于一点:④直线外一点到已知直线的垂线段叫做这点到直线的距离;⑤过一点有且只有一条直线与已知直线平行.A. 2个B. 3个C. 4个D. 5个5. 下列图形中,由∠1=∠2能得到AB∥CD的是( )A B.C. D.6. 如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△CEF的面积为S2,若S△ABC=9,则S1﹣S2=( )A. 12B. 32C. 1D. 27. 如果(x 2+ax+b )(x 2﹣3x )的展开式中不含x 2与x 3项,那么a 与b 的值是( )A. a =﹣3,b =9B. a =3,b =9C. a =﹣3,b =﹣9D. a =3,b =﹣9 8. 给定下列条件,不能判定三角形是直角三角形的是( )A. ::2:3:5A B C ∠∠∠=B. A C B ∠-∠=∠C. 2A B C ∠=∠=∠D. 1123A B C ∠=∠=∠ 9. 如图,在长方形ABCD 中,点E ,G 、F 分别在边AD 、BC 、AB 上,将△AEF 沿着EF 翻折至△A ′EF ,将四边形EDCG 沿着EG 翻折至ED ′C ′G ,使点D 的对应点D ′落在AE 上,已知∠AFE =70°,则∠BGC ′的度数为( )A. 20°B. 30°C. 40°D. 50°10. 如图,在ABC ∆中,AC BC =,若有一动点从出发,沿A C B A →→→匀速运动,则CP 的长度与时间之间的关系用图像表示大致是( )A B.C. D.二、填空题(每题3分,共24分)11. 若a+3b ﹣3=0,则3a •27b =_____.12. (a ﹣2018)2+(2020﹣a )2=20,则a ﹣2019=_____.13. 若∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,则∠B =_____度.14. 已知a ,b ,c 是一个三角形的三边长,化简|a+c ﹣b|﹣|b ﹣c+a|﹣|a ﹣b ﹣c|=_____.15. 已知BD 、CE 是△ABC 的高,BD 、CE 所在的直线相交所成的角中有一个角为60°,则∠BAC =_____. 16. 一个等腰三角形的周长是21,其中两边之差为6,则腰长为_____.17. 如图,AB ∥CD ,CF 平分∠DCG ,GE 平分∠CGB 交FC 的延长线于点E ,若∠E =34°,则∠B 的度数为____________.18. 已知动点P 以每秒2cm 的速度沿图甲的边框按从B →C →D →E →F →A 的路径移动,相应的△ABP 的面积S (cm 2)与时间t (秒)之间的关系如图乙中的图象所示.其中AB =6cm .当t =_____时,△ABP 的面积是15cm 2.三、解答题(共7小题,满分76分)19. 计算(1)(﹣a )3•a 2+(﹣2a 4)2÷a 3(2)()-30212019-20182020+-3.14--2π⎛⎫⨯ ⎪⎝⎭.20. 先化简,再求值:[(2x﹣y)2﹣(3x+y)(3x﹣y)+5x2]÷(﹣2y),其中x=﹣12,y=1.21. 如图,在四边形ABCD中,AB//CD,E为BC延长线上一点,AE交CD于点F,∠1=∠2,∠3=∠4,试说明AD//BE.证明:∵∠3=∠4( )且∠4=∠AFD( )∴∠3=∠AFD在△ABC中,∠1+∠B+∠3=180°在△ADF中, =180°∵∠1=∠2,∠3=∠AFD∴∠B=∠D( )∵AB//CD∴∠B=∠DCE( )∴(等量代换)∴AD//BE( )22. 如图,在△ABC中,点D在边BC上,点G在边AB上,点E、F在边AC上,∠AGF=∠ABC=70°,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若DE⊥AC,∠2=150°,求∠A的度数.23. 如图,某市修建了一个大正方形休闲场所,在大正方形内规划了一个正方形活动区,连接绿地到大正方形四边的笔直小路如图所示.已知大正方形休闲场所的边长为6a米,四条小路的长与宽都为b米和b2米.阴影区域铺设草坪,草坪的造价为每平米30元.(1)用含a、b的代数式表示草坪(阴影)面积并化简.(2)若a=10,b=5,计算草坪的造价.24. 甲、乙两人在同一平直的道路上同时、同起点、同方向出发,他们分别以不同的速度匀速跑步2400米(甲的速度大于乙的速度),当甲第一次超出乙600米时,甲停下来等候乙.甲、乙两人会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息.在整个跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间x(秒)之间的关系图象如图所示,根据图象中提供的信息回答问题:(1)A点表示的是;(2)乙出发s时到达终点,a=,b=;(3)甲乙出发s相距150米.25. 在△ABC中,∠B,∠C均为锐角且不相等,线段AD,AE分别是△ABC中BC边上的高和△ABC的角平分线.(1)如图1,∠B=70°,∠C=30°,则∠DAE的度数.(2)若∠B=α,∠DAE=10°,则∠C=(3)F是射线AE上一动点,G、H分别为线段AB,BE上的点(不与端点重合),将△ABC沿着GH折叠,使点B 落到点F处,如图2所示,其中∠1=∠AGF,∠2=∠EHF,请直接写出∠1,∠2与∠B的数量关系.答案与解析一、选择题(每题2分,共20分)1. 据悉,世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00000009克,用科学记数法表示此数正确的是( )A. 9.0×10﹣8B. 9.0×10﹣9C. 9.0×108D. 0.9×109[答案]A[解析][分析]绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.[详解]解:0.00000009=9.0×10﹣8.故选:A.[点睛]本题考查了绝对值小于1的数的科学计数法表示,熟练掌握表示法则是解题的关键.2. 下列运算正确的是( )A. (﹣x﹣y)2=x2﹣2xy+y2B. (﹣2x3)3=﹣6x9C. x•x2=x3D. (x+2)2=x2+4[答案]C[解析][分析]分别根据完全平方公式,积的乘方,同底数幂的乘法等知识进行计算即可求解.[详解]解:A.原式=x2+2xy+y2,计算错误,不合题意;B.原式=﹣8x9,计算错误,不合题意;C.原式=x1+2=x3,计算正确,符合题意;D.原式=x2+4+4x,计算错误,不合题意.故选:C.[解答]本题考查了完全平方公式、积的乘方、同底数幂的乘法等知识,熟知相关法则是解题关键.3. 下列各式中,不能用平方差公式的是( )A. (3x﹣2y)(3x+2y)B. (a+b+c)(a﹣b+c)C. (a﹣b)(﹣b﹣a)D. (﹣x+y)(x﹣y)[答案]D[解析][分析]根据平方差公式的结构特点,两个数的和乘以两个数的差,对各选分析判断即可得解.[详解]解:A、(3x﹣2y)(3x+2y)是3x与2y的和与差的积,符合公式结构,故本选项不符合题意;B、(a+b+c)(a﹣b+c),是(a+c)与b的和与差的积,符合公式结构,故本选项不符合题意;C、(a﹣b)(﹣b﹣a),是﹣b与a的和与差的积,符合公式结构,故本选项不符合题意;D、(﹣x+y)(x﹣y)=﹣(x﹣y)2,不符合公式结构,故本选项符合题意.故选:D.[点睛]此题主要考查平方差公式的结构特点,正确掌握结构是解题关键.4. 下列说法错误的个数( )①过一点有且只有一条直线与已知直线垂直;②不相交的两条直线必平行;③三角形的三条高线交于一点:④直线外一点到已知直线的垂线段叫做这点到直线的距离;⑤过一点有且只有一条直线与已知直线平行.A 2个 B. 3个 C. 4个 D. 5个[答案]D[解析][分析]根据三角形的高、点到直线的距离定义、平行公理、平行线定义进行分析即可.[详解]解:①平面内,过一点有且只有一条直线与已知直线垂直,故原题说法错误;②平面内,不相交的两条直线必平行,故原题说法错误;③三角形的三条高线交于一点,应该是三条高线所在直线交于一点,故原题说法错误:④直线外一点到已知直线的垂线段的长度叫做这点到直线的距离,故原题说法错误;⑤过直线外一点有且只有一条直线与已知直线平行,故原题说法错误.错误的说法有5个,故选:D.[点睛]此题主要考查真假命题的判断,正确理解各相关概念是解题关键.5. 下列图形中,由∠1=∠2能得到AB∥CD的是( )A. B.C D.[答案]B[解析][分析]根据平行线的判定定理对各选项进行逐一判断即可.[详解]解:A、∠1=∠2不能判定任何直线平行,故本选项错误;B、∵∠1=∠2,∴AB∥CD,符合平行线判定定理,故本选项正确;C、∵∠1=∠2,∴AC∥BD,故本选项错误;D、∠1=∠2不能判定任何直线平行,故本选项错误.故选:B.[点睛]本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.6. 如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△CEF的面积为S2,若S△ABC=9,则S1﹣S2=( )A. 12B.32C. 1D. 2[答案]B[解析][分析]S△ADF-S△CEF=S△ABE-S△BCD,所以求出三角形ABE的面积和三角形BCD的面积即可,因为AD=2BD,BE=CE,且S△ABC=9,就可以求出三角形ABE的面积和三角形BCD的面积.[详解]∵BE=CE,∴BE=12 BC,∵S△ABC=9,∴S△ABE=12S△ABC=12×9=4.5.∵AD=2BD ,S △ABC =9,∴S △BCD =13S △ABC =13×9=3, ∵S △ABE -S △BCD =(S △ADF +S 四边形BEFD )-(S △CEF +SS 四边形BEFD )=S △ADF -S △CEF ,即S △ADF -S △CEF =S △ABE -S △BCD =4.5-3=1.5.故选B .[点睛]考查三角形的面积,关键知道当高相等时,面积等于底边的比,根据此可求出三角形的面积,然后求出差.7. 如果(x 2+ax+b )(x 2﹣3x )的展开式中不含x 2与x 3项,那么a 与b 的值是( )A. a =﹣3,b =9B. a =3,b =9C. a =﹣3,b =﹣9D. a =3,b =﹣9 [答案]B[解析][分析]直接利用多项式乘多项式运算法则计算,进而得出a ,b 的值.[详解]解:∵(x 2+ax+b )(x 2﹣3x )的展开式中不含x 2与x 3项,∴原式=x 4﹣3x 3+ax 3﹣3ax 2+bx 2﹣3bx=x 4+(﹣3+a )x 3+(﹣3a+b )x 2﹣3bx ,∴﹣3+a =0,﹣3a+b =0,解得:a =3,b =9.故选:B .[点睛]本题考查整式的乘法、多项式乘多项式的法则,灵活运用这些法则是解题的关键,属于中考常考题型. 8. 给定下列条件,不能判定三角形是直角三角形是( )A. ::2:3:5A B C ∠∠∠=B. A C B ∠-∠=∠C. 2A B C ∠=∠=∠D. 1123A B C ∠=∠=∠ [答案]C[解析][分析]根据三角形的内角和等于180°求出最大角,然后选择即可.[详解]解:A 、最大角∠C=180°÷(2+3+5)×5=90°,是直角三角形,故此选项不符合题意;B 、最大角∠A=∠B+∠C=180°÷2=90°,是直角三角形,故此选项不符合题意;C 、最大角∠A=180°÷(2+2+1)×2=72°,故此选项符合题意;D 、最大角∠C=(1+2+3)×3==90°,故此选项不符合题意;故答案为:C.[点睛]本题考查了由角度大小计算判断直角三角形,掌握三角形的内角和等于180°是解题的关键. 9. 如图,在长方形ABCD 中,点E ,G 、F 分别在边AD 、BC 、AB 上,将△AEF 沿着EF 翻折至△A ′EF ,将四边形EDCG 沿着EG 翻折至ED ′C ′G ,使点D 的对应点D ′落在AE 上,已知∠AFE =70°,则∠BGC ′的度数为( )A. 20°B. 30°C. 40°D. 50°[答案]C[解析][分析] 先求出∠AEF ,再根据翻折变换的性质得到∠A ′EA ,根据平角的定义和翻折变换的性质可求∠A ′EG ,∠DEG ,再根据平行线的性质和角的和差关系即可求解.[详解]解:∵∠AFE =70°,∴∠AEF =20°,由翻折变换的性质得∠A ′EA =40°,∴∠A ′ED =140°,由翻折变换的性质得∠A ′EG =∠DEG =70°,∵A ′E ∥C ′G ,∴∠EGC ′=110°,∵AD ∥BC ,∴∠EGB =70°,∴∠BGC ′=110°﹣70°=40°.故选:C .[点睛]本题考查了翻折的性质,平行线的性质,理解翻折的性质得到相等的角解题关键.10. 如图,在ABC ∆中,AC BC =,若有一动点从出发,沿A C B A →→→匀速运动,则CP 的长度与时间之间的关系用图像表示大致是( )A. B.C. D.[答案]D[解析][分析]该题属于分段函数:点P在边AC上时,s随t的增大而减小;当点P在边BC上时,s随t的增大而增大;当点P在线段BD上时,s随t的增大而减小;当点P在线段AD上时,s随t的增大而增大.[详解]解:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故选:D.[点睛]本题考查了动点问题的函数图象.用图象解决问题时,要理清图象的含义即会识图.二、填空题(每题3分,共24分)11. 若a+3b﹣3=0,则3a•27b=_____.[答案]27[解析][分析]先将原式化为同底,然后利用条件即可求出答案.[详解]解:原式=3a•(33)b=3a+3b,∵a+3b﹣3=0∴a+3b=3,∴原式=33=27,故答案为:27.[点睛]本题考查幂的乘方、同底数幂的乘法,解题的关键是熟练掌握运算法则.12. (a﹣2018)2+(2020﹣a)2=20,则a﹣2019=_____.[答案]±3[解析][分析]将(a﹣2018)、(2020﹣a)分别转化为含有(a﹣2019)的形式,然后利用完全平方公式解答.[详解]解:∵(a﹣2018)2+(2020﹣a)2=[(a﹣2019)+1]2+[(a﹣2019)﹣1]2=2(a﹣2019)2+2=20.∴(a﹣2019)2=9.∴a﹣2019=±3.故答案是:±3.[点睛]此题主要考查求代数式的值,解题关键是根据题意整理式子.13. 若∠A与∠B的两边分别平行,且∠A比∠B的3倍少40°,则∠B=_____度.[答案]55或20[解析][分析]根据平行线性质得出∠A+∠B=180°①,∠A=∠B②,求出∠A=3∠B﹣40°③,把③分别代入①②求出即可.[详解]解:∵∠A与∠B的两边分别平行,∴∠A+∠B=180°①,∠A=∠B②,∵∠A比∠B的3倍少40°,∴∠A=3∠B﹣40°③,把③代入①得:3∠B﹣40°+∠B=180°,∠B=55°,把③代入②得:3∠B﹣40°=∠B,∠B=20°,故答案为:55或20.[点睛]本题考查平行线的性质,解题的关键是掌握由∠A和∠B的两边分别平行,即可得∠A =∠B或∠A+∠B=180°,注意分类讨论思想的应用.14. 已知a,b,c是一个三角形的三边长,化简|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=_____.[答案]a﹣3b+c[解析][分析]根据三角形三边关系得到a+c﹣b>0,b﹣c+a>0,a﹣b﹣c<0,再去绝对值,合并同类项即可求解.[详解]解:∵a,b,c是一个三角形的三条边长,∴a+c﹣b>0,b﹣c+a>0,a﹣b﹣c<0,|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=a+c﹣b﹣b+c﹣a+a﹣b﹣c=a﹣3b+c,故答案为:a﹣3b+c.[解答]本题考查了三角形三边关系,绝对值的意义,根据三角形三边关系得到三个绝对值内整式的符号是解题关键.15. 已知BD、CE是△ABC的高,BD、CE所在的直线相交所成的角中有一个角为60°,则∠BAC=_____.[答案]60°或120°.[解析][分析]分两种情况:(1)当∠A为锐角时,如图1;(2)当∠A为钝角时,如图2;根据四边形的内角和为360°即可得出结果.[详解]解:分两种情况:(1)当∠A为锐角时,如图1,∵∠DOC=60°,∴∠EOD=120°,∵BD、CE是△ABC的高,∴∠AEC=∠ADB=90°,∴∠A=360°﹣90°﹣90°﹣120°=60°;(2)当∠A为钝角时,如图2,∵∠F=60°,同理:∠ADF=∠AEF=90°,∴∠DAE=360°﹣90°﹣90°﹣60°=120°,∴∠BAC=∠DAE=120°,综上所述,∠BAC的度数为60°或120°,故答案为:60°或120°.[点睛]本题考查了三角形高线的定义,四边形的内角和等知识,掌握相关定理,能分类讨论是解题关键.16. 一个等腰三角形的周长是21,其中两边之差为6,则腰长为_____.[答案]9[解析][分析]分底小于腰和底大于腰两种情况分别计算三角形的三边,再根据三边关系进行取舍即可.[详解]解:(1)设底为x,则腰为(x+6),由题意得:x+2(x+6)=21,解得:x=3,当x=3时,x+6=9,此时等腰三角形的三边为:3,9,9;(2)设底为x,则腰为(x﹣6),由题意得:x+2(x﹣6)=21,解得:x=11,当x=11时,x﹣6=5,11,5,5不能构成三角形,不符合题意;因此,腰为9,故答案为:9.[点睛]本题考查了等腰三角形的定义,三角形的三边关系,根据题意分类讨论,并对答案根据三边关系进行分析取舍是解题关键.17. 如图,AB∥CD,CF平分∠DCG,GE平分∠CGB交FC的延长线于点E,若∠E=34°,则∠B的度数为____________.[答案]68°[解析][分析]如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.[详解]解:如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.则有22x y GMCx y E=+∠⎧⎨=+∠⎩①②,①-2×②得:∠GMC=2∠E, ∵∠E=34°,∴∠GMC=68°,∵AB∥CD,∴∠GMC=∠B=68°,故答案为:68°.[点睛]本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟悉基本图形,学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考填空题中的能力题.18. 已知动点P 以每秒2cm 的速度沿图甲的边框按从B →C →D →E →F →A 的路径移动,相应的△ABP 的面积S (cm 2)与时间t (秒)之间的关系如图乙中的图象所示.其中AB =6cm .当t =_____时,△ABP 的面积是15cm 2.[答案]2.5或14.5[解析][分析]根据题意得:动点P 在BC 上运动的时间是4秒,又由动点的速度,可得BC 、AF 的长;再根据三角形的面积公式解答即可.[详解]解:动点P 在BC 上运动时,对应的时间为0到4秒,易得:BC =2cm/秒×4秒=8(cm ); 动点P 在CD 上运动时,对应的时间为4到6秒,易得:CD =2cm/秒×(6﹣4)秒=4(cm );动点P 在DF 上运动时,对应的时间为6到9秒,易得:DE =2cm/秒×(9﹣6)秒=6(cm ),故图甲中的BC 长是8cm ,DE =6cm ,EF =6﹣4=2(cm )∴AF =BC+DE =8+6=14(cm ),∴b =9+(EF+AF )÷2=17, ∴12152AB t ⋅=或()12152AB BC CD DE EF AF t ++++-=, 解得t =2.5或14.5.故答案为:2.5或14.5.[点睛]本题考查了一元一次方程的应用及动点问题,根据题意需要分情况讨论是解题的关键.三、解答题(共7小题,满分76分)19. 计算(1)(﹣a )3•a 2+(﹣2a 4)2÷a 3(2)()-30212019-20182020+-3.14--2π⎛⎫⨯ ⎪⎝⎭.[答案](1)3a5;(2)10.[解析][分析](1)直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别化简得出答案;(2)直接利用乘法公式将原式变形进而得出答案.[详解]解:(1)原式=﹣a5+4a8÷a3=﹣a5+4a5=3a5;(2)原式=20192﹣(2019﹣1)(2019+1)+1+8=20192﹣(20192﹣1)+9=20192﹣20192+1+9=10.[点睛]本题考查了整式的乘法运算,平方差公式,0指数幂,负整数指数幂等知识,熟知相关运算法则是解题关键.20. 先化简,再求值:[(2x﹣y)2﹣(3x+y)(3x﹣y)+5x2]÷(﹣2y),其中x=﹣12,y=1.[答案]﹣y+2x,﹣2[解析][分析]先根据整式的运算法则进行化简,然后将x与y的值代入原式即可求出答案.[详解]解:原式=(4x2﹣4xy+y2﹣9x2+y2+5x2)÷(﹣2y)=(2y2﹣4xy)÷(﹣2y)=﹣y+2x,当x=12-,y=1时,原式=﹣1+2×(12 -)=﹣1﹣1=﹣2.[点睛]本题考查乘法公式的混合运算,熟记完全平方公式和平方差公式是解题的关键,需要注意把乘法公式的结果用括号括起来.21. 如图,在四边形ABCD中,AB//CD,E为BC延长线上一点,AE交CD于点F,∠1=∠2,∠3=∠4,试说明AD//BE.证明:∵∠3=∠4( )且∠4=∠AFD( )∴∠3=∠AFD在△ABC中,∠1+∠B+∠3=180°在△ADF中, =180°∵∠1=∠2,∠3=∠AFD∴∠B=∠D( )∵AB//CD∴∠B=∠DCE( )∴(等量代换)∴AD//BE( )[答案]已知;对顶角相等;∠2+∠D+∠AFD;等式的性质;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.[解析]分析]利用平行线的性质定理和判定定理进行解答即可.[详解]证明:∵∠3=∠4(已知)且∠4=∠AFD(对顶角相等)∴∠3=∠AFD,在△ABC中,∠1+∠B+∠3=180°,在△ADF中,∠2+∠D+∠AFD=180°,∵∠1=∠2,∠3=∠AFD,∴∠B=∠D(等式的性质),∵AB//CD,∴∠B=∠DCE(两直线平行,同位角相等)∴∠D=∠DCE(等量代换),∴AD//BE(内错角相等,两直线平行).故答案为:已知;对顶角相等;∠2+∠D+∠AFD;等式的性质;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.[点睛]本题考查平行线的性质以及判定定理,熟练掌握相关定理是解决此题的关键.22. 如图,在△ABC中,点D在边BC上,点G在边AB上,点E、F在边AC上,∠AGF=∠ABC=70°,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若DE⊥AC,∠2=150°,求∠A的度数.[答案](1)DE∥BF,理由见解析;(2)∠A =50°.[解析][分析](1)依据FG∥CB,即可得出∠1=∠3,再根据∠1+∠2=180°,即可得到∠2+∠3=180°,进而判定DE∥BF.(2)依据三角形外角性质以及三角形内角和定理,即可得到∠A的度数.[详解]解:(1)BF与DE的位置关系为互相平行,理由:∵∠AGF=∠ABC=70°,∴FG∥CB,∴∠1=∠3,又∵∠1+∠2=180°,∴∠2+∠3=180°∴DE∥BF.(2)∵DE⊥AC,∠2=150°,∴∠C=∠2﹣∠CED=150°﹣90°=60°,又∵∠ABC=70°,∴∠A=180°﹣∠ABC﹣∠C=180°﹣70°﹣60°=50°.[点睛]此题主要考查平行线的判定和性质、三角形的内角和定理、三角形的外角性质,熟练进行逻辑推理是解题关键.23. 如图,某市修建了一个大正方形休闲场所,在大正方形内规划了一个正方形活动区,连接绿地到大正方形四边的笔直小路如图所示.已知大正方形休闲场所的边长为6a米,四条小路的长与宽都为b米和b2米.阴影区域铺设草坪,草坪的造价为每平米30元.(1)用含a、b的代数式表示草坪(阴影)面积并化简.(2)若a=10,b=5,计算草坪的造价.[答案](1)24ab-6b2;(2)31500元.[解析][分析](1)根据已知条件,用大正方形的面积减去4个长方形的面积再减去中间小正方形的面积即可求解.(2)把a=10,b=5及草坪的造价为每平米30元代入代数式即可求解.[详解]解:(1)∵阴影部分的面积为:大正方形的面积减去4个长方形的面积再减去中间小正方形的面积,∴草坪(阴影)面积为:6a×6a﹣4×b×12×b﹣(6a﹣2b)2=24ab-6b2.(2)当a=10,b=5时,草坪的造价为:(24×10×5-6×52)×30=31500(元).[点睛]本题考查了整式的应用和求整式的值,根据题意正确列出整式是解题的关键.24. 甲、乙两人在同一平直的道路上同时、同起点、同方向出发,他们分别以不同的速度匀速跑步2400米(甲的速度大于乙的速度),当甲第一次超出乙600米时,甲停下来等候乙.甲、乙两人会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息.在整个跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间x(秒)之间的关系图象如图所示,根据图象中提供的信息回答问题:(1)A点表示的是;(2)乙出发s时到达终点,a=,b=;(3)甲乙出发s相距150米.[答案](1)甲在600秒时,第一次超出乙600米;(2)1600,1000,1360;(3)150或900或1150或1500.[解析][分析](1)由图象可得:点A表示甲在600秒时,第一次超出乙600米;(2)先求出甲,乙速度,即可求解;(3)分四种情况讨论,由时间=路程÷速度,即可求解.[详解]解:(1)点A表示甲在600秒时,第一次超出乙600米,故答案为:甲在600秒时,第一次超出乙600米;(2)由图形可得乙出发1600s时到达终点,∴乙的速度=24001600=1.5米/秒,∴甲的速度=600600+1.5=2.5秒,∴a=600 2.51.5⨯=1000,∴b=24002.5﹣600+1000=1360,故答案为:1600,1000,1360;(2)刚出发时,1502.5 1.5-=150s,甲在A地时,2.56001501.5⨯-=900s,从A地出发后,1000+150=1150s,甲到终点后,24001501.5-=1500s,综上所述:甲乙出发150s或900s或1150s或1500s时,相距150米.故答案为:150或900或1150或1500.[点睛]此题主要考查根据函数图象的信息解决实际问题,解题关键是读懂函数图象.25. 在△ABC中,∠B,∠C均为锐角且不相等,线段AD,AE分别是△ABC中BC边上的高和△ABC的角平分线.(1)如图1,∠B=70°,∠C=30°,则∠DAE的度数.(2)若∠B=α,∠DAE=10°,则∠C=(3)F是射线AE上一动点,G、H分别为线段AB,BE上的点(不与端点重合),将△ABC沿着GH折叠,使点B 落到点F处,如图2所示,其中∠1=∠AGF,∠2=∠EHF,请直接写出∠1,∠2与∠B的数量关系.[答案](1)∠DAE=20°;(2)α﹣20°;(3)∠1+∠2=2∠B[解析][分析](1)三角形根据三角形内角和定理求出∠BAC,再由角平分线性质求得∠BAE,再根据三角形的高和直角三角形的性质求得∠BAD,进而由角的和差关系求得结果;(2)根据直角三角形的性质求得∠BAD,再由角的和差关系求得∠BAE,由角平分线的定义求得∠BAC,最后根据三角形内角和定理求得结果;(3)根据邻补角性质和角平分线定义用∠1、∠2分别表示∠BGH和∠BHG,再由三角形内角和定理得结果.[详解]解:(1)∵∠B=70°,∠C=30°,∴∠BAC=180°﹣70°﹣30°=80°,∵AE平分∠BAC,∴∠BAE=40°,∵AD是△ABC的高,∴∠ADB=90°,∴∠BAD=90°﹣∠B=20°,∴∠DAE=∠BAE﹣∠BAD=40°﹣20°=20°;(2)∵∠B=α,∠ADB=90°,∴∠BAD=90°﹣α,∵∠DAE=10°,∴∠BAE=∠BAD+∠DAE=100°﹣α,∵AE平分∠BAC,∴∠BAC=200°﹣2α,∴∠C=180°﹣∠B﹣∠BAC=180°﹣α﹣200°+2α=α﹣20°, 故答案为:α﹣20°;(3)∠1+∠2=2∠B.理由:由折叠知,11,,22BGH BGF BHG BHF ∠=∠∠=∠∵∠BGF=180°﹣∠1,∠BHF=180°﹣∠2,∴∠BGH=90°﹣12∠1,∠BHG=90°﹣122∠,∴∠B=180°﹣∠BGH﹣∠BHG=1112 22∠+∠,即∠1+∠2=2∠B.[点睛]本题考查三角形内角和、邻角补角性质、角平分线、高线、直角三角形相关性质以及折叠图形的特点,熟练掌握相关知识点并运用是解决此题的关键.。

人教版数学七年级下册《期中检测试题》(含答案)

人教版数学七年级下册《期中检测试题》(含答案)

人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题1.下列计算正确的是( )A. x2+x2=x4B. x2•x3=x5C. x6÷x2=x3D. (2x)3=6x32.下列每个网格中均有两个图形,其中一个图形可以由另一个进行轴对称变换得到的是()A. B. C. D.3.如图,直线a、b被直线c所截,下列说法不正确的是( )A. ∠1与∠5是同位角B. ∠2与∠4是对顶角C. ∠3与∠6是同旁内角D. ∠5与∠6互为余角4.在圆周长C=2πR中,常量与变量分别是( )A. 2是常量,C、π、R是变量B. 2π是常量,C,R是变量C. C、2是常量,R是变量D. 2是常量,C、R是变量5.如图,能判定AB∥CD的条件是()A ∠1=∠3 B. ∠2=∠4C. ∠DCE=∠DD. ∠B+∠BAD=180°6.如图,在△ABC和△DCB中,∠ABC=∠DCB,要使△ABC≌△DCB,还需添加一个条件,这个条件不能是( )A. ∠A=∠DB. ∠ACB=∠DBCC. AB=DCD. AC=DB7.如图,将一个正方形分成9个全等的小正方形,连接三条线段得到∠1,∠2,∠3,则∠1+∠2+∠3的度数和等于()A. 120°B. 125°C. 130°D. 135°8.在△ABC中,AB=AC,∠BAC=45°.若AD平分∠BAC交BC于D,BE⊥AC于E,且交A于O,连接OC.则下列说法中正确的是( )①AD⊥BC;②OC平分BE;③OE=CE;④△ACD≌△BCE;⑤△OCE的周长=AC的长度A. ①②③B. ②④⑤C. ①③⑤D. ①③④⑤二.填空题9.用科学记数法表示:0.007398=_____.10.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD=___________° .11.已知△ABC是等腰三角形,它的周长为20cm,一条边长6cm,那么腰长是_____.12.如图,长方形是由若干个小长方形和小正方形组成,从面积的角度研究这个图形,可以得到一个数学等式,这个数学等式是_____.(用图中的字母表示出来)13.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在△ABC 外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么α,β,γ 三个角的数量关系是__________ .14.已知(9n)2=38,则n=_____.15.若多项式a2+2ka+1是一个完全平方式,则k的值是_____.16.若∠1与∠2有一条边在同一直线上,且另一边互相平行,∠1=50°,则∠2=_________.17.如图,已知AB∥CD,则∠A、∠C、∠P关系为_____.18.如图,等边△ABC中,BD⊥AC于点D,AD=3.5cm,点P、Q分别为AB、AD上的两个定点且BP=AQ=2cm,若在BD上有一动点E使PE+QE最短,则PE+QE的最小值为_____cm三.解答题19.计算(1)(2m+n﹣2)(2m+n+2) (2)(2+a)(2﹣a)﹣a(5b﹣a)+3a4b2+(﹣a2b)220.(1)计算:(﹣12)﹣1+(π﹣3.14)0+(﹣23)2019•(32)2018 (2)先化简,再求值:[(x ﹣2y )2+(x ﹣2y )(2y +x )]÷2x ,其中x =2,y =﹣1.21.已知()25a b +=,()23a b -=,求下列式子的值:(1)22a b +;(2)4ab .22.已知:如图,AB ∥CD ,∠B =∠D .点EF 分别在AB 、CD 上.连接AC ,分别交DE 、BF 于G 、H .求证:∠1+∠2=180°证明:∵AB ∥CD ,∴∠B =_____._____又∵∠B =∠D ,∴_____=_____.(等量代换)∴_____∥_____._____∴∠l +∠2=180°._____23.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A 地到B 地,乙驾车从B 地到A 地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙在整个过程中,甲、乙两人的距离y (千米)与甲出发的时间x (分)之间的关系如图所示(1)甲速度为______千米/分,乙的速度为______千米/分(2)当乙到达终点A 后,甲还需______分钟到达终点B(3)请通过计算回答:当甲、乙之间的距离为10千米时,甲出发了多少分钟?24.在△ABC 中,AB =AC ,点D 是射线CB 上一个动点(不与点B ,C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE=______度.(2)设∠BAC=α,∠DCE=β.①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).答案与解析一.选择题1.下列计算正确的是( )A. x2+x2=x4B. x2•x3=x5C. x6÷x2=x3D. (2x)3=6x3[答案]B[解析][分析]直接利用积的乘方运算法则以及同底数幂的乘除运算法则分别计算得出答案.[详解]A、x2+x2=2x2,故此选项错误;B、x2•x3=x5,正确;C、x6÷x2=x4,故此选项错误;D、(2x)3=8x3,故此选项错误;故选B.[点睛]此题主要考查了积的乘方运算以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.2.下列每个网格中均有两个图形,其中一个图形可以由另一个进行轴对称变换得到的是()A B. C. D.[答案]B[解析][分析]根据轴对称的性质求解.[详解]观察选项可知,A中的两个图形可以通过平移,旋转得到,C中可以通过平移得到,D中可以通过放大或缩小得到,只有B可以通过对称得到.故选B.[点睛]本题考查了轴对称的性质,了解轴对称的性质及定义是解题的关键.3.如图,直线a、b被直线c所截,下列说法不正确的是( )A. ∠1与∠5是同位角B. ∠2与∠4是对顶角C. ∠3与∠6是同旁内角D. ∠5与∠6互为余角[答案]D[解析][分析] 根据同位角、对顶角、同旁内角以及余角的定义对各选项作出判断即可.[详解]解:A 、∠1与∠5是同位角,故本选项不符合题意;B 、∠2与∠4对顶角,故本选项不符合题意;C 、∠3与∠6是同旁内角,故本选项不符合题意.D 、∠5与∠6互为补角,故本选项符合题意.故选:D .[点睛]本题主要考查了同位角、对顶角、同旁内角的定义,解答此题的关键是确定三线八角,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.4.在圆的周长C =2πR 中,常量与变量分别是( )A. 2是常量,C 、π、R 是变量B. 2π是常量,C,R 是变量C. C 、2是常量,R 是变量D. 2是常量,C 、R 是变量[答案]B[解析][分析]根据变量常量的定义在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,可求解.[详解]在圆的周长公式中2R C π=中,C 与r 是改变的,π是不变的;所以变量是C ,R ,常量是2π.故答案选B[点睛]本题考查了变量与常量知识,属于基础题,正确理解变量与常量的概念是解题的关键.5.如图,能判定AB ∥CD 的条件是( )A. ∠1=∠3B. ∠2=∠4C. ∠DCE=∠DD. ∠B+∠BAD=180°[答案]B[解析][分析]在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.[详解]A. ∵∠1=∠3,∴AD∥BC,而不能判定AB∥CD,故A错误;B.∵∠2=∠4,∴AB∥CD,故B正确,C.∵∠DCE=∠D,∴AD∥BC,而不能判定AB∥CD,故C错误;D. ∵∠B+∠BAD=180°,∴AD∥BC,而不能判定AB∥CD,故D错误.故选:B[点睛]本题考查了平行线的判定方法,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两直线平行.6.如图,在△ABC和△DCB中,∠ABC=∠DCB,要使△ABC≌△DCB,还需添加一个条件,这个条件不能是( )A. ∠A=∠DB. ∠ACB=∠DBCC. AB=DCD. AC=DB[答案]D[解析][分析]由题意可知,∠ABC=∠DCB,BC=CB,然后利用三角形全等的判定定理逐个进行判定即可.[详解]解:由题意∠ABC=∠DCB,BC=CB∴A. ∠A=∠D,可用AAS定理判定△ABC≌△DCBB. ∠ACB=∠DBC,可用ASA定理判定△ABC≌△DCBC. AB=DC,可用SAS定理判定△ABC≌△DCBD. AC=DB,不一定能够判定两个三角形全等故选:D[点睛]本题考查三角形全等的判定,掌握判定定理灵活应用是本题的解题关键.7.如图,将一个正方形分成9个全等的小正方形,连接三条线段得到∠1,∠2,∠3,则∠1+∠2+∠3的度数和等于( )A. 120°B. 125°C. 130°D. 135°[答案]D[解析][分析] 根据全等三角形的判定定理可得出BCA BDE ∆≅∆,从而有3CAB ∠=∠,这样可得1390∠+∠=︒,根据图形可得出245∠=︒,这样即可求出123∠+∠+∠的度数.[详解]解:在ABC ∆与BDE ∆中AC DE C D CB DB =⎧⎪∠=∠⎨⎪=⎩, ()BCA BDE SAS ∴∆≅∆,3CAB ∴∠=∠,由图可知,1=90CAB ∠+∠︒,∴1390∠+∠=︒,由图可知,245∠=︒,1239045135∴∠+∠+∠=︒+︒=︒.故选:.[点睛]此题主要考查了全等三角形的判定与性质,属于数形结合的类型,解答本题需要判定BCA BDE ∆≅∆,这是解答本题关键.8.在△ABC 中,AB =AC ,∠BAC =45°.若AD 平分∠BAC 交BC 于D ,BE ⊥AC 于E ,且交A 于O ,连接OC .则下列说法中正确的是( )①AD ⊥BC ;②OC 平分BE ;③OE =CE ;④△ACD ≌△BCE ;⑤△OCE 的周长=AC 的长度A. ①②③B. ②④⑤C. ①③⑤D. ①③④⑤[答案]C[解析][分析]①正确,利用等腰三角形的三线合一即可证明;②错误,证明OB=OC>OE即可判断;③正确,证明∠ECO =∠OBA=45°即可;④错误,缺少全等的条件;⑤正确,只要证明BE=AE,OB=OC,EO=EC即可判断.[详解]解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,BD=CD,即①正确,∴OB=OC,∵BE⊥AC,∵OC>OE,∴OB>OE,即②错误,∵∠ABC=∠ACB,∠OBC=∠OCB,BE⊥AC,∴∠ABE=∠ACO=45°,∴∠ECO=∠EOC=45°,∴OE=CE,即③正确,∵∠AEB=90°,∠ABE=45°,∴AE=EB,∴△OEC的周长=OC+OE+EC=OE+OB+EC=EB+EC=AE+EC=AC,即⑤正确,无法判断△ACD≌△BCE,故④错误,故选:C.[点睛]本题考查等腰三角形的性质,等腰直角三角形的判定和性质,线段垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二.填空题9.用科学记数法表示:0.007398=_____.[答案]3⨯7.39810-绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.[详解]解:0.007398=7.398×10﹣3.故答案为:37.39810-⨯.[点睛]本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.10.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD =___________°.[答案]70.[解析][分析]根据线段垂直平分线的性质得到DA=DC ,根据等腰三角形的性质得到∠DAC=∠C ,根据三角形内角和定理求出∠BAC 的度数,计算出结果.[详解]解:∵DE 是AC 的垂直平分线,∴DA=DC ,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC-∠DAC=70°,故答案为70.[点睛]本题考查线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.11.已知△ABC 是等腰三角形,它的周长为20cm ,一条边长6cm ,那么腰长是_____.[答案]6cm 或7cm .当腰长=6cm时,底边=20﹣6﹣6=8cm,当底边=6cm时,腰长=2062﹣=7cm,根据三角形的三边关系,即可推出腰长.[详解]解:∵等腰三角形的周长为20cm,∴当腰长=6cm时,底边=20﹣6﹣6=8cm,即6+6>8,能构成三角形,∴当底边=6cm时,腰长=2062﹣=7cm,即7+6>7,能构成三角形,∴腰长是6cm或7cm,故答案为6cm或7cm.[点睛]本题主要考查等腰三角形的性质,三角形的三边关系,关键在于分析讨论6cm为腰长还是底边长.12.如图,长方形是由若干个小长方形和小正方形组成,从面积的角度研究这个图形,可以得到一个数学等式,这个数学等式是_____.(用图中的字母表示出来)[答案](a+2b)(a+3b)=a2+5ab+6b2[解析][分析]根据图形求面积有直接求和间接求两种方法,列出等式即可.[详解]解:根据题意得:整个长方形的面积:S=(a+2b)(a+3b),同时,这个图形是由5个长是a宽是b的小长方形和6个边长是b的小正方形和一个边长是a的正方形组成的,所以面积S=a2+5ab+6b2.∴(a+2b)(a+3b)=a2+5ab+6b2.故答案为:(a+2b)(a+3b)=a2+5ab+6b2.[点睛]这道题主要考查整式的乘法的推导,难度较低,利用数形结合的方法是解题的关键.13.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在△ABC 外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么α,β,γ 三个角的数量关系是__________.[答案]γ=2α+β.[解析][分析]根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.[详解]由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故答案为γ=2α+β.[点睛]此题考查三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.14.已知(9n)2=38,则n=_____.[答案]2[解析][分析]先把9n化为32n,再根据幂的乘方的运算法则,底数不变,指数相乘,即可得出4n=8,即可求得n的值.[详解](9n)2=(32n)2=34n=38,∴4n=8,解得n =2.[点睛]此题考查幂的乘方,解题关键在于掌握运算法则.15.若多项式a 2+2ka+1是一个完全平方式,则k 的值是_____.[答案]±1[解析]分析:完全平方式有两个:222a ab b ++和222a ab b -+,根据以上内容得出221ka a =±⋅,求出即可. 详解:∵221a ka ++ 是一个完全平方式,∴2ka =±2a ⋅1, 解得:k =±1, 故答案是:±1. 点睛:考查完全平方公式,熟记公式是解题的关键.16.若∠1与∠2有一条边在同一直线上,且另一边互相平行,∠1=50°,则∠2=_________.[答案]50°或130°;[解析][分析]根据平行线的性质:两直线平行,同位角相等即可解答此题.[详解]解:如图:当α=∠2时,∠2=∠1=50°,当β=∠2时,∠β=180°−50°=130°,故答案为:50°或130°;[点睛]本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.17.如图,已知AB ∥CD ,则∠A 、∠C 、∠P 的关系为_____.[答案]∠A+∠C﹣∠P=180°[解析][详解]如图所示,作PE∥CD,∵PE∥CD,∴∠C+∠CPE=180°,又∵AB∥CD,∴PE∥AB,∴∠A=∠APE,∴∠A+∠C-∠P=180°,故答案是:∠A+∠C-∠P=180°.18.如图,等边△ABC中,BD⊥AC于点D,AD=3.5cm,点P、Q分别为AB、AD上的两个定点且BP=AQ=2cm,若在BD上有一动点E使PE+QE最短,则PE+QE的最小值为_____cm[答案]5[解析][分析]过BD作P的对称点,连接P,Q,Q与BD交于一点E,再连接PE,根据轴对称的相关性质以及两点之间线段最短可以得出此时PE+QE最小,并且等于Q,进一步利用全等三角形性质求解即可.[详解]如图,过BD作P的对称点,连接P,Q,Q与BD交于一点E,再连接PE,此时PE+QE最小.∵与P关于BD对称,∴PE=E,BP=B=2cm,∴PE+QE= Q,又∵等边△ABC中,BD⊥AC于点D,AD=3.5cm,∴AC=BC=AB=7cm,∵BP=AQ=2cm,∴QC=5cm,∵B=2cm,∴C=5cm,∴△Q C为等边三角形,∴Q=5cm.∴PE+QE=5cm.所以答案为5.[点睛]本题主要考查了利用对称求点之间距离的最小值以及等边三角形性质,熟练掌握相关概念是解题关键.三.解答题19.计算(1)(2m+n﹣2)(2m+n+2) (2)(2+a)(2﹣a)﹣a(5b﹣a)+3a4b2+(﹣a2b)2[答案](1)22++-;(2)2-5ab+4a4b2.m mn n444[解析][分析](1)根据平方差公式和完全平方公式计算即可;(2)根据整式乘法,加减运算法则进行计算即可.[详解]解:(1)(2m+n﹣2)(2m+n+2)()2m n+-=2422m mn n++-;=444(2)(2+a)(2﹣a)﹣a(5b﹣a)+ 3a4b2+(﹣a2b)2=2-a2-5ab+a2+3a4b2+ a4b2=2-5ab+4a4b2.[点睛]本题考查了整式的乘法运算和乘法公式,解题的关键是牢记平方差公式和完全平方公式,并严格按照整式乘法法则进行.20.(1)计算:(﹣12)﹣1+(π﹣3.14)0+(﹣23)2019•(32)2018 (2)先化简,再求值:[(x ﹣2y )2+(x ﹣2y )(2y +x )]÷2x ,其中x =2,y =﹣1.[答案](1)53-;(2)2x y -,4. [解析][分析](1)根据负整数指数幂,0指数幂,积的乘方逆运算计算,再进行加减运算即可;(2)先根据完全平方公式和平方差公式展开合并,再根据多项式除以单项式计算,最后代入求值即可.[详解]解:(1)(﹣12)﹣1+(π﹣3.14)0+(﹣23)2019•(32)2018 20182018223=21332⎛⎫⎛⎫⎛⎫-++-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()20182=113⎛⎫-+-⨯- ⎪⎝⎭ 2=13⎛⎫-+- ⎪⎝⎭ =53-; (2)[(x ﹣2y )2+(x ﹣2y )(2y +x )]÷2x =22224442x xy y x y x ⎡⎤-++-÷⎣⎦=2242x xy x ⎡⎤-÷⎣⎦=2x y -,当x =2,y =﹣1时,原式=()221-⨯-=4.[点睛]本题考查了负整数指数幂,0指数幂,积的乘方逆运算,整式的加减乘除混合运算及代入求值等知识,解题关键是牢记相关知识,严格按法则进行计算.21.已知()25a b +=,()23a b -=,求下列式子值:(1)22a b +;(2)4ab .[答案](1)4;(2)2;(1)直接利用完全平方公式将原式展开,进而求出22a b +的值;(2)直接利用(1)中所求,进而得出ab 的值,求出答案即可.[详解]解:(1)∵()25a b +=,()23a b -=,∴22+25a b ab +=,2232b a b a +-=,∴()2228a b +=,解得:224a b +=,(2)∵224a b +=,∴4+2ab=5,解得:ab=12, ∴4ab =14=22⨯; [点睛]本题主要考查了完全平方公式,掌握完全平方公式是解题的关键.22.已知:如图,AB ∥CD ,∠B =∠D .点EF 分别在AB 、CD 上.连接AC ,分别交DE 、BF 于G 、H .求证:∠1+∠2=180°证明:∵AB ∥CD ,∴∠B =_____._____又∵∠B =∠D ,∴_____=_____.(等量代换)∴_____∥_____._____∴∠l +∠2=180°._____[答案]见解析根据平行线的性质结合已知得到∠D=∠BFC,证明DE∥BF,利用平行线的性质得出结论.[详解]证明:∵AB∥CD,∴∠B=∠BFC.(两直线平行,内错角相等),又∵∠B=∠D,∴∠D=∠BFC.(等量代换)∴DE∥BF.(同位角相等,两直线平行),∴∠l+∠2=180°.(两直线平行,同旁内角互补).故答案为:∠BFC;两直线平行,内错角相等;∠D;∠BFC;DE;BF;同位角相等,两直线平行;两直线平行,同旁内角互补.[点睛]本题考查了平行线的判定和性质,熟练掌握平行线的性质和判定定理是解题的关键.23.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示(1)甲的速度为______千米/分,乙的速度为______千米/分(2)当乙到达终点A后,甲还需______分钟到达终点B(3)请通过计算回答:当甲、乙之间的距离为10千米时,甲出发了多少分钟?[答案](1)16,43;(2) 78;(3)283或60分钟[解析][分析](1)根据路程与时间的关系,可得甲乙的速度;(2)根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B站需要的时间,再根据有理数的减法,可得答案;(3)根据题意列方程即可解答.[详解]解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,甲的速度是1÷6=16千米/分钟,由纵坐标看出AB两地的距离是16千米, 设乙的速度是x千米/分钟,由题意,得10x+16×16=16,解得x=43,即乙的速度为43米/分钟.故答案为16;43;(2)甲、乙相遇时,乙所行驶的路程:4401033⨯=(千米)相遇后乙到达A站还需1416263⎛⎫⨯÷=⎪⎝⎭(分钟),相遇后甲到达B站还需411036⎛⎫⨯÷⎪⎝⎭=80分钟,当乙到达终点A时,甲还需80-2=78分钟到达终点B.故答案为78;(3)110606÷=(分钟),设甲出发了x分钟后,甲、乙之间的距离为10千米时,根据题意得,16x+43(x-6)=16-10,解得x=283,答:甲出发了283或60分钟后,甲、乙之间的距离为10千米时.[点睛]本题考查了一次函数的应用,利用同路程与时间的关系得出甲乙的速度是解题关键.24.在△ABC中,AB=AC,点D是射线CB上的一个动点(不与点B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D 线段CB 上,且∠BAC =90°时,那么∠DCE =______度.(2)设∠BAC =α,∠DCE =β.①如图2,当点D 在线段CB 上,∠BAC ≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D 在线段CB 的延长线上,∠BAC ≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).[答案](1)90°;(2)①α+β=180°;②α=β.[解析]试题分析:(1)利用等腰三角形证明ABD ≅ACE,所以∠ECA=∠DBA,所以∠DCE =90°.(2)方法类似(1)证明△ABD ≌△ACE ,所以∠B=∠ACE ,再利用角的关系求αβ180+=︒. (3)同理方法类似(1).试题解析:解:(1) 90 度.∠DAE =∠BAC ,所以∠BAD =∠EAC,AB=AC,AD=AE ,所以ABD ≅ACE,所以∠ECA=∠DBA,所以∠ECA =90°.(2)① αβ180+=︒.理由:∵∠BAC =∠DAE ,∴∠BAC -∠DAC =∠DAE -∠DAC ,即∠BAD =∠CAE,又AB=AC ,AD=AE ,∴△ABD ≌△ACE ,∴∠B=∠ACE .∴∠B +∠ACB =∠ACE+∠ACB ,∴B ACB DCE β∠∠∠+==.∵αB ACB 180∠∠++=︒,∴αβ180+=︒.(3)补充图形如下, αβ=.。

人教版2023年七年级数学下册期中质量教学监测试题

人教版2023年七年级数学下册期中质量教学监测试题

人教版2023年七年级数学下册期中质量教学监测试题姓名: 得分: 日期:一、选择题(本大题共 9 小题)1、若点A (a+1,b-2)在第二象限,则点B (-a ,1-b )在( )A.第一象限B.第二象限C.第三象限D.第四象限2、在实数,,0.101001,中,无理数的个数是( )22274A.0个 B.1个 C.2个 D.3个3、在平面直角坐标系中,第二象限内的点P 到x 轴的距离是2,到y 轴的距离是3,已知线段PQ∥y 轴且PQ=5,则点Q 的坐标是( )A.(-3,7)或(-3,-3)B.(-3,3)或(-7,3)C.(-2,2)或(-8,2)D.(-2,8)或(-2,-2)4、如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=35°,则∠2等于( )A.35°B.45°C.55°D.65°5、已知:如图,点E 、F 分别在直线AB 、CD 上,点G 、H 在两直线之间,线段EF 与GH 相交于点O ,且有∠AEF+∠CFE=180°,∠AEF-∠1=∠2,则在图中相等的角共有( )A.5对B.6对C.7对D.8对6、命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等.其中错误的有( )A.1个B.2个C.3个D.4个7、在直角坐标系中,一只电子青蛙从原点出发,每次可以向上或向下或向左或向右跳动一个单位,若跳三次,则到达的终点有几种可能( )A.12B.16C.20D.648、如图,下列说法错误的是()A.∠A与∠C是同旁内角B.∠1与∠3是同位角C.∠2与∠3是内错角D.∠3与∠B是同旁内角9、如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,-1),C(-2,-1),D(-1,1).y轴180∘P1P1180∘P2P2180∘P3P3上一点P(0,2)绕点A旋转得点,点绕点B旋转得点,点绕点C旋转得点,点绕点180∘P4P1P2P2010D旋转得点,…,重复操作依次得到点,,…,则点的坐标是( )A. (2010,2)B. (2012,-2 )C. (0,2)D. (2010,-2 )二、填空题(本大题共 11 小题)∠COF=34∘10、如图,已知直线AB和CD相交于O点,OC⊥OE,OF平分∠AOE,,则∠BOD的度数______.11、将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于______度.12、如图,点O是直线l上一点,作射线OA,过O点作OB⊥OA于点O,则图中∠1,∠2的数量关系为 ______ .13、如图,在长方形ABCD 中,AB=9,BC=5,则图中四个小长方形的周长和为 ______ .14、已知的各顶点坐标分别为A(-1,2),B(1,-1),C(2,1),将它进行平移,平移后A 移到点(-3,a),B 移到△ABC 点(b,3),则C 移到的点的坐标为 .15、在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点是整点.若整点P(m+2,2m-1)在第四象限,则m 的值为 ______ .16、的绝对值是 .2−317、对实数a ,b 定义运算“*”如下:,已知3*m=18,则实数m 等于 ______ .a ∗b ={a 2b,当a <b 时ab 2,当a⩾b 时18、观察下列各式:=2,=3,=4,…请你找出其中规律,并将第n (n≥1)个等式写出1+13132+14143+1515来______.19、如图,将一副三角板的直角顶点重合,可得,依据是: .(请用文字语言描述)20、m ,n 分别是-1的整数部分和小数部分,则2m-n=______.2三、计算题(本大题共 3 小题)21、计算:(1)(2y−3)2−64=0 (2)64x 3−125=022、芳芳同学手中有一块长方形纸板和一块正方形纸板,其中长方形纸板的长为3dm ,宽为2dm ,且两块纸板的面积相等.(1)求正方形纸板的边长(结果保留根号).(2)芳芳能否在长方形纸板上截出两个完整的,且面积分别为和的正方形纸板?判断并说明理由.(提示:2dm 23dm 2,2≈1.4143≈1.732)23、计算: (1)5−(3)2−5(2)∣1−2∣+∣1+2∣(3)- + ||四、解答题(本大题共 7 小题)24、把下列各数分别填在相应的集合里: ,,0.3,0,-1.7,21,-2,1.01001,+6,π−113227(1)整数集合 {…}(2)正分数集合 {…}(3)无理数集合 .{…}25、已知:A(0,1),B(2,0),C(4,3)(1)求的面积;△ABC (2)设点P 在坐标轴上,且与的面积相等,求点P 的坐标.△ABP △ABC26、对于实数a ,我们规定:用符号表示不大于的最大整数,称为a 的根整数,例如:,[a ]a [a ][9]=3.[10]=3(1)仿照以上方法计算:=______;=______.[4][26](2)若,写出满足题意的x 的整数值______.[x ]=1如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次 ,这时候结[10]=3→[3]=1果为1.(3)对100连续求根整数,______次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是______.∠EBD+∠EDB=90∘27、如图,已知,BE平分∠ABD,DE平分∠BDC,且.AB//CD(1)求证:;(2)H是直线CD上一动点(不与点D重合),BI平分∠HBD.写出∠EBI与∠BHD的数量关系,并说明理由.①,∠CEF=90∘AB//CD.∠ABE=130∘28、(1)如图,点B在射线EF上,若,求∠C的度数;∠CEF=90∘∠CEF=120∘AB//CD.(2)如图②,把“”改为“”,猜想∠ABE与∠C的数量关系,并说明理由;(3)如图③,在(2)的条件下,作GC⊥CE,垂足为C,反向延长CD至H,若∠GCH=θ,则∠ABE= ______ (请用含θ的式子表示).29、已知点P(a-2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.30、如图,直线OM⊥ON,垂足为O,三角板的直角顶点C落在∠MON的内部,三角板的另两条直角边分别与ON、OM交于点D和点B.(1)填空:∠OBC+∠ODC= ______ ;(2)如图1:若DE平分∠ODC,BF平分∠CBM,求证:DE⊥BF:(3)如图2:若BF、DG分别平分∠OBC、∠ODC的外角,判断BF与DG的位置关系,并说明理由.7/7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级第二学期期中教学质量调研测试数学试题
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 在算式(x+m)(x-n)的积中不含x的一次项,则m,n一定满足()
A.互为倒数B.互为相反数
C.相等D.mn=0
2 . 如果的乘积不含和项,那么的值分别是()
A.B.C.D.
3 . 张小花家去年节余50000元,今年可节余95000元,并且今年收入比去年高15%,支出比去年低10%,今年的收入与支出各是多少?设去年的收入为x元,支出为y元,则可列方程为:
A.
B.
C.
D.
4 . 若a2﹣kab+9b2是完全平方式,则常数k的值为()
A.±6B.12C.±2D.6
5 . 计算,正确结果是()
A.B.C.D.
6 . 下列运算正确的是()
A.
C.D.
B.
7 . 三个连续正整数的和小于99,这样的正整数共有多少组()
A.30组B.31组C.32组D.33组
8 . 若,则的个位数字是().
A.1B.3C.5D.7
9 . 已知关于x,y的方程组,其中,给出下列结论:①当时,方程组的解也
是方程的解;②当时,x、y的值互为相反数;③若,则;④是方程组的解,其中正确的是()
A.①②③④B.①②③C.①②④D.①②
10 . 下列说法:①任何有理数都可以用数轴上的点表示;②|-5|与-(-5)互为相反数;③m+1一定比m大;④近似数1.21×104精确到百分位.其中正确的有()
A.4个B.3个C.2个D.1个
二、填空题
11 . 方程组的解是________.
12 . 某种药品的说明书上,贴有如下图所示的标签,一次服用这种药品的剂量x的范围是_____
用法用量:每天30----60mg,分2---3次服用
规格□□□□□□
储存□□□□□□
13 . 某商品每件成本a元,按高于成本20%的定价销售后滞销,因此又按售价的九折出售,则这件商品还可盈利_____元(填最简结果).
14 . ①最薄的金箔的厚度为0.000000091m,用科学记数法表示为_____m;②每立方厘米的空气质量约为1.239×10﹣3g,用小数把它表示为_____g.
15 . 已知,那么的值是_____________.
16 . 若,,则的值是___.
17 . (5-x2)2等于_______;
18 . 若a(a-1)—(a2-b)=2,则代数式的值为
三、解答题
19 . 已知多项式x2-mx-n与x-2的乘积中不含x2项和x项,求m,n的值.
20 . 已知2003(x+y)2与|x+y-1|的值互为相反数,试求:
(1)求x、y的值;
(2)计算x2003+y2004的值.
21 . 已知方程组中x为非正数,y为负数. 求a的取值范围.
22 . 计算:
23 . 一架直升机从高度为450米的位置开始,先以20米/秒的速度上升60秒,后以12米/秒的速度下降120秒,规定上升为正,下降为负,求:
(1)这时直升机的高度是多少米?
(2)直升机每上升1米耗油毫升,每下降1米耗油毫升(其中),问这架直升机在上升和下降的过程中共耗油多少毫升?
(3)若是小于的最大整数,求(2)问中的值.
24 . 计算:
(1);
(2);
(3);
(4)
25 . 观察下列各式:
(1)猜想(n为大于1的整数);
(2)用你发现的规律计算:
26 . 分解因式:
27 . 分解因式:(1)3a(x-y)-4b(y-x)(2) a-ab-a+b.
参考答案一、单选题
1、
2、
3、
4、
5、
6、
7、
8、
9、
10、
二、填空题
1、
2、
3、
4、
5、
6、
7、
8、
三、解答题1、
2、
3、
4、
5、
6、
7、
8、
9、。

相关文档
最新文档