2019高考数学(理)精准提分二轮(课件+讲义+优选习题)通用版第一篇 第2练三角函数与解三角形

合集下载

2019高考数学(理)精准提分二轮(课件+讲义+优选习题)通用版:第二篇 第7部分 函数与导数(2) 第27练

2019高考数学(理)精准提分二轮(课件+讲义+优选习题)通用版:第二篇 第7部分 函数与导数(2) 第27练

第27练 导数与函数的单调性、极值、最值[压轴大题突破练][明晰考情] 1.命题角度:讨论函数的单调性、极值、最值以及利用导数求参数范围是高考的热点.2.题目难度:偏难题.考点一 利用导数研究函数的单调性方法技巧 (1)函数单调性的判定方法:在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在此区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在此区间内单调递减. (2)已知函数的单调性求参数的取值范围:若可导函数f (x )在某个区间内单调递增(或递减),则可以得出函数f (x )在这个区间内f ′(x )≥0(或f ′(x )≤0),从而转化为恒成立问题来解决(注意等号成立的检验).(3)若函数y =f (x )在区间(a ,b )上不单调,则转化为f ′(x )=0在(a ,b )上有解. 1.已知函数f (x )=⎝ ⎛⎭⎪⎫k +4k ln x +4-x 2x ,其中常数k >0,讨论f (x )在(0,2)上的单调性.解 因为f ′(x )=k +4k x -4x2-1=⎝ ⎛⎭⎪⎫k +4k x -4-x 2x 2=-(x -k )⎝ ⎛⎭⎪⎫x -4k x2(x >0,k >0). ①当0<k <2时,4k>k >0,且4k>2,所以当x ∈(0,k )时,f ′(x )<0,当x ∈(k ,2)时,f ′(x )>0, 所以函数f (x )在(0,k )上是减函数,在(k ,2)上是增函数; ②当k =2时,4k=k =2,f ′(x )<0在(0,2)上恒成立,所以f (x )在(0,2)上是减函数; ③当k >2时,0<4k <2,k >4k,所以当x ∈⎝⎛⎭⎪⎫0,4k 时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫4k,2时,f ′(x )>0,所以函数f (x )在⎝⎛⎭⎪⎫0,4k 上是减函数,在⎝ ⎛⎭⎪⎫4k ,2上是增函数.综上可知,当0<k <2时,f (x )在(0,k )上是减函数,在(k ,2)上是增函数;当k =2时,f (x )在(0,2)上是减函数;当k >2时,f (x )在⎝⎛⎭⎪⎫0,4k 上是减函数,在⎝⎛⎭⎪⎫4k,2上是增函数. 2.已知函数f (x )=a ln(x +1)-ax -x 2,讨论f (x )在定义域上的单调性.解 f ′(x )=a x +1-a -2x =-2x ⎝ ⎛⎭⎪⎫x +2+a 2x +1,令f ′(x )=0,得x =0或x =-a +22,又f (x )的定义域为(-1,+∞), ①当-a +22≤-1,即当a ≥0时,若x ∈(-1,0),f ′(x )>0,则f (x )单调递增; 若x ∈(0,+∞),f ′(x )<0,则f (x )单调递减. ②当-1<-a +22<0,即-2<a <0时,若x ∈⎝⎛⎭⎪⎫-1,-a +22,f ′(x )<0,则f (x )单调递减; 若x ∈⎝ ⎛⎭⎪⎫-a +22,0,f ′(x )>0,则f (x )单调递增; 若x ∈(0,+∞),f ′(x )<0,则f (x )单调递减. ③当-a +22=0,即a =-2时,f ′(x )≤0,f (x )在(-1,+∞)上单调递减.④当-a +22>0,即a <-2时,若x ∈(-1,0),f ′(x )<0,则f (x )单调递减; 若x ∈⎝⎛⎭⎪⎫0,-a +22,f ′(x )>0,则f (x )单调递增; 若x ∈⎝ ⎛⎭⎪⎫-a +22,+∞,f ′(x )<0,则f (x )单调递减.综上,当a ≥0时,f (x )在(-1,0)上单调递增,在(0,+∞)上单调递减; 当-2<a <0时,f (x )在⎝⎛⎭⎪⎫-1,-a +22上单调递减,在⎝ ⎛⎭⎪⎫-a +22,0上单调递增,在(0,+∞)上单调递减;当a =-2时,f (x )在(-1,+∞)上单调递减; 当a <-2时,f (x )在(-1,0)上单调递减,在⎝⎛⎭⎪⎫0,-a +22上单调递增,在⎝ ⎛⎭⎪⎫-a +22,+∞上单调递减.3.设函数f (x )=3x 2+axex(a ∈R ). (1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程;(2)若f (x )在[3,+∞)上为减函数,求a 的取值范围. 解 (1)对f (x )求导,得f ′(x )=(6x +a )e x -(3x 2+ax )e x (e x )2=-3x 2+(6-a )x +aex, 因为f (x )在x =0处取得极值,所以f ′(0)=0,即a =0. 当a =0时,f (x )=3x 2e x ,f ′(x )=-3x 2+6xe x, 故f (1)=3e ,f ′(1)=3e,从而f (x )在点(1,f (1))处的切线方程为y -3e =3e (x -1),化简得3x -e y =0.(2)由(1)知,f ′(x )=-3x 2+(6-a )x +ae x. 令g (x )=-3x 2+(6-a )x +a , 由g (x )=0,解得x 1=6-a -a 2+366,x 2=6-a +a 2+366.当x <x 1时,g (x )<0,即f ′(x )<0,故f (x )为减函数; 当x 1<x <x 2时,g (x )>0,即f ′(x )>0,故f (x )为增函数; 当x >x 2时,g (x )<0,即f ′(x )<0,故f (x )为减函数. 由f (x )在[3,+∞)上为减函数知, x 2=6-a +a 2+366≤3,解得a ≥-92,故a 的取值范围为⎣⎢⎡⎭⎪⎫-92,+∞.4.已知函数f (x )=12x 2-2a ln x +(a -2)x .(1)当a =-1时,求函数f (x )的单调区间;(2)是否存在实数a ,使函数g (x )=f (x )-ax 在(0,+∞)上单调递增?若存在,求出a 的取值范围;若不存在,请说明理由.解 (1)当a =-1时,f (x )=12x 2+2ln x -3x (x >0),则f ′(x )=x +2x -3=x 2-3x +2x =(x -1)(x -2)x.当0<x <1或x >2时,f ′(x )>0,f (x )单调递增;当1<x <2时,f ′(x )<0,f (x )单调递减. ∴f (x )的单调递增区间为(0,1),(2,+∞),单调递减区间为(1,2). (2)假设存在实数a ,使g (x )=f (x )-ax 在(0,+∞)上是增函数, 则g ′(x )=f ′(x )-a =x -2ax-2≥0恒成立,即x 2-2x -2a x≥0在(0,+∞)上恒成立,∴x 2-2x -2a ≥0在(0,+∞)上恒成立, ∴a ≤12(x 2-2x )=12(x -1)2-12恒成立.又φ(x )=12(x -1)2-12,x ∈(0,+∞)的最小值为-12.∴当a ≤-12时,g ′(x )≥0恒成立.又当a =-12时,g ′(x )=(x -1)2x,当且仅当x =1时,g ′(x )=0.故当a ∈⎝ ⎛⎦⎥⎤-∞,-12时,g (x )=f (x )-ax 在(0,+∞)上单调递增.考点二 导数与函数的极值、最值要点重组 (1)可导函数极值点的导数为0,但导数为0的点不一定是极值点,如函数f (x )=x 3,f ′(0)=0,但x =0不是极值点.(2)极值点不是一个点,而是一个数x 0,当x =x 0时,函数取得极值,在x 0处,f ′(x 0)=0是函数f (x )在x 0处取得极值的必要不充分条件.(3)一般地,在闭区间[a ,b ]上函数y =f (x )的图象是一条连续不断的曲线,那么函数y =f (x )在[a ,b ]上必有最大值与最小值.函数的最值必在极值点或区间的端点处取得. 5.已知函数f (x )=ax 2+(1-2a )x -ln x . (1)当a >0时,求函数f (x )的单调递增区间;(2)当a <0时,求函数f (x )在⎣⎢⎡⎦⎥⎤12,1上的最小值.解 (1)由函数f (x )=ax 2+(1-2a )x -ln x , 可得f ′(x )=2ax +(1-2a )-1x =(2ax +1)(x -1)x,∵a >0,x >0, ∴2ax +1x>0,令f ′(x )>0,即x -1>0,得x >1,∴f (x )的单调递增区间为(1,+∞). (2)由(1)可得f ′(x )=2a ⎝ ⎛⎭⎪⎫x -1-2a (x -1)x,∵a <0,令f ′(x )=0,得x 1=-12a,x 2=1,①当-12a >1,即-12<a <0时,f (x )在(0,1)上是减函数,∴f (x )在⎣⎢⎡⎦⎥⎤12,1上的最小值为f (1)=1-a ; ②当12≤-12a ≤1,即-1≤a ≤-12时,当x ∈⎣⎢⎡⎦⎥⎤12,-12a 时,f ′(x )≤0;当x ∈⎣⎢⎡⎦⎥⎤-12a ,1时,f ′(x )≥0, 因此f (x )在⎣⎢⎡⎦⎥⎤12,-12a 上是减函数,在⎣⎢⎡⎦⎥⎤-12a ,1上是增函数, ∴f (x )的最小值为f ⎝ ⎛⎭⎪⎫-12a =1-14a +ln(-2a );③当-12a <12,即a <-1时,f (x )在⎣⎢⎡⎦⎥⎤12,1上是增函数, ∴f (x )的最小值为f ⎝ ⎛⎭⎪⎫12=12-34a +ln 2.综上,函数f (x )在区间⎣⎢⎡⎦⎥⎤12,1上的最小值为f (x )min=⎩⎪⎨⎪⎧12-34a +ln 2,a <-1,1-14a +ln (-2a ),-1≤a ≤-12,1-a ,-12<a <0.6.讨论函数f (x )=ln(x +1)+a (x 2-x )(a ∈R )的极值点的个数. 解 由题意知,函数f (x )的定义域为(-1,+∞), f ′(x )=1x +1+a (2x -1)=2ax 2+ax -a +1x +1.令g (x )=2ax 2+ax -a +1,x ∈(-1,+∞). ①当a =0时,g (x )=1,此时f ′(x )>0,函数f (x )在(-1,+∞)上单调递增,无极值点; ②当a >0时,令2ax 2+ax -a +1=0,则Δ=a 2-8a (1-a )=a (9a -8). 当0<a ≤89时,Δ≤0,g (x )≥0.故f ′(x )≥0,函数f (x )在(-1,+∞)上单调递增,无极值点; 当a >89时,Δ>0.设方程2ax 2+ax -a +1=0的两根分别为x 1,x 2(x 1<x 2), 因为x 1+x 2=-12,所以x 1<-14,x 2>-14,由g (-1)=1>0, 可得-1<x 1<-14.所以当x ∈(-1,x 1)时,g (x )>0,f ′(x )>0,函数f (x )单调递增; 当x ∈(x 1,x 2)时,g (x )<0,f ′(x )<0,函数f (x )单调递减; 当x ∈(x 2,+∞)时,g (x )>0,f ′(x )>0,函数f (x )单调递增. 因此函数f (x )有两个极值点;③当a <0时,Δ>0,由g (-1)=1>0,可得x 1<-1. 当x ∈(-1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增; 当x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减, 所以函数f (x )有一个极值点.综上所述,当a <0时,函数f (x )有一个极值点;当0≤a ≤89时,函数f (x )无极值点;当a >89时,函数f (x )有两个极值点.7.已知函数f (x )=ln x +a x. (1)求f (x )的单调区间和极值;(2)若对任意x >0,均有x (2ln a -ln x )≤a 恒成立,求正数a 的取值范围. 解 (1)f ′(x )=1x -a x 2=x -ax2,x ∈(0,+∞).①当a ≤0时,f ′(x )>0,f (x )在(0,+∞)上为增函数,无极值; ②当a >0,x ∈(0,a )时,f ′(x )<0,f (x )在(0,a )上为减函数;x ∈(a ,+∞)时,f ′(x )>0,f (x )在(a ,+∞)上为增函数,所以f (x )在(0,+∞)上有极小值,无极大值,f (x )的极小值为f (a )=ln a +1.(2)若对任意x >0,均有x (2ln a -ln x )≤a 恒成立, 即对任意x >0,均有2ln a ≤a x+ln x 恒成立,由(1)可知f (x )的最小值为ln a +1,问题转化为2ln a ≤ln a +1, 即ln a ≤1,故0<a ≤e, 故正数a 的取值范围是(0,e].典例 (12分)设函数f (x )=12a 2x 2-ln x (a ∈R ).(1)求函数f (x )的单调区间;(2)如果函数f (x )的图象不在x 轴的下方,求实数a 的取值范围. 审题路线图(1)求导得f ′(x )=a 2x -1x(x >0)→分a =0,a >0,a <0讨论→得f (x )的单调区间(2)将所求转化为f (x )≥0,即a 2≥2ln x x2→令h (x )=2ln x x 2(x >0),利用导数,求出h (x )的最大值为1e→解不等式a 2≥1e ,可求得a 的取值范围规范解答·评分标准解 (1)f ′(x )=a 2x -1x(x >0) (1)分当a =0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减.当a >0时,f ′(x )=a 2x 2-1x =a 2⎝⎛⎭⎪⎫x 2-1a 2x,由f ′(x )≥0,得x ≥1a ;由f ′(x )<0,得0<x <1a (3)分所以f (x )的单调递减区间为⎝⎛⎭⎪⎫0,1a ,单调递增区间为⎣⎢⎡⎭⎪⎫1a ,+∞.当a <0时,f ′(x )=a 2⎝⎛⎭⎪⎫x 2-1a 2x,由f ′(x )≥0,得x ≥-1a;由f ′(x )<0,得0<x <-1a.………………………………………………………………5分所以f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,-1a ,单调递增区间为⎣⎢⎡⎭⎪⎫-1a ,+∞.综上,当a =0时,f (x )的单调递减区间为(0,+∞);当a >0时,f (x )的单调递减区间为⎝⎛⎭⎪⎫0,1a ,单调递增区间为⎣⎢⎡⎭⎪⎫1a ,+∞;当a <0时,f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,-1a ,单调递增区间为⎣⎢⎡⎭⎪⎫-1a ,+∞.………………………………6分(2)f (x )的图象不在x 轴的下方,即当x >0时,f (x )≥0恒成立,所以12a 2x 2-ln x ≥0,即a 2≥2ln x x 2.………………………………………………………7分令h (x )=2ln xx2(x >0),则h ′(x )=2(x -2x ln x )x 4=2(1-2ln x )x3,…………………………………………………9分 由h ′(x )>0,得0<x <e ;由h ′(x )<0,得x > e.故h (x )在(0,e]上单调递增,在[e ,+∞)上单调递减.当x =e 时,h (x )取得最大值1e .所以a 2≥1e ,解得a ≤-e e 或a ≥e e .……………………………………………………11分故实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,-e e ∪⎣⎢⎡⎭⎪⎫e e ,+∞.…………………………………12分 构建答题模板[第一步] 求导:一般先确定函数的定义域,再求导数f ′(x ).[第二步] 转化:“判断函数单调性、求极值(最值)”常转化为“判断f ′(x )的符号”,“切线方程、切线的斜率(或倾斜角)、切点坐标”,常转化为“导数的几何意义”,“恒成立问题”常转化为“求最值”等.[第三步] 求解:根据题意求出函数的单调区间、极值、最值等问题. [第四步] 反思:单调区间不能用“∪”连接;范围问题的端点能否取到.1.(2016·北京)设函数f (x )=x e a -x+bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e-1)x +4. (1)求a ,b 的值; (2)求f (x )的单调区间. 解 (1)f (x )的定义域为R . ∵f ′(x )=ea -x-x ea -x+b =(1-x )ea -x+b .依题意可知,⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得a =2,b =e. (2)由(1)知,f (x )=x e 2-x+e x , 由f ′(x )=e2-x(1-x +ex -1)及e2-x>0知,f ′(x )与1-x +e x -1同号.令g (x )=1-x +ex -1,则g ′(x )=-1+ex -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值, 从而g (x )>0,x ∈(-∞,+∞), 综上可知,f ′(x )>0,x ∈(-∞,+∞). 故f (x )的单调递增区间为(-∞,+∞).2.已知函数f (x )=ln x -a 2x 2+ax (a ∈R ).若函数f (x )在区间[1,+∞)上是减函数,求实数a 的取值范围.解 函数f (x )=ln x -a 2x 2+ax 的定义域为(0,+∞), f ′(x )=1x -2a 2x +a =-2a 2x 2+ax +1x =-(2ax +1)(ax -1)x.方法一 ①当a =0时,f ′(x )=1x>0,所以f (x )在区间[1,+∞)上是增函数,不合题意;②当a >0时,令f ′(x )≤0(x >0),即(2ax +1)(ax -1)≥0(x >0),即x ≥1a,此时f (x )的单调递减区间为⎣⎢⎡⎭⎪⎫1a,+∞.依题意,得⎩⎪⎨⎪⎧1a≤1,a >0,解得a ≥1;③当a <0时,f ′(x )≤0(x >0),即(2ax +1)(ax -1)≥0(x >0),即x ≥-12a.此时f (x )的单调递减区间为⎣⎢⎡⎭⎪⎫-12a ,+∞. 依题意,得⎩⎪⎨⎪⎧-12a≤1,a <0,解得a ≤-12.综上,实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,-12∪[1,+∞). 方法二 ①当a =0时,f ′(x )=1x>0,所以f (x )在区间[1,+∞)上是增函数,不合题意;②当a ≠0时,要使函数f (x )在区间[1,+∞)上是减函数,只需f ′(x )≤0在区间[1,+∞)上恒成立.因为x >0,所以只要2a 2x 2-ax -1≥0在区间[1,+∞)上恒成立.所以⎩⎪⎨⎪⎧a 4a2≤1,2a 2-a -1≥0,解得a ≥1或a ≤-12.综上,实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,-12∪[1,+∞). 3.已知函数f (x )=13x 3-12ax 2,其中参数a ∈R .(1)当a =2时,求曲线y =f (x )在点(3,f (3))处的切线方程;(2)设函数g (x )=f (x )+(x -a )cos x -sin x ,讨论g (x )的单调性并判断有无极值,有极值时求出极值.解 (1)由题意得f ′(x )=x 2-ax ,所以当a =2时,f (3)=0,f ′(x )=x 2-2x ,所以f ′(3)=3,因此曲线y =f (x )在点(3,f (3))处的切线方程是 y =3(x -3),即3x -y -9=0.(2)因为g (x )=f (x )+(x -a )cos x -sin x ,所以g ′(x )=f ′(x )+cos x -(x -a )sin x -cos x=x (x -a )-(x -a )sin x =(x -a )(x -sin x ).令h (x )=x -sin x ,则h ′(x )=1-cos x ≥0,所以h (x )在R 上单调递增.因为h (0)=0,所以当x >0时,h (x )>0;当x <0时,h (x )<0.①当a <0时,g ′(x )=(x -a )(x -sin x ),当x ∈(-∞,a )时,x -a <0,g ′(x )>0,g (x )单调递增;当x ∈(a ,0)时,x -a >0,g ′(x )<0,g (x )单调递减;当x ∈(0,+∞)时,x -a >0,g ′(x )>0,g (x )单调递增.所以当x =a 时,g (x )取到极大值,极大值是g (a )=-16a 3-sin a ; 当x =0时,g (x )取到极小值,极小值是g (0)=-a .②当a =0时,g ′(x )=x (x -sin x ),当x ∈(-∞,+∞)时,g ′(x )≥0,g (x )单调递增;所以g (x )在(-∞,+∞)上单调递增,g (x )无极大值也无极小值.③当a >0时,g ′(x )=(x -a )(x -sin x ),当x ∈(-∞,0)时,x -a <0,g ′(x )>0,g (x )单调递增;当x ∈(0,a )时,x -a <0,g ′(x )<0,g (x )单调递减;当x ∈(a ,+∞)时,x -a >0,g ′(x )>0,g (x )单调递增.所以当x =0时,g (x )取到极大值,极大值是g (0)=-a ;当x =a 时,g (x )取到极小值,极小值是g (a )=-16a 3-sin a .综上所述,当a <0时,函数g (x )在(-∞,a )和(0,+∞)上单调递增,在(a ,0)上单调递减,函数既有极大值,又有极小值,极大值是g (a )=-16a 3-sin a ,极小值是g (0)=-a ; 当a =0时,函数g (x )在(-∞,+∞)上单调递增,无极值;当a >0时,函数g (x )在(-∞,0)和(a ,+∞)上单调递增,在(0,a )上单调递减,函数既有极大值,又有极小值,极大值是g (0)=-a ,极小值是g (a )=-16a 3-sin a . 4.已知函数f (x )=ax -ln x +x 2.(1)若a =-1,求函数f (x )的极值;(2)若a =1,∀x 1∈(1,2),∃x 2∈(1,2),使得f (x 1)-x 21=mx 2-13mx 32(m ≠0),求实数m 的取值范围.解 (1)依题意知,当a =-1时,f (x )=-x -ln x +x 2,f ′(x )=-1-1x +2x =2x 2-x -1x =(2x +1)(x -1)x, 因为x ∈(0,+∞),故当x ∈(0,1)时,f ′(x )<0,当x ∈(1,+∞)时,f ′(x )>0, 故当x =1时,f (x )有极小值,极小值为f (1)=0,无极大值.(2)当a =1时,f (x )=x -ln x +x 2.因为∀x 1∈(1,2),∃x 2∈(1,2),使得f (x 1)-x 21=mx 2-13mx 32(m ≠0), 故ln x 1-x 1=13mx 32-mx 2. 设h (x )=ln x -x ,g (x )=13mx 3-mx , 当x ∈(1,2)时,h ′(x )=1x-1<0,即函数h (x )在(1,2)上单调递减, 故h (x )的值域为A =(ln 2-2,-1).又g ′(x )=mx 2-m =m (x +1)(x -1).①当m <0时,g (x )在(1,2)上单调递减,此时g (x )的值域为B =⎝ ⎛⎭⎪⎫2m 3,-2m 3, 因为A ⊆B ,又-2m 3>0>-1, 故2m 3≤ln 2-2,即m ≤32ln 2-3; ②当m >0时,g (x )在(1,2)上单调递增,此时g (x )的值域为B =⎝ ⎛⎭⎪⎫-2m 3,2m 3,因为A ⊆B ,又2m 3>0>-1, 故-2m 3≤ln 2-2,故m ≥-32(ln 2-2)=3-32ln 2. 综上所述,实数m 的取值范围为⎝ ⎛⎦⎥⎤-∞,32ln 2-3∪⎣⎢⎡⎭⎪⎫3-32ln 2,+∞.。

2019高考数学(理)通用版二轮精准提分练习:第二篇第16练 计数原理Word版含解析

2019高考数学(理)通用版二轮精准提分练习:第二篇第16练 计数原理Word版含解析

第16练计数原理[小题提速练][明晰考情] 1.命题角度:考查两个计数原理的简单应用;二项式定理主要考查特定项和系数.2.题目难度:中低档难度.考点一两个计数原理要点重组(1)分类加法计数原理中分类方法中的每一种方法都能完成这件事情,类与类之间是独立的.(2)分步乘法计数原理中每步中的某一方法只能完成这件事的一部分,步与步之间是相关联的.1.在100,101,102,…,999这些数中,各位数字按严格递增(如“145”)或严格递减(如“321”)顺序排列的数的个数是()A.120B.204C.168D.216答案 B解析由题意知本题是一个计数原理的应用,首先对数字分类,当数字不含0时,从9个数字中选三个,则这三个数字递增或递减的顺序可以确定两个三位数,共有2C39=168(个),当三个数字中含有0时,从9个数字中选2个数,它们只有递减一种结果,共有C29=36(个),根据分类加法计数原理知共有168+36=204(个),故选B.2.如图,正五边形ABCDE中,若把顶点A,B,C,D,E染上红、黄、绿三种颜色中的一种,使得相邻顶点所染颜色不相同,则不同的染色方法共有()A.30种B.27种C.24种D.21种答案 A解析由题意知本题需要分类来解答,首先A选取一种颜色,有3种情况.如果A的两个相邻点颜色相同,有2种情况;这时最后两个点也有2种情况;如果A的两个相邻点颜色不同,有2种情况;这时最后两个点有3种情况.所以共有3×(2×2+2×3)=30(种)方法.3.三条边长都是整数,且最大边长为11的三角形的个数为________.答案36解析设两条较短边长为x,y,不妨设1≤x≤y≤11,且x+y≥12.对y进行分类:当y=11时,x可以取1到11的11个正整数;当y=10时,x可以取2到10的9个正整数;当y=9时,x可以取3到9的7个正整数;……;当y=6时,x可以取6这1个正整数;y≤5时不可能.所以三角形的个数为11+9+7+5+3+1=36.4.将甲、乙、丙、丁四名学生分到两个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同的分法种数为________.(用数字作答)答案8解析甲、乙两名学生不能分到同一个班,则不同的分组方式有三类:①甲单独一组,有1种分法;②甲和丙或甲和丁两名学生一组,有2种分法;③甲、丙、丁三名学生一组,有1种分法.然后把这两组分到两个不同的班级里,则不同的分法种数为(1+2+1)A22=8.考点二排列组合的应用方法技巧(1)解排列组合问题的三大原则:先特殊后一般,先取后排,先分类后分步.(2)排列组合问题的常用解法①特殊元素(特殊位置)优先安排法;②相邻问题捆绑法;③不相邻问题插空法;④定序问题缩倍法.5.3名医生和6名护士被分配到3所学校为学生体检,每所学校分配1名医生和2名护士,则不同的分配方法共有()A.90种B.180种C.270种D.540种答案 D解析不同的分配方法共有C13C26C12C24=540(种),故选D.6.张、王两家夫妇各带一个小孩一起到动物园游玩,购票后排队依次入园.为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这六人的入园顺序排法种数为()A.12B.24C.36D.48答案 B解析 将两位爸爸排在两端,有2种排法;将两个小孩视作一人与两位妈妈任意排在中间的三个位置上,有2A 33种排法,故总的排法有2×2×A 33=24(种).7.(2018·张掖三诊)《红海行动》是一部现代海军题材影片,该片讲述了中国海军“蛟龙突击队”奉命执行撤侨任务的故事.撤侨过程中,海军舰长要求队员们依次完成六项任务,并对任务的顺序提出了如下要求:重点任务A 必须排在前三位,且任务E ,F 必须排在一起,则这六项任务的不同安排方案共有( ) A.240种 B.188种 C.156种 D.120种 答案 D解析 当E ,F 排在前三位时有(A 22A 22)·A 33=24(种)方法;当E ,F 排在后三位时,有(A 22C 13A 22)·A 33=72(种)方法;当E ,F 排3,4位时有(C 13A 22)·A 22A 22=24(种)方法,∴共有24+72+24=120(种)方案.8.为促进城乡一体化进程,某单位选取了6户家庭到4个村庄体验农村生活,要求将6户家庭分成4组,其中2组各有2户家庭,另外2组各有1户家庭,则不同的分配方案的种数是( )A.216B.420C.720D.1 080 答案 D解析 先分组,每组含有2户家庭的有2组,则有C 26C 24A 22种分组方法,剩下的2户家庭可以直接看成2组,然后将分成的4组进行全排列,故有C 26C 24A 22×A 44=1 080(种). 考点三 二项式定理的应用方法技巧 (1)求二项展开式的特定项的实质是通项公式T k +1=C k n an -k b k 的应用,可通过确定k 的值再代入求解.(2)二项展开式各项系数和可利用赋值法解决.(3)求二项展开式系数最大的项,一般采用不等式组法:设展开式各项系数分别为A 1,A 2,…,A n +1,则最大的系数A k 满足⎩⎪⎨⎪⎧A k ≥A k -1,A k ≥A k +1.9.(2018·全国Ⅲ)⎝⎛⎭⎫x 2+2x 5的展开式中x 4的系数为( ) A.10 B.20 C.40 D.80 答案 C解析 ⎝⎛⎭⎫x 2+2x 5的展开式的通项公式为T k +1=C k 5·(x 2)5-k ·⎝⎛⎭⎫2x k =C k 5·2k ·x 10-3k, 令10-3k =4,得k =2.故展开式中x 4的系数为C 25·22=40.10.使⎝⎛⎭⎫3x +1x x n(n ∈N *)的展开式中含有常数项的最小的n 为( )A.4B.5C.6D.7 答案 B 解析T k +1=C k n (3x )n -k ⎝⎛⎭⎫1x x k =C k n 3n -k 52n k x -,当T k +1是常数项时,n -52k =0,当k =2,n =5时满足题意.11.已知(1+x )10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,则a 8等于( ) A.-5 B.5 C.90 D.180 答案 D解析 ∵(1+x )10=[2-(1-x )]10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10, ∴a 8=C 810·22·(-1)8=180. 12.(2018·益阳调研)(1+x 2)⎝⎛⎭⎫2x -16的展开式中1x 项的系数为( ) A.-12 B.12 C.-172 D.172答案 C解析 因为⎝⎛⎭⎫2x -16的通项公式为C k 6⎝⎛⎭⎫2x 6-k (-1)k =26-k C k6(-1)k x k -6.故展开式中1x项的系数为2C 56(-1)5+23C 36(-1)3=-172.故选C.1.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A 只能出现在第一步或最后一步,程序B 和C 在实施时必须相邻,则在该实验中程序顺序的编排方法共有( ) A.34种 B.48种 C.96种 D.144种答案 C解析 由题意知,程序A 只能出现在第一步或最后一步,所以有A 22=2(种)结果.因为程序B 和C 在实施时必须相邻,所以把B 和C 看作一个元素,有A 44A 22=48(种)结果,根据分步乘法计数原理可知,共有2×48=96(种)结果,故选C.2.某公司有五个不同的部门,现有4名在校大学生来该公司实习,要求安排到该公司的两个部门,且每部门安排两名,则不同的安排方案种数为( ) A.60 B.40 C.120D.240答案 A解析 由题意得,先将4名大学生平均分为两组,共有C 24C 22A 22=3(种)不同的分法.再将两组安排在其中的两个部门,共有3×A 25=60(种)不同的安排方法,故选A. 3.若(1+y 3)⎝⎛⎭⎫x -1x 2y n (n ∈N *)的展开式中存在常数项,则常数项为________. 答案 -84解析 ⎝⎛⎭⎫x -1x 2y n 展开式的通项为C k n x n -k ⎝⎛⎭⎫-1x 2y k =C k n (-1)k x n -3k y -k , (1+y 3)⎝⎛⎭⎫x -1x 2y n 展开式的通项为C k n (-1)k x n -3k y -k 和y 3C k n (-1)k x n -3k y -k =C k n (-1)k x n -3k y 3-k , 若存在常数项则有⎩⎪⎨⎪⎧ n -3k =0,-k =0(舍)或⎩⎪⎨⎪⎧n -3k =0,3-k =0,解得k =3,n =9,常数项为C 39(-1)3=-84.解题秘籍 (1)解有限制条件的排列组合问题,要按照元素(或位置)的性质进行分类,按事件发生的顺序进行分步.(2)平均分组问题中,平均分成的组,不管它们的顺序如何,都是一种情况.(3)求各项系数和要根据式子整体结构,灵活赋值;对复杂的展开式的指定项,可利用转化思想,通过二项展开式的通项解决.1.(2017·全国Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( ) A.12种 B.18种 C.24种 D.36种 答案 D解析 由题意可得,其中1人必须完成2项工作,其他2人各完成1项工作,可得安排方式为C 13·C 24·A 22=36(种),或列式为C 13·C 24·C 12=3×4×32×2=36(种).故选D. 2.(2018·长沙雅礼中学等联考)某大型花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,其中的小李和小王不在一起,则不同的安排方案共有( ) A.168种 B.156种 C.172种 D.180种 答案 B解析 小李和小王分别去甲、乙展区有A 22C 24C 22=12(种)方案; 小王、小李中有一人去甲、乙展区,有C 12C 12C 14C 24C 22=96(种)方案; 小王、小李都不去甲、乙展区,有A 22A 44=48(种)方案,∴共有12+96+48=156(种)方案.3.将18个参加青少年科技创新大赛的名额分配给3所学校,要求每所学校至少有1个名额且各校分配的名额互不相等,则不同的分配方法种数为( ) A.96 B.114 C.128 D.136答案 B解析 由题意可得每所学校至少有1个名额的分配方法种数为C 217=136,分配名额相等有22种(可以逐个数),则满足题意的方法有136-22=114(种). 4.(2017·全国Ⅰ)⎝⎛⎭⎫1+1x 2(1+x )6的展开式中x 2的系数为( ) A.15 B.20 C.30 D.35 答案 C解析 因为(1+x )6的通项为C k 6x k,所以⎝⎛⎭⎫1+1x 2(1+x )6的展开式中含x 2的项为1·C 26x 2和1x 2·C 46x 4. 因为C 26+C 46=2C 26=2×6×52×1=30, 所以⎝⎛⎭⎫1+1x 2(1+x )6的展开式中x 2的系数为30. 故选C.5.(2018·莆田期末)从5位男实习教师和4位女实习教师中选出3位教师派到3个班实习班主任工作,每班派一名,要求这3位实习教师中男女都要有,则不同的选派方案共有( ) A.210种 B.420种 C.630种 D.840种答案 B解析 (用间接法)从9人中选3人到3个班实习班主任工作共A 39种结果,其中均为男教师的有A 35种,均为女教师的有A 34种.∴满足条件的方案有A 39-A 35-A 34=420(种).6.已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a 等于( ) A.-4 B.-3 C.-2 D.-1答案 D解析 因为(1+x )5的二项展开式的通项为C k 5x k (0≤k ≤5,k ∈Z ),则含x 2的项为C 25x 2+ax ·C 15x =(10+5a )x 2,所以10+5a =5,a =-1.7.(2x -1)10=a 0+a 1x +a 2x 2+…+a 9x 9+a 10x 10,则a 2+a 3+…+a 9+a 10的值为( ) A.-20 B.0 C.1 D.20 答案 D解析 令x =1,得a 0+a 1+a 2+…+a 9+a 10=1, 再令x =0,得a 0=1,所以a 1+a 2+…+a 9+a 10=0,又因为a 1=C 910×21×(-1)9=-20,所以a 2+a 3+…+a 9+a 10=20.8.登山运动员10人,平均分为两组,其中熟悉道路的有4人,每组都需要2人,那么不同的分配方法种数是( ) A.30 B.60 C.120 D.240 答案 B解析 先将4个熟悉道路的人平均分成两组,有C 24C 22A 22种,再将余下的6人平均分成两组,有C 36C 33A 22种,然后这四个组自由搭配还有A 22种,故最终分配方法有C 24C 36A 22=60(种). 9.(2018·浙江)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成________个没有重复数字的四位数.(用数字作答) 答案 1 260解析 不含有0的四位数有C 25×C 23×A 44=720(个). 含有0的四位数有C 25×C 13×C 13×A 33=540(个).综上,四位数的个数为720+540=1 260.10.(2018·浙江)二项式⎝⎛⎭⎪⎫3x +12x 8的展开式的常数项是________.答案 7解析 由题意,得T k +1=C k 8·(3x )8-k ·⎝⎛⎭⎫12x k=C k 8·⎝⎛⎭⎫12k·83k x-·x-k=C k 8·⎝⎛⎭⎫12k·843k x-.令8-4k3=0,得k =2. 因此T 3=C 28×⎝⎛⎭⎫122=8×72×14=7. 11.设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =________. 答案 6解析 由题意可知,a =C m 2m ,b =C m2m +1,又∵13a =7b ,∴13·(2m )!m !m !=7·(2m +1)!m !(m +1)!,即137=2m +1m +1,解得m =6. 12.公安部新修订的《机动车登记规定》正式实施后,小型汽车的号牌已经可以采用“自主编排”的方式进行编排.某人欲选由A ,B ,C ,D ,E 中的两个不同的字母和1,2,3,4,5中的三个不同数字(三个数字都相邻)组成一个号牌,则他选择号牌的方法种数为________. 答案 3 600解析 三个数字相邻,则共有A 35种情况,在A ,B ,C ,D ,E 中选两个不同的字母,共有A 25种不同的情况,这两个字母形成三个空,将数字整体插空,共C 13种情况,综上所述,此人选择号牌的方法种数为A 35A 25C 13=60×20×3=3 600.。

2019版二轮复习数学(理·普通生)通用版讲义:第一部分 第三层级 难点自选专题二 “选填”压轴小

2019版二轮复习数学(理·普通生)通用版讲义:第一部分 第三层级 难点自选专题二 “选填”压轴小

姓名,年级:时间:难点自选专题二“选填”压轴小题的4大抢分策略解答选择题中的压轴题,务必要遵循“小题小解"的原则,要抓住已知条件与备选项之间的关系进行分析、试探、推断,充分发挥备选项的暗示作用,选用解法要灵活机动,做到具体问题具体分析,不要生搬硬套.能定性判定的,就不再使用复杂的定量计算;能用特殊值分析的,就不再采用常规解法;能用间接法求解的,就不再用直接法.能否快速准确地解答填空题中的压轴题,往往是高考数学成败的关键.现行《考试大纲》对解答填空题提出的基本要求是“正确、合理、迅速”.也就是说解填空题务必要做到:特例思想开思路特例思想是通过考查数学对象的特殊情况来获得一般性结论.举出特例或者研究特殊情况要比研究一般情况容易很多.研究清楚了特殊情况,对于解决一般情况可以提供解题思路.当题目十分复杂或解题目标不明确时,往往需要考查题设条件中的某些特殊情况,从中找出能反映问题本质属性的隐含信息,这样做,常常能够打开我们的思路,发现解决问题的方法.[典例]已知函数f(x)=x-错误!sin 2x+a sin x在R上单调递增,则a的取值范围是( )A.[-1,1] B。

错误!C。

错误! D。

错误![解析] 法一:特殊值法对函数f(x)求导,得f′(x)=1-23cos 2x+a cos x=错误!-错误!cos2x+a cos x.根据题意,f′(x)≥0恒成立,因为函数f′(x)为偶函数,从而f′(x)=0的两根一定互为相反数,即可知a的值关于原点对称,排除选项B、D;当a=-1时,f′(0)=错误!-错误!cos20+a cos 0<0,说明函数f(x)不是恒单调递增的,排除选项A。

故选C.法二:特殊值法观察本题的四个选项,发现选项A、B、D中都有数-1,故取a=-1,f(x)=x-错误!sin 2x -sin x,f′(x)=1-错误!cos 2x-cos x,但f′(0)=1-错误!-1=-错误!〈0,不符合f(x)在R上单调递增,排除选项A、B、D.故选C。

2019版二轮复习数学(理·普通生)通用版讲义:第一部分 第二层级 重点增分专题四 三角函数的图象与性质

2019版二轮复习数学(理·普通生)通用版讲义:第一部分 第二层级 重点增分专题四 三角函数的图象与性质

重点增分专题四 三角函数的图象与性质[全国卷3年考情分析]函数的单调性、奇偶性、周期性、对称性及最值,并常与三角恒等变换交汇命题.(2)高考对此部分内容主要以选择题、填空题的形式考查,难度为中等偏下,大多出现在第6~12或14~16题位置上.考点一 三角函数的定义、诱导公式及基本关系 保分考点练后讲评[大稳定——常规角度考双基]1.[三角函数的定义及应用]在平面直角坐标系中,以x 轴的非负半轴为角的始边,角α,β的终边分别与单位圆交于点⎝⎛⎭⎫1213,513和⎝⎛⎭⎫-35,45,则sin(α+β)=( )A .-3665 B.4865 C .-313D.3365解析:选D 因为角α,β的终边分别与单位圆交于点⎝⎛⎭⎫1213,513和⎝⎛⎭⎫-35,45,所以sin α=513,cos α=1213,sin β=45,cos β=-35,所以sin(α+β)=sin αcos β+cos αsin β=513×⎝⎛⎭⎫-35+1213×45=3365. 2.[同角三角函数的关系式及应用]若tan α=12,则sin 4α-cos 4α的值为( )A .-15B .-35C.15D.35解析:选B ∵tan α=12,∴sin 4α-cos 4α=(sin 2α+cos 2α)(sin 2α-cos 2α) =sin 2α-cos 2α=sin 2α-cos 2αsin 2α+cos 2α=tan 2α-1tan 2α+1=-35.3.[诱导公式及应用]设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=( )A.12 B.32C .0D .-12解析:选A 由已知,得f ⎝⎛⎭⎫23π6=f ⎝⎛⎭⎫17π6+sin 17π6 =f ⎝⎛⎭⎫11π6+sin 11π6+sin 17π6 =f ⎝⎛⎭⎫5π6+sin 5π6+sin 11π6+sin 17π6 =f ⎝⎛⎭⎫5π6+sin π6+sin ⎝⎛⎭⎫-π6+sin π6 =0+12+⎝⎛⎭⎫-12+12=12. [解题方略]1.同角三角函数基本关系式的应用技巧利用公式化任意角的三角函数为锐角三角函数,其步骤:去负-脱周-化锐.特别注意函数名称和符号的确定.(注意“奇变偶不变,符号看象限”)[小创新——变换角度考迁移]1.[与数列交汇]设a n =1n sin n π25,S n =a 1+a 2+…+a n ,在S 1,S 2,…,S 100中,正数的个数是( )A .25B .50C .75D .100解析:选D 当1≤n ≤24时,a n >0,当26≤n ≤49时,a n <0,但其绝对值要小于1≤n ≤24时相应的值;当51≤n ≤74时,a n >0;当76≤n ≤99时,a n <0,但其绝对值要小于51≤n ≤74时相应的值.故当1≤n ≤100时,均有S n >0.2.[与算法交汇]某一算法程序框图如图所示,则输出的S 的值为( )A.32B .-32C. 3D .0解析:选A 由已知程序框图可知,该程序的功能是计算S =sin π3+sin 2π3+sin 3π3+…+sin 2 017π3的值.因为sin π3=32,sin 2π3=sin ⎝⎛⎭⎫π-π3=sin π3=32,sin 3π3=sin π=0, sin 4π3=sin ⎝⎛⎭⎫π+π3=-sin π3=-32, sin 5π3=sin ⎝⎛⎭⎫2π-π3=-sin π3=-32, sin 6π3=sin 2π=0,而sin 7π3=sin ⎝⎛⎭⎫2π+π3=sin π3, sin8π3=sin ⎝⎛⎭⎫2π+2π3=sin 2π3,sin 9π3=sin(2π+π)=sin π,所以函数值呈周期性变化,周期为6,且sin π3+sin 2π3+sin 3π3+sin 4π3+sin 5π3+sin 6π3=0.而2 017=6×336+1,所以输出的S =336×0+sin π3=32.故选A.3.[借助数学文化考查]《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=12(弦×矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为2π3,半径等于4 m 的弧田,按照上述经验公式计算所得弧田面积约是( )A .6 m 2B .9 m 2C .12 m 2D .15 m 2解析:选B 如图,由题意可得∠AOB =2π3,OA =4,在Rt △AOD 中,可得∠AOD =π3,∠DAO =π6,OD =12AO =12×4=2,于是矢=4-2=2.由AD =AO ·sin π3=4×32=23,可得弦长AB =2AD =2×23=4 3.所以弧田面积=12(弦×矢+矢2)=12×(43×2+22)=43+2≈9(m 2).故选B.考点二 三角函数的图象与解析式 增分考点广度拓展题型一 由“图”定“式”[例1] (1)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π),其部分图象如图所示,则函数f (x )的解析式为( )A .f (x )=2sin ⎝⎛⎭⎫12x +π4B .f (x )=2sin ⎝⎛⎭⎫12x +3π4 C .f (x )=2sin ⎝⎛⎭⎫14x +3π4 D .f (x )=2sin ⎝⎛⎭⎫2x +π4 (2)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的图象与x 轴的一个交点⎝⎛⎭⎫-π12,0到其相邻的一条对称轴的距离为π4,若f ⎝⎛⎭⎫π12=32,则函数f (x )在⎣⎡⎦⎤0,π2上的最小值为( ) A.12 B .-3 C .-32D .-12[解析] (1)由题图可知,函数图象上两个相邻的最值点分别为最高点⎝⎛⎭⎫-π2,2,最低点⎝⎛⎭⎫3π2,-2,所以函数的最大值为2,即A =2.由图象可得,x =-π2,x =3π2为相邻的两条对称轴,所以函数的周期T =2×⎣⎡⎦⎤3π2-⎝⎛⎭⎫-π2=4π, 故2πω=4π,解得ω=12. 所以f (x )=2sin ⎝⎛⎭⎫12x +φ.把点⎝⎛⎭⎫-π2,2代入可得2sin ⎣⎡⎦⎤12×⎝⎛⎭⎫-π2+φ=2, 即sin ⎝⎛⎭⎫φ-π4=1, 所以φ-π4=2k π+π2(k ∈Z ),解得φ=2k π+3π4(k ∈Z ). 又0<φ<π,所以φ=3π4.所以f (x )=2sin ⎝⎛⎭⎫12x +3π4,故选B.(2)由题意得,函数f (x )的最小正周期T =4×π4=π=2πω,解得ω=2.因为点⎝⎛⎭⎫-π12,0在函数f (x )的图象上, 所以A sin ⎣⎡⎦⎤2×⎝⎛⎭⎫-π12+φ=0, 解得φ=k π+π6,k ∈Z ,由0<φ<π,可得φ=π6.因为f ⎝⎛⎭⎫π12=32,所以A sin ⎝⎛⎭⎫2×π12+π6=32, 解得A =3,所以f (x )=3sin ⎝⎛⎭⎫2x +π6. 当x ∈⎣⎡⎦⎤0,π2时,2x +π6∈⎣⎡⎦⎤π6,7π6, ∴sin ⎝⎛⎭⎫2x +π6∈⎣⎡⎦⎤-12,1, ∴f (x )的最小值为-32. [答案] (1)B (2)C[解题方略] 由“图”定“式”找“对应”的方法由三角函数的图象求解析式y =A sin(ωx +φ)+B (A >0,ω>0)中参数的值,关键是把握函数图象的特征与参数之间的对应关系,其基本依据就是“五点法”作图.(1)最值定A ,B :根据给定的函数图象确定最值,设最大值为M ,最小值为m ,则M =A +B ,m =-A +B ,解得B =M +m 2,A =M -m2. (2)T 定ω:由周期的求解公式T =2πω,可得ω=2πT .(3)点坐标定φ:一般运用代入法求解φ值,注意在确定φ值时,往往以寻找“五点法”中的某一个点为突破口,即“峰点”“谷点”与三个“中心点”.题型二 三角函数的图象变换[例2] (1)(2019届高三·湘东五校联考)将函数f (x )=sin ⎝⎛⎭⎫x +π6的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,所得图象的一条对称轴的方程可能是( )A .x =-π12B .x =π12C .x =π3D .x =2π3(2)(2018·郑州第一次质量测试)若将函数f (x )=3sin(2x +φ)(0<φ<π)图象上的每一个点都向左平移π3个单位长度,得到g (x )的图象,若函数g (x )是奇函数,则函数g (x )的单调递增区间为( )A.⎣⎡⎦⎤k π+π4,k π+3π4(k ∈Z ) B.⎣⎡⎦⎤k π-π4,k π+π4(k ∈Z )C.⎣⎡⎦⎤k π-2π3,k π-π6(k ∈Z ) D.⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ) [解析] (1)依题意知,将函数f (x )=sin ⎝⎛⎭⎫x +π6的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得函数g (x )=sin ⎝⎛⎭⎫12x +π6的图象.令12x +π6=π2+k π,k ∈Z ,得x =2k π+2π3, k ∈Z ,当k =0时,所得函数图象的一条对称轴的方程为x =2π3,故选D.(2)由题意知g (x )=3sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π3+φ=3sin ⎝⎛⎭⎫2x +2π3+φ,因为g (x )是奇函数,所以2π3+φ=k π(k ∈Z ),即φ=-2π3+k π(k ∈Z ),又0<φ<π,所以φ=π3,所以g (x )=3sin(2x +π)= -3sin 2x ,由π2+2k π≤2x ≤3π2+2k π(k ∈Z ),解得k π+π4≤x ≤k π+3π4(k ∈Z ),所以函数g (x )的单调递增区间为⎣⎡⎦⎤k π+π4,k π+3π4(k ∈Z ).故选A. [答案] (1)D (2)A[解题方略] 关于三角函数的图象变换的方法考点三 三角函数的性质 增分考点·讲练冲关 [典例] (1)(2018·全国卷Ⅰ)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A .f (x )的最小正周期为π,最大值为3 B .f (x )的最小正周期为π,最大值为4 C .f (x )的最小正周期为2π,最大值为3 D .f (x )的最小正周期为2π,最大值为4(2)设函数f (x )=cos(3x +φ)(-π<φ<0).若f (x )+f ′(x )是偶函数,则φ等于( ) A.π3 B .-π3C.π6D .-π6(3)(2018·昆明调研)已知函数f (x )=sin ωx 的图象关于点⎝⎛⎭⎫2π3,0对称,且f (x )在⎣⎡⎦⎤0,π4上为增函数,则ω=( )A.32 B .3 C.92D .6(4)(2018·全国卷Ⅱ)若f (x )=cos x -sin x 在[0,a ]是减函数,则a 的最大值是( ) A.π4 B.π2C.3π4D .π[解析] (1)∵f (x )=2cos 2x -sin 2x +2=1+cos 2x -1-cos 2x 2+2=32cos 2x +52,∴f (x )的最小正周期为π,最大值为4.故选B.(2)f (x )+f ′(x )=cos(3x +φ)-3sin(3x +φ)=2cos ⎝⎛⎭⎫3x +φ+π3.根据诱导公式,要使f (x )+f ′(x )为偶函数,则φ+π3=k π(k ∈Z ),所以k =0时,φ=-π3,故选B.(3)因为函数f (x )=sin ωx 的图象关于⎝⎛⎭⎫2π3,0对称, 所以2ω3π=k π(k ∈Z ),即ω=32k (k ∈Z ).①又函数f (x )=sin ωx 在区间⎣⎡⎦⎤0,π4上是增函数, 所以π4≤π2ω且ω>0,所以0<ω≤2.②由①②得ω=32,故选A.(4)法一:∵f (x )=cos x -sin x =-2sin x -π4,∴当x -π4∈⎣⎡⎦⎤-π2,π2,即x ∈⎣⎡⎦⎤-π4,3π4时, y =sin ⎝⎛⎭⎫x -π4单调递增, f (x )=-2sin ⎝⎛⎭⎫x -π4单调递减,∴⎣⎡⎦⎤-π4,3π4是f (x )在原点附近的单调减区间, 结合条件得[0,a ]⊆⎣⎡⎦⎤-π4,3π4, ∴a ≤3π4,即a max =3π4.故选C.法二:f ′(x )=-sin x -cos x =-2sin ⎝⎛⎭⎫x +π4. 于是,由题设得f ′(x )≤0,即sin ⎝⎛⎭⎫x +π4≥0在区间[0,a ]上恒成立. 当x ∈[0,a ]时,x +π4∈⎣⎡⎦⎤π4,a +π4, 所以a +π4≤π,即a ≤3π4,故所求a 的最大值是3π4.故选C.[答案] (1)B (2)B (3)A (4)C [解题方略]1.求三角函数单调区间的方法(1)代换法:求形如y =A sin(ωx +φ)(或y =A cos(ωx +φ))(A ,ω,φ为常数,A ≠0,ω>0)的单调区间时,令ωx +φ=z ,得y =A sin z (或y =A cos z ),然后由复合函数的单调性求得.(2)图象法:画出三角函数的图象,结合图象求其单调区间. 2.判断对称中心与对称轴的方法利用函数y =A sin(ωx +φ)的对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点这一性质,通过检验f (x 0)的值进行判断.3.求三角函数周期的常用结论(1)y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小 正周期为π|ω|.(2)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是12个周期,相邻的对称中心与对称轴之间的距离是14个周期;正切曲线相邻两对称中心之间的距离是12个周期.[多练强化]1.若函数f (x )=3sin(2x +θ)+cos(2x +θ)(0<θ<π)的图象关于⎝⎛⎭⎫π2,0中心对称,则函数f (x )在⎣⎡⎦⎤-π4,π6上的最小值是( ) A .-1 B .- 3 C .-12D .-32解析:选B f (x )=2sin ⎝⎛⎭⎫2x +θ+π6,又图象关于⎝⎛⎭⎫π2,0中心对称, 所以2×π2+θ+π6=k π(k ∈Z ),所以θ=k π-7π6(k ∈Z ),又0<θ<π,所以θ=5π6,所以f (x )=-2sin 2x ,因为x ∈⎣⎡⎦⎤-π4,π6, 所以2x ∈⎣⎡⎦⎤-π2,π3,f (x )∈[-3,2], 所以f (x )的最小值是- 3.2.(2018·济南模拟)已知函数f (x )=sin(ωx +φ)+3cos(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期为π,且f ⎝⎛⎭⎫π3-x =f (x ),则( )A .f (x )在⎝⎛⎭⎫0,π2上单调递减B .f (x )在⎝⎛⎭⎫π6,2π3上单调递增 C .f (x )在⎝⎛⎭⎫0,π2上单调递增 D .f (x )在⎝⎛⎭⎫π6,2π3上单调递减解析:选D 因为f (x )=sin(ωx +φ)+3cos(ωx +φ)=2sin ⎝⎛⎭⎫ωx +φ+π3的最小正周期为π,所以2πω=π,所以ω=2.因为f ⎝⎛⎭⎫π3-x =f (x ),所以直线x =π6是f (x )图象的一条对称轴,所以2×π6+φ+π3=π2+k π,k ∈Z ,所以φ=-π6+k π,k ∈Z ,因为|φ|<π2,所以φ=-π6,所以f (x )=2sin ⎝⎛⎭⎫2x +π6.当x ∈⎝⎛⎭⎫0,π2时,2x +π6∈⎝⎛⎭⎫π6,7π6,f (x )先增后减,当x ∈⎝⎛⎭⎫π6,2π3时,2x +π6∈⎝⎛⎭⎫π2,3π2,f (x )单调递减.故选D.3.(2018·北京高考)已知函数f (x )=sin 2x +3sin x cos x . (1)求f (x )的最小正周期;(2)若f (x )在区间⎣⎡⎦⎤-π3,m 上的最大值为32,求m 的最小值. 解:(1)f (x )=sin 2x +3sin x cos x =12-12cos 2x +32sin 2x =sin ⎝⎛⎭⎫2x -π6+12, 所以f (x )的最小正周期为T =2π2=π. (2)由(1)知f (x )=sin ⎝⎛⎭⎫2x -π6+12. 由题意知-π3≤x ≤m ,所以-5π6≤2x -π6≤2m -π6.要使f (x )在区间⎣⎡⎦⎤-π3,m 上的最大值为32, 即sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤-π3,m 上的最大值为1. 所以2m -π6≥π2,即m ≥π3.所以m 的最小值为π3.考点四 三角函数图象与性质的综合应用 增分考点讲练冲关[典例] 已知函数f (x )=2sin ωx cos ωx +23sin 2ωx -3(ω>0)的最小正周期为π. (1)求函数f (x )的单调递增区间;(2)将函数f (x )的图象向左平移π6个单位长度,再向上平移1个单位长度,得到函数y =g (x )的图象,若y =g (x )在[0,b ](b >0)上至少含有10个零点,求b 的最小值.[解] (1)f (x )=2sin ωx cos ωx +3(2sin 2ωx -1) =sin 2ωx -3cos 2ωx =2sin ⎝⎛⎭⎫2ωx -π3. 由最小正周期为π,得ω=1,所以f (x )=2sin ⎝⎛⎭⎫2x -π3, 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z , 所以函数f (x )的单调递增区间是⎣⎡⎦⎤k π-π12,k π+5π12,k ∈Z . (2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到y =2sin 2x +1的图象,所以g (x )=2sin 2x +1.令g (x )=0,得x =k π+7π12或x =k π+11π12(k ∈Z ),所以在[0,π]上恰好有两个零点,若y =g (x )在[0,b ]上有10个零点,则b 不小于第10个零点的横坐标即可.所以b 的最小值为4π+11π12=59π12.[解题方略]解决三角函数图象与性质综合问题的思路(1)先借助三角恒等变换及相应三角函数公式把待求函数化成y =A sin(ωx +φ)+B (一角一函数)的形式;(2)把“ωx +φ”视为一个整体,借助复合函数性质求y =A sin(ωx +φ)+B 的单调性、奇偶性、最值、对称性等问题.[多练强化](2017·山东高考)设函数f (x )=sin ⎝⎛⎭⎫ωx -π6+sin ⎝⎛⎭⎫ωx -π2,其中0<ω<3.已知f ⎝⎛⎭⎫π6=0. (1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎡⎦⎤-π4,3π4上的最小值.解:(1)因为f (x )=sin ⎝⎛⎭⎫ωx -π6+sin ⎝⎛⎭⎫ωx -π2, 所以f (x )=32sin ωx -12cos ωx -cos ωx =32sin ωx -32cos ωx =3⎝⎛⎭⎫12sin ωx -32cos ωx=3sin ⎝⎛⎭⎫ωx -π3. 因为f ⎝⎛⎭⎫π6=0, 所以ωπ6-π3=k π,k ∈Z .故ω=6k +2,k ∈Z . 又0<ω<3,所以ω=2.(2)由(1)得f (x )=3sin ⎝⎛⎭⎫2x -π3, 所以g (x )=3sin ⎝⎛⎭⎫x +π4-π3=3sin ⎝⎛⎭⎫x -π12. 因为x ∈⎣⎡⎦⎤-π4,3π4,所以x -π12∈⎣⎡⎦⎤-π3,2π3, 当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.直观想象——数形结合法在三角函数图象问题中的应用[典例] 函数f (x )=sin(ωx +φ)ω>0,|φ|<π2的图象如图所示,为了得到g (x )=cos ⎝⎛⎭⎫ωx +π3的图象,则只需将f (x )的图象( ) A .向左平移π4个单位长度B .向右平移π4个单位长度C .向左平移π12个单位长度D .向右平移π12个单位长度[解析] 根据函数f (x )=sin(ωx +φ)的部分图象知,T 4=7π12-π3=π4,∴T =π,即2πω=π,解得ω=2.根据“五点作图法”并结合|φ|<π2,可知2×π3+φ=π,解得φ=π3,∴f (x )=sin ⎝⎛⎭⎫2x +π3.∴g (x )=cos ⎝⎛⎭⎫2x +π3=sin ⎝⎛⎭⎫2x +π3+π2=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π4+π3.故为了得到g (x )的图象,只需将f (x )的图象向左平移π4个单位长度即可.[答案] A [素养通路]本题利用图形描述数学问题,通过对图形的理解,由图象建立形与数的联系,确定函数的周期,根据“五点作图法”代入数据求参数.考查了直观想象这一核心素养.[专题过关检测]A 组——“6+3+3”考点落实练一、选择题1.(2018·全国卷Ⅲ)函数f (x )=tan x1+tan 2x 的最小正周期为( )A.π4 B.π2C .πD .2π解析:选C 由已知得f (x )=tan x 1+tan 2x =sin x cos x 1+⎝⎛⎭⎫sin x cos x 2=sin x cos x cos 2x +sin 2xcos 2x =sin x ·cos x =12sin2x ,所以f (x )的最小正周期为T =2π2=π.2.(2018·贵阳第一学期检测)已知函数f (x )=A sin(ωx +φ)ω>0,-π2<φ<π2的部分图象如图所示,则φ的值为( ) A .-π3B.π3C .-π6D.π6解析:选B 由题意,得T 2=π3+π6=π2,所以T =π,由T =2πω,得ω=2,由图可知A=1,所以f (x )=sin(2x +φ).又f ⎝⎛⎭⎫π3=sin ⎝⎛⎭⎫2π3+φ=0,-π2<φ<π2,所以φ=π3.3.(2019届高三·西安八校联考)已知函数f (x )=cos(x +θ)(0<θ<π)在x =π3时取得最小值,则f (x )在[0,π]上的单调递增区间是( )A.⎣⎡⎦⎤π3,πB.⎣⎡⎦⎤π3,2π3 C.⎣⎡⎦⎤0,2π3 D.⎣⎡⎦⎤2π3,π解析:选A 因为0<θ<π,所以π3<π3+θ<4π3,又f (x )=cos(x +θ)在x =π3时取得最小值,所以π3+θ=π,θ=2π3,所以f (x )=cos ⎝⎛⎭⎫x +2π3. 由0≤x ≤π,得2π3≤x +2π3≤5π3.由π≤x +2π3≤5π3,得π3≤x ≤π, 所以f (x )在[0,π]上的单调递增区间是⎣⎡⎦⎤π3,π,故选A. 4.函数f (x )=sin ⎝⎛⎭⎫2x -π2的图象与函数g (x )的图象关于x =π8对称,则g (x )具有的性质是( )A .最大值为1,图象关于直线x =π2对称B .在⎝⎛⎭⎫0,π4上单调递减,为奇函数 C .在⎝⎛⎭⎫-3π8,π8上单调递增,为偶函数 D .周期为π,图象关于点⎝⎛⎭⎫3π8,0对称解析:选B 由题意得,g (x )=sin ⎣⎡⎦⎤2⎝⎛⎭⎫π4-x -π2=sin(-2x )=-sin 2x ,最大值为1,而g ⎝⎛⎭⎫π2=0,图象不关于直线x =π2对称,故A 错误;当x ∈⎝⎛⎭⎫0,π4时,2x ∈⎝⎛⎭⎫0,π2,满足单调递减,显然g (x )也是奇函数,故B 正确,C 错误;周期T =2π2=π,g ⎝⎛⎭⎫3π8=-22,故图象不关于点⎝⎛⎭⎫3π8,0对称,故D 错误.5.(2019届高三·安徽知名示范高中联考)先将函数y =2sin ⎝⎛⎭⎫2x -π3+1的图象向左平移512个最小正周期的单位长度,再向下平移1个单位长度后,所得图象对应的函数是( ) A .奇函数 B .偶函数 C .非奇非偶函数D .不能确定解析:选B 因为函数y =2sin ⎝⎛⎭⎫2x -π3+1,所以其最小正周期T =π,所以将函数图象向左平移5π12个单位长度,所得的图象对应的函数解析式为y =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +5π12-π3+1=2sin ⎝⎛⎭⎫2x +5π6-π3+1=2sin ⎝⎛⎭⎫2x +π2+1=2cos 2x +1,再将图象向下平移1个单位长度后所得的图象对应的函数解析式为y =2cos 2x ,该函数为偶函数,故选B.6.(2018·广州高中综合测试)已知函数f (x )=sin ωx +π6(ω>0)在区间⎣⎡⎦⎤-π4,2π3上单调递增,则ω的取值范围为( )A.⎝⎛⎦⎤0,83 B.⎝⎛⎦⎤0,12 C.⎣⎡⎦⎤12,83D.⎣⎡⎦⎤38,2解析:选B 法一:因为x ∈⎣⎡⎦⎤-π4,2π3,所以ωx +π6∈⎣⎡⎦⎤-π4ω+π6,2π3ω+π6, 因为函数f (x )=sin ⎝⎛⎭⎫ωx +π6(ω>0)在区间⎣⎡⎦⎤-π4,2π3上单调递增, 所以⎩⎨⎧-π4ω+π6≥2k π-π2,k ∈Z ,2π3ω+π6≤2k π+π2,k ∈Z ,即⎩⎨⎧ω≤-8k +83,k ∈Z ,ω≤3k +12,k ∈Z.又ω>0,所以0<ω≤12,选B.法二:取ω=1,f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π6=-sin π12<0,f ⎝⎛⎭⎫π3=sin ⎝⎛⎭⎫π3+π6=sin π2=1,f ⎝⎛⎭⎫2π3=sin ⎝⎛⎭⎫2π3+π6=sin 5π6=12,不满足题意,排除A 、C 、D ,选B. 二、填空题7.(2018·惠州调研)已知tan α=12,且α∈⎝⎛⎭⎫π,3π2,则cos ⎝⎛⎭⎫α-π2=____________.解析:法一:cos ⎝⎛⎭⎫α-π2=sin α,由α∈⎝⎛⎭⎫π,3π2知α为第三象限角, 联立⎩⎪⎨⎪⎧tan α=sin αcos α=12,sin 2α+cos 2α=1,得5sin 2α=1,故sin α=-55.法二:cos ⎝⎛⎭⎫α-π2=sin α,由α∈⎝⎛⎭⎫π,3π2知α为第三象限角,由tan α=12,可知点(-2,-1)为α终边上一点,由任意角的三角函数公式可得sin α=-55. 答案:-558.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫|φ|<π2,ω>0的图象在y 轴右侧的第一个最高点为P ⎝⎛⎭⎫π6,1,在原点右侧与x 轴的第一个交点为Q ⎝⎛⎭⎫5π12,0,则f ⎝⎛⎭⎫π2的值为______. 解析:由题意得T 4=5π12-π6=π4,所以T =π,所以ω=2,将点P ⎝⎛⎭⎫π6,1代入f (x )=sin(2x +φ), 得sin ⎝⎛⎭⎫2×π6+φ=1,所以φ=π6+2k π(k ∈Z ). 又|φ|<π2,所以φ=π6,即f (x )=sin ⎝⎛⎭⎫2x +π6(x ∈R),所以f ⎝⎛⎭⎫π2=sin ⎝⎛⎭⎫2×π2+π6=-12. 答案:-129.已知函数f (x )=cos ⎝⎛⎭⎫3x +π3,其中x ∈π6,m ⎝⎛⎭⎫m ∈R 且m >π6,若f (x )的值域是⎣⎡⎦⎤-1,-32,则m 的最大值是________.解析:由x ∈⎣⎡⎦⎤π6,m ,可知5π6≤3x +π3≤3m +π3, ∵f ⎝⎛⎭⎫π6=cos 5π6=-32,且f ⎝⎛⎭⎫2π9=cos π=-1, ∴要使f (x )的值域是⎣⎡⎦⎤-1,-32, 需要π≤3m +π3≤7π6,即2π9≤m ≤5π18,即m 的最大值是5π18.答案:5π18三、解答题10.(2018·石家庄模拟)函数f (x )=A sin ωx -π6+1(A >0,ω>0)的最小值为-1,其图象相邻两个最高点之间的距离为π.(1)求函数f (x )的解析式;(2)设α∈⎝⎛⎭⎫0,π2,f ⎝⎛⎭⎫α2=2,求α的值. 解:(1)∵函数f (x )的最小值为-1, ∴-A +1=-1,即A =2.∵函数f (x )的图象的相邻两个最高点之间的距离为π, ∴函数f (x )的最小正周期T =π, ∴ω=2,故函数f (x )的解析式为 f (x )=2sin ⎝⎛⎭⎫2x -π6+1. (2)∵f ⎝⎛⎭⎫α2=2sin ⎝⎛⎭⎫α-π6+1=2, ∴sin ⎝⎛⎭⎫α-π6=12. ∵0<α<π2,∴-π6<α-π6<π3,∴α-π6=π6,得α=π3.11.已知m =⎝⎛⎭⎫sin ⎝⎛⎭⎫x -π6,1,n =(cos x,1). (1)若m ∥n ,求tan x 的值;(2)若函数f (x )=m ·n ,x ∈[0,π],求f (x )的单调递增区间.解:(1)由m ∥n 得,sin ⎝⎛⎭⎫x -π6-cos x =0,展开变形可得,sin x =3cos x ,即tan x = 3. (2)f (x )=m ·n =sin ⎝⎛⎭⎫x -π6cos x +1 =32sin x cos x -12cos 2x +1 =34sin 2x -cos 2x +14+1=12⎝⎛⎭⎫sin 2x cos π6-cos 2x sin π6+34 =12sin ⎝⎛⎭⎫2x -π6+34, 由-π2+2k π≤2x -π6≤π2+2k π,k ∈Z ,得-π6+k π≤x ≤π3+k π,k ∈Z .又x ∈[0,π],所以当x ∈[0,π]时,f (x )的单调递增区间为⎣⎡⎦⎤0,π3和⎣⎡⎦⎤5π6,π. 12.已知函数f (x )=cos x (23sin x +cos x )-sin 2x . (1)求函数f (x )的最小正周期;(2)若当x ∈⎣⎡⎦⎤0,π2时,不等式f (x )≥m 有解,求实数m 的取值范围. 解:(1)f (x )=23sin x cos x +cos 2x -sin 2x =3sin 2x +cos 2x =2⎝⎛⎭⎫32sin 2x +12cos 2x =2sin ⎝⎛⎭⎫2x +π6, 所以函数f (x )的最小正周期T =π. (2)由题意可知,不等式f (x )≥m 有解, 即m ≤f (x )max ,因为x ∈⎣⎡⎦⎤0,π2,所以2x +π6∈⎣⎡⎦⎤π6,7π6, 故当2x +π6=π2,即x =π6时,f (x )取得最大值,且最大值为f ⎝⎛⎭⎫π6=2.从而可得m ≤2. 所以实数m 的取值范围为(-∞,2].B 组——大题专攻补短练1.已知向量m =(2sin ωx ,sin ωx ),n =(cos ωx ,-23sin ωx )(ω>0),函数f (x )=m ·n +3,直线x =x 1,x =x 2是函数y =f (x )的图象的任意两条对称轴,且|x 1-x 2|的最小值为π2.(1)求ω的值;(2)求函数f (x )的单调递增区间.解:(1)因为向量m =(2sin ωx ,sin ωx ),n =(cos ωx ,-23sin ωx )(ω>0),所以函数f (x )=m ·n +3=2sin ωx cos ωx +sin ωx (-23sin ωx )+3=sin 2ωx -23sin 2ωx +3=sin 2ωx +3cos 2ωx =2sin ⎝⎛⎭⎫2ωx +π3. 因为直线x =x 1,x =x 2是函数y =f (x )的图象的任意两条对称轴,且|x 1-x 2|的最小值为π2,所以函数f (x )的最小正周期为π2×2=π,即2π2ω=π,得ω=1.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎫2x +π3, 令2k π-π2≤2x +π3≤2k π+π2(k ∈Z ),解得k π-5π12≤x ≤k π+π12(k ∈Z ),所以函数f (x )的单调递增区间为⎣⎡⎦⎤k π-5π12,k π+π12(k ∈Z ).2.已知函数f (x )=3sin 2ωx +cos 4ωx -sin 4ωx +1(0<ω<1),若点⎝⎛⎭⎫-π6,1是函数f (x )图象的一个对称中心. (1)求f (x )的解析式,并求距y 轴最近的一条对称轴的方程; (2)先列表,再作出函数f (x )在区间[-π,π]上的图象. 解:(1)f (x )=3sin 2ωx +(cos 2ωx -sin 2ωx )·(cos 2ωx +sin 2ωx )+1 =3sin 2ωx +cos 2ωx +1 =2sin ⎝⎛⎭⎫2ωx +π6+1. ∵点⎝⎛⎭⎫-π6,1是函数f (x )图象的一个对称中心, ∴-ωπ3+π6=k π,k ∈Z ,∴ω=-3k +12,k ∈Z .∵0<ω<1,∴k =0,ω=12,∴f (x )=2sin ⎝⎛⎭⎫x +π6+1. 由x +π6=k π+π2,k ∈Z ,得x =k π+π3,k ∈Z ,令k =0,得距y 轴最近的一条对称轴方程为x =π3.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎫x +π6+1,当x ∈[-π,π]时,列表如下:则函数f (x )在区间[-π,π]上的图象如图所示.3.(2018·山东师大附中模拟)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示.(1)求函数y =f (x )的解析式;(2)说明函数y =f (x )的图象可由函数y =3sin 2x -cos 2x 的图象经过怎样的平移变换得到;(3)若方程f (x )=m 在⎣⎡⎦⎤-π2,0上有两个不相等的实数根,求m 的取值范围. 解:(1)由题图可知,A =2,T =4⎝⎛⎭⎫π3-π12=π,∴2πω=π,ω=2,∴f (x )=2sin(2x +φ),∵f ⎝⎛⎭⎫π3=0, ∴sin ⎝⎛⎭⎫2π3+φ=0,∴φ+2π3=k π,k ∈Z , 即φ=-2π3+k π,k ∈Z . ∵|φ|<π2,∴φ=π3,∴f (x )=2sin ⎝⎛⎭⎫2x +π3. (2)y =3sin 2x -cos 2x =2sin ⎝⎛⎭⎫2x -π6=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π3, 故将函数y =3sin 2x -cos 2x 的图象向左平移π4个单位长度就得到函数y =f (x )的图象.(3)当-π2≤x ≤0时,-2π3≤2x +π3≤π3,故-2≤f (x )≤3,若方程f (x )=m 在⎣⎡⎦⎤-π2,0上有两个不相等的实数根,则曲线y =f (x )与直线y =m 在⎣⎡⎦⎤-π2,0上有2个交点,结合图形,易知-2<m ≤- 3.故m 的取值范围为(-2,- 34.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,0≤φ≤π2图象的相邻两对称轴之间的距离为π2,且在x =π8时取得最大值1. (1)求函数f (x )的解析式;(2)当x ∈⎣⎡⎦⎤0,9π8时,若方程f (x )=a 恰好有三个根,分别为x 1,x 2,x 3,求x 1+x 2+x 3的取值范围.解:(1)由题意,T =2×π2=π,故ω=2ππ=2,所以sin ⎝⎛⎭⎫2×π8+φ=sin ⎝⎛⎭⎫π4+φ=1,所以π4+φ=2k π+π2,k ∈Z ,所以φ=2k π+π4,k ∈Z .因为0≤φ≤π2,所以φ=π4,所以f (x )=sin ⎝⎛⎭⎫2x +π4.(2)画出该函数的图象如图,当22≤a <1时,方程f (x )=a 恰好有三个根,且点(x 1,a )和(x 2,a )关于直线x =π8对称,点(x 2,a )和(x 3,a )关于直线x =5π8对称,所以x 1+x 2=π4,π≤x 3<9π8, 所以5π4≤x 1+x 2+x 3<11π8,故x 1+x 2+x 3的取值范围为⎣⎡⎭⎫5π4,11π8.。

2019高考数学江苏(理)精准提分二轮通用版课件:第二篇+第26练+应用题

2019高考数学江苏(理)精准提分二轮通用版课件:第二篇+第26练+应用题

(1)求y关于x的函数解析式,并写出x的取值范围;
解答
(2)求N-M的最大值及相应的x的值.
解答
3.如图,某森林公园有一直角梯形区域ABCD, 其四条边均为道路,AD∥BC,∠ADC=90°, AB=5千米,BC=8千米,CD=3千米.现甲、乙两管理员同时从A地出发 匀速前往D地,甲的路线是AD,速度为6千米/时,乙的路线是 ABCD,速 度为v千米/时. (1)若甲、乙两管理员到达D地的时间相差不超过15分钟,求乙的速度v的 取值范围; 解 由题意,可得AD=12千米.
某公司为了竞标配套活动的相关代言,决定对旗下的某商品进行一次评
估.该商品原来每件售价为25元,年销售8万件.
(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销
售的总收入不低于原收入,该商品每件定价最多为多少元?

t-25 t≥25×8, 设每件定价为 t 元,依题意得8- × 0.2 1
解答
6.如图,墙上有一幅壁画,最高点A离地面4 m,最低点B离地面2 m,观
察者从距离墙x m(x>1),离地面高a m(1≤a≤2)的C处观赏该壁画,设观
赏视角∠ACB=θ.
(1)若a=1.5,问:观察者离墙多远时,视角θ最大?
解答
1 (2)若 tan θ=2,当 a 变化时,求 x 的取值范围.
第二篇 重点专题分层练,中高档题得高分
第26练 应用题
[中档大题规范练]
明晰考情
1.命题角度:应用题是江苏高考必考题,常见模型有函数、不等式、
三角函数等.
2.题目难度:中档难度.
栏目 索引
核心考点突破练 模板答题规范练
核心考点突破练
考点一 建立函数模型

2019高考数学江苏(理)精准提分二轮通用版课件:第一篇+第1练+集合

2019高考数学江苏(理)精准提分二轮通用版课件:第一篇+第1练+集合

∴x>2或x<-1,即A={x|x>2或x<-1}.
在数轴上表示出集合A,如图所示.
由图可得∁RA={x|-1≤x≤2}.故选B.
6 7 8 9 10 11 12 13 14 15 16
解析
答案
7.已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个 数为 A.3 C.1 B.2 D.0

3 A.A∩B=xx<2 3 C.A∪B=xx<2
B.A∩B=∅ D.A∪B=R
解析
3 因为 B={x|3-2x>0}=xx<2 ,A={x|x<2},
3 所以 A∩B=xx<2 ,A∪B={x|x<2}.
,则集合 Q
中元素的个数是
A.-1<x-y<2,x,y∈P}={(0,0),(1,1),(2,2),(1,0),
(2,1)},
∴Q中有5个元素.
1 2 3 4 5
解析
答案
考点二 集合的关系与运算
要点重组 (1)若集合A中含有n个元素,则集合A有2n个子集. (2)A∩B=A⇔A⊆B⇔A∪B=B. 方法技巧 集合运算中的三种常用方法 (1)数轴法:适用于已知集合是不等式的解集. (2)Venn图法:适用于已知集合是有限集. (3)图象法:适用于已知集合是点集.

解析 集合A表示以原点O为圆心,1为半径的圆上的所有点的集合,
集合B表示直线y=x上的所有点的集合.
结合图形(图略)可知,直线与圆有两个交点,
所以A∩B中元素的个数为2.故选B.
6 7 8 9 10 11 12 13 14 15 16
解析

2019高考数学江苏(理)精准提分二轮通用版课件:第二篇+第16练+基本初等函数、函数的应用

2019高考数学江苏(理)精准提分二轮通用版课件:第二篇+第16练+基本初等函数、函数的应用
第二篇 重点专题分层练,中高档题得高分
第16练 基本初等函数、函数的应用[小题提速练]
明晰考情
1.命题角度:考查二次函数、分段函数、幂函数、指数函数、对数
函数的图象与性质;以基本初等函数为依托,考查函数与方程的
关系、函数零点存在性定理;能利用函数解决简单的实际问题. 2.题目难度:中档偏难.
栏目 索引
的零点,则实数 k
1 1 , 8 7 的取值范围为________.
解析
答案
1 (1,+∞) 7.已知函数f(x)= -m|x|有三个零点,则实数m的取值范围为__________. x+2
解析
1 函数 f(x)有三个零点等价于方程 =m|x|有且仅有三个实根. x+2
解析 令t=2x=3y=5z, ∵x,y,z为正数,∴t>1.
lg t lg t lg t 则 x=log2t=lg 2,同理,y=lg 3,z=lg tlg 9-lg 8 = >0, ∴2x-3y= lg 2 - lg 3 = lg 2×lg 3 lg 2×lg 3
1 1 ∵ =m|x|⇔m=|x|· (x+2),作函数 y=|x|· (x+2)的图象,如图所示. x+2
1 由图象可知 m 应满足 0<m<1,
故m>1.
解析
答案
ln x,x>0, 8.已知函数 f(x)= 2 -x -ax,x≤0,
若方程 f(x)=x+a 有 2 个不同的
{a|a=-1或0≤a<1或a>1} 实根,则实数 a 的取值范围是_________________________.
核心考点突破练 易错易混专项练
高考押题冲刺练
核心考点突破练
考点一 基本初等函数的图象与性质

2019高考数学(理)精准提分二轮(课件+讲义+优选习题)通用版:第二篇 第5部分解析几何 第23练

2019高考数学(理)精准提分二轮(课件+讲义+优选习题)通用版:第二篇 第5部分解析几何 第23练

第23练 圆锥曲线中的定点、定值与存在性问题[压轴大题突破练][明晰考情] 1.命题角度:圆锥曲线中的定点与定值、最值与范围问题是高考常考的问题;以椭圆或抛物线为背景,尤其是与条件或结论相关存在性开放问题.2.题目难度:偏难题.考点一 圆锥曲线中的定值问题方法技巧 (1)求定值问题常见的方法有两种①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(2)定值问题求解的基本思路是使用参数表示要解决的问题,然后证明与参数无关,这类问题选择消元的方向是非常关键的.1.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的长轴长为4,且过点⎝ ⎛⎭⎪⎫3,12.(1)求椭圆的方程;(2)设A ,B ,M 是椭圆上的三点.若OM →=35OA →+45OB →,点N 为线段AB 的中点,C ⎝ ⎛⎭⎪⎫-62,0,D ⎝⎛⎭⎪⎫62,0,求证:|NC |+|ND |=2 2. (1)解 由已知可得⎩⎪⎨⎪⎧a =2,3a 2+14b2=1,故⎩⎪⎨⎪⎧a =2,b =1,所以椭圆的方程为x 24+y 2=1.(2)证明 设A (x 1,y 1),B (x 2,y 2),则x 214+y 21=1,x 224+y 22=1.由OM →=35OA →+45OB →,得M ⎝ ⎛⎭⎪⎫35x 1+45x 2,35y 1+45y 2.因为M 是椭圆C 上一点,所以⎝ ⎛⎭⎪⎫35x 1+45x 224+⎝ ⎛⎭⎪⎫35y 1+45y 22=1,即⎝ ⎛⎭⎪⎫x 214+y 21⎝ ⎛⎭⎪⎫352+⎝ ⎛⎭⎪⎫x 224+y 22⎝ ⎛⎭⎪⎫452+2×35×45×⎝ ⎛⎭⎪⎫x 1x 24+y 1y 2=1,得⎝ ⎛⎭⎪⎫352+⎝ ⎛⎭⎪⎫452+2×35×45×⎝ ⎛⎭⎪⎫x 1x 24+y 1y 2=1,故x 1x 24+y 1y 2=0.又线段AB 的中点N 的坐标为⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22,所以⎝ ⎛⎭⎪⎫x 1+x 2222+2⎝⎛⎭⎪⎫y 1+y 222=12⎝ ⎛⎭⎪⎫x 214+y 21+12⎝ ⎛⎭⎪⎫x 224+y 22+x 1x 24+y 1y 2=1. 从而线段AB 的中点N ⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22在椭圆x 22+2y 2=1上. 又椭圆x 22+2y 2=1的两焦点恰为C ⎝ ⎛⎭⎪⎫-62,0,D ⎝ ⎛⎭⎪⎫62,0,所以|NC |+|ND |=2 2.2.(2018·北京)已知抛物线C :y 2=2px 经过点P (1,2),过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值.(1)解 因为抛物线y 2=2px 过点(1,2), 所以2p =4,即p =2. 故抛物线C 的方程为y 2=4x .由题意知,直线l 的斜率存在且不为0. 设直线l 的方程为y =kx +1(k ≠0),由⎩⎪⎨⎪⎧y 2=4x ,y =kx +1,得k 2x 2+(2k -4)x +1=0.依题意知Δ=(2k -4)2-4×k 2×1>0, 解得k <0或0<k <1.又PA ,PB 与y 轴相交,故直线l 不过点(1,-2). 从而k ≠-3.所以直线l 的斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (2)证明 设A (x 1,y 1),B (x 2,y 2),由(1)知x 1+x 2=-2k -4k 2,x 1x 2=1k2.直线PA 的方程为y -2=y 1-2x 1-1(x -1), 令x =0,得点M 的纵坐标为y M =-y 1+2x 1-1+2=-kx 1+1x 1-1+2.同理得点N 的纵坐标为y N =-kx 2+1x 2-1+2.由QM →=λQO →,QN →=μQO →,得λ=1-y M ,μ=1-y N . 所以1λ+1μ=11-y M +11-y N=x 1-1(k -1)x 1+x 2-1(k -1)x 2=1k -1·2x 1x 2-(x 1+x 2)x 1x 2=1k -1·2k 2+2k -4k 21k 2=2.所以1λ+1μ为定值.3. 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点Q ⎝ ⎛⎭⎪⎫b ,a b 在椭圆上,O 为坐标原点. (1)求椭圆C 的方程;(2)已知点P ,M ,N 为椭圆C 上的三点,若四边形OPMN 为平行四边形,证明四边形OPMN 的面积S 为定值,并求该定值.解 (1)∵椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,∴e 2=c 2a 2=a 2-b 2a 2=12,得a 2=2b 2,①又点Q ⎝⎛⎭⎪⎫b ,a b 在椭圆C 上,∴b 2a 2+a 2b4=1,② 联立①②得a 2=8,b 2=4. ∴椭圆C 的方程为x 28+y 24=1.(2)当直线PN 的斜率k 不存在时,PN 的方程为x =2或x =-2,从而有|PN |=23, ∴S =12|PN |·|OM |=12×23×22=26;当直线PN 的斜率k 存在时,设直线PN 的方程为y =kx +m (m ≠0),P (x 1,y 1),N (x 2,y 2), 将PN 的方程代入椭圆C 的方程, 整理得(1+2k 2)x 2+4kmx +2m 2-8=0,Δ=16k 2m 2-4(2m 2-8)(1+2k 2)>0,即m 2<4+8k 2,∴x 1+x 2=-4km 1+2k 2,x 1·x 2=2m 2-81+2k2,y 1+y 2=k (x 1+x 2)+2m =2m1+2k2, 由OM →=OP →+ON →,得M ⎝ ⎛⎭⎪⎫-4km 1+2k 2,2m 1+2k 2. 将M 点坐标代入椭圆C 的方程,得m 2=1+2k 2. 又点O 到直线PN 的距离为d =|m |1+k2,|PN |=1+k 2|x 1-x 2|,∴S =d ·|PN |=|m |·|x 1-x 2|=1+2k 2·(x 1+x 2)2-4x 1x 2= 48k 2+242k 2+1=2 6. 综上,平行四边形OPMN 的面积S 为定值2 6. 考点二 圆锥曲线中的定点问题方法技巧 (1)动直线l 过定点问题.设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m ,0).(2)动曲线C 过定点问题.引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.4.已知两点A (-2,0),B (2,0),动点P 在y 轴上的投影是Q ,且2PA →·PB →=|PQ →|2. (1)求动点P 的轨迹C 的方程;(2)过F (1,0)作互相垂直的两条直线分别交轨迹C 于点G ,H 和M ,N ,且E 1,E 2分别是GH ,MN 的中点.求证:直线E 1E 2恒过定点.(1)解 设点P 的坐标为(x ,y ),∴点Q 的坐标为(0,y ). ∵2PA →·PB →=|PQ →|2,PA →=(-2-x ,-y ), PB →=(2-x ,-y ),|PQ →|=|x |,∴2[(-2-x )(2-x )+y 2]=x 2,化简得点P 的轨迹方程为x 24+y 22=1.(2)证明 当两直线的斜率都存在且不为0时, 设l GH :y =k (x -1),G (x 1,y 1),H (x 2,y 2),l MN :y =-1k (x -1),M (x 3,y 3),N (x 4,y 4),联立⎩⎪⎨⎪⎧x 24+y 22=1,y =k (x -1),消去y 得(2k 2+1)x 2-4k 2x +2k 2-4=0. 则Δ>0恒成立.∴x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-42k 2+1.∴GH 中点E 1的坐标为⎝ ⎛⎭⎪⎫2k22k 2+1,-k 2k 2+1.同理,MN 中点E 2的坐标为⎝ ⎛⎭⎪⎫2k 2+2,k k 2+2,∴12E E k =-3k2(k 2-1),∴12E E l 的方程为y -kk 2+2=-3k 2(k 2-1)⎝ ⎛⎭⎪⎫x -2k 2+2,即y =-3k 2(k 2-1)⎝ ⎛⎭⎪⎫x -23,∴直线E 1E 2恒过定点⎝ ⎛⎭⎪⎫23,0; 当两直线的斜率分别为0和不存在时,12E E l 的方程为y =0,也过点⎝ ⎛⎭⎪⎫23,0. 综上所述,12E E l 过定点⎝ ⎛⎭⎪⎫23,0. 5.已知焦距为22的椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右顶点为A ,直线y =43与椭圆C 交于P ,Q两点(P 在Q 的左边),Q 在x 轴上的射影为B ,且四边形ABPQ 是平行四边形. (1)求椭圆C 的方程;(2)斜率为k 的直线l 与椭圆C 交于两个不同的点M ,N .若M 是椭圆的左顶点,D 是直线MN 上一点,且DA ⊥AM .点G 是x 轴上异于点M 的点,且以DN 为直径的圆恒过直线AN 和DG 的交点,求证:点G 是定点. (1)解 设坐标原点为O ,∵四边形ABPQ 是平行四边形,∴|AB →|=|PQ →|,∵|PQ →|=2|OB →|,∴|AB →|=2|OB →|,则点B 的横坐标为a 3,∴点Q 的坐标为⎝ ⎛⎭⎪⎫a 3,43,代入椭圆C 的方程得b 2=2,又c 2=2,∴a 2=4,即椭圆C 的方程为x 24+y 22=1.(2)证明 设直线MN 的方程为y =k (x +2),N (x 0,y 0),DA ⊥AM ,∴D (2,4k ).由⎩⎪⎨⎪⎧x 24+y 22=1,y =k (x +2),消去y 得(1+2k 2)x 2+8k 2x +8k 2-4=0,则-2x 0=8k 2-41+2k 2,即x 0=2-4k 21+2k2,∴y 0=k (x 0+2)=4k 1+2k 2,则N ⎝ ⎛⎭⎪⎫2-4k 21+2k 2,4k 1+2k 2,设G (t ,0),则t ≠-2,若以DN 为直径的圆恒过直线AN 和DG 的交点, 则DG ⊥AN ,∴GD →·AN →=0恒成立.∵GD →=(2-t ,4k ),AN →=⎝ ⎛⎭⎪⎫-8k21+2k 2,4k 1+2k 2,∴GD →·AN →=(2-t )·-8k 21+2k 2+4k ·4k 1+2k 2=0恒成立,即8k 2t1+2k2=0恒成立, ∴t =0,∴点G 是定点(0,0).6.(2017·全国Ⅰ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝ ⎛⎭⎪⎫-1,32,P 4⎝ ⎛⎭⎪⎫1,32中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.(1)解 由于P 3,P 4两点关于y 轴对称,故由题设知椭圆C 经过P 3,P 4两点.又由1a 2+1b 2>1a 2+34b 2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上. 因此⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)证明 设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝ ⎛⎭⎪⎫t ,4-t 22,⎝⎛⎭⎪⎫t ,-4-t 22,则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设. 从而可设l :y =kx +m (m ≠1). 将y =kx +m 代入x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2-4=0. 由题设可知Δ=16(4k 2-m 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+(m -1)(x 1+x 2)x 1x 2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0, 即(2k +1)·4m 2-44k 2+1+(m -1)·-8km4k 2+1=0,解得k =-m +12.当且仅当m >-1时,Δ>0, 于是l :y =-m +12x +m ,即y +1=-m +12(x -2),所以l 过定点(2,-1).考点三 圆锥曲线中的存在性问题方法技巧 解决存在性问题的一般思路:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在,否则,元素(点、直线、曲线或参数)不存在.7.(2016·全国Ⅰ)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H . (1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其它公共点?说明理由.解 (1)如图,由已知得M (0,t ),P ⎝ ⎛⎭⎪⎫t 22p ,t ,又N 为M 关于点P 的对称点,故N ⎝ ⎛⎭⎪⎫t 2p ,t ,ON 的方程为y =p t x , 代入y 2=2px ,整理得px 2-2t 2x =0,解得x 1=0,x 2=2t2p ,因此H ⎝ ⎛⎭⎪⎫2t 2p ,2t .所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其他公共点,理由如下:直线MH 的方程为y -t =p 2t x ,即x =2tp(y -t ).代入y 2=2px ,得y 2-4ty +4t 2=0,解得y 1=y 2=2t , 即直线MH 与C 只有一个公共点,所以除H 以外,直线MH 与C 没有其他公共点.8.已知椭圆E :x 2a 2+y 2b2=1的右焦点为F (c ,0)且a >b >c >0,设短轴的一个端点D ,原点O到直线DF 的距离为32,过原点和x 轴不重合的直线与椭圆E 相交于C ,G 两点,且|GF →|+|CF →|=4.(1)求椭圆E 的方程;(2)是否存在过点P (2,1)的直线l 与椭圆E 相交于不同的两点A ,B 且使得OP →2=4PA →·PB →成立?若存在,试求出直线l 的方程;若不存在,请说明理由.解 (1)由椭圆的对称性知,|GF →|+|CF →|=2a =4, ∴a =2.又原点O 到直线DF 的距离为32, ∴bc a =32,∴bc =3,又a 2=b 2+c 2=4, a >b >c >0,∴b =3,c =1.故椭圆E 的方程为x 24+y 23=1.(2)当直线l 与x 轴垂直时不满足条件.故可设A (x 1,y 1),B (x 2,y 2),直线l 的方程为y =k (x -2)+1,代入椭圆方程得(3+4k 2)x 2-8k (2k -1)x +16k 2-16k -8=0, ∴x 1+x 2=8k (2k -1)3+4k2,x 1x 2=16k 2-16k -83+4k 2,Δ=32(6k +3)>0, ∴k >-12.∵OP 2→=4PA →·PB →,即4[(x 1-2)(x 2-2)+(y 1-1)(y 2-1)]=5, ∴4(x 1-2)(x 2-2)(1+k 2)=5, 即4[x 1x 2-2(x 1+x 2)+4](1+k 2)=5, ∴4⎣⎢⎡⎦⎥⎤16k 2-16k -83+4k 2-2×8k (2k -1)3+4k 2+4(1+k 2)=4×4+4k 23+4k 2=5,解得k =±12,k =-12不符合题意,舍去,∴存在满足条件的直线l ,其方程为x -2y =0.典例 (12分)已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点⎝ ⎛⎭⎪⎫m3,m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由. 审题路线图(1)联立直线方程与椭圆方程―→一元二次方程―→中点坐标―→求出斜率乘积 (2)先假定四边形OAPB 能为平行四边形―→找几何关系:平行四边形的对角线互相平分 ―→转化成代数关系:x P =2x M ―→求k 规范解答·评分标准(1)证明 设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).…………2分将y =kx +b 代入9x 2+y 2=m 2, 得(k 2+9)x 2+2kbx +b 2-m 2=0,Δ=4k 2b 2-4(k 2+9)(b 2-m 2)>0,故x M =x 1+x 22=-kb k 2+9,y M =kx M +b =9bk 2+9.………………………………………………4分 于是直线OM 的斜率k OM =y M x M=-9k,即k OM ·k =-9.所以直线OM 的斜率与l 的斜率的乘积为定值. ……………………………………………6分 (2)解 四边形OAPB 能为平行四边形. ………………………………………………………7分因为直线l 过点⎝ ⎛⎭⎪⎫m 3,m ,所以l 不过原点且与C 有两个交点的充要条件是k >0,k ≠3. 由(1)得OM 的方程为y =-9kx .设点P 的横坐标为x P , 由⎩⎪⎨⎪⎧y =-9k x ,9x 2+y 2=m 2,得x 2P =k 2m 29k 2+81,即x P =±km3k 2+9. ……………………………………9分将点⎝ ⎛⎭⎪⎫m 3,m 的坐标代入l 的方程,得b =m (3-k )3,因此x M =k (k -3)m3(k 2+9).……………………………………………………………………………10分 四边形OAPB 为平行四边形,当且仅当线段AB 与线段OP 互相平分,即x P =2x M . 于是±km 3k 2+9=2×k (k -3)m 3(k 2+9),解得k 1=4-7,k 2=4+7.因为k i >0,k i ≠3,i =1,2,所以当l 的斜率为4-7或4+7时,四边形OAPB 为平行四边形. ………………………………………………………………………………………12分 构建答题模板[第一步] 先假定:假设结论成立;[第二步] 再推理:以假设结论成立为条件,进行推理求解;[第三步] 下结论:若推出合理结果,经验证成立则肯定假设;若推出矛盾则否定假设; [第四步] 再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性.1.(2017·全国Ⅱ)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →=2NM →. (1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP →·PQ →=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .(1)解 设P (x ,y ),M (x 0,y 0),则N (x 0,0), NP →=(x -x 0,y ),NM →=(0,y 0).由NP →= 2 NM →得x 0=x ,y 0=22y .因为M (x 0,y 0)在C 上,所以x 22+y 22=1.因此点P 的轨迹方程为x 2+y 2=2. (2)证明 由题意知F (-1,0).设Q (-3,t ),P (m ,n ),则OQ →=(-3,t ),PF →=(-1-m ,-n ),OQ →·PF →=3+3m -tn , OP →=(m ,n ),PQ →=(-3-m ,t -n ).由OP →·PQ →=1,得-3m -m 2+tn -n 2=1. 又由(1)知m 2+n 2=2,故3+3m -tn =0. 所以OQ →·PF →=0,即OQ →⊥PF →. 又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .2.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0),经过点A (0,-1),且离心率为22.(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为定值. (1)解 由题设知c a =22,b =1, 结合a 2=b 2+c 2,解得a =2, 所以椭圆的方程为x 22+y 2=1.(2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0,由已知Δ>0, 设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0, 则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2,从而直线AP ,AQ 的斜率之和k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝ ⎛⎭⎪⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2,=2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2.故k AP +k AQ 为定值2.3.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是32,点P ⎝⎛⎭⎪⎫1,32在椭圆E 上.(1)求椭圆E 的方程;(2)过点P 且斜率为k 的直线l 交椭圆E 于点Q (x Q ,y Q )(点Q 异于点P ),若0<x Q <1,求直线l 的斜率k 的取值范围.解 (1)由题意得⎩⎪⎨⎪⎧c a =32,1a 2+34b 2=1,a 2=b 2+c 2,解得⎩⎨⎧a=2,b =1,c =3,∴椭圆E 的方程为x 24+y 2=1.(2)设直线l 的方程为y -32=k (x -1), 代入方程x 24+y 2=1.消去y 得(1+4k 2)x 2+(43k -8k 2)x +4k 2-43k -1=0, ∴x Q ·1=4k 2-43k -11+4k 2, ∵0<x Q <1,∴0<4k 2-43k -11+4k 2<1,即⎩⎪⎨⎪⎧4k 2-43k -11+4k2>0,4k 2-43k -11+4k 2<1,解得-36<k <3-22或k >3+22,经检验,满足题意. ∴直线l 的斜率k 的取值范围是⎝ ⎛⎭⎪⎫-36,3-22∪⎝ ⎛⎭⎪⎫3+22,+∞. 4.如图所示,已知椭圆M :y 2a 2+x 2b2=1(a >b >0)的四个顶点构成边长为5的菱形,原点O 到直线AB 的距离为125,其中A (0,a ),B (-b ,0).直线l :x =my +n 与椭圆M 相交于C ,D 两点,且以CD 为直径的圆过椭圆的右顶点P (其中点C ,D 与点P 不重合).(1)求椭圆M 的方程;(2)证明:直线l 与x 轴交于定点,并求出定点的坐标. 解 (1)由已知,得a 2+b 2=52,由点A (0,a ),B (-b ,0)知,直线AB 的方程为x -b +ya =1,即ax -by +ab =0.又原点O 到直线AB 的距离为125,即 |0-0+ab |a 2+b2=125, 所以a 2=16,b 2=9,c 2=16-9=7. 故椭圆M 的方程为y 216+x 29=1.(2)由(1)知P (3,0),设C (x 1,y 1),D (x 2,y 2), 将x =my +n 代入y 216+x 29=1,整理,得(16m 2+9)y 2+32mny +16n 2-144=0, 则y 1+y 2=-32mn 16m 2+9,y 1y 2=16n 2-14416m 2+9. 因为以CD 为直径的圆过椭圆的右顶点P , 所以PC →·PD →=0,即(x 1-3,y 1)·(x 2-3,y 2)=0, 所以(x 1-3)(x 2-3)+y 1y 2=0. 又x 1=my 1+n ,x 2=my 2+n ,所以(my 1+n -3)(my 2+n -3)+y 1y 2=0,整理,得(m 2+1)y 1y 2+m (n -3)(y 1+y 2)+(n -3)2=0, 即(m 2+1)·16n 2-14416m 2+9+m (n -3)·-32mn 16m 2+9+(n -3)2=0, 所以16(m 2+1)(n 2-9)16m 2+9-32m 2n (n -3)16m 2+9+(n -3)2=0, 易知n ≠3,所以16(m 2+1)(n +3)-32m 2n +(16m 2+9)·(n -3)=0, 整理,得25n +21=0,即n =-2125.经检验,n =-2125符合题意.所以直线l 与x 轴交于定点,定点的坐标为⎝ ⎛⎭⎪⎫-2125,0. 5.已知抛物线C :x 2=2py (p >0)的焦点为F ,直线2x -y +2=0交抛物线C 于A ,B 两点,P 是线段AB 的中点,过P 作x 轴的垂线交抛物线C 于点Q .(1)D 是抛物线C 上的动点,点E (-1,3),若直线AB 过焦点F ,求|DF |+|DE |的最小值; (2)是否存在实数p ,使|2QA →+QB →|=|2QA →-QB →|?若存在,求出p 的值;若不存在,说明理由.解 (1)∵直线2x -y +2=0与y 轴的交点为(0,2), ∴F (0,2),则抛物线C 的方程为x 2=8y ,准线l :y =-2. 设过D 作DG ⊥l 于G ,则|DF |+|DE |=|DG |+|DE |, 当E ,D ,G 三点共线时,|DF |+|DE |取最小值2+3=5.(2)假设存在,抛物线x 2=2py 与直线y =2x +2联立,得x 2-4px -4p =0,设A (x 1,y 1),B (x 2,y 2),Δ=(4p )2+16p =16(p 2+p )>0,则x 1+x 2=4p ,x 1x 2=-4p , ∴Q (2p ,2p ).∵|2QA →+QB →|=|2QA →-QB →|,∴QA →⊥QB →. 则QA →·QB →=0,得(x 1-2p )(x 2-2p )+(y 1-2p )(y 2-2p ) =(x 1-2p )(x 2-2p )+(2x 1+2-2p )(2x 2+2-2p ) =5x 1x 2+(4-6p )(x 1+x 2)+8p 2-8p +4=0, 代入得4p 2+3p -1=0,解得p =14或p =-1(舍去).因此存在实数p =14,且满足Δ>0,使得|2QA →+QB →|=|2QA →-QB →|成立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2练 复数与平面向量[明晰考情] 1.命题角度:复数的四则运算和几何意义;以平面图形为背景,考查平面向量的线性运算、平面向量的数量积.2.题目难度:复数题目为低档难度,平面向量题目为中低档难度.考点一 复数的概念与四则运算要点重组 (1)复数:形如a +b i(a ,b ∈R )的数叫做复数,其中a ,b 分别是它的实部和虚部,i 为虚数单位.若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若a =0且b ≠0,则a +b i 为纯虚数.(2)复数相等:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ). (3)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R ).(4)复数的模:向量OZ →的模r 叫做复数z =a +b i(a ,b ∈R )的模,记作|z |或|a +b i|,即|z |=|a +b i|=r =a 2+b 2(r ≥0,r ∈R ).(5)复数的四则运算类似于多项式的四则运算,复数除法的关键是分子分母同乘分母的共轭复数.1.(2018·全国Ⅰ)设z =1-i1+i +2i ,则|z |等于( )A.0B.12 C.1 D. 2答案 C解析 ∵z =1-i 1+i +2i =(1-i )2(1+i )(1-i )+2i =-2i2+2i =i ,∴|z |=1.故选C.2.已知a ,b ∈R ,i 是虚数单位.若a -i 与2+b i 互为共轭复数,则(a +b i)2等于( ) A.5-4i B.5+4i C.3-4i D.3+4i 答案 D解析 由已知得a =2,b =1,即a +b i =2+i , ∴(a +b i)2=(2+i)2=3+4i.故选D.3.已知i 是虚数单位,a ,b ∈R ,则“a =b =1”是“(a +b i)2=2i ”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析 当a =b =1时,(a +b i)2=(1+i)2=2i , 反过来(a +b i)2=a 2-b 2+2ab i =2i , 则a 2-b 2=0,2ab =2,解得a =1,b =1或a =-1,b =-1.故“a =b =1”是“(a +b i)2=2i ”的充分不必要条件,故选A.4.复数(m 2-3m -4)+(m 2-5m -6)i 是虚数,则实数m 的取值范围是__________. 答案 {m |m ≠6且m ≠-1}解析 根据题意知,m 2-5m -6≠0,即(m -6)(m +1)≠0,所以m ≠6且m ≠-1. 考点二 复数的几何意义 要点重组 (1)复数z =a +b i 一一对应复平面内的点Z (a ,b )(a ,b ∈R ). (2)复数z =a +b i(a ,b ∈R )一一对应平面向量OZ →.5.设a ∈R ,若(1+3i)(1+a i)∈R (i 是虚数单位),则a 等于( ) A.3 B.-3 C.13 D.-13答案 B解析 (1+3i)(1+a i)=1+a i +3i -3a , ∵(1+3i)(1+a i)∈R ,∴虚部为0,则a +3=0,∴a =-3.6.已知z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( ) A.(-3,1) B.(-1,3) C.(1,+∞) D.(-∞,-3) 答案 A解析 由复数z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,得⎩⎪⎨⎪⎧m +3>0,m -1<0,解得-3<m <1,故选A.7.如图,在复平面内,复数z 1,z 2对应的向量分别是OA →,OB →,则|z 1+z 2|=_______.答案 2解析 由题意知,z 1=-2-i ,z 2=i , ∴z 1+z 2=-2,∴|z 1+z 2|=2.8.已知复数z =i +i 2+i 3+…+i 2 0191+i ,则复数z 在复平面内对应的点位于第______象限.答案 二解析 因为i 4n +k =i k (n ∈Z ),且i +i 2+i 3+i 4=0, 所以i +i 2+i 3+…+i 2 019=i +i 2+i 3=i -1-i =-1,所以z =-11+i =-(1-i )(1+i )(1-i )=-12(1-i)=-12+12i ,对应的点为⎝⎛⎭⎫-12,12,在第二象限. 考点三 平面向量的线性运算方法技巧 (1)向量加法的平行四边形法则:共起点;三角形法则:首尾相连;向量减法的三角形法则:共起点连终点,指向被减.(2)已知O 为平面上任意一点,则A ,B ,C 三点共线的充要条件是存在s ,t ,使得OC →=sOA →+tOB →,且s +t =1,s ,t ∈R .(3)证明三点共线问题,可转化为向量共线解决.9.(2018·全国Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →等于( ) A.34AB →-14AC → B.14AB →-34AC →C.34AB →+14AC →D.14AB →+34AC → 答案 A解析 作出示意图如图所示.EB →=ED →+DB →=12AD →+12CB →=12×12(AB →+AC →)+12(AB →-AC →)=34AB →-14AC →.故选A.10.如图,在△ABC 中,N 是AC 边上一点,且AN →=12NC →,P 是BN 上的一点,若AP →=mAB →+29AC →,则实数m 的值为( )A.19B.13 C.1 D.3 答案 B解析 ∵AN →=12NC →,∴AN →=13AC →,∴AP →=mAB →+29AC →=mAB →+23AN →.又B ,N ,P 三点共线,∴m +23=1,∴m =13.11.如图,在正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC →=λAM →+μBN →,则λ+μ等于( )A.2B.83C.65D.85答案 D解析 方法一 如图以AB ,AD 为坐标轴建立平面直角坐标系,设正方形边长为1,AM →=⎝⎛⎭⎫1,12,BN →=⎝⎛⎭⎫-12,1,AC →=(1,1).∵AC →=λAM →+μBN →=λ⎝⎛⎭⎫1,12+μ⎝⎛⎭⎫-12,1=⎝⎛⎭⎫λ-μ2,λ2+μ,∴⎩⎨⎧λ-μ2=1,λ2+μ=1,解得⎩⎨⎧λ=65,μ=25,故λ+μ=85.方法二 以AB →,AD →作为基底, ∵M ,N 分别为BC ,CD 的中点,∴AM →=AB →+BM →=AB →+12AD →,BN →=BC →+CN →=AD →-12AB →,∴AC →=λAM →+μBN →=⎝⎛⎭⎫λ-μ2AB →+⎝⎛⎭⎫λ2+μAD →, 又AC →=AB →+AD →,因此⎩⎨⎧λ-μ2=1,λ2+μ=1,解得⎩⎨⎧λ=65,μ=25.所以λ+μ=85.12.已知a ,b 为单位向量,且a ⊥(a +2b ),则|a -2b |=________.答案7解析 由a ⊥(a +2b )得a ·(a +2b )=0,∴|a |2+2a ·b =0,得2a ·b =-1,∴|a -2b |2=(a -2b )2=a 2-4a ·b +4b 2=|a |2-4a ·b +4|b |2=1+2+4=7,∴|a -2b |=7. 考点四 平面向量的数量积方法技巧 (1)向量数量积的求法:定义法,几何法(利用数量积的几何意义),坐标法. (2)向量运算的两种基本方法:基向量法,坐标法.13.已知向量a =(1,2),b =(1,0),c =(3,4),若λ为实数,(b +λa )⊥c ,则λ的值为( ) A.-311 B.-113 C.12 D.35答案 A解析 b +λa =(1,0)+λ(1,2)=(1+λ,2λ),又c =(3,4),且(b +λa )⊥c ,所以(b +λa )·c =0,即3(1+λ)+2λ×4=3+3λ+8λ=0,解得λ=-311.14.(2017·全国Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小值是( )A.-2B.-32C.-43 D.-1答案 B解析 方法一 (解析法)建立坐标系如图①所示,则A ,B ,C 三点的坐标分别为A (0,3),B (-1,0),C (1,0).设P 点的坐标为(x ,y ),图①则P A →=(-x ,3-y ), PB →=(-1-x ,-y ), PC →=(1-x ,-y ),∴P A →·(PB →+PC →)=(-x ,3-y )·(-2x ,-2y ) =2(x 2+y 2-3y )=2⎣⎡⎦⎤x 2+⎝⎛⎭⎫y -322-34≥2×⎝⎛⎭⎫-34=-32. 当且仅当x =0,y =32时,P A →·(PB →+PC →)取得最小值,最小值为-32.故选B. 方法二 (几何法)如图②所示,PB →+PC →=2PD →(D 为BC 的中点),则P A →·(PB →+PC →)=2P A →·PD →.图②要使P A →·PD →最小,则P A →与PD →方向相反,即点P 在线段AD 上,则(2P A →·PD →)min =-2|P A →||PD →|, 问题转化为求|P A →||PD →|的最大值.又当点P 在线段AD 上时,|P A →|+|PD →|=|AD →|=2×32=3,∴|P A →||PD →|≤⎝ ⎛⎭⎪⎫|P A →|+|PD →|22=⎝⎛⎭⎫322=34,∴[P A →·(PB →+PC →)]min =(2P A →·PD →)min =-2×34=-32.故选B.15.(2016·全国Ⅲ)已知向量BA →=⎝⎛⎭⎫12,32,BC →=⎝⎛⎭⎫32,12,则∠ABC 等于( )A.30°B.45°C.60°D.120° 答案 A解析 |BA →|=1,|BC →|=1,cos ∠ABC =BA →·BC →|BA →||BC →|=32.又∵0°≤∠ABC ≤180°, ∴∠ABC =30°.16.(2016·浙江)已知向量a ,b ,|a |=1,|b |=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是________. 答案 12解析 由已知可得6≥|a ·e |+|b ·e |≥|a ·e +b ·e |=|(a +b )·e |, 由于上式对任意单位向量e 都成立. ∴6≥|a +b |成立.∴6≥(a +b )2=a 2+b 2+2a ·b =12+22+2a ·b . 即6≥5+2a ·b ,∴a ·b ≤12.∴a ·b 的最大值为12.1.(2017·全国Ⅰ)设有下面四个命题: p 1:若复数z 满足1z ∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R .其中的真命题为( )A.p 1,p 3B.p 1,p 4C.p 2,p 3D.p 2,p 4 答案 B解析 设z =a +b i(a ,b ∈R ),z 1=a 1+b 1i(a 1,b 1∈R ),z 2=a 2+b 2i(a 2,b 2∈R ).对于p 1,若1z ∈R ,即1a +b i =a -b i a 2+b 2∈R ,则b =0,即z =a +b i =a ∈R ,所以p 1为真命题;对于p 2,若z 2∈R ,即(a +b i)2=a 2+2ab i -b 2∈R ,则ab =0.当a =0,b ≠0时,z =a +b i =b i ∉R ,所以p 2为假命题;对于p 3,若z 1z 2∈R ,即(a 1+b 1i)(a 2+b 2i)=(a 1a 2-b 1b 2)+(a 1b 2+a 2b 1)i ∈R ,则a 1b 2+a 2b 1=0.而z 1=z 2,即a 1+b 1i =a 2-b 2i ⇔a 1=a 2,b 1=-b 2.因为a 1b 2+a 2b 1=0⇏a 1=a 2,b 1=-b 2,所以p 3为假命题;对于p 4,若z ∈R ,即a +b i ∈R ,则b =0⇒z =a -b i =a ∈R ,所以p 4为真命题.故选B. 2.在△ABC 中,有如下命题,其中正确的是________.(填序号) ①AB →-AC →=BC →; ②AB →+BC →+CA →=0;③若(AB →+AC →)·(AB →-AC →)=0,则△ABC 为等腰三角形; ④若AB →·BC →>0,则△ABC 为锐角三角形. 答案 ②③解析 在△ABC 中,AB →-AC →=CB →,①错误;若AB →·BC →>0,则B 是钝角,△ABC 是钝角三角形,④错误.3.已知向量a =(1,2),b =(1,1),且a 与a +λb 的夹角为锐角,则实数λ的取值范围是__________.答案 ⎝⎛⎭⎫-53,0∪()0,+∞ 解析 a +λb =(1+λ,2+λ),由a ·(a +λb )>0,可得λ>-53.又a 与a +λb 不共线,∴λ≠0. 故λ>-53且λ≠0.解题秘籍 (1)复数的概念是考查的重点,虚数及纯虚数的意义要把握准确.(2)复数的运算中除法运算是高考的热点,运算时要分母实数化(分子分母同乘以分母的共轭复数),两个复数相等的条件在复数运算中经常用到.(3)注意向量夹角的定义和范围.在△ABC 中,AB →和BC →的夹角为π-B ;向量a ,b 的夹角为锐角要和a ·b >0区别开来(不要忽视向量共线情况,两向量夹角为钝角类似处理).1.设i 是虚数单位,则复数i 3-2i 等于( )A.-iB.-3iC.iD.3i 答案 C解析 i 3-2i =-i -2ii2=-i +2i =i.故选C.2.(2017·山东)已知a ∈R ,i 是虚数单位.若z =a +3i ,z ·z =4,则a 等于( ) A.1或-1 B.7或-7 C.- 3 D. 3 答案 A解析 ∵z ·z =4,∴|z |2=4,即|z |=2. ∵z =a +3i ,∴|z |=a 2+3=2,∴a =±1.故选A.3.设i 是虚数单位,则复数2i1-i 在复平面内所对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限 答案 B解析 2i1-i =2i (1+i )(1-i )(1+i )=2i (i +1)2=-1+i ,由复数的几何意义知,-1+i 在复平面内的对应点为(-1,1),该点位于第二象限,故选B.4.(2018·安庆模拟)在△ABC 中,点D 是边BC 上任意一点, M 是线段AD 的中点,若存在实数λ和μ,使得BM →=λAB →+μAC →,则λ+μ等于( ) A.12 B.-12 C.2 D.-2 答案 B解析 因为点D 在边BC 上,所以存在t ∈R ,使得BD →=tBC →=t (AC →-AB →).因为M 是线段AD 的中点,所以BM →=12(BA →+BD →)=12(-AB →+tAC →-tAB →)=-12(t +1)AB →+12tAC →.又BM →=λAB →+μAC →,所以λ=-12(t +1),μ=12t ,所以λ+μ=-12.5.“复数z =3+a ii 在复平面内对应的点在第三象限”是“a ≥0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 D解析 由题意得z =a -3i ,若z 在复平面内对应的点在第三象限,则a <0,故选D.6.(2018·通州期末)△ABC 的外接圆的圆心为O ,半径为1,若OA →+AB →+OC →=0,且|OA →|=|AB →|,则CA →·CB →等于( ) A.32 B.3 C.3 D.2 3 答案 C解析 ∵OA →+AB →+OC →=0,∴OB →=-OC →,故点O 是BC 的中点,且△ABC 为直角三角形, 又△ABC 的外接圆的半径为1,|OA →|=|AB →|,∴BC =2,AB =1,CA =3,∠BCA =30°, ∴CA →·CB →=|CA →||CB →|·cos 30°=3×2×32=3.7.已知a >0,⎪⎪⎪⎪a +i i =2,则a 等于( )A.2B. 3C. 2D.1 答案 B 解析 ⎪⎪⎪⎪⎪⎪a +i i =⎪⎪⎪⎪⎪⎪-a i +11=(-a )2+1=2,即a 2=3. 又∵a >0,∴a = 3.8.(2018·浙江)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2-4e ·b +3=0,则|a -b |的最小值是( ) A.3-1 B.3+1 C.2D.2- 3答案 A解析 ∵b 2-4e ·b +3=0,∴(b -2e )2=1,∴|b -2e |=1.如图所示,把a ,b ,e 的起点作为公共点O ,以O 为坐标原点,向量e 所在直线为x 轴,则b 的终点在以点M (2,0)为圆心,1为半径的圆上,|a -b |就是线段AB 的长度.要求|AB |的最小值,就是求圆上动点到定直线的距离的最小值,也就是圆心M 到直线OA 的距离减去圆的半径长,因此|a -b |的最小值为3-1.故选A.9.设x ,y 为实数,且x 1-i +y 1-2i =51-3i,则x +y =______. 答案 4解析 由题意得x 2(1+i)+y 5(1+2i)=510(1+3i), ∴(5x +2y )+(5x +4y )i =5+15i , ∴⎩⎪⎨⎪⎧ 5x +2y =5,5x +4y =15,∴⎩⎪⎨⎪⎧x =-1,y =5,∴x +y =4. 10.若点M 是△ABC 所在平面内的一点,且满足5AM →=AB →+3AC →,则△ABM 与△ABC 的面积之比为________.答案 35解析 设AB 的中点为D ,由5AM →=AB →+3AC →,得3AM →-3AC →=2AD →-2AM →,即3CM →=2MD →.故C ,M ,D 三点共线,如图所示,MD →=35CD →, 也就是△ABM 与△ABC 对于边AB 的两高之比为3∶5,则△ABM 与△ABC 的面积之比为35. 11.(2018·德阳诊断)已知i 为虚数单位,实数x ,y 满足(x +2i)i =y -i ,则|x -y i|=______. 答案 5解析 ∵(x +2i)i =y -i ,∴-2+x i =y -i ,∴⎩⎪⎨⎪⎧x =-1,y =-2,则|x -y i|=|-1+2i|= 5.12.已知AB →⊥AC →,|AB →|=1t ,|AC →|=t ,若点P 是△ABC 所在平面内的一点,且AP →=AB →|AB →|+4AC →|AC →|,则PB →·PC →的最大值为________.答案 13解析 以点A 为坐标原点,AB →,AC →所在直线分别为x 轴,y 轴,建立如图所示的平面直角坐标系,则A (0,0),B ⎝⎛⎭⎫1t ,0,C (0,t ),AB →=⎝⎛⎭⎫1t ,0,AC →=(0,t ), AP →=AB →|AB →|+4AC →|AC →|=t ⎝⎛⎭⎫1t ,0+4t (0,t )=(1,4),∴点P (1,4),则PB →·PC →=⎝⎛⎭⎫1t -1,-4·(-1,t -4)=17-⎝⎛⎭⎫1t +4t ≤17-21t ·4t =13, 当且仅当1t=4t , 即t =12时取“=”, ∴PB →·PC →的最大值为13.。

相关文档
最新文档