最新10043619003实验6 拉伸法测定金属杨氏模量
用拉伸法测量金属丝的杨氏模量实验报告

用拉伸法测量金属丝的杨氏模量实验报告《用拉伸法测量金属丝的杨氏模量实验报告》
嘿,朋友们!今天我来给大家讲讲我做的这个超有趣的用拉伸法测量金属丝杨氏模量的实验!(就像我们要探索一个神秘的宝藏一样刺激!)
实验开始前,那根金属丝乖乖地躺在那儿,仿佛在等待着我们去揭开它的秘密呢。
(这不就像一个等待被唤醒的小战士嘛!)我和小伙伴们可兴奋了,都迫不及待地想开始。
我们小心地把金属丝安装在实验装置上,这过程就好像在给它打扮一样,得特别仔细。
(就跟给宝贝穿衣服一样不能马虎呀!)然后,慢慢给它施加拉力,看着它一点点被拉长,哇,那种感觉真奇妙!(这就像看着小树苗一点点长大一样神奇!)
在测量数据的时候,我们可是全神贯注,眼睛瞪得大大的,生怕错过一点。
(那认真的样子,就像侦探在寻找关键线索呢!)每一个数据都感觉好重要啊!“哎呀,这个数字读对了没?”我还时不时问小伙伴。
经过一番努力,终于测得了所有的数据。
这时候大家都特别有成就感。
(就像打了一场大胜仗一样开心!)
分析数据的时候,才发现这里面可藏着大学问呢。
就好像解开一道复杂的谜题一样。
(哎呀,原来这里面有这么多门道啊!)
这次实验,让我对杨氏模量有了更深刻的理解,也让我感受到了科学实验的魅力。
(真的太棒啦!)以后我还要多做这样的实验,探索更多的科学奥秘呢!(大家也快来试试呀!)。
拉伸法测金属丝的杨氏模量实验报告

拉伸法测金属丝的杨氏模量实验报告一、实验目的1、学会用拉伸法测量金属丝的杨氏模量。
2、掌握光杠杆放大原理和测量微小长度变化的方法。
3、学会使用游标卡尺、螺旋测微器等测量长度的仪器。
4、学习数据处理和误差分析的方法。
二、实验原理杨氏模量是描述固体材料抵抗形变能力的物理量。
假设一根粗细均匀的金属丝,长度为\(L\),横截面积为\(S\),在受到外力\(F\)作用下伸长了\(\Delta L\)。
根据胡克定律,在弹性限度内,应力\(F/S\)与应变\(\Delta L/L\)成正比,其比例系数即为杨氏模量\(E\),数学表达式为:\E =\frac{F}{S} \times \frac{L}{\Delta L}\在本实验中,外力\(F\)由砝码的重力提供,横截面积\(S\)可通过测量金属丝的直径\(d\)计算得到(\(S =\frac{\pid^2}{4}\)),金属丝的原长\(L\)用米尺测量,而微小伸长量\(\Delta L\)则采用光杠杆法测量。
光杠杆装置由光杠杆、望远镜和标尺组成。
光杠杆是一个带有三个尖足的平面镜,前两尖足放在平台的沟槽内,后尖足置于金属丝的测量端。
当金属丝伸长(或缩短)\(\Delta L\)时,光杠杆的后尖足随之升降\(\Delta L\),从而带动平面镜转动一个角度\(\theta\)。
从望远镜中可以看到标尺像的移动,设标尺像移动的距离为\(n\),光杠杆常数(即两前尖足到后尖足连线的垂直距离)为\(b\),望远镜到光杠杆平面镜的距离为\(D\),则有:\\tan\theta \approx \theta =\frac{n}{D}\\\tan 2\theta \approx 2\theta =\frac{\Delta L}{b}\由上述两式可得:\\Delta L =\frac{nb}{2D}\将\(\Delta L\)代入杨氏模量的表达式,可得:\E =\frac{8FLD}{\pi d^2 n b}\三、实验仪器1、杨氏模量测定仪:包括底座、立柱、金属丝、光杠杆、砝码等。
拉伸法测量金属丝的杨氏模量实验报告

拉伸法测量金属丝的杨氏模量实验报告《拉伸法测量金属丝的杨氏模量实验报告》
嘿,朋友们!今天我要来给你们讲讲我做的拉伸法测量金属丝杨氏模量的实验,那可真是一次超级有趣的体验啊!
实验开始前,我就像要去探险一样兴奋!我准备好了各种器材,那根金属丝就静静地躺在那里,好像在等着我去揭开它的秘密。
我心里想着:“这根小小的金属丝里到底藏着怎样的奥秘呢?”
然后我和小伙伴们一起动手啦!我们小心翼翼地把金属丝安装到实验装置上,就像在给一个小宝贝安家一样。
我还打趣地说:“嘿,可得轻点儿对它呀!”大家都笑了。
当我们开始施加拉力的时候,那种感觉就像是在和金属丝拔河一样。
它一开始还有点不情愿呢,不过慢慢地就开始伸长啦!看着它一点点变化,我心里那个激动啊,哎呀,真的很难形容!就好像看着一颗种子慢慢发芽长大。
在测量数据的过程中,我们可真是一丝不苟啊!每一个数值都像是宝贝一样,生怕记错了。
我和小伙伴还互相提醒:“嘿,你可看准了啊,别出差错!”这感觉就像是在完成一项超级重要的任务。
经过一番努力,终于得出了结果!哇,那种满足感简直爆棚!就好像我们征服了一座小山一样。
这次实验让我深刻地体会到了科学的魅力,它就像一个神秘的宝藏,等着我们去挖掘。
总之,这次实验真的是太棒了!你们也快去试试吧,绝对会让你们大开眼界的!。
用拉伸法测金属丝的杨氏模量实验报告

用拉伸法测金属丝的杨氏模量实验报告用拉伸法测金属丝的杨氏模量实验报告引言:杨氏模量是材料力学性质的重要指标之一,它描述了材料在拉伸过程中的刚度和变形能力。
本实验通过拉伸金属丝的方法来测量杨氏模量,旨在了解金属丝的力学性质,并探讨拉伸过程中的变形行为。
实验装置和步骤:实验装置主要包括拉伸机、金属丝样品、刻度尺、电子天平和计算机。
具体的实验步骤如下:1. 将金属丝样品固定在拉伸机的夹具上,并调整夹具使其与拉伸机的拉伸轴心对齐。
2. 通过调整拉伸机的拉伸速度和加载范围,使实验能够在合适的条件下进行。
3. 使用刻度尺测量金属丝的初始长度,并记录下来。
4. 启动拉伸机,开始对金属丝进行拉伸。
5. 在拉伸过程中,使用电子天平测量金属丝的质量,并记录下来。
6. 当金属丝断裂时,停止拉伸机的运行,并记录下金属丝的最终长度。
实验数据处理:根据实验步骤所得到的数据,可以计算出金属丝的应力和应变。
应力定义为单位面积上的力,可以通过施加在金属丝上的拉力除以金属丝的横截面积得到。
应变定义为单位长度上的变形量,可以通过金属丝的伸长量除以初始长度得到。
根据胡克定律,应力与应变之间的关系可以用以下公式表示:应力 = 弹性模量× 应变其中,弹性模量即为杨氏模量。
通过绘制应力-应变曲线,可以得到金属丝的杨氏模量。
在实验中,我们可以根据拉伸过程中的应力和应变数据,绘制出应力-应变曲线,并通过线性拟合得到斜率,即金属丝的杨氏模量。
实验结果和讨论:根据实验数据处理得到的应力-应变曲线,我们可以得到金属丝的杨氏模量。
实验结果显示,金属丝的杨氏模量为XXX GPa(Giga Pascal)。
这个结果与文献中的数值相符合,证明了实验方法的可靠性。
在拉伸过程中,金属丝会发生塑性变形,即超过了材料的弹性限度。
这是因为金属丝在受到拉力的作用下,晶体结构发生了位错滑移,导致金属丝的形状发生变化。
当拉力超过金属丝的极限强度时,金属丝会发生断裂。
实验六:拉伸法测金属丝的杨氏弹性模量.

如图 4-1,实验开始时,平面镜 M 的法线方向水平,望远镜中观察到的点的相应刻度
为 x0 ,当钢丝因悬挂重物而下降 ∆L 时,导致了平面镜 M 的法线方向改变了α 角。设平面
镜 M 的后支点到两个前支点连线的垂直距离为 b ,则有 tanα = ∆L b
而此时由 O 点反射进望远镜中标尺的位置为 x1 ,它与原刻度 x0 对 O 点的张角为 2α (见图
本实验采用静态拉伸法测定钢丝的杨氏模量。
●实验目的与要求:
1.学会用伸长法测量金属丝的杨氏模量; 2.掌握用光杠杆法测量微小长度变化的原理和方法; 3.学会用逐差法处理数据。
●实验仪器:
杨氏模量仪、光杠杆装置、望远镜、水平仪、游标卡尺、螺旋测微器(千分尺)、钢卷尺
●实验原理:
任何固体在外力作用下都要产生形变,如果外力较小,当外力停止作用,形变随之消
6.记录十字叉丝初始读数 x0 ,依次增加一个砝码,记录相应的读数 x1、x2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅x6、x7
7.再加一块砝码,不记录其读数,稍后,逐个减少砝码,记录相应的读数 x7' 、x6' 、⋅ ⋅ ⋅ x1'、x0' 。
计算两次的平均值。
8.用螺旋测微器(千分尺)测金属丝的直径 d ,分别在金属丝的上、中、下不同部位、不 同方向进行多次测量。用游标卡尺测量光杠杆长 b 多次(采用压足印)。用钢卷尺测金属丝 的长度 L 一次,测量标尺到光杠杆镜面的距离 D 一次。 9.用逐差法算 ∆x (注意所求 ∆x 是加几块砝码的伸长量),求出其杨氏弹性模量,计算不确
杨氏模量:物体受纵向应力时的伸长模量(或压缩模量)。
一根均匀的金属丝,长度为 L ,截面积为 S ,在受到沿长度方向的外力 F 的作用时发
用拉伸法测量金属丝的杨氏弹性模量实验报告

用拉伸法测量金属丝的杨氏弹性模量实验报告拉伸法测量金属丝的杨氏弹性模量实验报告
实验原理:
拉伸实验是指将弹性样品整体承受一直拉力F,而其同时受轴向拉力T的拉伸实验,
通过测量拉伸实验的样品的拉伸变形量,推知其伸长量与轴向荷载(T)之比,这一比值
就是杨氏弹性模量。
实验仪器和装置:
本实验使用的仪器和装置是:电子称、压迫力传感器、拉伸脉冲式扭矩传感器、电动
改变中心距、实验平台以及拉伸测量系统。
实验环境:
实验环境稳定,温度、湿度均在20℃时,室温保持在25℃以下,湿度保持在50%以下;光照明亮,可使测量精度更高。
实验方法:
1.选取合格的金属丝样品,将金属丝在两个支点上受上力,其中间部分悬空放置,应
用拉伸传感器,将力传感器的正负极接线联接到拉伸测量系统,以便测量拉伸时的变形量;
2.调节力传感器的拉伸力,测量金属丝在拉伸情况时的杨氏弹性模量;
3.如果所测量金属丝中受力跨度较短,可以适当增加测量力的大小,控制其变形量,
以测得最终结果;
4.在做精度处理时,应按试验标准及要求的容差,采取逐渐迭代的原则做精确的测量,充分检验该样品的杨氏弹性模量;
5.最后,将实验最终结果和测得的参数对比,进行分析,得出金属丝的杨氏弹性模量
大小,从而完成此次实验。
实验结论:
本次实验以拉伸法测量金属丝的杨氏弹性模量,由于采用了拉伸测量仪器和设备,对
金属丝进行严格控制,从而极大提高测量精度,最终杨氏弹性模量结果达到设计要求。
实验6 拉伸法测定金属的杨氏模量实验指导书

拉伸法测定金属的杨氏模量实验指导书1、实验仪器清单杨氏模量仪、光杠杆、尺读望远镜、游标卡尺、千分尺、钢卷尺、砝码 2、实验内容和教学要求1)掌握拉伸法测定金属杨氏模量的方法:本实验利用钢丝在外力拉伸时产生形变,使得钢丝伸长。
根据胡克定律,在钢丝的弹性限度内,钢丝的应力与应变成正比:LL YS F ∆=。
只要测出在一定的受力状态下,钢丝的伸长量ΔL 就能求出钢丝的杨氏模量了。
2)学习用光杠杆放大测量微小长度变化量的方法:不过钢丝的伸长量的变化是一个微小量,用普通的方法难以测到,必须使这个微小量被放大才能测量。
本实验用光杠杆法放大微小量,放大方法如下图所示:从图1中我们可以看到,当钢丝拉力变化ΔF 时长度的变化为ΔL ,此时刻度尺的读数就变化了ΔN ,而要读出ΔN 是一件轻而易举的事。
我们知道:θθh htg L ≈=∆,θθD Dtg N 22≈=∆;不难得出:DN h L 2∆=∆,所以我们可以得到:Nh d FLD Y∆∆=π28。
又因为F=Mg ,所以有Nh MgLD Y d∆∆=π283)学习用最小二乘法处理数据。
本实验不直接计算ΔF 和ΔN ,而是将实验中测到的N i 和F i 直接代入最小二乘法公式中计算b ,和它的不确定度,参看课本27页公式(9)、(10)与(12),令N y M x ==,,之后再求出杨氏模量Y 和它的不确定度。
注意此时hbLDgY dπ28=。
3、重点与难点掌握用光杠杆放大测量微小长度变化量的方法,必需做到能把原理和实际的仪器状态相对应。
学会如何把模氏模量仪、光杠杆和尺读望远镜三者之间的相对位置调整好。
4、难点指导1)装置的调节关键在于弄清调节仪器的目的而不是盲目地调节。
首先杨氏模量的平台要水平,然后光杠杆的后足和前足的放置要能达到可以真实地反映钢丝长度的变化,光杠杆的镜面要垂直于杨氏模量的平台。
之后就是尺读望远镜的调节了。
尺读望远镜的调节要达到几个目标: (a )距离光杠杆约1.5m ;(b )尺读望远镜要水平并与光杠杆的镜面等高;(c )望远镜和它旁边的刻度尺必须要相对于光杠杆镜面的法线成互为对称的关系;(d )望远镜里面必须能看到光杠杆的整个镜面。
用拉伸法测金属丝的杨氏模量报告

用拉伸法测金属丝的杨氏模量报告杨氏模量是用来描述固体材料在受力时的弹性特性的重要参数,可以描述材料在受力时的抗拉能力和变形能力。
拉伸法是测量材料杨氏模量的常用方法之一,本报告将详细介绍使用拉伸法测量金属丝的杨氏模量的实验步骤、仪器设备、数据处理和结果分析等内容。
一、实验目的:本实验的目的是通过拉伸法测量金属丝的杨氏模量,从而了解金属丝的力学性质。
二、实验原理:拉伸法是测量杨氏模量的常用方法之一,基本原理是通过测量金属丝在受拉力作用下的变形量与受力的关系,得到杨氏模量。
三、实验仪器设备:1.金属丝样品(材料:金属丝);2.拉力机;3.游标卡尺等测量工具;4.外力计。
四、实验步骤:1.准备工作:a.将金属丝剪成合适的长度,并用离心机清洗干净;b.按照实验要求,在拉力机上安装好金属丝样品,并调整好拉力机的参数。
2.实验测量:a.测量金属丝样品的初始长度和直径,并记录测量结果;b.在拉力机上施加一个逐渐增大的拉力,记录拉力和相应的伸长量。
3.数据处理:a.根据实验测量结果,计算金属丝的应变(单位长度的伸长量),并绘制应变-应力图;b.根据应变-应力图中线性部分的斜率,计算金属丝的杨氏模量。
五、结果分析:根据实验测量的数据和计算结果,可以得到金属丝的杨氏模量。
根据实验测量的应变-应力图中线性部分的斜率,可以计算出杨氏模量的数值。
六、实验注意事项:1.实验过程中需要注意安全,避免发生意外情况;2.测量金属丝的长度和直径时,要使用合适的测量工具进行准确测量;3.在实验过程中需要仔细记录实验数据,并及时进行数据处理;4.在数据处理过程中需要注意计算的准确性和可靠性。
七、实验总结:通过本次实验,成功使用拉伸法测量了金属丝的杨氏模量。
实验过程中,需要仔细操作测量仪器和记录实验数据,以提高实验的准确性和可靠性。
本次实验的结果可用于研究金属丝的力学性质和应用等方面,对进一步了解材料的性能和特性具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-0.013mm
另外:测量时应注意, 当测砧面快接触到被测 样品时一定要用棘动轮, 不能用微分筒。
游标卡尺的读数规则
下图所示游标卡尺的主尺读数为12.3cm,游标 的读数为0.096cm,所以测量值为12.396cm
教学要求
• 理解杨氏模量的物理意义 • 理解光杠杆法测量微小变化量的测量原理 • 掌握光杠杆放大系统装置的调节方法 • 掌握用最小二乘法处理数据
1、在实验过程中我们采用先测量递增负荷, 再测递减负荷,然后再求平均的方法得到N, 可以消除什么误差?
2、在用光杠杆法测量ΔL的过程中,怎样才 能正确地迅速地从望远镜中找到标尺的像?
3、实验中如何判断N的测量是否正确?
思考与讨论
1、本实验中,各个长度量用不同的仪器来 测定,是怎样考虑的?
2、如果作图发现直线不通过原点,说明实 验存在什么问题?
3、如果反射镜不竖直,望远镜光轴明显倾 斜,对结Байду номын сангаас有什么影响?
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
焦可以分别看到标尺的像和镜子的像。
3、结合调节目镜和物镜,使叉丝和标尺的像同时清晰,然 后调零。并记下短叉丝对应的刻度值,即B1、B2的值,接着 按照先加砝码后减砝码的顺序测出不同受力状态下的N值, 经检查无误之后,再用千分尺测出受力分别为1kg和6kg 时钢丝上、中、下三个位置的d值、用卷尺测出钢丝的长 度L的值、最后用游标卡尺测出光杠杆的前后足的距离h的 值,注意:要把光杠杆取下来,压在一张白纸上,压出三 个足痕,把前两足的足痕连成线,后足描黑,卡尺的刀口 一边与前足连线重合,另一边与后足重合,即可。
重点与难点
• 重点:掌握光杠杆放大系统的测量原理和 装置的调节方法。
• 难点:装置的调节。方法是每一个调节步 骤都要做到位。也就是说,如果镜面不竖 直就无法调节对称,而调节对称要正确使 用准星;如果不对称就无法在望远镜中看 到标尺的像;另外,如果望远镜没有对好 镜子也无法看到标尺的像。
预习思考题
光杠杆法放大原理
实验步骤
1、调整杨氏模量仪使平台水平(当气泡在水准仪的圆圈里即 可),并调整夹子C使它能上下自由伸缩,然后将光杠杆放 好,调好镜面的竖直度。
2、调整镜尺组与光杠杆的距离,然后调整支架的位置使望 远镜与标尺互为对称。接着调节望远镜光轴的水平度,调 节角度使镜头对准镜子,调节高度使它与镜子等高,再调
光杠杆的放置
镜面应保持竖直
两前足应置于槽中 水准仪气泡应调至中央
光杠杆后足应垂直置于金属 环中部,避免靠近边缘。
对称的调节
调零
测B的值
千分尺的读数规则
千分尺使用之前应 先读零点读数,然后将 测量值减去零点读数才 是被测物体的真实值。 同时要注意零点读数的 正负。例如右下两图:
左图读数为:0.062mm
10043619003实验6 拉伸法测 定金属杨氏模量
实验原理
本实验用拉伸法测定金属的杨氏模量, 当钢丝受到外力拉伸时产生形变,使得钢 丝伸长。根据胡克定律,在钢丝的弹性限 度内,钢丝的应力与应变成正比: 。 F Y L
SL
只要测出在受力为F时,钢丝的伸长量ΔL就 能求出钢丝的杨氏模量了。
由于ΔL是一个微小变化量,所以本实验 用光杠杆放大系统来测量它。