第二章--自由基聚合.

合集下载

第2章_自由基聚合-2

第2章_自由基聚合-2
形成一种自由基, 无诱
导分解; 比较稳定,能单独安全保存; 分解时有N2逸出;偶氮化合物易于离解的动力正是在于 生成了高度稳定的N2,而非由于存在弱键。
2、有机过氧类引发剂
最简单的过氧化物:过氧化氢。活化能较高,20kJ/mol, 一般不单独用作引发剂。
HO OH 2 HO 过氧化氢分子中一个氢原子被有机基团取代,称为“氢过 氧化物”,两个氢原子被取代,称为“过氧化物”。均可用作自 由基聚合引发剂。
C O O C
O [2 C O + CO2 ]
[2
+ 2 CO2 ]
+ 笼蔽效应与单体、溶剂、体系黏度等因素均有关。
[
2 CO2 ]
笼蔽效应所引起的引发剂效率降低的程度取决于自由 基的扩散、引发、副反应三者的相对速率。
(1)引发剂本身的影响:偶氮类引发剂(如AIBN)一 般无诱导分解,而过氧类引发剂(如BPO)易发生诱导分 解,使f 值下降。 单体的活性:若单体具有较高的活性,能迅速与自由基 作用,引发增长,因此引发剂效率较高;若单体的活性 较低,对自由基的捕捉能力较弱,为诱导分解创造条件, 则引发剂效率低。 表2 AIBN引发不同烯类单体的引发剂效率f (%)
S2O82
组成氧化—还原体系后,分解活化能大大降低。 例如: 过氧化氢:220kJ/mol;过氧化氢+亚铁盐:40kJ/mol 过硫酸钾:140kJ/mol;过硫酸钾+亚铁盐:50kJ/mol 异丙苯过氧化氢:125kJ/mol;异丙苯过氧化氢+亚铁 盐:50kJ/mol 还原剂用量一般应较氧化剂少,否则还原剂进一步与自 由基反应,使活性消失。
R N R R N R + +
O
O [

高分子化学——自由基聚合

高分子化学——自由基聚合

2) 共轭效应
带有共轭体系的烯类如苯乙烯、甲基苯乙烯、丁 二烯及异戊二烯,π— π共轭, 易诱导极化 (polarization),能按三种机理进行聚合。
CH2 CH
CH3 CH2 C
CH2 CH CH CH2
可进行三种历程的聚合
具有共轭体系的烯类单体 p电子云流动性大,易诱导极化,可随进攻试剂性质的不 同而取不同的电子云流向,可进行多种机理的聚合反应。
△ G(free energy difference)<0
动力学可能性(kinetics feasibility) a.烯类单体:单烯类、双烯类 2 单体种类 b.含羰基-C=O化合物:醛、酮、酸 c.杂环化合物 d.炔烃
a.含
C C
的烯类单体
CH2 CH Cl
(讨论重点)
CH CH CH2
CH2 CH
• 许多带吸电子基团的烯类单体,如丙烯腈
(acrylonitrile)、丙烯酸酯类(acrylate)能
同时进行阴离子聚合和自由基聚合。
• 若基团的吸电子倾向过强,如硝基乙烯
(nitroethylene)等,只能阴离子聚合而难
以进行自由基聚合。
不少单体既能阴离子聚合,又能自由基聚合,但如果 取代基吸电性太强,δ+ 过大,则只能阴离子聚合
e.g:
δ R + CH2 CH CN
+
H RCH2 C C N
H RCH2 C C N
二.乙烯基单体对聚合方式的选择 自由基?阳离子?阴离子? 乙烯基单体中的取代基Y(substituent)的 种类、性质、数量和极性决定了单体对活性种 的选择性。
CH2=CH Y
从有机化学的角度来定性分析取代基的电 子效应及位阻效应对聚合机理的选择。

高分子化学-第二章 自由基聚合

高分子化学-第二章  自由基聚合
均增加,由于链转移速率常数值较小,对应的活化能 较大,受温度的影响比较显著,这可通过Arrhenius方 程可看出:
(4)
对于氯乙烯单体的聚合,向氯乙烯链转移常数CM与温 度有如下指数关系:
(5) 转移活化能和增长活化能的差值30.5kJ/mol,为正值,表明 温度升高,CM值增加,聚合度降低。
由于氯乙烯的CM值较大,聚氯乙烯的分子量可由温度控制, 与引发剂的用量基本无关;聚合速率由引发剂浓度控制。
阻聚剂会导致聚合反应存在诱导期,但在诱导期过后, 不会改变聚合速率。
缓聚剂并不会使聚合反应完全停止,不会导致诱导期, 只会减慢聚合反应速率。
但有些化合物兼有阻聚作用与缓聚作用,即在一定的反 应阶段充当阻聚剂,产生诱导期,反应一段时间后其阻 聚作用消失,转而成为缓聚剂,使聚合反应速率减慢。

I II
(i) O2
R + O2
ROO
RH R
(低活性) 高温
ROOH
ROOR 高温
RO + OH 2RO
引发聚合
(20)
因此氧在低温时(<100oC)为阻聚剂。高温时则可作引发剂。
ii、链转移型阻聚剂
主要有1,1-二苯基-2-三硝基苯肼(DPPH)、芳 胺、酚类等。
• DPPH
DPPH分子能够化学计量地消灭一个自由基,素有 自由基扑捉剂之称。
i、引发剂转移常数CI的第一种求法: 对式(6) 进行一定的重排,可得到下式:
(7)
以上式左边对Rp作图,可由直线斜率求出CI 。 i i 、引发剂转移常数CI的第二种求法:
将式(6)改写为下式: (8)
以上式左边对[I]/[M]作图,从直线斜率可求出CI,由截距 求出CM 。

高分子科学导论第二章

高分子科学导论第二章

24
第二章 自由基聚合
歧化终止:链自由基夺取另一个自由基上的氢原子或其 他原子而相互终止的反应。此时生成的高分子只有一端为引 发剂碎片,另一端为饱和或不饱和结构,两者各半,聚合度 与链自由基中的单元数相同。
CH2 CH + X CH X CH2 CH2 CH2 + CH X X CH2
25
第二章 自由基聚合
链引发
I R* + M
R* RM* RM2* RM3*
链增长
RM* + M RM2* + M
RMn-1* + M
链终止
RMn* 死聚合物
RMn*
聚合过程中有时还会发生链转移反应,但不是必须经过 的基元反应。
2
第二章 自由基聚合
引发剂分解成活性中心时,共价键有两种裂解形式:均 裂和异裂。 均裂的结果产生两个自由基;异裂的结果形成阴离子和 阳离子。
C O C O
5
ቤተ መጻሕፍቲ ባይዱ
第二章 自由基聚合
烯类单体的碳—碳双键既可均裂,也可异裂,因此可进 行自由基聚合或阴、阳离子聚合,取决于取代基的诱导效应 和共轭效应。 乙烯分子中无取代基,结构对称,因此无诱导效应和共 轭效应。只能在高温高压下进行自由基聚合,得到低密度聚 乙烯。在配位聚合引发体系引发下也可进行常温低压配位聚 合,得到高密度聚乙烯。
卤素原子既有诱导效应(吸电子),又有共轭效应(推 电子),但两者均较弱,因此既不能进行阴离子聚合,也不 能进行阳离子聚合,只能进行自由基聚合。如氯乙烯、氟乙 烯、四氟乙烯均只能按自由基聚合机理进行。 除了少数含有很强吸电子基团的单体(如偏二腈乙烯、 硝基乙烯)只能进行阴离子聚合外,大部分含吸电子基团的 单体均可进行自由基聚合。 含有共轭双键的烯类单体,如苯乙烯、α-苯乙烯、丁二 烯、异戊二烯等,因电子云流动性大,容易诱导极化,因此 既可进行自由基聚合,也可进行阴、阳离子聚合。

第二章 自由基聚合

第二章 自由基聚合

A
δ_
CH2=CH
Y
ACH2 C Y
43
c 取代基为吸电基团(electron-withdrawing substituent)
如腈基、羰基、酯基、羧基、醛基、酮基等
使双键电子云密度降低,并使阴离子增长种共轭稳定
B
δ+
CH2=CH
Y
BCH 2 C Y
44
2) 共轭效应
带有共轭体系的烯类如苯乙烯、甲基苯乙烯、 丁二烯及异戊二烯,π— π共轭, 易诱导极化 (polarization),能按三种机理进行聚合。
16
sp 杂化的四个价键
17
18
这种几个电子轨道重新组成复杂的电子轨道的现 象叫做原子轨道的杂化,在杂化过程中形成的新 轨道叫做杂化轨道 当碳原子与四个相同的原子或原子团相互结合时, 形成的夹角是109°28 。 见示意图
19
20
21
在图7[ 杂化轨道重叠示意图 中示出三个碳原子的四个 杂化的原子轨道,用这四个轨道形成C -C 和C -C 两 个键 这里C 原子右边的轨道(用虚线表示)与 C 原 子轨道重叠, 而C 原子左边的轨道(用实线表示)与 C 原子的轨道重叠。
△ G(free energy difference)<0 • 动力学可能性(kinetics feasibility)
2 单体种类
烯类单体:单烯类、双烯类
含羰基-C=O化合物:醛、酮、酸
杂环化合物:环乙烷、呋喃、吡咯、噻吩
38
碳碳双键: 既可均裂也可异裂,可以进行自由基聚合 或离子聚合(ionic polymerization)
化学键
温故而知新
化学键:在原子结合成分子时,相邻的原子之间 强烈的相互作用.

高分子化学 自由基聚合

高分子化学 自由基聚合
- ln c(I) c(I)0
0 0.075 0
0.2 0.0660 0.133
0.7 0.0484 0.443
1.2 0.0334 0.813
1.7 0.0228 1.196
c(I) 以- ln ~ t作图 c(I)0
kd = 1.85× 10-4 s-1
t1/ 2 = 1.04h
4
⒋ 苯乙烯进行自由基聚合其终止方式为偶合终止; • 60℃甲基丙烯酸甲酯进行自由基聚合其终止方式为歧化终 止为主(表2.7,偶合终止和歧化终止的百分率分别为15%和85%); • 氯乙烯进行自由基聚合其终止方式为向单体转移终止 (表214)。 • 烯类单体进行自由基聚合,其终止方式与单体结构有关、 与聚合温度有关,最后由实验确定。 • ⒌ 自由基聚合时,转化率、相对分子质量随时间的变化有 何特征?与机理有何关系? • 自由基聚合时,聚合物的相对分子质量与时间关系不大。 • 这是因为链增长反应使聚合物的相对分子质量增加,而链 增长反应的活化能很低(Ep约20~34kJ/mol)链增长反应的速 率很高,生成一个相对分子质量为几万至几十万的大分子的时 间非常短只需要0.01S~几秒的时间,是瞬间完成的,延长时间 对聚合物的相对分子质量关系不大,如图2.7。
•⑦ CH2= C(CH3) 2 阳离子聚合 •⑧ CH2=C(CN)(COOR) 阴离子聚合 •⑨ CH2=CH-CH= CH2 自由基聚合、阳离子聚合和 • 阴离子聚合. •⑩ CH2=C(CH3)-CH= CH2 自由基聚合、阳离子聚合和 • 阴离子聚合. •(11) CH2 =CH 只能进行配位阴离子聚合 • CH3
第二章 自由基聚合
• ⒈ 在连锁聚合反应的单体中,单体上的取代基的电子效应 和空间效应对单体聚合能力产生影响。 • ⑴ 对于单取代的烯类单体,只考虑电子效应不必考虑取代 基的空间效应。 • ⑵ 对于同碳二元取代的烯类单体除 1,1-二苯基乙烯外,只 考虑电子效应,不必考虑取代基的空间效应。 • ⑶ 对于非同碳二元取代、三元取代、四元取代的烯类单体 只考虑取代基的空间效应,不必考虑电子效应,由于空间位阻, 一般不能聚合。 • 氟代乙烯例外,不管氟代的位置和数量都能进行自由基聚 合。 • ⒉ 题中能进行自由基聚合的单体是 • CF2=CFCl 1 • CH2=C(CH3)(COOCH3)

二章-自由基聚合(终稿)

二章-自由基聚合(终稿)

第二章自由基聚合2.1 学习目の(1)熟悉各种能进行连锁聚合の单体の结构特点;(2)了解连锁聚合反应热力学。

(3)掌握自由基聚合机理。

(4)熟悉自由基聚合常用の引发剂以及引发剂分解动力学。

(5)了解各种类型の引发反应。

(6)掌握自由基聚合反应动力学。

(7)掌握聚合度の计算方法。

(8)熟悉各种链转移反应及其对聚合度の影响。

(9)熟悉自动加速过程。

(10)了解自由基聚合中の阻聚和缓聚作用及机理。

(11)了解速率常数の测定和计算。

(12)熟悉自由基聚合の相对分子质量の控制、分布及影响因素。

(13)了解自由基聚合の反应特征。

2.2 内容提要2.2.1 判断某种化合物能否进行聚合反应一、可进行连锁聚合单体の结构特点主要涉及能够作为聚合反应单体の烯烃の基本条件,以及单体结构与聚合反应类型之间の关系。

具体而言,首先从烯烃取代基所造成位阻大小の角度判断其能否进行聚合,然后再从取代基电负性和共轭性の角度判断其能够进行哪一种或哪几种类型の聚合反应。

1. 取代基の数目、位置、大小决定烯烃能否进行聚合(1)一取代烯烃原则上都能够进行聚合反应。

(2)对于1,1-二取代の烯类单体,一般都能按取代基の性质进行相应机理の聚合。

并且由于结构上更不对称,极化程度增加,更易聚合。

但两个取代基都是体积较大の芳基时,只能形成二聚体。

(3)1,2-双取代の烯类单体,结构对称,极化程度低,加上位阻效应,一般不能均聚或只能形成二聚体。

(4)三取代和四取代乙烯一般不能聚合,但氟代乙烯却是例外,不论氟代の数目和位置如何,均易聚合,这是氟の原子半径较小の缘故。

综上所述,一取代和1,1-二取代乙烯等无位阻障碍の取代烯烃,是连锁聚合单体の两种主要类型。

其它情况必须特别注意判断,除氟取代以外一般都无法进行均聚合反应。

2. 取代基の电负性和共轭性决定烯烃の聚合反应类型按照聚合反应活性中心の不同,连锁聚合反应通常包括自由基型、阴离子型、阳离子型和配位离子型等四种聚合反应类型。

第二章自由基聚合

第二章自由基聚合

2.3.2 自由基聚合反应的特征
1、由链引发、增长、终止、转移等基元反应组成 特征为:慢引发、快增长、速终止。 引发速率最小,是控制总聚合速率的关键。
2、链增长反应使聚合度增加
反应混合物中仅由单体和聚合物组成 聚合度变化小。
自由基聚合过程中分子量 与时间的关系
3、对分子量的影响 凝胶效应将使分子量增大。
2
CH3 2C +N2 CN
AIBN一般在45~65℃ 下使用;它分解后形成的异丁腈自由 基是碳自由基,缺乏脱氢能力,故不能作接枝聚合的引发剂。
2、有机过氧类引发剂
代表物:过氧化二苯甲酰(BPO) BPO中O—O键部分的电子云密度大而相互排斥,容 易断裂,通常在60~80℃ 分解。
★ 均裂成苯甲酸基自由基,有单体存在时,即引发聚合; ★ 无单体存在时,进一步分解成苯基自由基,并析出CO2 但分解不完全。
弱键的离解能一般为100~170kJ/mol
常用的引发剂有:偶氮化合物、有机过氧化合物、无机盐 过氧化合物和氧化-还原引发体系等。
2.4.1.1 引发剂的种类
1、偶氮类引发剂
几乎全部为一级反应,只形成一种自由 基,无诱导分解; 比较稳定,能单独安全保存;
代表物:偶氮二异丁腈(AIBN)
CH3 2C N N C CH3 CN CN
自由基聚合过程中转化率与时间的关系
4、少量(0.01%~0.1%)阻聚剂足以使自由基聚合反应终止。
2.4 链引发反应
自由基聚合反应的首要条件是:在聚合体系中产生自由基, 常用方法是在聚合体系中引入引发剂,其次是采用热、光 和高能辐射等方法。
2.4.1 引发剂和引发作用
引发剂:分子结构上具有弱键,容易分解成自由基。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 自由基聚合 习题参考答案1.举例说明自由基聚合时取代基的位阻效应、共轭效应、电负性、氢键和溶剂化对单体聚合热的影响。

解答:以结构最简单的聚乙烯为标准,其聚合热为-88.8kJ/mol 。

位阻效应:单体的位阻效应加大,聚合放热下降。

如异丁烯,其聚合热为-54kJ/mol 。

这是因为单体的取代基在空间伸展范围大,而成链后,伸展范围小,键角压缩,需贮藏一定能量。

共轭效应:单体的共轭效应加大,聚合放热下降。

如丁二烯,其聚合热为-73kJ/mol 。

这是因为聚合后,单体原有的共轭作用下降,稳定性下降,需用一定能量。

电负性:单体带强电负性取代基,聚合放热上升。

如四氟乙烯,其聚合热为-154.8kJ/mol 。

这是因为碳-氟键能大,氟原子半径小。

氢键和溶剂化:单体的氢键和溶剂化大于聚合物的,聚合放热下降。

如丙烯酸,其聚合热为-67kJ/mol 。

这是单体间氢键作用大的原因。

2.比较下列单体的聚合反应热的大小并解释其原因:乙烯、丙烯、异丁烯、苯乙烯、α-甲基苯乙烯、 氯乙烯、四氟乙烯。

解答:3.什么是聚合上限温度、平衡单体浓度?根据表3-3数据计算丁二烯、苯乙烯40℃、80℃自由基聚合时的平衡单体浓度。

解答:聚合上限温度:当聚合和解聚处于平衡状态时,△G = 0,则△H = T △S 。

这时的反应温度称为聚合上限温度(ceiling temperature ),记为T c 。

一般规定平衡单体浓度为1mol/L 时的平衡温度为聚合的上限温度。

平衡单体浓度:链增长和解聚达平衡时体系的单体浓度,一般取标准状态。

丁二烯:⎪⎪⎭⎫ ⎝⎛-=O cO e ΔS T ΔH R 1ln[M] (1)40℃(313K ),△H = -73.7KJ/mol ,△S = -85.8J/mol ,R = 8.314 [M]e = 1.52×10-8mol/L(2)80℃ [M]e = 3.77×10-7mol/L苯乙烯:(1)40℃(313K ),△H = -69.9KJ/mol ,△S = -104.7J/mol ,R = 8.314[M]e = 6.36×10-7mol/L(2)80℃ [M]e = 1.33×10-5mol/L4.α-甲基苯乙烯在0℃可以聚合,升温至66℃后不能聚合,但进一步加大反应压力,该单体又可以发生聚合。

请说明其原因。

解答:(1)在标准状态:eOOc Rln[M]ΔSΔH T +=△H = -35.2KJ/mol ,△S = -103.8J/mol ,R = 8.314T c = 339k = 66℃所以0℃可以聚合;升温至66℃,达T c,故不能聚合。

(2)PV = nRT V近似不变,P加大,T下降,可聚。

5.什么是自由基聚合、阳离子聚合和阴离子聚合?解答:自由基聚合:活性中心为自由基的聚合反应。

阴离子聚合:活性中心为阴离子(带负电荷)的聚合反应。

阳离子聚合:活性中心为阳离子(带正电荷)的聚合反应。

6.下列单体适合于何种机理聚合:自由基聚合,阳离子聚合或阴离子聚合?并说明理由。

CH2=CHCl,CH2=CCl2,CH2=CHCN,CH2=C(CN)2,CH2=CHCH3,CH2=C(CH3)2,CH2=CHC6H5,CF2=CF2,CH2=C(CN)COOR,CH2=C(CH3)-CH=CH2。

解答:7.根据表2-4,说明下列单体工业化所选择反应历程的原因CH2=CH2,CH2=CHCH3,CH2=CHCl,CH2=CHC6H5,CH2=CHCN,CH2=CHOCOCH3,CH2=CHCOOCH3,CH2=C(CH3)2,CH2=CH-OR,CH2=CH-CH=CH2,CH2=C(CH3)-CH=CH28.对下列实验现象进行讨论:(1)共轭效应使烯类单体的聚合热降低而使缺类单体的聚合热增高。

(2)乙烯、乙烯的一元取代物、乙烯的1,1-二元取代物一般都能聚合,但乙烯的1,2-取代物除个别外一般不能聚合。

(3)大部分烯类单体能按自由基机理聚合,只有少部分单体能按离子型机理聚合。

(4)带有π-π共轭体系的单体可以按自由基、阳离子和阴离子机理进行聚合。

解答:(1)主要为以下原因:①对烯类单体而言,聚合包含有一个π键的断裂,两个σ键的生成。

打开一个双键所需能量为609.2 kJ/mol,形成一个单键放出的能量为-351.7 kJ/mol,总的能量变化为:△H = 2Eσ- Eπ= 2×(-351.7)—(-609.2) = -94.2 kJ/mol对炔类单体而言,聚合包含有一个三键的断裂,一个π键和两个σ键的生成。

打开一个三键所需能量为812 kJ/mol,形成一个双键放出能量为-609.2 kJ/mol,一个单键放出的能量为-351.7 kJ/mol,总的能量变化为:△H = 2Eσ+Eπ-E三键= 2×(-351.7)+(-609.2) - (-812)= -500.6 kJ/mol相比乙烯聚合,乙炔聚合放热要多的多。

②对取代烯烃而言,聚合后无双键,共轭作用明显下降,聚合放热减少;对取代炔烃而言,聚合后还存在双键,共轭作用变化不明显,聚合放热变化不大。

(2)乙烯、乙烯的一元取代物、乙烯的1,1-二元取代物:总体看这类单体空间位阻小电效应较大,故查聚合;但乙烯的1,2-取代物空间位阻大,电效应因互抵而下降,故除个别外一般不能聚合。

(3)一般取代基电效应弱的只能自由基聚合,如:VC、V AC;有带强吸(供)电子取代基的单体可进行阴(阳)离子聚合,如:CH2=C(CN)COOR(烷基乙烯基醚);处于中间的带较强吸(供)电子取代基的单体可进行阴(阳)离子聚合和自由基聚合,如:MMA;故从目前可进行聚合的单体看,能进行自由基聚合的单体要多一些。

(4)带有π-π共轭体系的单体,如苯乙烯、丁二烯、异戊二烯等,不管形成什么样的活性中心,均存在较明显的共轭结构,这种共轭作用可稳定各种活性中心,一方面利于活性中心的形成,另一方面活性中心还有足够的活性以引发下一个单体,故可多种机理聚合。

9.判断下列烯类单体能否进行自由基聚合,并说明理由。

CH2=C(C6H5)2,ClCH=CHCl,CH2=C(CH3)C2H5,CH3CH=CHCH3,CH2=C(CH3)COOCH3,CH2=CHOCOCH3,CH3CH=CHCOOCH3。

解答:10.丙烯为什么不采用自由基聚合机理进行聚合。

解答:丙烯自由基聚合,活性中心易生成稳定的烯丙基自由基,使聚合反应停止。

~~~CH 2·CHCH 3 + CH 2 = CHCH 3 → ~~~CH 2CH 2CH 3 + CH 2=CH ·CH 2 ·CH 2CH=CH 211.以偶氧氮二异丁腈为引发剂,写出苯乙烯80℃自由基聚合历程中各基元反应。

解答:引发剂分解:(CH 3) 2C —N=N —C(CH) 2 2(CH 3) 2 C· + N 2↑| | | CN CN CN形成单体自由基:(CH 3) 2 C· + CH 2=CH → (CH 3) 2 C-CH 2-HC·| | | |CN C 6H 5 CN C 6H 5 链增长:(CH 3) 2 C-CH 2-HC· + CH 2=CH → → → ~~~~CH 2-HC ·| | | |CN C 6H 5 C 6H 5 C 6H 5链终止:2 ~~~~CH 2-HC · → ~~~~CH 2-HC-CH-CH 2~~~~| | | C 6H 5 H 5 C 6 C 6H 511.回答下列问题:(1)在自由基聚合中为什么聚合物链中单体单元大部分按头尾方式连接? (2)自由基聚合k t >>k p ,但仍然可以得到高分子量聚合物?解答:(1) 主要原因:① 于从活性链端结构分析,当取代基与自由基位于同一碳上时,取代基的电效应有利于活性中心的稳定;② 如要形成头-头结构,两单体的取代基处于相邻碳上,空间位阻加大;③ 单体取代基使其双键电荷分布向与取代基相连的碳上移动,使活性中心易向单体电荷少的碳进攻。

(2) ]M M][[K R p P ⋅= 2t t ][M k R ⋅=自由基聚合中虽然存在k t >>k p ,但自由基浓度很低[M ·]=10-7 ~ -9 mol/L ,而单体浓度则高达101 ~ -1 mol/L ,故聚合反应以生成高分子量聚合物为主。

13.将数均聚合度为1700的聚醋酸乙烯酯水解成聚乙烯醇。

采用高碘酸氧化聚乙烯醇中的1,2-二醇键,得到新的聚乙烯醇的数均聚合度为200。

计算聚醋酸乙烯酯中头-头结构及头尾结构的百分数。

解答:原理:~~~~CH —CH~~~~ + H 5IO 6 → ~~~~CHO + OHC~~~~~ (邢其毅 P403) | | OH OH1700 / 200 = 8.5 8.5 / 1700 = 0.5%80O C14.写出苯乙烯、醋酸乙烯酯和甲基丙烯酸甲酯60℃自由基聚合的双基终止反应式,分析三种单体聚合双基终止方式不同的原因。

解答:苯乙烯:可抽取的α-H少,活性中心与苯环间存在强的共轭,取代基为一苯环,空间位阻较小,偶合终止。

2 ~~~~CH2-HC ·→~~~~CH2-HC-CH-CH2~~~~| | |C6H5 H5 C6 C6H5醋酸乙烯酯:活性中心共聚作用弱,歧化终止。

2 ~~~~CH2-HC ·→~~~~CH2-CH2 + ~~~~CH2=CH| | |OCOCH3 OCOCH3 OCOCH3甲基丙烯酸甲酯:有三个抽取的α-H,有二个取代基,空间位阻较大,利于歧化终止;另一方面活性中心存在较强的共轭,利于偶合终止,故两种终止均存在。

CH3 CH3 CH3| | |2 ~~~~CH2-C ·→~~~~CH2-C —CH-CH2~~~~| | |COOCH3 CH3OOC COOCH3CH3 CH2| ||→~~~~CH2-CH + ~~~~CH2-C| |COOCH3 COOCH315.以H2C CCH3CH3HO N NH2CCCH3CH3OH为引发剂分别使苯乙烯、甲基丙烯酸甲酯在65℃下聚合,然会将其聚合产物分别与甲苯二异氰酸酯反应,发现前者的相对分子质量增加了数倍,而后者的相对分子质量只增加一倍,请说明其原因。

解答:引发剂分解后,一端带有-OH,引发苯乙烯聚合,最后发生偶合终止,所形成的大分子链两端均带-OH,而-OH可与-OCN发生加成反应,反应的结果是产物相对分子质量增加了数倍。

而引发MMA聚合,,大部分发生歧化终止,只在大分子链一端带-OH,反应的结果是产物相对分子质量只增加一倍。

相关文档
最新文档