九年级数学锐角三角函数的简单应用测试题
(常考题)人教版初中数学九年级数学下册第三单元《锐角三角函数》检测题(有答案解析)(1)

一、选择题1.小明在学完《解直角三角形》一章后,利用测角仪和校园旗杆的拉绳测量校园旗杆的高度,如图,旗杆PA 的高度与拉绳PB 的长度相等,小明先将PB 拉到'PB 的位置,测得(''PB C a B C ∠=为水平线),测角仪/B D 的高度为1米,则旗杆PA 的高度为( )A .11sin a+米B .11cos a-米C .11sin a-米D .11cos a+米2.如图,已知第一象限内的点A 在反比例函数2y x=的图象上,第二象限的点B 在反比例函数ky x=的图象上,且OA ⊥OB ,tanA=2,则k 的值为( )A .4B .8C .-4D .-8 3.在Rt △ABC 中,∠C =90°,如果∠A =α,BC =a ,那么AC 等于( )A .a•tanαB .a•cotαC .a•sinαD .a•cosα4.如图,在平面直角坐标系xOy 中,矩形ABCD 的顶点A 在x 轴的正半轴上,矩形的另一个顶点D 在y 轴的正半轴上,矩形的边,,AB a BC b DAO x ==∠=.则点C 到x 轴的距离等于( )A .cos sin a x b xB .cos cos a x b xC .sin cos a x b xD .sin sin a x b x5.如图,在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB 沿射线AO 平移,平移后点A '的横坐标为43,则点B ′的坐标为( )A .(63,2)-B .(63,23)-C .()6,2-D .(63,2)-6.如图,Rt △ABC 中,AB =4,BC =2,正方形ADEF 的边长为2,F 、A 、B 在同一直线上,正方形ADEF 向右平移到点F 与B 重合,点F 的平移距离为x ,平移过程中两图重叠部分的面积为y ,则y 与x 的关系的函数图象表示正确的是( )A .B .C .D .7.若菱形的周长为16,高为2,则菱形两个邻角的比为( ) A .6:1B .5:1C .4:1D .3:18.点E 在射线OA 上,点F 在射线OB 上,AO ⊥BO ,EM 平分∠AEF ,FM 平分∠BFE ,则tan ∠EMF 的值为( ) A .12B .33C .1D .39.如图,平行四边形ABCD 中,AB ⊥AC ,AB =3,BC =7,对角线AC ,BD 相交于点O ,将直线AC 绕点O 顺时针旋转,分别交B C ,AD 于点E ,F ,下列说法:①在旋转过程中,AF =CE . ②OB =AC ,③在旋转过程中,四边形ABEF 的面积为21,④当直线AC 绕点O 顺时针旋转30°时,连接BF ,DE 则四边形BEDF 是菱形,其中正确的是( )A .①②④B .① ②C .①②③④D .② ③ ④10.如图,在矩形ABCD 中,33AB =AD =9,点P 是AD 边上的一个动点,连接BP ,将矩形ABCD 沿BP 折叠,得到△A 1PB ,连接A 1C ,取A 1C 的三等分点Q (CQ <A 1Q ),当点P 从点A 出发,沿边AD 运动到点D 时停止运动,点Q 的运动路径长为( )A .πB .23πC .43π D .23π 11.如图,分别以直角三角形三边为边向外作等边三角形,面积分别为1S 、2S 、3S ;如图2,分别以直角三角形的三边为直径向外半圆,面积分别为4S 、5S 、6S .其中116S =,245S =,511S =,614S =,则34S S +=( )A .86B .64C .54D .4812.在平面直角坐标系中,正方形1111D C B A 、1122D E E B 、2222A B C D 、2343D E E B 、3333A B C D …按如图所示的方式放置,其中点1B 在y 轴上,点1C 、1E 、2C 、3E 、4E 、3C …在x 轴上,已知正方形1111D C B A 的边长为1,1160B C O ∠=︒,112233B C B C B C …则正方形2019201920192019A B C D 的边长是( )A .201812⎛⎫⎪⎝⎭B .201912⎛⎫⎪⎝⎭C .20193⎝⎭D .20183⎝⎭二、填空题13.如图,ABC 内接于O ,AB AC =,直径AD 交BC 于点E ,若1DE =,2cos 3BAC ∠=,则弦BC 的长为______.14.如图,已知在Rt ABC 中,C 90,AC BC 2∠=︒==,点D 在边BC 上,将ABC 沿直线AD 翻折,使点C 落在点C '处,联结AC ',直线AC '与边CB 的廷长线相交于点F ,如果DAB BAF ∠∠=,那么BF =_________.15.已知抛物线2y ax bx c =++过点()0,3A ,且抛物线上任意不同两点()11,M x y ,()22,N x y ,都满足:当120x x <<时,()()12120x x y y -->;当120x x <<时,()()12120x x y y --<.以原点O 为圆心,OA 为半径的圆与抛物线的另两个交点为B ,C ,且B 在C 的左侧,ABC ∆有一个内角为60︒,则抛物线的解析式为______. 16.如图,已知直线l :33y x =,过点()0,1A 作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点1A ;过点1A 作y 轴的垂线交直线l 于点1B ,过点1B 作直线l 的垂线交y 轴于点2A ;…;按此作法继续下去,则点2020A 的坐标为__________.17.如图,已知直线l :y =33x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为_____.18.如图,在直角三角形ABC 中,∠C=90°,AC=12cm ,BC=5cm ,AB=13cm ,则点C 到AB 边的距离是______cm .19.如图,在ABC ∆中,3AB AC cm ==,120A ∠=︒,AB 的垂直平分线分别交,AB BC 于,D E ,则EC 的长为_________.20.如图,已知2AB a =,P 为线段AB 上的一个动点,分别以AP ,PB 为边在AB 的同侧作菱形APCD 和菱形PBFE .点P ,C ,E 在一条直线上,60DAP ∠=︒,M 、N 分别是对角线AC 、BE 的中点.当点P 在线段AB 上移动时,点M 、N 之间的距离最短为_______.三、解答题21.已知ABC 为等边三角形,6,AB P =是AB 上的一个动点,(与A B 、不重合),过点P 作AB 的垂线与BC 相交于点D ,以点D 为正方形的一个顶点,在ABC 内作正方形DEFG ,其中D E 、在BC 上,F 在AC 上,(1)设BP 的长为x ,正方形DEFG 的边长为y ,写出y 关于x 的函数解析式及定义域;(2)当2BP =时,求CF 的长;(3)GDP △是否可能成为直角三角形?若能,求出BP 的长;若不能,请说明理由.22.如图,已知⊙O 的直径 AB 与弦 CD 互相垂直,垂足为点 E.⊙O 的切线 BF 与弦 AC 的延长线相交于点 F,且AC=8,tan∠BDC=34.(1)求⊙O 的半径长;(2)求线段 CF 长.23.如图,在△ABC中,BD、CE是△ABC的高,连接DE.(1)求证:ABD∽ACE;(2)若∠BAC=60°,BC=2DE的长.24.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD 的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;(3)若AC=5,求tan∠ABD的值.参考答案 25.理解写作如下图1,在探究锐角A ∠的对边与直角三角形斜边之比的数学实验中包含两个环节,一是通过在A ∠的边AB 上取不同的点B ', B '',分别作高B C '',B C ''''利用三角形相似,可以说明B C B C A ABB ''''''=''',即A ∠的对边与斜边的比值固定,与点B '的位置无关. 二是说明A ∠的度数发生变化时,A ∠的对边与斜边的比值也会发生变化.请根据下图2简要说明做法并证明第二个环节的结论,并在图3中再构造一种思路证明此结论.26.如图,小王在长江边某瞭望台D 处,测得江面上的渔船A 的俯角为40°,若DE =3米,CE =2米,CE 平行于江面AB ,DE ⊥CE ,迎水坡BC 的坡度i =1:0.75,坡长BC =10米,求此时AB 的长.(小数点后面保留一位,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)【参考答案】***试卷处理标记,请不要删除一、选择题 1.C解析:C 【分析】设PA=PB=PB′=x,在RT△PCB′中,根据sinαPCPB=',列出方程即可解决问题.【详解】解:设PA=PB=PB′=x,在RT△PCB′中,sinαPCPB='∴1sinαxx-=∴x1xsinα-=,∴(1-sinα)x=1,∴x=11sinα-.故选C.【点睛】本题考查解直角三角形、三角函数等知识,解题的关键是设未知数列方程,属于中考常考题型.2.D解析:D【分析】过点A、B分别作AC⊥x轴、BD⊥x轴,垂足分别为点C、D,如图,易证△AOC∽△OBD,则根据相似三角形的性质可得214AOCBODS OAS OB⎛⎫==⎪⎝⎭△△,再根据反比例函数系数k的几何意义即可求出k的值.【详解】解:过点A、B分别作AC⊥x轴、BD⊥x轴,垂足分别为点C、D,如图,则∠ACO=∠BDO=90°,∠OAC+∠AOC=90°,∵OA⊥OB,tan∠BAO=2,∴∠AOC+∠BOD=90°,OA:OB=1:2,∴∠OAC=∠BOD,∴△AOC∽△OBD,∴221124 AOCBODS OAS OB⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭△△,∵1212AOCS⨯==,12BODS k=△,∴11142k=,∴8k=,∵k<0,∴k=﹣8.故选:D.【点睛】本题考查了反比例函数系数k的几何意义、相似三角形的判定和性质以及三角函数的定义等知识,熟练掌握所学知识、明确解答的方法是解题的关键.3.B解析:B【分析】画出图形,根据锐角三角函数的定义求出即可.【详解】如图,∠C=90°,∠A=α,BC=a,∵cotαACBC=,∴AC=BC•cotα=a•cotα,故选:B.【点睛】本题考查了锐角三角函数的定义的应用,在直角三角形中,锐角的正弦是角的对边与斜边的比;余弦是角的邻边与斜边的比;正切是对边与邻边的比;余切是邻边与对边的比;熟练掌握三角函数的定义是解题关键.4.A解析:A【分析】作CE⊥y轴于E.解直角三角形求出OD,DE即可解决问题.【详解】作CE⊥y轴于E.在Rt △OAD 中,∵∠AOD=90°,AD=BC=b ,∠OAD=x , ∴OD=sin OAD sin AD b x ∠=, ∵四边形ABCD 是矩形, ∴∠ADC=90°, ∴∠CDE+∠ADO=90°, 又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=x , ∴在Rt △CDE 中,∵CD=AB=a ,∠CDE=x , ∴DE= cos CDE cos CD a x ∠=,∴点C 到x 轴的距离=EO=DE+OD=cos sin a x b x , 故选:A . 【点睛】本题考查了解直角三角形的应用,矩形的性质,正确作出辅助线是解题的关键.5.D解析:D 【详解】如解图,过点A 作AC x ⊥轴,过点A '作A D x '⊥轴,∵AOB 是等边三角形,∴4AO BO ==,60AOB ∠=︒,∴30AOC ∠=︒,∴·cos 23CO OA AOC ==,2AC =,∴(23,2)A -,∵30AOD AOC ∠'=∠=︒,43OD =,∴·t 3434an A D OD A OD ⨯=∠'==',∴(43,4)A '-,∴点A '是将点A 向右平移63个单位,向下平移6个单位得到的,∴点B '也是将点B 向右平移63个单位,向下平移6个单位得到的,∵()0,4B ,∴B '的坐标为(63,2)-.6.B【分析】分三种情况分析:当0<x≤2时,平移过程中两图重叠部分为Rt △AA'M ;当2<x≤4时,平移过程中两图重叠部分为梯形F'A'MN ;当4<x≤6时,平移过程中两图重叠部分为梯形F'BCN .分别写出每一部分的函数解析式,结合排除法,问题可解.【详解】设AD 交AC 于N ,A D ''交AC 于M ,当0<x ≤2时,平移过程中两图重叠部分为Rt △AA 'M ,∵Rt △ABC 中,AB =4,BC =2,正方形ADEF 的边长为2,AA x '=,∴tan ∠CAB =A M BC AA AB ='', ∴A 'M =12x , 其面积y=12AA A M ''=12x •12x =14x 2, 故此时y 为x 的二次函数,排除选项D ; 当2<x ≤4时,平移过程中两图重叠部分为梯形F 'A 'MN ,AA x '=,2AF x '=-,同理:A 'M =12x ,()122F M x ='-, 其面积y=12AA A M ''-12AF F M ''=12x •12x ﹣12(x ﹣2)•12(x ﹣2)=x ﹣1, 故此时y 为x 的一次函数,故排除选项C .当4<x ≤6时,平移过程中两图重叠部分为梯形F 'BCN ,AF '=x ﹣2,F 'N =12(x ﹣2),F 'B =4﹣(x ﹣2)=6﹣x ,BC =2, 其面积y =12 [12(x ﹣2)+2]×(6﹣x )=﹣14x 2+x +3, 故此时y 为x 的二次函数,其开口方向向下,故排除A ;综上,只有B 符合题意.【点睛】本题考查了动点问题的函数图象以及三角函数的知识,数形结合并运用排除法,是解答本题的关键.7.B解析:B【分析】由锐角函数可求∠B 的度数,可求∠DAB 的度数,即可求解.【详解】如图,∵四边形ABCD 是菱形,菱形的周长为16,∴AB=BC=CD=DA=4,∵AE=2,AE ⊥BC ,∴sin ∠B=12BE AB = ∴∠B=30° ∵四边形ABCD 是菱形,∴AD ∥BC ,∴∠DAB+∠B=180°,∴∠DAB=150°,∴菱形两邻角的度数比为150°:30°=5:1,故选:B .【点睛】本题考查了菱形的性质,锐角三角函数,能求出∠B 的度数是解决问题的关键. 8.C解析:C【分析】根据三角形外角的性质求得∠AEF+∠BFE=270°,由角平分线定义可求得∠MEF+∠MFE=135°,根据三角形内角和定理可求出∠EMF=45°,从而可得出结论.【详解】如图,∵AO ⊥BO∴∠AOB=90°∴∠OEF+∠OFE=90°∵∠AEF 和∠BFE 是△EOF 的外角∴∠AEF=90°+∠OFE ,∠BFE=90°+∠OEF∴∠AEF+∠BFE=90°+90°+∠OFE+∠OEF=270°∵EM 平分∠AEF ,FM 平分∠BFE ,∴∠MEF+∠MFE=12(∠AEF+∠BFE) =135°, ∵∠MEF+∠MFE+∠M=180° ∴∠M=180°-(∠MEF+∠MFE)=180°-135°=45°∴tan ∠EMF=tan45°=1故选:C .【点睛】此题主要考查了三角形内角和定理、三角形外角的性质及三角函数,求出∠MEF+∠MFE=135°是解答此题的关键.9.A解析:A【分析】①通过证明AOF COE ≅△△即可判断;②分别利用勾股定理求出OB,AC 的长度即可得出答案;③先利用ABC 的面积求出AG 的长度,然后利用梯形的面积公式求解即可; ④易证四边形BEDF 是平行四边形,然后通过角度得出90DOF ∠=︒,然后证明DOF DOE ≅,则有DF DE =,则可证明结论.【详解】∵四边形ABCD 是平行四边形,,//,AO CO AD BC AD BC ∴== ,AFO CEO ∴∠=∠ .在AOF 和COE 中,AFO CEO AOF COE AO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩()AOF COE AAS ∴≅,AF CE OF OE ∴==,故①正确;∵AB ⊥AC ,90BAC ∴∠=︒ .∵AB =3,BC=7,222AC BC AB ∴=-= ,112AO AC ∴== , 222OB AO AB ∴=+=,OB AC ∴=,故②正确;过点A 作AG BC ⊥交BC 于点G ,1122ABC S AB AC BC AG =⋅=⋅ , 322177AB AC AG BC ⋅∴===, 11221()73227ABEF S AF BE AG ∴=+⋅==四边形,故③错误; 连接DE,BF ,,AF CE AD BC ==,DF BE ∴= .∵//DF BE ,∴四边形BEDF 是平行四边形.3sin AB AOB OB ∠== , 60AOB ∴∠=︒ .30AOF ∠=︒,180603090DOF ∴∠=︒-︒-︒=︒,90DOE ∴∠=︒.在DOF △和DOE △中,FO OE DOF DOE DO DO =⎧⎪∠=∠⎨⎪=⎩()DOF DOE SAS ∴≅,DF DE ∴=,∴四边形BEDF 是菱形,故④正确;所以正确的有:①②④,故选:A .【点睛】本题主要考查平行四边形的性质,全等三角形的判定及性质,勾股定理和锐角三角函数,掌握平行四边形的性质,全等三角形的判定及性质,勾股定理和锐角三角函数是解题的关键.10.D解析:D【分析】连接AC ,BD ,相交于点O ,过点Q 作1//QE A B ,交BC 于点E ,即点E 为BC 的三等分点,根据平行线分线段成比例得出113QE A B =为定值,可得出点Q 的运动轨迹是以点E 为圆心,QE 为半径的圆弧,通过对点A 1运动轨迹的分析求出圆心角,最后根据弧长公式进行求解.【详解】连接AC ,BD ,相交于点O ,过点Q 作1//QE A B ,交BC 于点E ,即点E 为BC 的三等分点,∵在矩形ABCD 中,33AB =,AD =9,∴3tan 3AB ADB AD ∠==,即30ADB ︒∠=, ∴60ABD ︒∠=,∵将矩形ABCD 沿BP 折叠,得到△A 1PB ,∴133A B AB ==, ∴1133QE A B ==, 当点P 运动到点A 时,点A 1与点A 重合,当点P 运动到点D 时,点A 1与A 2重合,此时2120ABA ︒∠=,∴点Q 的运动轨迹是以点E 为圆心,QE 为半径,圆心角为120︒的圆弧,∴点Q 的运动路径长120323ππ⨯==, 故选D .【点睛】本题考查矩形与轴对称图形的性质,平行线分线段成比例,由三角函数值求锐角,弧长公式,构造平行线得出QE 的长为定值是解题的关键.11.C解析:C【分析】分别用AC ,AB 和BC 表示出123,,S S S ,然后根据222BC AB AC =-即可得出123,,S S S 的关系.同理,得出456,,S S S 的关系,从而可得答案.【详解】解:如图,1S 对应ACD ∆的面积,过D 作DH AC ⊥于H ,ACD ∆为等边三角形, 160,,,2DAC AH CH AC AD AC ∴∠=︒=== sin 60,DH AD ∴︒=33,22DH AD AC ∴== 2113,24S AC DH AC ∴=•=同理:222333,,S BC S AB == ∵222BC AB AC =-, ∴213,S S S -=如图2,同理可得:456S S S =+,∴3421564516111454.S S S S S S +=-++=-++=故选:C .【点睛】本题考查了勾股定理、等边三角形的性质.锐角三角函数等知识点,其中勾股定理:如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么222+=a b c .12.D解析:D【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【详解】解:∵∠B 1C 1O=60°,B 1C 1//B 2C 2//B 3C 3,∴∠D 1C 1E 1=∠C 2B 2E 2=∠C 3B 3E 4=30°,∴D 1E 1=C 1D 1sin30°= 12, 则B 2C 2= 2230B E cos = 123= 13(), 同理可得:B 3C 3= 13= 23()3, 故正方形A n B n C n D n 的边长是:13()n -. 则正方形2019201920192019A B C D 的边长是:20183(). 故选D .【点睛】 此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.二、填空题13.【分析】连接OBOC 由题意易得AE ⊥BC 则有BE=EC ∠BOD=∠BAC 设OB=3rOE=2r 然后根据勾股定理可求解【详解】解:连接OBOC 如图所示:∵内接于AD 过圆心O ∴AE ⊥BC ∴BE=EC ∴∠解析:25【分析】连接OB 、OC ,由题意易得AE ⊥BC ,则有BE=EC ,∠BOD=∠BAC ,设OB=3r ,OE=2r ,然后根据勾股定理可求解.【详解】解:连接OB 、OC ,如图所示:∵ABC 内接于O ,AB AC =,AD 过圆心O ,∴AE ⊥BC ,∴BE=EC ,BD DC =,∴∠BAD=∠CAD ,∵∠BOD=2∠BAD ,∴∠BAC=∠BOD , ∵2cos 3BAC ∠=, ∴2cos 3BOD ∠=, ∵DE=1,∴设OB=3r ,OE=2r ,则有: 321r r =+,解得:1r =,∴3,2OB OE ==,∴在Rt △BEO 中,BE =, ∴BC =故答案为【点睛】本题主要考查垂径定理、三角形内接圆的性质及圆周角定理,熟练掌握垂径定理、三角形内接圆的性质及圆周角定理是解题的关键.14.【分析】首先根据题意画出图形再根据折叠的性质和可求出各角的度数再利用解直角三角形的知识分别求出CDDFBD 的长度最后根据线段之间的和差关系即可求出结果【详解】解:如图所示:∵△ADC 是由△ACD 翻折解析:2【分析】首先根据题意画出图形,再根据折叠的性质和DAB BAF ∠∠=,可求出各角的度数,再利用解直角三角形的知识分别求出CD ,DF ,BD 的长度,最后根据线段之间的和差关系即可求出结果.【详解】解:如图所示:∵△ADC’是由△ACD 翻折得到,∴DAC 'DAC ∠∠=, ∵DAB BAF ∠∠=, ∴DAC 2DAB ∠∠=. ∵AC 45B ∠=︒, ∴DAB BAF=15∠∠=︒.∴30CAD ∠=︒.在Rt △ACD 中,AC=2 ∴23tan 30CD AC =⋅︒= ,43cos30AC AD ==︒ . ∵'ADC F DAC ∠=∠+∠∴'30F DAC ∠=∠=︒ . ∴433DF AD ==. 23432232BF CD DF BC∴=+-=-= 故答案为32.【点睛】本题考查了翻折的性质和解 直角三角形的知识,根据题意画出图形是解题的关键. 15.【分析】由A 的坐标确定出c 的值根据已知不等式判断出y1-y2<0可得出抛物线的增减性确定出抛物线对称轴为y 轴且开口向下求出b 的值如图1所示可得三角形ABC 为等边三角形确定出B 的坐标代入抛物线解析式即 解析:2233=-+y x 【分析】由A 的坐标确定出c 的值,根据已知不等式判断出y 1-y 2<0,可得出抛物线的增减性,确定出抛物线对称轴为y 轴,且开口向下,求出b 的值,如图1所示,可得三角形ABC 为等边三角形,确定出B 的坐标,代入抛物线解析式即可.【详解】解:∵抛物线过点A (0,3),∴c=3,当x 1<x 2<0时,x 1-x 2<0,由(x 1-x 2)(y 1-y 2)>0,得到y 1-y 2<0,∴当x <0时,y 随x 的增大而增大,同理当x >0时,y 随x 的增大而减小,∴抛物线的对称轴为y 轴,且开口向下,即b=0,∵以O 为圆心,OA 为半径的圆与抛物线交于另两点B ,C ,如图所示,∴△ABC 为等腰三角形,∵△ABC 中有一个角为60°,∴△ABC 为等边三角形,且OC=OA=3,设线段BC 与y 轴的交点为点D ,则有BD=CD ,且∠OBD=30°,333cos30,sin 3022︒︒∴=⋅==⋅=BD OB OD OB ∵B 在C 的左侧, ∴B 的坐标为3332⎛⎫- ⎪ ⎪⎝⎭∵B 点在抛物线上,且c=3,b=0,327432∴+=-a 解得:23a =- 则抛物线解析式为2233=-+y x故答案为: 2233=-+y x . 【点睛】 此题属于二次函数综合题,涉及的知识有:待定系数法求二次函数解析式,二次函数的图象与性质,锐角三角函数定义,熟练掌握各自的性质是解本题的关键.16.【分析】先求出点B 的坐标为(1)得到OA=1OB=求出∠AOB=60°再求出∠得到求出(04);同理得到(0);由此得到规律求出答案【详解】将y=1代入中得x=∴B (1)∴OA=1OB=∴tan ∠A解析:()20200,4【分析】先求出点B 1),得到OA=1,∠AOB=60°,再求出∠130OA B =得到13AA =,求出1A (0,4);同理得到11A B =121112A A B ==,2A (0,24);由此得到规律求出答案.【详解】将y=1代入3y x =中得 ∴B,1),∴OA=1,∴tan ∠AOB=AB OA=, ∴∠AOB=60°,∵∠A 1BO=90°, ∴∠130OA B =,∴13AA =,∴14OA =,∴1A (0,4);同理:11A B =121112A AB =, ∴2OA =1624=,∴2A (0,24); ,∴点2020A 的坐标为()20200,4,故答案为:()20200,4. 【点睛】此题考查图形类规律的探究,一次函数的实际应用,锐角三角函数,根据图形的规律求出点的坐标得到点坐标的表示规律是解题的关键.17.(0256)【分析】利用锐角三角函数分别计算得到的坐标利用规律直接得到答案【详解】解:∵l :y =x ∴l 与x 轴的夹角为30°∵AB ∥x 轴∴∠ABO =30°∵OA =1∴AB =∵A1B ⊥l ∴∠ABA1=6解析:(0,256)【分析】利用锐角三角函数分别计算得到12,A A 的坐标,利用规律直接得到答案.【详解】解:∵l :y ∴l 与x 轴的夹角为30°∵AB ∥x 轴∴∠ABO =30°∵OA =1∴AB∵A 1B ⊥l∴∠ABA 1=60°∴AA 1=3∴A 1(0,4)同理可得A 2(0,16)…∴A 4纵坐标为44=256∴A 4(0,256)故答案为:(0,256).【点睛】本题考查的是一次函数综合题,先根据所给一次函数判断出一次函数与x 轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到123,,A A A …的点的坐标是解决本题的关键.18.【分析】根据△ABC 的面积相等选择AC 和BC 为底高算出的△ABC 的面积和选择AB 为底C 到AB 边的距离为高算出的面积一样列出等式求解【详解】解:在Rt △ABC 中设点C 到AB 边的距离为由△ABC 的面积相 解析:6013【分析】根据△ABC 的面积相等,选择AC 和BC 为底、高算出的△ABC 的面积和选择AB 为底,C 到AB 边的距离为高算出的面积一样列出等式求解.【详解】解:在Rt △ABC 中,设点C 到AB 边的距离为d ,由△ABC 的面积相等可列出如下等式:11=22⨯⨯AC BC AB d ,代入数据: 即:11125=1322⨯⨯⨯⨯d 解得:6013=d 故点C 到AB 边的距离是6013cm. 故答案为:6013. 【点睛】 本题结合直角三角形考查了三角形的面积公式,点到直线的距离垂线段最短等知识点,掌握好直角三角形的等面积法是解题的关键.19.【分析】根据等腰三角形的性质可求出两底角的度数连接AE 可得出AE=BE 推出解直角三角形即可得出答案【详解】解:∵∴连接AE ∵ED 垂直平分AB ∴AE=BE ∵∴∴故答案为:【点睛】本题考查的知识点是等腰解析:【分析】根据等腰三角形的性质可求出两底角的度数,连接AE ,可得出AE=BE ,30EAD =∠°,推出90EAC ∠=︒,解直角三角形即可得出答案.【详解】解:∵3AB AC cm ==,120A ∠=︒, ∴1(180120)302B C ,连接AE ,∵ED 垂直平分AB ,∴AE=BE ,30EAD =∠°,∵120A ∠=︒,∴90EAC ∠=︒,∴cos30AC CE ===︒故答案为:【点睛】本题考查的知识点是等腰三角形的性质、解直角三角形、垂直平分线的性质,综合性较强,但难度不大.20.【分析】连接PMPN 根据菱形的性质求出∠CAP=30°∠MPC=∠CPA=60°∠EPN=∠BPN=∠EPB=30°从而求出∠MPN=90°设AP=x 则PB=2a -x 然后利用锐角三角函数求出PM 和P 解析:32a 【分析】连接PM 、PN ,根据菱形的性质求出∠CAP=12∠=DAP 30°,∠MPC=12∠CPA=60°,∠EPN=∠BPN=12∠EPB=30°,从而求出∠MPN=90°,设AP=x ,则PB=2a -x ,然后利用锐角三角函数求出PM 和PN ,然后利用勾股定理求出MN 2与x 的函数关系式,化为顶点式即可求出MN 2的最小值,从而求出结论.【详解】 解:连接PM 、PN∵四边形APCD 和四边形PBFE 为菱形,60DAP ∠=︒∴∠CPA=180°-∠DAP=120°,∠EPB=∠DAP=60°,PM ⊥AC ,PN ⊥EB ,AC 平分∠DAP ,PM 平分∠APC ,PN 平分∠EPB∴∠CAP=12∠=DAP 30°,∠MPC=12∠CPA=60°,∠EPN=∠BPN=12∠EPB=30° ∴∠MPN=∠MPC +∠EPN=90°设AP=x ,则PB=2a -x ∴PM=AP·sin ∠CAP=12x ,PN=PB·cos ∠32a -x ) 在Rt △MON 中MN 2= PM 2+PN 2=214x +34(2a -x )2=(x -32a )2+34a 2 当x=32a 时,MN 2取最小值,最小为34a 2∴MN. 【点睛】 此题考查的是菱形的性质、锐角三角函数、勾股定理和二次函数的应用,掌握菱形的性质、锐角三角函数、勾股定理和利用二次函数求最值是解决此题的关键.三、解答题21.(1)))3903y x x =+-<≤;(2)32;(3) 【分析】(1)设BP 的长为 x ,正方形 DEFG 的边长为 y ,则由题意可得BD=2x ,DE=y ,3EC y =,然后根据BC=6可以得到y 关于 x 的函数解析式; (2)若BP=2,即x=2,由(1)可得正方形 DEFG 的边长EF 的长度,解直角三角形CEF 可得CF 的长度;(3)设△GDP 是直角三角形,则PG ⊥GD ,然后可得关于x 的方程,解方程可得x 的值,即BP 的长度.【详解】解:(1)设BP 的长为 x ,正方形 DEFG 的边长为 y ,由∠B=60°,PD 垂直AB ,则BD=2x ,DE=y ,EC=tan 303EF y ⨯︒=,∴有263x y y ++=,整理得: ))3903y x x =+-<≤;(2)若BP=2,即x=2,可得3y =,∴(3sin 6032CF EF =⨯︒==; (3)若△GDP 是直角三角形,则PG ⊥GD ,∴∠DPG=30°,即PD=2GD ,)(22329y x ==+-,解之得: x =,此即BP 的长度. 【点睛】本题考查解直角三角形与一次函数的综合应用,根据直角三角形边和角的关系求解是解题关键.22.(1)5;(2)92 【分析】(1)过O 作OH 垂直于AC ,利用垂径定理得到H 为AC 中点,求出AH 的长为4,根据同弧所对的圆周角相等得到tanA =tan ∠BDC ,求出OH 的长,利用勾股定理即可求出圆的半径OA 的长; (2)由AB 垂直于CD 得到E 为CD 的中点,得到EC =ED ,在直角三角形AEC 中,由AC 的长以及tanA 的值求出CE 与AE 的长,由FB 为圆的切线得到AB 垂直于BF ,得到CE 与FB 平行,由平行得比例列出关系式求出AF 的长,根据AF−AC 即可求出CF 的长.【详解】(1)作OH AC ⊥于H ,则142AH AC ==,在Rt AOH ∆中,344AH tanA tan BDC ==∠=,, 3OH ∴=,∴半径225OA AH OH =+=;(2)AB CD ⊥,E ∴为CD 的中点,即CE DE =, 在Rt AEC ∆中,384AC tanA ==,,设3CE k =,则4AE k =, 根据勾股定理得:222AC CE AE =+,即2291664k k +=,解得85k =则2432,55CE DE AE ===, BF 为圆O 的切线,FB AB ∴⊥,又AE CD ⊥,//CD FB ∴,AC AE AF AB ∴=,即328510AF =,解得:252AF =, 则92CF AF AC =-=. 【点睛】此题考查了切线的性质,垂径定理,锐角三角函数定义,勾股定理,以及平行线的性质,熟练掌握切线的性质是解本题的关键.23.(1)见解析;(2)【分析】(1)找出公共角即可求出相似(2)根据~ABD ACE ∆∆得出一个比例式AE AD AC AB=,再根据两边对应成比例且夹角相等得出~ADE ABC ∆∆,再结合60的余弦值即可求出答案.【详解】解:(1)证明:,BD CE 是ABC ∆的高90ADB AEC ∴∠=∠=A A ∠=∠~ABD ACE ∴∆∆(2)~ABD ACE ∆∆ AB AD AC AE ∴= AEAD AC AB∴= A A ∠=∠~ADE ABC ∴∆∆DE AD BC AB∴= 60BAC ∠=1cos 2AD BAC AB ∴∠== 又6BC ==DE ∴=【点睛】本题主要考察了相似三角形,三角函数等知识点,能找出根据第一个相似三角形的比例式来证第二个相似三角形是解题关键.24.(1)90°;(2)证明见解析;(3)2.【分析】(1)根据圆周角定理即可得∠CDE的度数;(2)连接DO,根据直角三角形的性质和等腰三角形的性质易证∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,即可判定DF是⊙O的切线;(3)根据已知条件易证△CDE∽△ADC,利用相似三角形的性质结合勾股定理表示出AD,DC的长,再利用圆周角定理得出tan∠ABD的值即可.【详解】解:(1)解:∵对角线AC为⊙O的直径,∴∠ADC=90°,∴∠EDC=90°;(2)证明:连接DO,∵∠EDC=90°,F是EC的中点,∴DF=FC,∴∠FDC=∠FCD,∵OD=OC,∴∠OCD=∠ODC,∵∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,∴DF是⊙O的切线;(3)解:如图所示:可得∠ABD=∠ACD,∵∠E+∠DCE=90°,∠DCA+∠DCE=90°,∴∠DCA=∠E,又∵∠ADC=∠CDE=90°,∴△CDE∽△ADC,∴DC DEAD DC=,∴DC2=AD•DE∵,∴设DE=x,则,则AC2﹣AD2=AD•DE,期()2﹣AD2=AD•x,整理得:AD2+AD•x﹣20x2=0,解得:AD=4x或﹣4.5x(负数舍去),则2x=,故tan∠ABD=tan∠ACD=422AD xDC x==.25.答案见解析.【分析】环节一,我们用相似论证了当A ∠不变时,A ∠的对边与斜边的比值固定不变;环节二,再次为我们论证了当A ∠改变时,A ∠的对边与斜边的比值也随之变化,不再固定不变;进而从斜边相等,或直角边相等,两个方面论证即可.【详解】解:环节二证明过程如下:(1)如下图所示:过点A 在BAC ∠内部做射线AB ',截取AB AB '=,过点 B '作BC AC ''⊥,此时构造出了B AC ''∠,显然 BAC B AC ''∠≠∠此时sin BC BAC AB ∠=;sin B C B AC AB ''''∠=', 因为AB AB '=,而BC B C ''≠,所以 sin sin BAC B AC ''∠≠∠ 所以当A ∠的度数发生变化时,A ∠的对边与斜边的比值也会发生改变.(2)图3中构造另外一种思路证明:由上题我们自然想到控制变量法.环节二我们使斜边相等,现在我们使直角边BC 与B C ''与相等,如图所示:此时sin BC BAC AB ∠=;sin B C B AC AB ''''∠=';因为 BC B C ''=,而AB AB '≠,所以 sin sin BAC B AC ''∠≠∠.【点睛】本题考查了对边与斜边的比,即正弦值,会随着角度的变化而变化,熟悉相关性质是解题的关键.26.5.1米【分析】延长DE 交AB 延长线于点P 、作CQ AP ⊥于点Q ,根据矩形的判定和性质可得CE PQ 2==、CQ PE =,由坡度1:0.75i =,可设CQ 4x =、BQ 3x =,根据勾股定理可列出关于x 的方程、解方程即可求得x 的值,即由线段的和差可知11DP =,最后解Rt ADP 、线段的和差可求得答案.【详解】解:如图,延长DE 交AB 延长线于点P ,作CQ AP ⊥于点Q ,如图:∵//CE AP ,DE CE ⊥∴DP AP ⊥∴四边形CEPQ 为矩形∴CE PQ 2==,CQ PE = ∵140.753CQ i BQ === ∴设CQ 4x =、BQ 3x =∴在Rt BCQ 中, 222BQ CQ BC +=∴()()2224310x x += ∴12x =或22x =-(舍去)∴48CQ PE x ===,36BQ x ==∴DP DE PE 11=+=∵测得江面上的渔船A 的俯角为40︒∴40A ∠=︒∴在Rt ADP 中,1113.1tan 0.84DP AP A =≈≈∠ ∴13.162 5.1AB AP BQ PQ =--=--= ∴此时AB 的长为5.1米.故答案是:5.1米【点睛】本题考查了俯角、坡度、锐角三角函数、矩形的判定和性质、勾股定理、一元二次方程、线段的和差等,解题的关键在于通过添加辅助线构造出直角三角形.。
九年级数学第二十八章《锐角三角函数——应用举例》同步练习(含答案)

九年级数学第二十八章《锐角三角函数——应用举例》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,在综合实践活动中,小明在学校门口的点C处测得树的顶端A仰角为37°,同时测得BC=15米,则树的高AB(单位:米)为A.15tan37︒B.15sin37︒C.15tan 37°D.15sin 37°【答案】C【解析】如图,在Rt△ABC中,∠B=90°,∠C=37°,BC=15,∴tan C=ABBC,则AB=BC•tan C=15tan37°.故选C.【名师点睛】本题考查了解直角三角形的应用﹣仰角俯角问题.解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.2.如图,在海拔200米的小山顶A处,观察M,N两地,俯角分别为30°,45°,则M,N两地的距离为A.200米B.2003米C.400米D.200(3+1)米【答案】D【解析】过A作AB⊥MN于B,在Rt △ABM 中, 90,200,30ABM AB M ∠==∠=,tan AB M BM∴∠=, 2003BM ∴=,在Rt △ABN 中, 90,45ABN N BAN ∠=∠=∠=,∴BN =AB =200,()200320020031MN ∴=+=+米.故选D.3.如图是一张简易活动餐桌,测得30cm OA OB ==,50cm OC OD ==,B 点和O 点是固定的.为了调节餐桌高矮,A 点有3处固定点,分别使OAB ∠为30,45,60,问这张餐桌调节到最低时桌面离地面的高度是(不考虑桌面厚度)A .402cmB .40cmC .403cmD .30cm【答案】B【解析】过点D 作DE ⊥AB 于点E ,∵∠OAB =30时,桌面离地面最低, ∴DE 的长即为最低长度, ∵OA =OB =30cm ,OC =OD =50cm , ∴AD =OA +OD =80cm , 在Rt △ADE 中,∵∠OAB =30,AD =80cm , ∴140cm.2DE AD ==故选:B.4.如图,某水库堤坝横截面迎水坡AB的坡度是1:3,堤坝高为40m,则迎水坡面AB的长度是A.80m B.803mC.40m D.403m【答案】A5.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A 处受噪音影响的时间为A.409秒B.16秒C.403秒D.24秒【答案】B【解析】如图,以点A为圆心,取AB=AD=200米为半径,过点A作AC⊥MN,∵∠QON=30°,OA=240米,∴AC=120米,当火车到B点时开始对A处产生噪音影响,到点D时结束影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得: BC=160米∴BD=2BC=320米,∵72千米/小时=20米/秒,∴影响时间应是320÷20=16 (秒),故选B.6.如图,在A、B两地之间要修一条笔直的公路,从A地测得公路走向是北偏东48°,A,B两地同时开工,若干天后公路准确接通,若公路AB长8千米,另一条公路BC长是6千米,且BC的走向是北偏西42°,则A地到公路BC的距离是A.6千米B.8千米C.10千米D.14千米【答案】B【解析】∵∠ABG=48°,∠CBE=42°,∴∠ABC=180°-48°-42°=90°,∴A到BC的距离就是线段AB的长度,∴AB=8千米.BE=,她7.如图,小颖利用有一锐角是30的三角板测量一棵树的高度,已知她与树之间的水平距离6mAB=,那么这棵树高的眼睛距地面的距离 1.5m23 1.5mA.23m B.()32 1.5m D.4.5mC.()【答案】B【解析】在直角三角形ACD中,∠CAD=30°,AD=6m,∴CD=AD tan30°=6×33=23,∴CE=CD+DE=23+1.5(m).故选B.8.如图,在小山的东侧A点有一个热气球,由于受风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A,B 两点间的距离为多少米.A.7502B.3752C.3756D.7506【答案】A二、填空题:请将答案填在题中横线上.9.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后楼梯AC长为_____m.【答案】26【解析】在Rt△ABD中,∵sin∠ABD=AD AB,∴AD=4sin60°=23(m),在Rt△ACD中,∵sin∠ACD=AD AC,∴AC=23sin45=26(m).故答案是:26.10.我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A 的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+3)nmile处,则海岛A,C之间的距离为______nmile.【答案】2【解析】作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=22x,则CD=22x,在Rt△ABD中,BD=6 tan2ADABD=∠x,则22x+62x=18(1+3),解得,x=182,答:A,C之间的距离为182海里.故答案为:182.11.如图,一轮船由南向北航行到O处时,发现与轮船相距40海里的A岛在北偏东33方向.已知A岛周围20海里水域有暗礁,如果不改变航向,轮船________(填“有”或“没有”)触暗礁的危险.(可使用科学记算器)【答案】没有【解析】已知OA=40,∠O=33°,则AB=40•sin33°≈21.79>20.所以轮船没有触暗礁的危险.故答案为: 没有.12.数学组活动,老师带领学生去测塔高,如图,从B点测得塔顶A的仰角为60,测得塔基D的仰角为45,已知塔基高出测量仪20m,(即20mDC=),则塔身AD的高为________米.【答案】()2031-【解析】在Rt △ABC 中,AC =3BC .在Rt △BDC 中有DC =BC =20,∴AD =AC−DC =3BC−BC =20(3−1)米. 故答案为:20(3−1).三、解答题:解答应写出文字说明、证明过程或演算步骤.13.某中学九年级数学兴趣小组想测量建筑物AB 的高度.他们在C 处仰望建筑物顶端A 处,测得仰角为45,再往建筑物的方向前进6米到达D 处,测得仰角为60,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米,3 1.732≈,2 1.414)≈【解析】设AB x =米, ∵∠C =45°,∴在Rt ABC △中,BC AB x ==米,60ADB ∠=, 6CD =米,∴在Rt ADB △中tan ∠ADB =ABBD, tan60°=6xx -, 解得)333114.2x =≈米答,建筑物的高度为14.2米.14.如图,一个热气球悬停在空中,从热气球上的P点测得直立于地面的旗杆AB的顶端A与底端B的俯角分别为34°和45°,此时P点距地面高度PC为75米,求旗杆AB的高度(结果精确到0.1米).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67)15.太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业.如图是太阳能电池板支撑架的截面图,其中线段AB、CD、EF表示支撑角钢,太阳能电池板紧贴在支撑角钢AB上且长度均为300cm,AB的倾斜角为30°,BE=CA=50cm,支撑角钢CD、EF与地面接触点分别为D、F,CD垂直于地面,FE⊥AB于点E.点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少.(结果保留根号)【解析】如图所示,延长BA交FD延长线于点G,过点A作AH⊥DG于点H.由题意知,AB=300cm,BE=AC=50cm,AH=50cm,∠AGH=30°.在Rt△AGH中,∵AG=2AH=100cm,∴CG=AC+AG=150cm,则CD=12CG=75cm.∵EG=AB﹣BE+AG=300﹣50+100=350(cm).在Rt△EFG中,EF=EG tan∠EGF=350tan30°=350×33503(cm).答:支撑角钢CD的长为75cm,EF 3503.。
人教版初中数学锐角三角函数的经典测试题附答案

∴S△BDO= ,S△AOC= ,
∵∠AOB=90°,
∴∠BOD+∠DBO=∠BOD+∠AOC=90°,
∴∠DBO=∠AOC,
∴△BDO∽△OCA,
∴ ,
∴ ,
∴tan∠BAO= .
故选B.
【点睛】
本题考查了反比例函数的性质以及直角三角形的性质,三角形相似的判定和性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.
3.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在 上找一点 ,取 , , ,要使 , , 成一直线,那么开挖点 离点 的距离是()
A. B. C. D.
【答案】B
【解析】
【分析】
根据已知利用∠D的余弦函数表示即可.
【详解】
在Rt△BDE中,cosD= ,
∴DE=BD•cosD=500cos55°.
【详解】
∵AD⊥BC
∴∠ADC=∠ADB=
在Rt△ADC中,AC=4,∠C=
∴AD=CD=
在Rt△ADB中,AD= ,∠ABD=
∴BD= AD= .
∵BE平分∠ABC,
∴∠EBD= .
在Rt△EBD中,BD= ,∠EBD=
∴DE= BD=
∴AE=AD−DE= - =
故选:C
【点睛】
本题考查了等腰直角三角形的性质,以及利用特殊角三角函数解直角三角形.
∴∠BOD=∠COE
在△ODB和△OEC中
∴△ODB≌△OEC
∴OD=OE
∴△ODE是顶角为120°的等腰三角形,
∴ 形状不变,故①正确;
过点O作OH⊥DE,则DH=EH
∵△ODE是顶角为120°的等腰三角形
【九年级数学试题】锐角三角函数考试题(附答案)

锐角三角函数考试题(附答案)
达标训练
基础巩固
1在Rt△ABc中,如果各边长度都扩大2倍,则锐角A的正弦值和余弦值( )
A都没有变化 B都扩大2倍 c都缩小2倍 D不能确定
思路解析当Rt△ABc的各边长度都扩大二倍,所得新三角形与原三角形相似,故锐角A大小不变
答案A
2已知α是锐角,且csα= ,则sinα=( )
A B c D
思路解析由csα= ,可以设α的邻边为4,斜边为5,根据勾股定理,α的对边为3,则sinα=
答案c
3Rt△ABc中,∠c=90°,Ac∶Bc=1∶ ,则csA=_______,tanA=_________
思路解析画出图形,设Ac=x,则Bc= ,由勾股定理求出AB=2x,再根据三角函数的定义计算
答案,
4设α、β为锐角,若sinα= ,则α=________;若tanβ= ,则β=_________
思路解析要熟记特殊角的三角函数值
答案60°,30°
5用计算器计算sin51°30′+ cs49°50′-tan46°10′的值是_________
思路解析用计算器算三角函数的方法和操作步骤
答案0386 0
6△ABc中,∠BAc=90°,AD是高,BD=9,tanB= ,求AD、Ac、。
锐角三角函数同步练习(应用题)

第28章锐角三角函数练习题 姓名:________1.(2009年郴州市)如图,数学活动小组来到校园内的一盏路灯下测量路灯的高度,测角仪AB α为30,点B 到电灯杆底端N 的距离BN 为10米,求路灯的高度MN 是多少米?(取23=1. 732,结果保留两位小数)2.(2009成都)某中学九年级学生在学习“直角三角形的边角关系”一章时,开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度.如图,他们先在点C 测得教学楼AB 的顶点A 的仰角为30°,然后向教学楼前进60米到达点D ,又测得点A 的仰角为45°.请你根据这些数据,求出这幢教学楼的高度.(计算过程和结果均不取近似值)3.(2009年黄石市)三楚第一山——东方山是黄石地区的佛教圣地,也是国家AAA 级游览景区.它的主峰海拔约为600米,主峰AB 上建有一座电信信号发射架BC ,现在山脚P 处测得峰顶的仰角为α,发射架顶端的仰角为β,其中35tan tan 58αβ==,,求发射架高BC .4.(2009年云南省)如图,小芸在自家楼房的窗户A 处,测量楼前的一棵树CD 的高. 现测得树顶C 处的俯角为45°,树底D 处的俯角为60°,楼底到大树的距离BD 为20米.请5.(2009年济宁市)坐落在山东省汶上县宝相寺内的太子灵踪塔始建于北宋(公元1112年),为砖彻八角形十三层楼阁式建筑.数学活动小组开展课外实践活动,在一个阳光明媚的上午,他们去测量太子灵踪塔的高度,携带的测量工具有:测角仪.皮尺.小镜子.(1)小华利用测角仪和皮尺测量塔高. 图1为小华测量塔高的示意图.她先在塔前的平地上选择一点A ,用测角仪测出看塔顶()M 的仰角35α=,在A 点和塔之间选择一点B ,测出看塔顶()M 的仰角45β=,然后用皮尺量出A .B 两点的距离为18.6m,自身的高度为1.6m.请你利用上述数据帮助小华计算出塔的高度(tan 350.7≈,结果保留整数).CB AP600米山顶 发射架 45° AB C D 60°(2)如果你是活动小组的一员,正准备测量塔高,而此时塔影NP 的长为a m (如图2),你能否利用这一数据设计一个测量方案?如果能,请回答下列问题:①在你设计的测量方案中,选用的测量工具是: ;②要计算出塔的高,你还需要测量哪些数据? . 6.(2009年山东青岛市)在一次数学活动课上,老师带领同学们去测量一座古塔CD 的高度.他们首先从A 处安置测倾器,测得塔顶C 的仰角21CFE ∠=°,然后往塔的方向前进50米到达B 处,此时测得仰角37CGE ∠=°CD 的高度. (参考数据:3sin 375°≈,3tan 374°≈,9sin 2125°≈,3tan 218°≈)7.(2009年铁岭市)某旅游区有一个景观奇异的望天洞,D 点是洞的入口,游人从入口进洞游览后,可经山洞到达山顶的出口凉亭A 处观看旅游区风景,最后坐缆车沿索道AB 返回山脚下的B 处.在同一平面内,若测得斜坡BD 的长为100米,坡角10DBC ∠=°,在B 处测得A 的仰角40ABC ∠=°,在D 处测得A 的仰角85ADF ∠=°,过D 点作地面BE 的垂线,垂足为C .(1)求ADB ∠的度数;(2)求索道AB 的长.(结果保留根号)8.(2009年福州)如,在边长为1的小正方形组成的网格中,ABC △的三个顶点均在格点上,请按要求完成下列各题:(1)用签字笔...画AD ∥BC (D 为格点),连接CD ; (2)线段CD 的长为 ;(3)请你在ACD △的三个内角中任选一个锐角..,若你所选的 锐角是 ,则它所对应的正弦函数值是 . (4) 若E 为BC 中点,则tan ∠CAE 的值是 .9.(2009年日照)如图,斜坡AC 的坡度(坡比)为1:3,AC =10米.坡顶有一旗杆BC ,旗杆顶端B 点与A 点有一条彩带AB 相连,AB =14米.试求旗杆BC 的高度.10.(2009贺州)如图,︒=∠25MON ,矩形ABCD 的对角线ON AC ⊥,边BC 在OM 上,当AC=3时,AD11.(2009年天津市)在一次课外实践活动中,同学们要测量某公园人工湖两侧A B ,两个凉亭之间的距离.现测得30AC =m ,70BC =m ,120CAB ∠=°,请计算A B ,两个凉亭之间的距离. A CD EFBCG E DB A F ACD AO25°CBM NDC A12. ( 2009年嘉兴市)如图,已知一次函数b kx y +=的图象经过)1,2(--A ,)3,1(B 两点,并且交x 轴于点C ,交y 轴于点D ,(1)求该一次函数的解析式; (2)求OCD ∠tan 的值;(3)求证:︒=∠135AOB .13. (2009年泸州)如图11,在△ABC 中,AB=BC ,以AB为直径的⊙O 与AC 交于点D ,过D 作DF⊥BC, 交AB 的延长线于E ,垂足为F .(1)求证:直线DE 是⊙O 的切线;(2)当AB=5,AC=8时,求cosE的值. 14.(2009呼和浩特)要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般满足5075α°≤≤°.如图,现有一个长6m 的梯子,梯子底端与墙角的距离为3m .(1)求梯子顶端B 距离墙角C(2)计算此时梯子与地面所成角α,并判断人能否安全使用这个梯子. (3 1.732≈,2 1.414≈)15.(2009年郴州市)如图,数学活动小组来到校园内的一盏路灯下测量路灯的高度,测角仪AB α为30,点B 到电灯杆底端N 的距离BN 为10米,求路灯的高度MN 是多少米?(取2316.(2009年常德市)如图,某人在D 处测得山顶C 的仰角为30o,向前走200米来到山脚A 处,测得山坡AC 度(不计测角仪的高度,3 1.73≈,结果保留整数).17.(2009年包头)如图,线段AB DC 、分别表示甲.乙两建筑物的高,AB BC DC BC ⊥,⊥,从B 点测得D 点的仰角α为60°从A 点测得D 点的仰角β为30°,已知甲建筑物高36AB =米.(1)求乙建筑物的高DC ; (2)求甲.乙两建筑物之间的距离BC(参考数据:2 1.4143 1.732≈,≈)18.(2009眉山)海船以5海里/小时的速度向正东方向行驶,在A 处看见灯塔B 在海船的北偏东60°方向,2小时后船行驶到C 处,发现此时灯塔B 在海船的北偏西45方向,求此时灯塔B 到C 处的距离.19.(2009年台州市)如图,有一段斜坡BC 长为10米,坡角12CBD ︒∠=,为方便残疾人的轮椅车通行,现准备把坡角降为5°. (1)求坡高CD ; (2)求斜坡新起点A 与原起点B 的20.(2009年赤峰市)公园里有一块形如四边形ABCD 的草地,测得BC=CD=10米,B D CA O1 1yx图11 BC A 墙地面 C BA5°D乙C B A甲EC∠B=∠C=120°,∠A=45°.请你求出这块草地的面积.21.(2009年娄底)在学习实践科学发展观的活动中,某单位在如图8所示的办公楼迎街的墙面上垂挂一长为30米的宣传条幅AE ,张明同学站在离办公楼的地面C 处测得条幅顶端A 的仰角为50°,测得条幅底端E 的仰角为30°. 问张明同学是在离该单位办公楼水平距离多远的地方进行测量?(精确到整数米)22. (2009年金华市) 如图1是工人将货物搬运上货车常用的方法,把一块木板斜靠在货车车厢的尾部,形成一个斜坡,货物通过斜坡进行搬运.根据经验,木板与地面的夹角为20°(即图2中∠ACB =20°)时最为合适,已知货车车厢底部到地面的距离ABADCD24.(2009重庆綦江)如图,在矩形ABCD 中,E 是BC 边上的点,AE=BC ,DF ⊥AE ,垂足为F ,连接DE . (1)求证:ABE △DFA ≌△; (2)如果10AD AB =,=6,求sin EDF ∠的值.第28章锐角三角函数练习题参考答案1. 解:在直角三角形MPA 中,30α∠=°,10AP 米310tan 30105.7733MP米因为 1.5AB 米所以 1.5 5.87.27MN米2.解:如图,由已知可得∠ACB=30°,∠ADB=45° ∴在Rt △ABD 中,BD=AB 又在Rt △ABC 中,∵ tan30°=BCAB ∴33=BC AB ,即BC=3AB ∵BC=CD+BD ,∴3AB=CD+AB 即(3-1)AB=60A BCD图1 图2DABCEF∴AB=1360-=30(3+1)米∴教学楼高度为30(3+1)米. 3. 解:在Rt PAB △中,∵tan AB PA α=, ∴6001000m 3tan 5AB PA α===.在Rt PAC △中, ∵tan ACPAβ=, ∴5tan 1000625m 8AC PA β===. ∴62560025m BC =-=. 答:发射架高为25m .4. 解:过点A 作AE ∥BD 交DC 的延长线于点E , 则∠AEC =∠BDC =90°.∵45EAC ∠=,20AE BD ==, ∴20EC =.∵tan tan ABADB EAD BD∠=∠=, ∴20tan 60203AB =⋅=2032014.6CD ED EC AB EC =-=-=≈(米).答:树高约为14.6米.5. 解:(1)设CD 的延长线交MN 于E 点,MN 长为xm ,则( 1.6)ME x m =-. ∵045β=,∴ 1.6DE ME x ==-.∴ 1.618.617CE x x =-+=+. ∵0tan tan 35ME CE α==,∴ 1.60.717x x -=+,解得45x m =. ∴太子灵踪塔()MN 的高度为45m .(2) ①测角仪.皮尺; ② 站在P 点看塔顶的仰角.自身的高度. 6. 解:由题意知CD AD ⊥,EF AD ∥,45°AB ED60°C∴90CEF ∠=°,设CE x =, 在Rt CEF △中,tan CE CFE EF ∠=,则8tan tan 213CE x EF x CFE ===∠°; 在Rt CEG △中,tan CECGE GE ∠=, 则4tan tan 373CE x GE x CGE ===∠°;∵EF FG EG =+, ∴845033x x =+. 37.5x =,∴37.5 1.539CD CE ED =+=+=(米). 答:古塔的高度约是39米.7. (1)解:∵DC CE ⊥,∴90BCD ∠=°. 又∵10DBC ∠=°, ∴80BDC ∠=°, ∵85ADF ∠=°,∴360809085105ADB ∠=---=°°°°°. (2)过点D 作DG AB ⊥于点G .在Rt GDB △中,401030GBD ∠=-=°°°, ∴903060BDG ∠=-=︒°° 又∵100BD =, ∴111005022GD BD ==⨯=. 3cos301005032GB BD ==⨯=°. A CDEFBG在Rt ADG △中,1056045GDA ∠=-=︒°° ∴50GD GA ==,∴50503AB AG GB =+=+(米) 答:索道长50503+米. 8. (1)如图 (2)5;(3)∠CAD ,55(或∠ADC ,552); (4)21. 9. 延长BC 交AD 于E 点,则CE ⊥AD . 在Rt △AEC 中,AC =10,由坡比为1: 3可知:∠CAE =30°, ∴ CE =AC·sin30°=10×21=5, AE =AC·cos30°=10×23=53 . 在Rt △ABE 中,BE =22AE AB -=()223514-=11.∵ BE =BC +CE ,∴ BC =BE -CE =11-5=6(米). 答:旗杆的高度为6米. 10. 解:延长AC 交 ON 于点E , ∵AC ⊥ON , ∠OEC=90°,∵四边形ABCD 是矩形, ∴∠ABC=90°,A D=BC , 又∵∠OCE=∠ACB , ∴∠BAC=∠O=25°, 在Rt △ABC 中,AC=3, ∴BC=AC· ∴ADABCED A25°CBMDECAD11. 如图,过C 点作CD 垂直于AB 交BA 的延长线于点D .在Rt CDA △中,3018018012060AC CAD CAB =∠=-∠=︒-︒=︒,°.∴•=AC CD 31560sin 30sin =︒•=∠CAD ,︒•=∠•=60cos 30cos CAD AC AD =15.又在Rt CDB△中,22270BC BD BC CD ==,-,()227015365BD ∴=-=.651550AB BD AD ∴=-=-=,答:A B ,两个凉亭之间的距离为50m.12. (1)由⎩⎨⎧+=+-=-b k b k 321,解得⎪⎩⎪⎨⎧==3534b k ,所以3534+=x y (2)5(0)4C -,,5(0)3D ,. 在Rt △OCD 中,35=OD ,45=OC , ∴OCD ∠tan 34==OC OD .(3)取点A 关于原点的对称点(21)E ,, 则问题转化为求证︒=∠45BOE . 由勾股定理可得,5=OE ,5=BE ,10=OB ,∵222BE OE OB +=, ∴△EOB 是等腰直角三角形. ∴︒=∠45BOE . ∴135AOB ∠=°.BD CAO 1 1yE13.14. 解:(1)在Rt ACB △中, (2)在Rt ACB △中,31cos 62AC AB α=== ∴可以安全使用.15.. 解:在直角三角形MPA 中,30α∠=°,10AP 米310tan 30105.7733MP米因为 1.5AB 米所以 1.5 5.87.27MN米16. 设山高BC =x ,则AB =12x , 由tan 3012002BC x BDx==+,得1)400x=,解得1)16211x ==≈米17.解:(1)过点A 作AE CD ⊥于点E ,根据题意,得6030DBC DAE αβ∠=∠=∠=∠=°,°,36AE BC EC AB ===,米,设DE x =,则36DC DE EC x =+=+, 在Rt AED △中,tan tan 30DEDAE AE∠==°, AE BC AE ∴=∴==,,在Rt DCB △中,tan tan 60DC DBC BC ∠===°,3361854x x x DC ∴=+=∴=,,(米). (2)BC AE ==,18x =,1818 1.73231.18BC ∴==⨯≈(米).18. 解:如图,过B 点作BD⊥AC 于DD乙CBA 甲 E∴∠DAB =90°-60°=30°,∠DCB=90°-45°=45° 设BD =x,在Rt△ABD 中,AD =x ⋅tan30°=33x 在Rt△BDC 中,BD =DC =x BC =2x又AD =5×2=10 ∴3103x x +=得5(31)x =- ∴25(31)5(62)BC =⋅-=-(海里)答:灯塔B 距C 处5(62)-海里19. 解:(1)在BCD Rt ∆中,︒=12sin BC CD 1.221.010=⨯≈(米). (2)在BCD Rt ∆中,︒=12cos BC BD8.998.010=⨯≈(米); 在ACD Rt ∆中,︒=5tan CD AD 2.123.330.09≈≈(米), 23.339.813.5313.5AB AD BD =-≈-=≈(米). 20解:连接BD ,过C 作CE BD ⊥于E ,10120BC DC ABC BCD ==∠=∠=,°, 123090ABD ∴∠=∠=∴∠=°,°.553CE BE ∴=∴=,.452103A AB BD BE ∠=∴===°,..21. 解:方法一:过D 点作DF ⊥AB 于F 点 在Rt △DEF 中,设EF =x ,则DF =3x在Rt △ADF 中,tan 50°=303xx+30+x=3∴DF =3x≈48答:张明同学站在离办公楼约48米处进行测量的 方法二:过点D 作DF ⊥AB 于F 点在Rt △DEF 中,EF =FD·tan 30°在Rt △AFD 中,AF =FD·tan 30°∵AE +EF =AF∴30+FDtan 30°=FD·tan 50°∴FD ≈48答:张明同学站在离办公楼约48米处进行测量的22. 解:由题意可知:AB ⊥BC∴在Rt △ABC 中, sin ∠ACB =AB AC ∴AC = ABsin ∠ACB = = ∴CD = AC +AD23. (1)证明:在矩形ABCD 中,ABE DFA ∴△≌△.(2)解:由(1)知ABE DFA △≌△ 在直角ADF △中,在直角DFE △中,10sin 210EF EDF DE ∴∠===。
【单元练】人教版初中九年级数学下册第二十八章《锐角三角函数》经典练习题(含答案解析)

一、选择题1.在ABC 中,若21cos |1tan |02A B ⎛⎫-+-= ⎪⎝⎭,则C ∠的度数是( ) A .45︒ B .60︒C .75︒D .105︒C解析:C 【分析】根据偶次方和绝对值的非负性可得1cos 02A -=,1tan 0B -=,利用特殊角的三角函数值可得A ∠和B 的度数,利用三角形内角和定理即可求解. 【详解】解:21cos |1tan |02A B ⎛⎫-+-= ⎪⎝⎭, 21cos 0,|1tan |02A B ⎛⎫∴-=-= ⎪⎝⎭,1cos 02A ∴-=,1tan 0B -=,则1cos 2A =,tan 1B =,解得:60A ∠=︒,45B ∠=︒, 则180604575C ∠=︒-︒-︒=︒. 故选:C . 【点睛】本题考查偶次方和绝对值的非负性、特殊角的三角函数值、三角形内角和定理,熟悉特殊角的三角函数值是解题的关键.2.如图,这是某市政道路的交通指示牌,BD 的距离为5m ,从D 点测得指示牌顶端A 点和底端C 点的仰角分别是60°和45°,则指示牌的高度,即AC 的长度是( )A .53mB .52mC .(5352mD .()535m D解析:D 【分析】由题意可得到BD=BC=5,根据锐角三角函数关系得出方程,然后解方程即可.【详解】解:由题意可得:∠CDB=∠DCB=45°, ∴BD=BC=5,设AC=x m ,则AB=(x +5)m , 在Rt △ABD 中,tan60°=AB BD, 则535x +=, 解得:535x =-, 即AC 的长度是()535m -; 故选:D . 【点睛】此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键. 3.下表是小红填写的实践活动报告的部分内容,设铁塔顶端到地面的高度FE 为xm ,根据以上条件,可以列出的方程为 ( ) 题目测量铁塔顶端到地面的高度测量目标示意图相关数据10,45,50CD m αβ==︒=︒A .()10tan50x x =-︒B .()10cos50x x =-︒C .10tan50x x -=︒D .()10sin50x x =+︒A解析:A 【分析】过D 作DH ⊥EF 于H ,则四边形DCEH 是矩形,根据矩形的性质得到HE =CD =10,CE =DH ,求得FH =x−10,得到CE =x−10,根据三角函数的定义列方程即可得到结论. 【详解】过D 作DH ⊥EF 于H , 则四边形DCEH 是矩形, ∴HE =CD =10,CE =DH , ∴FH =x−10,∵∠FDH =α=45°, ∴DH =FH =x−10, ∴CE =x−10,∵tanβ=tan50°=EF CE =-10x x , ∴x =(x−10)tan 50°, 故选:A . 【点睛】本题考查了解直角三角形的应用,由实际问题抽象出边角关系的等式,正确的识别图形是解题的关键.4.下列计算中错误的是( ) A .sin60sin30sin30︒-︒=︒ B .22sin 45 cos 451︒+︒= C .sin 60tan 60sin 30︒︒=︒D .cos30tan 60cos60︒︒=︒A解析:A 【分析】根据特殊角的三角函数值、二次根式的运算即可得. 【详解】A、11sin 60sin 303022︒-︒==︒=,此项错误; B、222211sin 45 cos 45122︒+︒=+=+=⎝⎭⎝⎭,此项正确; C、sin 602tan 601sin 302︒︒===︒sin 60tan 60sin 30︒︒=︒,此项正确; D、cos302tan 601cos 602︒︒===︒cos30tan 60cos60︒︒=︒,此项正确; 故选:A . 【点睛】本题考查了特殊角的三角函数值、二次根式的运算,熟记特殊角的三角函数值是解题关键.5.如图,河坝横断面迎水坡AB 的坡比为1BC =3m ,则AB 的长度为( )A .6mB .33mC .9mD .63m A解析:A 【分析】根据坡比的概念求出AC ,根据勾股定理求出AB . 【详解】解:∵迎水坡AB 的坡比为1:3, ∴13BC AC =,即313AC =, 解得,AC =33, 由勾股定理得,AB 22BC AC =+=6(m ),故选:A . 【点睛】本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度的概念是解题的关键. 6.如图,在A 处测得点P 在北偏东60︒方向上,在B 处测得点P 在北偏东30︒方向上,若2AB =米,则点P 到直线AB 距离PC 为( ).A .3米B 3米C .2米D .1米B解析:B 【分析】设点P 到直线AB 距离PC 为x 米,根据正切的定义用x 表示出AC 、BC ,根据题意列出方程,解方程即可. 【详解】解:设点P 到直线AB 距离PC 为x 米, 在Rt APC △中,3tan PCAC x PAC==∠,在Rt BPC △中,3tan PC BC x PBC ==∠,由题意得,3323x x -=, 解得,3x =(米),故选:B . 【点睛】本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键.7.如图,在平面直角坐标系中,边长为2的正方形ABCD 的对角线AC 在x 轴上,点A 的坐标是()1,0,把正方形ABCD 绕原点O 旋转180︒,则点B 的对应点B '的坐标是( )A .(-1,-1)B .()2,1C .()2,1--D .()2,1--D解析:D 【分析】根据题意,画出图形,连接BD ,交x 轴于E ,根据正方形的性质可得AB=2,BD ⊥x 轴,AE=BE ,∠BAE=45°,利用锐角三角函数即可求出AE 和BE ,从而求出OE ,即可求出点B 的坐标,然后根据关于原点对称的两点坐标关系即可求出结论. 【详解】解:把正方形ABCD 绕原点O 旋转180︒,如图所示,连接BD ,交x 轴于E∵四边形ABCD 2∴2,BD ⊥x 轴,AE=BE ,∠BAE=45° ∴AE=BE=AB·sin ∠BAE=1 ∴OE=OA +AE=2 ∴点B 的坐标为(2,1)∴点B 绕点O 旋转180°的对应点B '的坐标(-2,-1) 故选D . 【点睛】此题考查的是正方形的性质,锐角三角函数和关于原点对称的两点坐标关系,掌握正方形的性质,锐角三角函数和关于原点对称的两点坐标关系是解题关键. 8.如图,点A ,B ,C 在正方形网格的格点上,则sin ∠BAC=( )A .26B .2626C .2613D .1313B 解析:B 【分析】作BD ⊥AC 于D ,根据勾股定理求出AB 、AC ,利用三角形的面积求出BD ,最后在直角△ABD 中根据三角函数的意义求解. 【详解】解:如图,作BD ⊥AC 于D ,由勾股定理得,22223213,3332AB AC =+==+= ∵1113213222ABCSAC BD BD =⋅=⨯=⨯⨯, ∴2BD =, ∴2262sin 2613BD BAC AB ∠===. 故选:B . 【点睛】本题考查了勾股定理,解直角三角形,三角形的面积,三角函数的意义等知识,根据网格构造直角三角形和利用三角形的面积求出BD 是解决问题的关键.9.如图,在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB 沿射线AO 平移,平移后点A '的横坐标为43,则点B ′的坐标为( )A .(63,2)-B .(63,23)-C .()6,2-D .(63,2)-D解析:D 【详解】如解图,过点A 作AC x ⊥轴,过点A '作A D x '⊥轴,∵AOB 是等边三角形,∴4AO BO ==,60AOB ∠=︒,∴30AOC ∠=︒,∴·cos 23CO OA AOC ==,2AC =,∴(23,2)A -,∵30AOD AOC ∠'=∠=︒,43OD =,∴·t 34343an A D OD A OD ⨯=∠'==',∴(43,4)A '-,∴点A '是将点A 向右平移63个单位,向下平移6个单位得到的,∴点B '也是将点B 向右平移63个单位,向下平移6个单位得到的,∵()0,4B ,∴B '的坐标为(63,2)-.10.构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt △ACB 中,∠C =90°,∠ABC =30°,延长CB 使BD =AB ,连接AD ,得∠D =15°,所以tan15°()()12323232323AC CD -====-++-.类比这种方法,计算tan22.5°的值为( )A 21B 2﹣1C 2D .12B 解析:B 【分析】作Rt △ABC ,使∠C =90°,∠ABC =45°,延长CB 到D ,使BD =AB ,连接AD ,根据构造的直角三角形,设AC =x ,再用x 表示出CD ,即可求出tan22.5°的值. 【详解】解:作Rt △ABC ,使∠C =90°,∠ABC =90°,∠ABC =45°,延长CB 到D ,使BD =AB ,连接AD ,设AC =x ,则:BC =x ,AB =2x ,CD =()1+2x ,()22.5==211+2AC xC tan taD xn D =∠=-︒故选:B. 【点睛】本题考查解直角三角形,解题的关键是根据阅读构造含45°的直角三角形,再作辅助线得到22.5°的直角三角形.二、填空题11.已知ABC 与ABD △不全等,且3AC AD ==,30ABD ABC ∠=∠=︒,60ACB ∠=︒,则CD =________.或3【分析】如图△ABC ≌△ABP 当D′是PB 中点或点D″是BC 的中点时满足条件分别求解即可【详解】解:如图△ABC ≌△ABP ∴∴CAP 共线∴△BPC 是等边三角形当D′是PB 中点时AD′=BP=AC解析:3或3 【分析】如图,△ABC ≌△ABP ,当D′是PB 中点或点D″是BC 的中点时,满足条件,分别求解即可. 【详解】解:如图,△ABC ≌△ABP ,3AC AP ==,30ABP ABC ∠=∠=︒,60ACB ∠=︒,∴60APB ∠=︒,90CAB PAB ∠=∠=︒, ∴C ,A ,P 共线,BC BP AC AP ===, ∴△BPC 是等边三角形,当D′是PB 中点时,AD′=12BP=AC=3,此时ABC 与D'AB 满足条件, ∴D'90C P ∠=︒,∴CD′= PD′tan 60︒=3PD′=3,当点D″是BC 的中点时,此时ABC 与D AB "也满足条件, ∴CD″=3,∴满足条件的CD 的长为3或3. 故答案为:3或3. 【点睛】本题考查等边三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是画出符合题意的图形,用分类讨论的思想思考问题.12.小芳同学在学习了图形的镶嵌和拼接以后,设计了一幅瓷砖贴纸(图1),它是由图2这种基本图形拼接而成。
(常考题)人教版初中数学九年级数学下册第三单元《锐角三角函数》检测题(答案解析)

一、选择题1.如图,在O 中,E 是直径AB 延长线上一点,CE 切O 于点E ,若2CE BE =,则E ∠的余弦值为( )A .35B .45C .34D .432.如图,点A (-1,0),点B (-4,0),平行四边形ABCD 的顶点D 在第二象限,反比例函数y=k x(k<0)图像过点D 和BC 边的中点E ,若∠C=α,则k 的值(用含α的式子表示为)( )A .-4tanαB .-3tanαC .925-tanαD .289-tanα 3.在Rt ABC 中,90,C a b c ∠=︒、、分别是A B C ∠∠∠、、的对边,如果3,4a b ==,那么下列等式中正确的是( )A .4sin 3A =B .4cos 3A =C .4tan 3A =D .4cot 3A = 4.如图,将一副三角尺如图所示叠放在一起,则BE CE的值是( )A 3B 3C .2D 3 5.如图,在Rt △ABC 中,斜边AB 的长为m ,∠A=35°,则直角边AC 的长是( )A .m·sin35°B .cos35m ︒C .sin 35m ︒D .m·cos35° 6.如图,O 是ABC 的外接圆,60BAC ∠=︒,若O 的半径OC 为1,则弦BC 的长为( )A .12B .32C .1D .37.如图,点A 为∠α边上的任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示cosα的值,错误的是( )A .BD BCB .BC AB C .AD AC D .CD AC8.如图,一块矩形木板ABCD 斜靠在墙边,( OC ⊥OB ,点A 、B 、C 、D 、O 在同一平面内),已知AB a ,AD b ,∠BCO =α.则点A 到OC 的距离等于( )A .asinα+bsinαB .acosα+bcosαC .asinα+bcosαD .acosα+bsinα 9.如图,ABC ∆的三个项点均在格点上,则tan A 的值为( )A .12B .55C .2D .25510.如图,在平面直角坐标系xOy 中,矩形ABCD 的顶点A 在x 轴的正半轴上,矩形的另一个顶点D 在y 轴的正半轴上,矩形的边,,AB a BC b DAO x ==∠=.则点C 到x 轴的距离等于( )A .cos sin a x b xB .cos cos a x b xC .sin cos a x b xD .sin sin a x b x 11.如图,小明想要测量学校操场上旗杆AB 的高度,他作了如下操作:(1)在点C 处放置测角仪,测得旗杆顶的仰角ACE α∠=;(2)量得测角仪的高度CD a =;(3)量得测角仪到旗杆的水平距离DB b =.利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为( )A .tan a b α+B .sin a b α+C .tan b a α+D .sin b a α+ 12.如图,分别以直角三角形三边为边向外作等边三角形,面积分别为1S 、2S 、3S ;如图2,分别以直角三角形的三边为直径向外半圆,面积分别为4S 、5S 、6S .其中116S =,245S =,511S =,614S =,则34S S +=( )A .86B .64C .54D .48二、填空题13.如图,在边长为10的菱形ABCD 中,AC 为对角线,∠ABC =60°,M 、N 分别是边BC ,CD 上的点,BM =CN ,连接MN 交AC 于P 点,当MN 最短时,PC 长度为_____.14.点A 、B 、C 都在半径为6的O 上,且120AOC ∠=︒,点M 是弦AB 的中点,则CM 的长度的最大值为______. 15.如图,在ABC ∆中,AB=AC=10,3tan 4B =,点D 为BC 边上的动点(点D 不与点B ,C 重合),以D 为顶点作ADE B ∠=∠,射线DE 交AC 边于点E ,若BD=4,则AE= __________.16.计算:tan60°﹣cos30°=________;如果∠A 是锐角,且sinA=12,那么∠A=________゜. 17.如图 1 的矩形ABCD 中,有一点E 在AD 上,现以BE 为折线将点A 往右折,如图2所示,再过点A 作 AF CD ⊥于点F ,如图3所示,若123,26,60AB BC BEA ︒∠===, 则图3中AF 的长度为____.18.如图所示,AOB ∠是放置在正方形网格中的一个角,则sin AOB ∠的值是________.19.如图,MN 是半径为1的O 的直径,点A 在O 上,30AMN ∠=︒,点B 是AN 的中点,点P 是直径MN 上一个动点,则PA PB +的最小值为______.20.如图,∠EFG =90°,EF =10,OG =17,cos ∠FGO =0.6,则点F 的坐标是_______.三、解答题21.如图,在Rt △ABC 中,∠C =90°,AB 的垂直平分线与AB ,BC 分别交于点E 和点D ,且BD =2AC .(1)求∠B 的度数.(2)求tan ∠BAC (结果保留根号).22.已知:如图所示,ABC 在直角坐标平面内,三个顶点的坐标分别()0,3A ,()3,4B ,()2,2C ,(正方形网格中每个小正方形的边长是一个单位长度).()1画出ABC 关于x 轴对称的111A B C △,点1C 的坐标是____;tan _____.BAC ∠=()2以点B 为位似中心,在网格内画出222A B C△,使222A B C △与ABC 位似,且位似比为2:1,点2C 的坐标是_____; ()2223A B C 的周长为_______ .23.计算:2401112sin 60(5)2π-︒⎛⎫-++-- ⎪⎝⎭. 24.先化简,再求值:2311422a a a a -⎛⎫-÷ ⎪--+⎝⎭,其中10cos302tan 45a ︒=+︒. 25.(1)sin 6045260cos30tan tan ︒-︒+︒︒. (2)tan 45cos6030sin 60tan ︒-︒⨯︒︒. 26.如图,在ABC ∆中,5AC =,3tan 4A =,45B ∠=︒.点P 从点A 出发,沿AB 方向以每秒4个单位长度的速度向终点B 运动(不与点A 、B 重合).过点P 作PH AB ⊥,交折线--A C B 于点H ,点Q 为线段AP 的中点,以PH 、PQ 为边作矩形PQGH .设点P 的运动时间为t (秒).(1)直接写出矩形PQGH 的边PH 的长(用含t 的代数式表示);(2)当点G 落在边AC 上时,求t 的值;(3)当矩形PQGH 与ABC ∆重叠部分图形是四边形时,设重叠部分图形的面积为S (平方单位).求S 与t 之间的函数关系式;(4)当ABC ∆的重心落在矩形PQGH 的内部时,直接写出此时t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】连接OC ,则∠OCE=90°,设OC=OB=x ,22CE BE k ==,根据勾股定理即可列出方程222(2)()x k x k +=+,解得32x k =,再根据余弦的定义即可求得答案. 【详解】解:如图,连接OC ,∵CE 切O 于点E ,∴∠OCE=90°,设OC=OB=x ,22CE BE k ==,∵在Rt OCE △中,222OC CE OE +=,∴222(2)()x k x k +=+, 解得32x k =,∴52OE OB BE k =+=, ∴24cos 552CE k E OE k ===, 故选:B .【点睛】本题考查了切线的性质、勾股定理以及锐角三角函数,熟练掌握切线的性质以及勾股定理是解决本题的关键.2.D解析:D【分析】过点D 作DH ⊥OB 于H ,过点E 作EF ⊥x 轴于F ,根据平行四边形的对边相等可得DA=CB ,然后求出DA=2EB ,再求出HA=2FB ,设FB=a ,表示出点E 、D 的坐标,然后根据EF 、DH 的关系列方程求出a 的值,再求出HA 、DH ,然后利用∠DAH 的正切值列式整理即可得解.【详解】解:如图,过点D 作DH ⊥OB 于H ,过点E 作EF ⊥x 轴于F ,在平行四边形ABCD 中,DA=CB ,∵E 为边BC 的中点,∴DA=CB=2EB ,DH=2EF ,∴AH=2FB ,设FB=a ,∵点C 、D 都在反比例函数上,∴D(−2a−1,k−2a−1),∵B(−4,0),∴点E(−a -4,4k a --), ∴2214k k a a =⨯----,解得a= 23, ∴FB=a=23,EF=3241443k k k a ==-----, ∵∠C=α,∴tan ∠EBF=tan ∠α=EF FB , 即tanα=928k -,k=289-tanα. 故选D .【点睛】本题考查了平行四边形的性质,反比例函数图象上点的坐标特征,锐角三角函数,根据点C 、D 的纵坐标列出方程是解题的关键. 3.D解析:D【分析】分别算出∠A 的各个三角函数值即可得到正确选项.【详解】解:由题意可得:5c ==, ∴3434sin ,cos ,tan ,,5543a b a b A A A cotA c c b a ======== ∴正确答案应该是D ,故选D .【点睛】 本题考查锐角三角函数的定义,正确理解锐角三角函数的定义是解题关键.4.B解析:B【分析】设AC=AB=x,求得tan AC CD D ===,根据相似三角形的性质即可得到结论. 【详解】解:设AC=AB=x ,则tan3ACCDD===,∵∠BAC=∠ACD=90°,∴∠BAC+∠ACD=180°,∴AB∥CD,∴△ABE∽△DCE,∴3BE ABCE CD===故选:B.【点睛】本题主要考查相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.5.D解析:D【分析】根据Rt△ABC中cos35ACABACm︒==,即可得到AC的长.【详解】在Rt△ABC中, AB=m,∠A=35°,cos35ACABACm︒==,∴AC=cos35m⋅︒,故选:D.【点睛】此题考查锐角三角函数的实际应用,正确掌握各三角函数对应边的比值是解题的关键. 6.D解析:D【分析】先作OD⊥BC于D,由于∠BAC=60°,根据圆周角定理可求∠BOC=120°,又OD⊥BC,根据垂径定理可知∠BOD=60°,BD=12BC,在Rt△BOD中,利用特殊三角函数值易求BD,进而可求BC.【详解】解:如右图所示,作OD⊥BC于D,∵∠BAC=60°,∴∠BOC=120°,又∵OD⊥BC,∴∠BOD=60°,BD=12BC,∴BD=sin60°×OB=3,∴BC=2BD=23,故答案是23.【点睛】本题考查了圆周角定理、垂径定理、特殊三角函数计算,解题的关键是作辅助线OD⊥BC,并求出BD.7.C解析:C【分析】利用垂直的定义以及互余的定义得出∠α=∠ACD,进而利用锐角三角函数关系得出答案.【详解】解:∵AC⊥BC,CD⊥AB,∴∠α+∠BCD=∠ACD+∠BCD,∴∠α=∠ACD,∴cosα=cos∠ACD=BDBC =BCAB=DCAC,只有选项C错误,符合题意.故选:C.【点睛】此题主要考查了锐角三角函数的定义,得出∠α=∠ACD是解题关键.8.D解析:D【分析】根据题意,做出合适的辅助线,然后利用锐角三角函数即可表示出点A到OC的距离即可求解.【详解】解:作AE⊥OC于点E,作AF⊥OB于点F,∵四边形ABCD是矩形,∴∠ABC=90°,∵∠ABC=∠AEC,∠BCO=α,∴∠EAB=α,∴∠FBA=α,∵AB=a,AD=b,∴FO=FB+BO=a•cosα+b•sinα,故选:D.【点睛】本题考查解直角三角形、三角函数的定义、矩形的性质,解答本题的关键是明确题意,正确做出辅助线,利用数形结合的思想解答.9.A解析:A【分析】连接格点BD,根据格点的长度求出BD、CD边的长度,根据勾股定理证明∠BDC=90°,再计算BDtan A=AD计算即可.【详解】解:如图所示,连接格点BD,根据格点的性质,可得BD=CD=2,BC=2,∴∠BDC=90°,故ABD为在直角三角形,且AD=22,∴BD21tan A=AD222,故选:A.【点睛】本题考查了勾股定理及锐角三角函数的定义,属于基础题,解答本题的关键是掌握格点三角形边长的求解办法.10.A解析:A【分析】作CE⊥y轴于E.解直角三角形求出OD,DE即可解决问题.【详解】作CE ⊥y 轴于E .在Rt △OAD 中,∵∠AOD=90°,AD=BC=b ,∠OAD=x ,∴OD=sin OAD sin AD b x ∠=,∵四边形ABCD 是矩形,∴∠ADC=90°,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=x , ∴在Rt △CDE 中,∵CD=AB=a ,∠CDE=x , ∴DE= cos CDE cos CD a x ∠=,∴点C 到x 轴的距离=EO=DE+OD=cos sin a x b x ,故选:A .【点睛】本题考查了解直角三角形的应用,矩形的性质,正确作出辅助线是解题的关键. 11.A解析:A【分析】延长CE 交AB 于F ,得四边形CDBF 为矩形,故CF=DB=b ,FB=CD=a ,在直角三角形ACF 中,利用CF 的长和已知的角的度数,利用正切函数可求得AF 的长,从而可求出旗杆AB 的长.【详解】延长CE 交AB 于F ,如图,根据题意得,四边形CDBF 为矩形,∴CF=DB=b ,FB=CD=a ,在Rt △ACF 中,∠ACF=α,CF=b ,tan ∠ACF=AF CF ∴AF=tan tan CF ACF b α∠=,AB=AF+BF=tan a b α+,故选:A .【点睛】主要考查了利用了直角三角形的边角关系来解题,通过构造直角三角形,将实际问题转化为数学问题是解答此类题目的关键所在.12.C解析:C【分析】分别用AC ,AB 和BC 表示出123,,S S S ,然后根据222BC AB AC =-即可得出123,,S S S 的关系.同理,得出456,,S S S 的关系,从而可得答案.【详解】解:如图,1S 对应ACD ∆的面积,过D 作DH AC ⊥于H ,ACD ∆为等边三角形,160,,,2DAC AH CH AC AD AC ∴∠=︒=== sin 60,DH AD ∴︒=33,DH AD AC ∴== 2113,24S AC DH AC ∴=•=同理:222333,,S BC S AB == ∵222BC AB AC =-, ∴213,S S S -=如图2,同理可得:456S S S =+,∴3421564516111454.S S S S S S +=-++=-++=故选:C .【点睛】本题考查了勾股定理、等边三角形的性质.锐角三角函数等知识点,其中勾股定理:如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么222+=a b c .二、填空题13.【分析】连接AMAN 证明△AMB ≌△ANC 推出△AMN 为等边三角形当AM ⊥BC 时AM 最短即MN 最短在Rt △ABM 中求出AM 的长在Rt △AMP 中求出AP 的长即可解决问题【详解】解:连接AMAN ∵ABC 解析:52【分析】连接AM ,AN ,证明△AMB ≌△ANC ,推出△AMN 为等边三角形,当AM ⊥BC 时,AM 最短,即MN 最短,在Rt △ABM 中求出AM 的长,在Rt △AMP 中求出AP 的长,即可解决问题.【详解】解:连接AM ,AN ,∵ABCD 是菱形,∠ABC=60°,∴△ABC 为等边三角形,∴∠BAC=60°,AB=AC=10,同理可证∠ACN=60°,在△AMB 和△ANC 中,AB AC B ACN BM NC =⎧⎪∠=∠⎨⎪=⎩,∴△AMB ≌△ANC ,∴AM=AN ,∠BAM+∠MAC=∠MAC+∠NAC=60°,∴∠MAN=60°,∴△AMN 为等边三角形,∴MN=AM,∠MAN=60°,当AM⊥BC时,AM最短,即MN最短,∵sinB=AMAB,∴AM=sin60°×10=53.∵∠ABC=60°,∴∠BAM=30°,∴∠MAC=30°,∴∠NAC=30°,∴AP⊥MN.∵sin∠AMN=APAM,∴AP=sin60°×53=152,∴CP=10-152=52.故答案为:52.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的判定与性质,以及锐角三角函数的知识,熟练掌握各知识点是解答本题的关键.14.【分析】如图取AO的中点J连接JMJC过点J作JH⊥OC交CO的延长线于H求出MJCJ根据CM≤MJ+CJ即可解决问题【详解】解:如图取的中点连接过点作交的延长线于的最大值为故答案为:【点睛】本题考解析:337+【分析】如图,取AO的中点J,连接JM,JC,过点J作JH⊥OC,交CO的延长线于H.求出MJ,CJ,根据CM≤MJ+CJ即可解决问题.【详解】解:如图,取AO的中点J,连接JM,JC,过点J作JH OC⊥,交CO的延长线于H.120AOC ∠=︒,60JOH ∴∠=︒,JH OH ⊥,90JHO ∴∠=︒,132AJ JO OA ===, 3cos602OH OJ ∴=︒=,33sin 60JH OJ =︒=, 315622CH OH OC ∴=+=+=, 22223315()()3722CJ JH CH ∴=+=+=, AM MB =,AJ JO =,132MJ OB ∴==, CM MJ JC +,337CM ∴+,CM ∴的最大值为337+ 故答案为:337+【点睛】本题考查轨迹,三角形中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题,属于中考常考题型.15.【分析】先求出CD 的长再证明△ABD ∽△DCE 得代入即可求解【详解】解:如图1作AH ⊥BC 于H ∵∴∴BH=ABcosB=10×=8∵AB=AC ∴BC=2BH=16∠B=∠C ∴CD=16-4=12∵∠ 解析:265【分析】 先求出CD 的长,再证明△ABD ∽△DCE ,得CE CD BD AB =,代入即可求解.解:如图1,作AH ⊥BC 于H ,∵3tan 4B =∴cos 45B = ∴BH=ABcosB=10×45=8, ∵AB=AC ,∴BC=2BH=16,∠B=∠C ,∴CD=16-4=12,∵∠ADC=∠ADE+∠EDC=∠BAD+∠B ,∵∠ADE=∠B ,∴∠EDC=∠BAD ,∴△ABD ∽△DCE , ∴CE CD BD AB =, ∴12410CE =, ∴245CE =. ∴26105AE CE =-=故答案是:265. 【点睛】 本题考查的是三角形综合题,涉及到三角形相似、解直角三角形,等腰三角形的性质等. 16.30【分析】由特殊角三角函数值进行计算即可求出答案【详解】解:;∵∠A 是锐角∴;故答案为:;30【点睛】本题考查了特殊角的三角函数值解题的关键是掌握特殊角的三角函数值进行解题 解析:3330 【分析】由特殊角三角函数值进行计算,即可求出答案.解:323tan 60tan 303︒-︒=-=; ∵1sin 2A =,∠A 是锐角, ∴30A ∠=︒; 故答案为:23;30. 【点睛】本题考查了特殊角的三角函数值,解题的关键是掌握特殊角的三角函数值进行解题. 17.8【分析】作AH ⊥BC 于H 则四边形AFCH 是矩形AF=CHAH=CF 在Rt △ABH 中解直角三角形即可解决问题【详解】解:作AH ⊥BC 于H 则四边形AFCH 是矩形AF=CH 在Rt △ABE 中∠BAE=90解析:8【分析】作AH ⊥BC 于H ,则四边形AFCH 是矩形,AF=CH ,AH=CF. 在Rt △ABH 中,解直角三角形即可解决问题.【详解】解:作AH ⊥BC 于H ,则四边形AFCH 是矩形,AF=CH.在Rt △ABE 中,∠BAE=90°,∠BEA=60°∴∠ABE=180°-∠A-∠BEA=180°-90°-60°=30°由题意得∠ABH=90°-2∠ABE=90°-30°×2=30°在Rt △ABH 中,∠ABH=30°,3,BC=26∴BH=AB cos30°33 ∴CH=BC-BH=26-18=8.即AF=8.故答案为8.【点睛】本题考查了翻折变换,矩形的性质及解直角三角形等知识.解题的关键是学会添加辅助线,构造直角三角形来解决问题. 18.【分析】由题意可知要求出答案首先需要构造出直角三角形连接AB 设小正方形的边长为1可以求出OAOBAB 的长度由勾股定理的逆定理可得是直角三角形再根据三角函数的定义可以求出答案【详解】连接AB 如图所示: 解析:2 【分析】由题意可知,要求出答案首先需要构造出直角三角形,连接AB ,设小正方形的边长为1,可以求出OA 、OB 、AB 的长度,由勾股定理的逆定理可得ABO 是直角三角形,再根据三角函数的定义可以求出答案.【详解】连接AB 如图所示:设小正方形的边长为1, ∴2OA =23+1=10,22BA =3+1=10,222OB =4+2=20,∴ABO 是直角三角形, ∴BA 102sin AOB=OB 220∠=, 故答案为:22. 【点睛】 本题主要考查了勾股定理的逆定理和正弦函数的定义,熟练掌握技巧即可得出答案. 19.【详解】解:如解图作点关于直线的对称点连接则线段的长就是的最小值作直径连接∵为的中点点关于直线对称∴∴故答案为:【点睛】本题考查了与圆有关的基础知识如直径的性质圆心角及圆周角的性质 2【详解】解:如解图,作点B 关于直线MN 的对称点B ',连接AB ',则线段AB '的长就是PA PB +的最小值,作O 直径AC ,连接CB ',∵30AMN ∠=︒,B 为AN 的中点,点B 、B '关于直线MN 对称, ∴45C ∠=︒,∴sin 452AB AC '=⋅︒=2【点睛】本题考查了与圆有关的基础知识,如直径的性质、圆心角及圆周角的性质. 20.【分析】先过点F 作直线交轴于点过点作于点证明根据cos ∠FGO=06以及勾股定理即可得到答案【详解】过点F 作直线交轴于点过点作于点如图:∴(两直线平行内错角相等)又∵∠EFG=90°∴∠AFE+∠H解析:(8,12)【分析】先过点F 作直线//FA OG 交y 轴于点A ,过点G 作GH FA ⊥于点H ,证明FGO ∠HFG FEA =∠=∠,根据cos ∠FGO =0.6以及勾股定理即可得到答案.【详解】过点F 作直线//FA OG 交y 轴于点A ,过点G 作GH FA ⊥于点H ,如图:∴FGO HFG ∠=∠(两直线平行,内错角相等),又∵∠EFG =90°,∴∠AFE+∠HEG =90°,又∵∠AFE+∠FEA =90°,∴HFG FEA ∠=∠,∴FGO HFG FEA ∠=∠=∠,在Rt AEF ∆中,10EF =,则10cos 100.66AE FEA =⋅∠=⨯= ∴221068AF =-=(勾股定理),∴1789FH =-=,在Rt FGH ∆中,90.615FG =÷=, ∴2215912HG =-=(勾股定理),∴(8,12)F ,故答案为:(8,12).【点睛】本题主要考查了平行的性质(两直线平行,内错角相等)、勾股定理的应用以及三角函数,熟练掌握各知识点并灵活运用是解题的关键.三、解答题21.(1)15°;(2)23+. 【分析】 (1)首先证明DA =DB ,再证明∠ADC =30°即可解决问题.(2)设AC =a ,则AD =BD =2a ,CD 3=a ,BC =2a 3+a ,推出tan ∠BAC BC AC =即可解决问题.【详解】(1)连接AD .∵DE 垂直平分线段AB ,∴DA =DB ,∴∠B =∠DAB ,∵BD =2AC ,∴AD =2AC ,∵∠C =90°,∴∠ADC =30°,∵∠ADC =∠DAB +∠B ,∴∠B =15°.(2)设AC =a ,则AD =BD =2a ,根据勾股定理得CD 2222(2)3AD AC a a a =-=-=,∴BC =BD +CD =2a 3+a ,∴tan ∠BAC 23BC a a AC +===23+.【点睛】本题考查解直角三角形,线段的垂直平分线、三角形外角的性质,解题的关键是学会添加常用辅助线,利用线段的垂直平分线定理解决问题.22.(1)画图见解析;1C 的坐标是(2,-2);tan BAC ∠=1;(2)画图见解析;2C 的坐标是(1,0);(3)45210【分析】(1)将△ABC 关于x 轴对称得到△A 1B 1C 1,如图所示,找出所求点坐标;证明ABC 是等腰直角三角形即可求出tan BAC ∠的值;(2)以点B 为位似中心,在网格内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2:1,如图所示,找出所求点坐标即可.(3)先求出△ABC 的周长,再根据222A B C 与ABC 的位似比为2:1,即可求出222A B C 的周长.【详解】解:(1)111A B C 如图所示,点C 1的坐标是(2,-2);∵222125AC =+=,222125BC =+=,2221310AB =+=,∴222AC BC AB +=,AC BC =,∴ABC 是等腰直角三角形,∴45BAC ∠=,∴tan BAC ∠= tan 45=1;故答案是:(2,-2);1;(2)△A 2B 2C 2如图所示,2C 的坐标是(1,0);故答案是:(1,0);(3)∵△ABC 的周长55102510222A B C 与ABC 的位似比为2:1,∴222A B C 的周长为2(2510)=4510故答案为:【点睛】此题考查了作图-位似变换与对称变换及三角函数值的求法,熟练掌握位似变换与对称变换的性质是解本题的关键.23.5.【详解】(20411π2-⎛⎫-++-- ⎪⎝⎭=141-++- =133-++=5.24.52a --,3-. 【分析】 先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.【详解】10cos302tan 45102122a =+=⨯⨯=︒+︒, ()()()()()()23113132522422222222a a a a a a a a a a a a a a a ⎡⎤-----⎛⎫-÷=-⋅+=⋅+=-⎢⎥ ⎪--++--+--⎝⎭⎢⎥⎣⎦当2a =时,原式== 【点睛】考查分式的化简求值,关键是化简,掌握运算顺序是化简的关键.25.(1)2)13. 【分析】(1)首先求出特殊角的三角函数值,然后根据实数加减混合运算法则计算即可;(2)首先求出特殊角的三角函数值,然后化简,然后根据实数加减混合运算法则计算即可.【详解】(1)sin 6045260cos30tan tan ︒-︒+︒︒=12-+(2)tan45cos6030sin60tan︒-︒⨯︒︒=11-2=3=13.【点睛】本题考查了特殊锐角三角函数值的混合运算,关键是记忆30 º、45 º和60º的三角函数值.26.1)3,01774,14t tPHt t<≤⎧⎪=⎨-<<⎪⎩;(2)1411;(3)229,012147814,114t tSt t t⎧<≤⎪⎪=⎨⎪-+≤<⎪⎩;(4)113122t<<.【分析】(1)分两种情况讨论:当点Q在线段AC上时;当点Q在线段BC上时;(2)当点G落在AC上,显然H在BC上,利用正切定义tanGQAAQ=,列方程即可求解;(3)分情况讨论:当01t≤<时,14111t<<时,147114t≤<时,分别求得S与t的关系式即可;(4)根据题意不难写出t的取值范围即可.【详解】解析(1)①当点H在AC边上时,点P速度为4/s,时间为ts,4AP t∴=90APH∠=︒tan 3PH AP A t ∴=⋅∠=.②4AP t =,作CD AB ⊥于D , 3tan 4CD A AD ∠== 且5AC =,4AD ∴=,3CD =,45B ∠=︒,90CDB ∠=︒,45BCD B ∴∠=︒=∠,3BD CD ∴==,7AB =,74BP AB AP t ∴=-=-,90HPB ∠=︒,45B ∠=︒,74HP BP t ∴==-(2)当点G 落在AC 上,如图,此时4AP t =,122AQ AP t ==,74GQ PH t ==- tan GQ A AQ =,即74324t t -=, 解得:1411t = (3)当01t <≤时,如图,此时3PH t =,4AP t =,122AQ PQ AP t === 3tan 2EQ AQ A t =⋅∠= 213932222PQEH S S t t t t ⎛⎫==+⋅= ⎪⎝⎭四 当14111t <<时,如图,此时重叠部分为五边形,不考虑.当147114t ≤<时,如图,此时74PH t =-,4AP t =,122AQ PQ AP t === 22(74)814PQGH S S PQ PH t t t t ==⋅=-=-+四.(4)如图,建立坐标系点A 为原为,点()7,0B ,点()4,3C ,由重心坐标公式可知,1133A B C G x x x x ++== 13A B C G y y y y ++==∴重心011,13G ⎛⎫ ⎪⎝⎭①0G 第一次进入矩形时0G 在PH 上, 此时11114312AP t t ==⇒=, ②0G 第一次出去矩形时,0G 在GH 上, 此时031742G PH y t t ===-⇒=③0G 在GQ 上时,113AQ =,22243AP AQ t ===, 此时11764t =>不满足题意不考虑; ∴当0G 在矩形内部时,(不含边长),113122t <<. 【点睛】本题属于四边形综合题,考查了解直角三角形的应用,矩形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.。
2020中考数学 九年级下册锐角三角函数在实际问题中的应用(含答案)

2020中考数学 锐角三角函数在实际问题中的应用(含答案)1.如图,小军和小兵要去测量一座古塔的高度,他们在离古塔60米的A 处用测角仪测得塔顶的仰角为30°,已知测角仪AD=1.5米,则塔CB 的高为多少米?参考答案:解:过A 作AE ∥DC 交BC 于点E 则AE=CD=60米,则∠AEB=90°,EC=AD=1.5 在Rt △ABE 中, 即tan 3060BE=∴60tan 3060BE === 所以,古塔高度为: 1.5CB BE EC =+=米2.如图,小强在家里的楼顶上的点A 处,测量建在与小明家楼房同水平线上相邻的电梯楼的高,在点A 处看电梯楼顶点B 处的仰角为60°,看楼底点C 的俯角为45°,两栋楼之间的距离为30米,则电梯楼的高BC 为多少米?参考答案:解:过A 作AD ∥地面,交BC 于D 则在Rt △ABD 中,tan 60BD AD ∠=,即tan 6030BD∠=,∴BD =在Rt △ACD 中,tan 45DC AD ∠=,即tan 6030DC ∠=,∴30DC = ∴楼高BC 为:30BD DC +=+AD BC3.小明在热气球A 上看到正前方横跨河流两岸的大桥BC ,并测得B ,C 两点的俯角分别为45°,35°。
已知大桥BC 与地面在同一水平面上,其长度为100米,请求出热气球离地面的高度。
(结果保留整数,参考数据:7sin 3512≈,5cos356≈,7tan 3510≈)参考答案:解:过A 作AD ⊥BC 于点D则AD 即为热气球的高度,且∠1=∠2=45∴可设AD=BD=x 则CD=x+100 在Rt △ADC 中tan AD C DC =,即tan 35100xx =+得:7003x =即热气球的高度为7003AD =米 4.如图,某建筑物BC 顶部有一旗杆AB ,且点A ,B ,C 在同一直线上.小红在D 处观测旗杆顶部A 的仰角为47°,观测旗杆底部B 的仰角为42°.已知点D 到地面的距离DE 为1.56m ,EC=21m ,求旗杆AB 的高度和建筑物BC 的高度(结果保留小数点后一位,参考数据:tan47°≈1.07,tan42°≈0.90).参考答案:解:根据题意,DE=1.56,EC=21,∠ACE=90°,∠DEC=90°.过点D 作DF ⊥AC,垂足为F .则∠DFC=90°,∠ADF=47°,∠BFD=42°.1.41≈ 1.73≈)参考答案:解:过C 作CD ⊥AB 于点D , 则∠DBC=45°=∠BCD ∴可设BD=CD=x在Rt △ACD 中可得:tan DCDAC AD∠=即:tan 302x x =+得1 2.73x =≈即,点C 与探测面的 距离大约为2.73米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.6 锐角三角函数的简单应用
探索活动:
1.如图,在电线杆上的C处引拉线CE、
CF固定电线杆,拉线CE和地面成60°角,
在离电线杆6米的B处安置测角仪,在A
处测得电线杆上C处的仰角为30°,已知
测角仪高AB为1.5米,求拉线CE的长(结果保留根号)。
2.如图,在一个坡角为15°的斜坡上有一棵树,高为AB。
当太阳光与水平线成500时,测得该树在斜坡上的树影BC的长为7m,求树高。
(精确到0.1m)
3.要在宽为28m的海堤公路的路边安装路灯。
路灯的灯臂长为3m ,且与灯柱成120°(如图所示),路灯采用圆锥形灯罩,灯罩的轴线与灯臂垂直。
当灯罩的轴线通过公路路面的中线时,照明效果最理想。
问:应设计多高的灯柱,才能取得最理想的照明效果?
4.已知:如图,在△ABC 中,∠CAB=120°,AB=4,AC=2,AD ⊥BC ,D 是垂足。
求:AD 的长。
练习:
1.如图,某校九年级3班的一个学习小组进行测量小山高度的实践活动。
部分同学在山脚点A 测得山腰上一点D 的仰角为30°,并测得AD 的长度为180米;另一部分同学在山顶点B 测得山脚点A 的俯角为45°,山腰点D 的俯角为60°。
请你帮助他们计算出小山的高度BC (计算过程和结果都不取近似值)。
C
A B
D
2.如图,甲、乙两只捕捞船同时从A 港
出海捕鱼。
甲船以每小时215千米的速度沿西偏北30°方向前进,乙船以每小时15千米的速度沿东北方向前进。
甲船
航行2小时到达C 处,此时甲船发现渔具丢在乙船上,于是甲船快速(匀速)沿北偏东75°的方向追赶,结果两船在B 处相遇。
(1)甲船从C 处追赶上乙船用了多少时间? (2)甲船追赶乙船的速度是每小时多少千米?
3.如图,小岛A 在港口P 的南偏西45°方向,距离港口8l 海里处.甲船从A 出发,沿AP 方向以9海里/时的速度驶向港口,乙船从港口P 出发,沿南偏东6O °方向,以l8海里/时的速度驶离港口.现两船同时出发,
东
(1)出发后几小时两船与港口P的距离相等?
(2)出发后几小时乙船在甲船的正东方向?(结果精确到0.1小时) 方位角:
1.如图,在A、B两座工厂之间要修建一条笔直的
公路,从A地测得B地的走向是南偏东52°,现A、
B两地要同时开工,若干天后公路准确对接,则B
地所修公路的走向应该是( )
A北偏西52° B南偏东52° C西偏北52° D北偏西
2、一船以每小时20海里的速度沿正东方向航行。
上午8时,该船在A处测得某灯塔位于它的北偏东30°的B处,上午9时行到C处,测得灯塔恰好在它的正北方向,此时它与灯塔的距离是多少海里?((画出示意图,结果保留根号).
3.某学生站在公园的湖边M处,测得湖心亭A位于北偏东30º方向上,又测得游船码头B位于南偏东60º方向上,现有一艘游船从湖心亭A处沿正南方向航行返回游船码头。
已知M处与AB的距离MN为0.7千米,求湖心亭与游船码头的距离。
(画出示意图,精确到0.1千米)
4.在一次数学活动课上,老师带领学生去测一条南北流向的河宽,如图所示,某学生在河东岸点 A 处观测到河
对岸边有一点 C,测得C 在 A北偏西31°的方向上,沿河岸向北前行20米到达B处,测得 C在 B 北偏西45°的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.
东
北
B
A
C
5.梯形护坡石坝的斜坡AB的坡度i 1:3,坝高BC为2米,则斜坡AB 的长是多少米?坡角为多少度?
1.如图,在离水面高度为5米的岸上有人用绳子拉船靠岸,开始时绳子与水面的夹角为30°,此人以每秒0.5米收绳.问:8秒后船向岸边移动了多少米?(结果精确到O.1米)
2.某校教学楼后面紧邻着一个土坡,坡上面是一块平地,如图所示,BC∥AD,斜坡AB长22m,坡角∠BAD=680,为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过500时,可确保山体不滑坡.
(1)求改造前坡顶与地面的距离BE的长(精确到0.1m);
(2)为确保安全,学校计划改造时保持坡脚A不动,坡顶B沿BC削进到F点处,问BF至少是多少米(精确到0.1m)?
3.据气象台预报,一强台风的中心位于宁波(指城区,下同)东南方向(2
36 )千米的海面上,目前台风中心正以20千米/时的速度
108
6
向北偏西60°的方向移动,距台风中心50千米的圆形区域均会受到强袭击.已知宁海位于宁波正南方向72千米处,象山位于宁海北偏东60°方向56千米处.请问:宁波、宁海、象山是否会受这次台风的强袭击?如果会,请求出受强袭击的时间;如果不会,请说明理由. (为解决问题,须画出示意图,现已画出其中一部分,请根据需要,把图形画完整)。