东北大学 物理实验 拉伸法杨氏模量的测量 实际体会详细过程
拉伸法杨氏模量的测定

9
a
注意事项
1、调节望远镜时,要注意消除视差,即要求做到眼 睛上下移动时,标尺读数相对十字叉丝无相对移动;
2、加减砝码时,要轻拿轻放,待稳定后,方可读数. 3、在加完6个砝码读完数据后,注意要再加一个砝码
或用手轻按一下砝码后,再读n5,保证摩擦力方向一 致.
10
a
数据处理
对Δn 的处理采用逐差法进行处理 进行不确定度的计算 进行百分差计算 注意有效数字的保留
设一根粗细均匀的钢丝长度为L, 横截面积为S, 沿长度方向受一外 力F作用后,钢丝伸长了ΔL. F/S是钢丝单位横截面积上所受的力,称 为应力;ΔL/L是钢丝的相对伸长量,称为应变.
根据胡克定律, 在弹性限度内, 固体的应力和应变成正比, 即
F E L
S
L
实验证明, 杨氏模量E与外力F、 物体的长度L和横截面积S的大小
2、将反射镜放在工作平台上, 两前支脚放在 工作平台的沟槽中, 后支脚放在卡头B的上表 面上;
3、调节平面镜的仰俯角, 使其面法线方向大 致水平.
7
a
尺读望远镜组的调整
1、外观对准.
移动望远镜及标尺支架,适当调节望远镜镜筒的高度 及方位, 使望远镜光轴与平面镜的中心法线方向大致 等高共轴. 使人眼能沿镜筒的轴线方向,通过瞄准器 观察到反射镜内标尺的像. 如看不到标尺的像,则可 左右移动底座, 直到反射镜中出现标尺的像为止.
2、调节望远镜.
先调节望远镜的目镜,看清分划板十字线,再调节物 镜,直至从望远镜中清楚地观察到反射镜内标尺的像.
8
a
其他各量的测量
1、钢丝的长度L用钢卷尺测量. 2、平面镜到标尺的垂直距离d1既可以用钢卷尺测量, 也可以用
拉伸法测量金属丝的杨氏模量实验报告

拉伸法测量金属丝的杨氏模量实验报告《拉伸法测量金属丝的杨氏模量实验报告》
嘿,朋友们!今天我要来给你们讲讲我做的拉伸法测量金属丝杨氏模量的实验,那可真是一次超级有趣的体验啊!
实验开始前,我就像要去探险一样兴奋!我准备好了各种器材,那根金属丝就静静地躺在那里,好像在等着我去揭开它的秘密。
我心里想着:“这根小小的金属丝里到底藏着怎样的奥秘呢?”
然后我和小伙伴们一起动手啦!我们小心翼翼地把金属丝安装到实验装置上,就像在给一个小宝贝安家一样。
我还打趣地说:“嘿,可得轻点儿对它呀!”大家都笑了。
当我们开始施加拉力的时候,那种感觉就像是在和金属丝拔河一样。
它一开始还有点不情愿呢,不过慢慢地就开始伸长啦!看着它一点点变化,我心里那个激动啊,哎呀,真的很难形容!就好像看着一颗种子慢慢发芽长大。
在测量数据的过程中,我们可真是一丝不苟啊!每一个数值都像是宝贝一样,生怕记错了。
我和小伙伴还互相提醒:“嘿,你可看准了啊,别出差错!”这感觉就像是在完成一项超级重要的任务。
经过一番努力,终于得出了结果!哇,那种满足感简直爆棚!就好像我们征服了一座小山一样。
这次实验让我深刻地体会到了科学的魅力,它就像一个神秘的宝藏,等着我们去挖掘。
总之,这次实验真的是太棒了!你们也快去试试吧,绝对会让你们大开眼界的!。
拉伸法测杨氏模量实验报告

拉伸法测杨氏模量实验报告一、实验目的1、学会用拉伸法测量金属丝的杨氏模量。
2、掌握用光杠杆放大法测量微小长度变化的原理和方法。
3、学会用逐差法处理实验数据。
二、实验原理杨氏模量是描述固体材料抵抗形变能力的物理量。
设一根粗细均匀的金属丝,长度为\(L\),横截面积为\(S\),受到沿长度方向的拉力\(F\)时,金属丝伸长了\(\Delta L\)。
根据胡克定律,在弹性限度内,应力\(F/S\)与应变\(\Delta L/L\)成正比,即:\\frac{F}{S} = E \times \frac{\Delta L}{L}\其中\(E\)就是杨氏模量。
本实验中,金属丝的横截面积\(S =\pi d^2/4\)(\(d\)为金属丝的直径)。
由于伸长量\(\Delta L\)很小,难以直接测量,我们采用光杠杆放大法来测量。
光杠杆装置由光杠杆镜、望远镜和标尺组成。
光杠杆镜的前脚放在固定平台上,后脚放在金属丝的夹具上。
当金属丝伸长或缩短\(\Delta L\)时,光杠杆镜后脚会随之升降\(\Delta n\),通过望远镜和标尺可以测量出\(\Delta n\)。
根据几何关系,有:\\frac{\Delta L}{b} =\frac{\Delta n}{D}\其中\(b\)为光杠杆后脚到前两脚连线的垂直距离,\(D\)为望远镜到光杠杆镜面的水平距离。
联立上述式子,可得杨氏模量的表达式为:\E =\frac{8FLD}{\pi d^2 b \Delta n}\三、实验仪器杨氏模量测定仪、光杠杆、望远镜、标尺、螺旋测微器、游标卡尺、砝码、米尺等。
四、实验步骤1、调节仪器调节杨氏模量测定仪底座的水平调节螺丝,使立柱铅直。
将光杠杆放在平台上,调节光杠杆平面镜的俯仰,使其镜面大致垂直。
调节望远镜,使其与光杠杆平面镜等高,并且能够清晰地看到平面镜中的标尺像。
2、测量金属丝的长度\(L\)用米尺测量金属丝的有效长度,测量多次取平均值。
拉伸法测杨氏模量实验报告

拉伸法测杨氏模量实验报告拉伸法测杨氏模量实验报告引言:拉伸法是一种常用的实验方法,用于测量材料的力学性能参数,其中杨氏模量是描述材料刚度的重要指标。
本实验旨在通过拉伸试验,测量不同材料的杨氏模量,并探讨拉伸过程中的力学行为。
实验目的:1. 了解拉伸法测量杨氏模量的原理和方法;2. 学习使用拉伸试验机进行拉伸试验;3. 掌握数据处理和结果分析的方法。
实验原理:拉伸试验是通过施加拉力使试样延长,测量应力与应变的关系,从而得到材料的力学性能参数。
杨氏模量是材料在线性弹性阶段的应力与应变之比,可以用来描述材料的刚度。
实验步骤:1. 准备工作:根据实验要求选择不同材料的试样,并进行标记;2. 安装试样:将试样放入拉伸试验机夹具中,确保试样处于垂直状态;3. 设定试验参数:根据试样的特性和实验要求,设定拉伸速度、试验温度等参数;4. 开始试验:启动拉伸试验机,施加拉力使试样开始延长;5. 记录数据:在试验过程中,记录拉力和延长量的变化,并计算应力和应变;6. 终止试验:当试样断裂或达到设定的延长量时,停止试验;7. 数据处理:根据记录的数据,绘制应力-应变曲线,并计算杨氏模量;8. 结果分析:比较不同材料的杨氏模量,分析影响杨氏模量的因素。
实验结果与讨论:通过实验测量得到的应力-应变曲线可以反映材料的力学行为,其中线性部分的斜率即为杨氏模量。
根据实验数据计算得到的杨氏模量可以用来比较不同材料的刚度,从而评估其力学性能。
在实验过程中,我们发现杨氏模量与材料的组织结构、晶粒大小、温度等因素有关。
例如,金属材料的杨氏模量通常较高,而聚合物材料的杨氏模量较低。
此外,温度的变化也会影响材料的力学性能,通常情况下,温度升高会导致杨氏模量的降低。
实验总结:本实验通过拉伸法测量了不同材料的杨氏模量,并对实验结果进行了分析和讨论。
通过实验我们了解了拉伸法的原理和方法,掌握了数据处理和结果分析的技巧。
实验结果表明,杨氏模量是描述材料刚度的重要参数,对于材料的力学性能评估具有重要意义。
用拉伸法测杨氏模量

用拉伸法测杨氏模量实验报告【一】实验目的及实验仪器实验目的1. 用金属丝的伸长测杨氏弹性模量。
2. 学习光杠杆镜尺法测量做小长度变化的原理和调节方法。
3. 学习处理数据的一种方法——逐差法。
实验仪器光杠杆,游标卡尺,螺旋测微器,卷尺,杨氏模量仪,望远镜(附标尺)。
实验原理及过程简述实验原理在外力作用下,固体所发生的形状变化成为形变。
它可分为弹性形变和塑性形变两种。
本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。
最简单的形变是金属丝受到外力后的伸长和缩短。
金属丝长L,截面积为S,沿长度方向施力F后,物体的伸长,则在金属丝的弹性限度内,有:Y=我们把Y称为杨氏弹性模量。
实验证明,杨氏弹性模量与外力F、物体的长度L和截面积S无关,它仅决定于金属丝的材料,是表征固体性质的一个物理量。
根据上式,测出等号右边各量就可以计算出杨氏弹性模量,式中的F、S和L用通常的方法可以测出, L是一个很小的长度变化,很难用普通测量长度的仪器将它测准,因此,我们采用光杠杆来测量长度变化量。
实验仪器装置如图所示,一段粗细均匀的金属丝,长度为L,截面积为S,将其上端固定于架A上,下端装有一个小环,环上挂着砝码钩。
C为中间有一个小孔的圆柱体,金属丝可从其中穿过。
实验时应将圆柱体一端用螺旋卡头夹紧,使其能随金属丝的伸缩而移动。
G是一个固定平台,中间开有一孔,圆柱体C可以在孔中自由地上下移动。
光杠杆M下面的两尖脚放在平台的沟内,主杆尖脚放在圆柱体C的上端,将水平仪放置在平台G上。
调节支架底部的3个调节螺丝H可使平台成水平,望远镜R和标尺S是测伸长量用的测量装置。
金属丝受力F的作用而发生形变,伸长了,光杠杆的主杆尖脚也随之下降。
使主杆转过一个角度,同时平面镜的法线也转过相同角度,由光杠杆的原理可得=/b=/D由于很小,很小,,,所以=Y=式中d为金属丝的直径,b为光杠杆臂的长度,D为标尺到镜面的距离,L为金属丝的原长。
大学物理实验示范报告(以杨氏模量实验为例)

一 . 预习报告1. 拉伸法测金属丝的杨氏模量2.实验目的1、掌握用光杠杆法测量微小长度变化的原理和方法;2、学会用逐差法处理数据;3、学习合理选择仪器,减小测量误差。
3.实验原理1.根据胡克定律,在弹性限度内,其应力F/S 与应变ΔL/L 成正比,即LL E SF ∆=本实验的最大载荷是10kg ,E 称为杨氏弹性模量。
2.光杠杆测微原理,由于α很小, 消去α角,就可得:)(201A A D xL -=∆()0128A A x d FLD E -=π 式中L 为金属丝被拉伸部分的长度,d 为金属丝的直径,D 为平面镜到直尺间的距离,X 为光杠杆后足至前两足直线的垂直距离,F 为增加一个砝码的重量(= mg ), A 1-A 0是增加一个砝码后由于金属丝伸长在望远镜中刻度的变化量。
4. 实验仪器仪器名称 静态杨氏模量仪卷尺 螺旋测微器 游标卡尺 仪器型号 YMC 2 m 0-25 mm 0-150 mm 主要技术参数1.8m2 mm0.01 mm0.02 mm图1-1 光杠杆原理5.实验内容用拉伸法测量金属(碳钢)丝的杨氏模量6.注意事项(1)光杠杆...、望远镜和标尺所构成的光学系统一经调节好后....................,在实验过程中就不可再..........动.,否则所测的数据无效,实验应从头做起。
(2)加减砝码要轻放轻取,并等稳定后再读数。
(3)所加的总砝码不得超过10kg 。
(4)如发现加、减砝码的对应读数相差较大,可多加减一、二次,直到二者读数接近为止。
(5)使用望远镜读数时要注意避免视差。
(6)注意维护金属丝的平直状态,在用螺旋测微器测其直径时勿将它扭折。
7.预习思考题回答(1)实验中对L 、D 、X 、d 和ΔL 的测量使用了不同仪器和方法,为什么要这样处理?分析它们测量误差对总误差的贡献大小。
解:①L 、D 较长(m 数量级),用米尺量可得5位有效数字,L 的主要测量误差是端点的不确定,测量时卷尺难以伸直;D 的主要测量误差是卷尺中间下垂。
拉伸法测杨氏模量实验报告

拉伸法测杨氏模量实验报告实验目的:本次实验的主要目的是通过拉伸法测量杆材的应力-应变关系,进而推导出杆材的杨氏模量。
这有助于加深我们对于材料力学学科的理解,同时也为相关工程领域的研究提供基础数据。
实验步骤:1. 准备工作首先,对于直径为$D$、长度为$L$的杆材,要先在其两端加以钳紧,确保其夹持牢固。
同时,在杆材上标出若干个等距的位置,以便于记录其长度变化。
2. 施加外力接着,将杆材逐渐加上一定大小的拉力$F$,并记录下此时受力杆材的伸长量$\delta$。
3. 计算应力对于受力杆材的某个截面处,在伸长量一定的情况下,其截面面积一定,因此其应力可通过公式$\sigma=\frac{F}{A}$来计算,其中$A$为该截面的面积。
4. 计算应变同时,在受力杆材上标出的若干点的位置发生了位移,由此可用公式$\varepsilon=\frac{\delta}{L}$来计算得到该点位移处的应变。
5. 绘制应力-应变图将应力-应变数据绘制成图表,即可得到一条斜率代表杨氏模量的直线。
实验数据:本次实验所得到的相关数据如下:直径$D=1\textrm{cm}$,长度$L=50\textrm{cm}$受力杆材的材料为钢材施加的拉力如下:F($\textrm N$) | $\delta$($\textrm{mm}$)--- | ---0 | 0200 | 0.2400 | 0.4600 | 0.6800 | 0.81000| 1.0实验结果:根据绘制得到的应力-应变图,我们可以得到以下结论:受力杆材的杨氏模量为$E=2\times10^{11}\textrm{Pa}$。
这一结论与同类钢材的模量相符,验证了本次实验的可靠性。
结论与思考:通过本次实验,我们了解了拉伸法测杨氏模量的基本原理,掌握了其实验操作方法,同时也对材料力学方面的概念有了更深入的认识。
下一步,我们将通过更深入的学习,以及在实验中加以实践,进一步提高我们在此领域的认识和技能。
用拉伸法测杨氏模量实验报告

用拉伸法测杨氏模量实验报告1. 实验背景与目的咱们今天要聊的可是个很有趣的实验——用拉伸法测杨氏模量。
这可是物理学里的一项经典测试,听起来有点儿高大上,但其实也没那么复杂。
简单来说,杨氏模量就是用来描述材料弹性的一个参数。
打个比方,你拿着一根橡皮筋,拉它的时候它会变长,放手后又会弹回去。
杨氏模量就像是告诉你这根橡皮筋有多“坚韧”,拉得越长,它能“忍受”的压力就越大。
实验的目的是为了通过实际的拉伸实验来测量这个杨氏模量,从而了解材料的弹性特性。
是不是有点像探险,揭开材料弹性的神秘面纱呢?2. 实验准备与步骤2.1 实验器材与材料首先,咱们得准备好一些实验器材。
首先是拉伸机,这个大家可以想象成一台很牛的机器,能精准地拉伸材料。
然后是标准化的试样,比如钢丝、铝合金片,这些都是我们要测试的对象。
还需要一个测量装置,可以是精密的游标卡尺,或者更高大上的电子测量工具。
最后,记录数据的工具,比如笔记本、计算器等也少不了。
材料的选择可是至关重要的,不同的材料会有不同的杨氏模量,所以挑选材料时可得仔细点儿,别让它们在测试中搞什么“小动作”。
2.2 实验步骤实验的步骤其实也很有意思。
首先,你得把试样固定在拉伸机上,这就像是给材料系上安全带,准备开始“拉力测试”了。
然后慢慢增加拉伸的力量,这时候你会看到试样变得越来越长。
别急,慢慢来,别让它一瞬间被拉断了。
接着,记录下在不同拉力下试样的长度变化。
像做数学题一样,做好每一步的数据记录,确保没有遗漏。
最后,当试样被拉到一定程度时,它可能会断裂。
这个时候,你得小心翼翼地测量它断裂前后的长度变化,计算出杨氏模量的值。
3. 数据处理与结果分析3.1 数据处理数据处理是实验中很重要的一部分。
你得将记录的数据整理成表格,这样就能清晰地看到不同拉力下材料的伸长量了。
计算杨氏模量的公式是:( E =frac{sigma{varepsilon ),其中 (sigma) 是应力,(varepsilon) 是应变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告没什么可说的,该实验的原理和步骤都不多,地方足够都写上了,表格要画好,另外去实验室的时候带把尺子吧,实验的时候会用上,再带1~2张纸,同样会用上。
实验报告封面的实验时间也写上吧,赵涛老师当时看到没写的就让那人去补上了??
(1)实验开始前
实验前老师会讲解,而且赵涛老师会随机提问??不过提问的倒不是特别难的问题,我那次做实验的时候她首先问的是“杨氏模量的E等于什么?”,这个时候一定要回答“等于应力比应变”,老师问应力、应变的话就回答“应力是单位面积受的力的大小,应变是单位长度的伸长量”。
别回答F比S再比上ΔL比L什么的,那样的话老师会说你死记公式什么的??不过有的人说老师提问回答不上会扣分,这个我还真没看到扣分,尽管如此,实验前还是要充分预习好。
用老师的话说,预习是要“带着目的去看书”,就是说预习前要先考虑“要干什么”(测杨氏模量),“怎么能测杨氏模量”(E=F/S / ΔL/L),"F怎么测,S怎么测,ΔL怎么测,L怎么测"(这些书上都有),“测完了怎么得到杨氏模量”(用公式计算)差不多知道这些就可以了。
据说实验室每根钢丝的长度都不一样,所以用学长的数据不一定符合。
如果调仪器总是调不准要问老师,不要自己在那一直调,如果老师发现你一直调,她可能会扣你分的,理由是没有掌握实验操作。
(2)实验开始啦
实验前老师讲解了一下实验的步骤,这里我就放在了实验的环节。