集体备课反比例函数的应用
集体备课反比例函数的应用

年级九年级学科数学教者廖佳一、回顾交流、情境导入(廖佳)反比例函数:当k>0时,两支曲线分别在 一 三,在每一象限内,y 的值 随x 的增大而减小 。
当k<0时,两支曲线分别在二 四 ,在每一象限内,y 的值随x 的增大而。
某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安 全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临 时通道,从而顺利完成了任务的情境。
你能解释他们这样做的道理吗? (1)用含S 的代数式表示P ,P 是S 的反比例函数吗?为什么? (2)当木板面积为0.2 时,压强是多少(3)如果要求压强不超过6000Pa ,木板面积至少要多大 (4)在直角坐标系中,作出相应的函数图象。
(5)请利用图象对(2)和(3)作出直观解释,并与同伴进行交流。
在(4)中,要启发学生思考:为什么只需在第一象限作函数图象?此外, 还要注意单位长度所表示的数值。
在(5)中,要留有充分时间让学生交流, 领会实际问题的数学意义,体会数与形的统一。
二、探究新知1.蓄电池的电压为定值,使用此电源时,电流I (A )与电阻R (Ω)之间的函数关系如图5-8所示: 探究:(1)蓄电池的电压是多少?你能写出这一函数的表达式吗?(2)完成下表(课本P142),并回答问题,如果以此蓄电池为电源的用电器限制电流不得超过10A ,那么用电器的可变电阻应控制在什么范围内?2.如图5-9,正比例函数x k y 1=的图象与反比例函数xk y 2=的图象相交于A 、B 两点,其中点A 的坐标为(32,3)探究:(1)请你分别写出这两个函数的表达式; (2)你能求出点B 的坐标吗?你是怎样求的?与同伴交流。
学生独立思考,解答问题,上讲台演示自己的解答。
三、随堂练习(谢伟) 课本随堂练习1 补充练习《反比例函数的应用》训练题(45分钟练习)一、填空题(每空2分,共12分)1.长方形的面积为60cm 2,如果它的长是ycm ,宽是xcm ,那么y 是x 的 函数关系,y 写成x 的关系式是 。
反比例函数的应用

反比例函数的应用反比例函数是数学中的一种特殊函数形式,也称为倒数函数。
它的形式可以表示为y=k/x,其中k是常数。
在实际生活中,反比例函数有着广泛的应用,本文将探讨几个常见的反比例函数应用场景。
1. 面积与边长的关系在几何学中,矩形的面积与其两条边长之间存在着反比例关系。
假设一个矩形的长为L,宽为W,那么它的面积S可以表示为S=L*W。
由于长度和宽度是矩形两个独立的参数,它们之间存在反比例关系。
当一个参数增加时,另一个参数相应地减小,以保持面积不变。
这种反比例关系可以应用于很多实际问题中,比如房间的面积与家具的数量,农田的面积与种植作物的产量等。
通过理解面积与边长之间的反比例关系,我们可以在实际问题中做出合理的决策。
2. 时间和速度的关系另一个常见的反比例函数应用是时间和速度之间的关系。
在物理学中,速度可以定义为物体在单位时间内所移动的距离。
假设一个物体在时间t内移动的距离为d,则它的速度v可以表示为v=d/t。
根据这个公式,我们可以看到时间和速度之间呈现出反比例关系。
这个关系在实际生活中有很多应用。
比如旅行中的车辆速度与到达目的地所需时间之间的关系,运输货物的速度与到达目的地所需的时间之间的关系等。
这种反比例关系帮助我们计算和预测在不同速度下所需的时间。
3. 电阻与电流的关系在电学中,电阻和电流之间存在着反比例关系。
根据欧姆定律,电流I通过一个电阻R时,产生的电压V可以表示为V=I*R。
由于电阻是电流通过的障碍物,当电阻增加时,电流减小,反之亦然。
这种反比例关系在电路设计和计算中起着重要的作用。
我们可以根据电阻和电流之间的关系来选择合适的电阻值,以控制电路中的电流大小。
此外,这种关系还能帮助我们解决一些实际电路中的问题,比如计算电路中的功率、阻值等。
总结:反比例函数在各个领域中都有广泛的应用。
通过理解反比例关系,我们能够分析和解决实际问题,做出合理的决策。
本文介绍了三个常见的反比例函数应用,包括面积与边长的关系、时间和速度的关系,以及电阻与电流的关系。
浙教版数学八年级下册《6.3 反比例函数的应用》教学设计1

浙教版数学八年级下册《6.3 反比例函数的应用》教学设计1一. 教材分析《浙教版数学八年级下册》第六章第三节“反比例函数的应用”是学生在学习了反比例函数的基本概念、图象和性质的基础上进行的内容。
本节内容主要让学生了解反比例函数在实际生活中的应用,培养学生的应用意识,提高学生解决实际问题的能力。
教材通过举例说明了反比例函数在几何、物理、化学等学科中的应用,让学生体会数学与其它学科的联系。
二. 学情分析八年级的学生已经学习了反比例函数的基本知识,对反比例函数的概念、图象和性质有一定的了解。
但是,学生在应用反比例函数解决实际问题时,还存在着一定的困难。
因此,在教学本节内容时,教师需要引导学生将反比例函数知识与实际问题相结合,提高学生的应用能力。
三. 教学目标1.理解反比例函数在实际生活中的应用。
2.能够运用反比例函数解决实际问题,提高解决问题的能力。
3.培养学生的数学应用意识,体会数学与其它学科的联系。
四. 教学重难点1.反比例函数在实际生活中的应用。
2.如何引导学生将反比例函数知识与实际问题相结合。
五. 教学方法1.案例分析法:通过列举具体的实例,让学生了解反比例函数在实际生活中的应用。
2.问题驱动法:教师提出问题,引导学生思考,激发学生的学习兴趣。
3.合作交流法:学生分组讨论,共同解决问题,培养学生的团队协作能力。
六. 教学准备1.准备相关的实例,用于讲解反比例函数在实际生活中的应用。
2.设计问题,引导学生思考。
3.分组讨论的素材,用于课堂上的合作交流。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾反比例函数的基本知识,激发学生的学习兴趣。
2.呈现(10分钟)教师展示反比例函数在几何、物理、化学等学科中的应用实例,让学生了解反比例函数在实际生活中的重要性。
3.操练(15分钟)教师提出问题,引导学生运用反比例函数解决实际问题。
学生分组讨论,共同解决问题。
4.巩固(10分钟)教师针对学生解决实际问题的过程进行点评,总结反比例函数在实际生活中的应用规律。
九年级数学上册《反比例函数的应用》教案、教学设计

6.小组合作,拓展提高
设置小组合作任务,让学生在合作中探讨反比例函数的更深入问题,如反比例函数与一次函数、二次函数的关系等。培养学生团队合作精神和创新能力。
7.课堂小结,总结提升
在课堂尾声,引导学生对所学知识进行总结,梳理反比例函数的定义、性质和应用。教师进行点评,强调重点,突破难点。
1.请同学们完成课本第十章第3节后的练习题,特别是第1、3、5、7、9题,这些题目涵盖了反比例函数的基本概念和性质,通过练习,加深对反比例函数的认识。
2.结合生活实际,设计一个反比例函数的应用问题,并尝试自己解决。这个问题可以涉及行程、面积、比例分配等方面,要求学生在解决过程中明确反比例函数的应用步骤和关键点。
九年级数学上册《反比例函数的应用》教案、教学设计
一、教学目标
(一)知识与技能
1.理解反比例函数的概念,掌握反比例函数的一般形式,了解常数k的几何意义。
2.能够绘制反比例函数的图像,掌握反比例函数图像的对称性、渐近线等性质。
3.学会运用反比例函数解决实际生活中的问题,如行程问题、面积问题等。
(二)过程与方法
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,总结反比例函数的定义、图像性质和应用。
2.强调反比例函数在实际问题中的应用,让学生认识到数学知识在生活中的重要性。
3.提醒学生课后复习,巩固所学知识。
4.布置课后作业,适当拓展,提高学生的自主学习能力。
五、作业布置
为了巩固学生对反比例函数的理解和应用,特布置以下作业:
3.加强师生互动,关注学生的个体差异,给予每个学生足够的关注和指导。
浙教版数学八年级下册6.3《反比例函数的应用》教学设计1

浙教版数学八年级下册6.3《反比例函数的应用》教学设计1一. 教材分析浙教版数学八年级下册6.3《反比例函数的应用》是本册教材中的一个重要内容。
本节内容是在学生已经掌握了反比例函数的定义、性质的基础上进行学习的,主要让学生了解反比例函数在实际生活中的应用,培养学生的数学应用能力。
教材通过实例引入反比例函数的应用,让学生通过观察、分析、归纳等方法,掌握反比例函数在实际问题中的应用。
二. 学情分析学生在学习本节内容前,已经掌握了反比例函数的基本知识,具备了一定的函数观念和解决问题的能力。
但部分学生对实际问题与反比例函数之间的联系还不够清晰,对一些实际问题的理解和分析能力有待提高。
因此,在教学过程中,教师需要关注学生的学习情况,针对不同学生的特点进行引导和帮助。
三. 教学目标1.知识与技能:让学生掌握反比例函数在实际问题中的应用,能够正确列出反比例函数的解析式,并解决相关问题。
2.过程与方法:通过观察、分析、归纳等方法,培养学生解决实际问题的能力。
3.情感态度与价值观:让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣和积极性。
四. 教学重难点1.重点:反比例函数在实际问题中的应用。
2.难点:如何将实际问题转化为反比例函数问题,并正确列出解析式。
五. 教学方法1.情境教学法:通过生活实例引入反比例函数的应用,让学生感受数学与生活的联系。
2.引导发现法:教师引导学生观察、分析实际问题,发现反比例函数的应用规律。
3.实践操作法:让学生通过动手操作,解决实际问题,提高学生的实践能力。
六. 教学准备1.教师准备:熟悉教材内容,了解学生的学习情况,准备相关实例和问题。
2.学生准备:掌握反比例函数的基本知识,准备好学习本节内容的兴趣和积极性。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实际问题,如比例尺、速度与时间、成本与数量等,引导学生观察和思考这些实际问题与反比例函数之间的关系。
2.呈现(10分钟)教师呈现一些实际问题,让学生尝试解决。
初中数学 反比例函数在实际问题中的应用有哪些

初中数学反比例函数在实际问题中的应用有哪些反比例函数在实际问题中有许多应用,下面列举一些常见的应用场景:1. 速度和时间的关系:在物理学和运动学中,速度和时间之间的关系通常可以用反比例函数来描述。
例如,当一个物体以恒定速度运动时,它所用的时间与所走的距离成反比。
反比例函数可以帮助我们计算在给定速度下所需的时间,或者在给定时间内所能达到的距离。
2. 工作和时间的关系:在工程学和生产领域中,工作和时间之间的关系通常可以用反比例函数来描述。
例如,如果一台机器在单位时间内完成的工作量是恒定的,那么完成某项工作所需的时间与工作量成反比。
反比例函数可以帮助我们计算在给定工作量下所需的时间,或者在给定时间内可以完成的工作量。
3. 面积和边长的关系:在几何学中,许多图形的面积和边长之间存在反比例关系。
例如,正方形的面积与边长的平方成反比,圆的面积与半径的平方成反比。
反比例函数可以帮助我们计算在给定面积下的边长,或者在给定边长下的面积。
4. 电阻和电流的关系:在电学中,电阻和电流之间的关系通常可以用反比例函数来描述。
根据欧姆定律,电阻与电流成反比。
反比例函数可以帮助我们计算在给定电阻下的电流,或者在给定电流下的电阻。
5. 质量和密度的关系:在物理学中,物体的质量和密度之间通常存在反比例关系。
根据定义,密度等于物体的质量除以其体积。
因此,当质量增加时,密度会减小,反之亦然。
反比例函数可以帮助我们计算在给定密度下的质量,或者在给定质量下的密度。
6. 投资和收益的关系:在金融领域中,投资和收益之间通常存在反比例关系。
例如,当我们投资的金额增加时,相同的投资收益率下的收益会减少。
反比例函数可以帮助我们计算在给定投资金额下的收益,或者在给定收益率下的投资金额。
这些都是反比例函数在实际问题中的一些常见应用。
通过将实际问题转化为反比例函数的形式,我们可以更好地理解和解决这些问题,并在实际生活中应用数学知识。
反比例函数实际应用

反比例函数实际应用反比例函数是初中数学中一个非常重要的概念,在实际应用中也有着广泛的应用。
本文将从多个角度探讨反比例函数的实际应用。
一、比例尺比例尺是地图上一个重要的概念。
比例尺是表示地图上距离与实际距离之比的关系。
比例尺越大,表示地图上的距离与实际距离之比越小。
比例尺与实际距离的关系是反比例函数关系。
实际应用时,比例尺可以用来计算地图上两个点之间的真实距离,也可以用来计算地球上两个点之间的真实距离。
二、电阻电阻是电路中一个非常重要的概念。
电阻的大小和材料、长度和横截面积等因素有关。
电阻和电流的关系是反比例函数关系。
实际应用时,可以利用电阻来控制电路中的电流大小,从而达到控制电路的目的。
三、比例面积比例面积是建筑工程中一个非常重要的概念。
比例面积是指实际面积与图纸上的面积之比。
比例面积与实际面积的关系是反比例函数关系。
实际应用时,可以利用比例面积来计算建筑物的实际面积,从而控制建筑物的规模。
四、人口密度人口密度是一个地方人口数量与面积之比的关系。
人口密度与面积的关系是反比例函数关系。
实际应用时,可以利用人口密度来评估一个地方的人口密度状况,从而制定相应的人口政策。
五、天文学天文学中,反比例函数的应用非常广泛。
例如天体的距离与亮度之间的关系是反比例函数关系,利用这个关系可以测量天体的距离。
还有天体的质量与轨道周期之间的关系也是反比例函数关系,利用这个关系可以估算天体的质量。
总之,反比例函数在现实生活中有着广泛的应用。
熟练掌握反比例函数的概念和应用,对于提高我们的生活和工作水平具有非常重要的意义。
反比例函数实际应用教学设计(精选7篇)

反比例函数实际应用教学设计(精选7篇)反比例函数实际应用教学设计1一、知识与技能1、从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解。
2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。
二、过程与方法1、经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点。
2、经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识。
三、情感态度与价值观1、经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣。
2、通过分组讨论,培养学生合作交流意识和探索精神。
教学重点:理解和领会反比例函数的概念。
教学难点:领悟反比例的概念。
教学过程:一、创设情境,导入新课活动1问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化。
师生行为:先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式。
教师组织学生讨论,提问学生,师生互动。
在此活动中老师应重点关注学生:①能否积极主动地合作交流。
②能否用语言说明两个变量间的关系。
③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象。
分析及解答:(1);(2);(3)其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;上面的函数关系式,都具有的形式,其中k是常数。
二、联系生活,丰富联想活动2下列问题中,变量间的对应关系可用这样的函数式表示?(1)一个游泳池的容积为2000m3,注满游泳池所用的时间随注水速度u的变化而变化;(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年级九年级学科数学教者廖佳
一、回顾交流、情境导入(廖佳)
反比例函数:当k>0时,两支曲线分别在 一 三,在每一象限内,y 的值 随x 的增大而减小 。
当k<0时,两支曲线分别在二 四 ,在每一象限内,y 的值随x 的增大而。
某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安 全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临 时通道,从而顺利完成了任务的情境。
你能解释他们这样做的道理吗? (1)用含S 的代数式表示P ,P 是S 的反比例函数吗?为什么? (2)当木板面积为0.2 时,压强是多少
(3)如果要求压强不超过6000Pa ,木板面积至少要多大 (4)在直角坐标系中,作出相应的函数图象。
(5)请利用图象对(2)和(3)作出直观解释,并与同伴进行交流。
在(4)中,要启发学生思考:为什么只需在第一象限作函数图象?此外, 还要注意单位长度所表示的数值。
在(5)中,要留有充分时间让学生交流, 领会实际问题的数学意义,体会数与形的统一。
二、探究新知
1.蓄电池的电压为定值,使用此电源时,电流I (A )与电阻R (Ω)之
间的函数关系如图5-8所示: 探究:(1)蓄电池的电压是多少?你能写出这一函数的表达式吗?
(2)完成下表(课本P142),并回答问题,如果以此蓄电池为电源的用电器
限制电流不得超过10A ,那么用电器的可变电阻应控制在什么范围内?
2.如图5-9,正比例函数x k y 1=的图象与反比例函数x
k y 2
=的图象相交
于A 、B 两点,其中点A 的坐标为(32,3)
探究:(1)请你分别写出这两个函数的表达式; (2)你能求出点B 的坐标吗?你是怎样求的?与同伴交流。
学生独立思考,解答问题,上讲台演示自己的解答。
三、随堂练习(谢伟) 课本随堂练习1 补充练习
《反比例函数的应用》训练题(45分钟练习)
一、填空题(每空2分,共12分)
1.长方形的面积为60cm 2,如果它的长是ycm ,宽是xcm ,那么y 是x 的 函数关系,y 写成x 的关系式是 。
2.A 、B 两地之间的高速公路长为300km ,一辆小汽车从A 地去B 地,假设在途中是匀速直线运动,速度为v km/h ,
31
2.下列各问题中,两个变量之间的关系不是反比例函数的是
A :小明完成100m 赛跑时,时间t (s )与他跑步的平均速度v (m/s )之间的关系。
B :菱形的面积为
C 质量m
D :压力为600N 的关系。
3.如图,A 、B 、C 点,分别从A 、B 、S 2、S 3A :S 1=S 2>S 3 C :S 1>S 2>S 3 (三)解答题(共1.(12水所用的时间t(h)(1
(2)写出此函数的解析式
(3)若要6h 排完水池中的水,那么每小时的排水量应该是多
少?
红岩九年制学校集体备课
(4)如果每小时排水量是5m3,那么水池中的水将要多长时间排完?
2.(9
y
4。
(1
解析式。
(2
交点坐标。
(3)求△ODC的面积。
教学反思:本节课是用函数的观点处理实际问题,关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么?可以看什么?逐步形成考察实际问题的能力,在解决问题时,应充分利用函数的图象,渗透数形结合的思想。