26.1.1+反比例函数教学设计
人教版数学九年级下册26.1《反比例函数》教学设计

人教版数学九年级下册26.1《反比例函数》教学设计一. 教材分析人教版数学九年级下册第26.1节《反比例函数》是本册教材的重要内容,主要让学生了解反比例函数的定义、性质及图象,学会利用反比例函数解决实际问题。
本节内容承上启下,为后续学习函数的其他类型打下基础。
教材通过实例引入反比例函数,使学生能够从实际问题中抽象出反比例函数模型,进一步培养学生的抽象思维能力。
二. 学情分析九年级的学生已经学习了函数的基本概念、一次函数和二次函数,对函数有一定的认识。
但是,对于反比例函数这一概念,学生可能较为陌生,需要通过具体实例来引导学生理解和掌握。
此外,学生对于函数图象的绘制和分析还有一定的困难,需要在教学中给予指导。
三. 教学目标1.了解反比例函数的定义,理解反比例函数的性质。
2.能够绘制反比例函数的图象,分析反比例函数图象的特点。
3.学会利用反比例函数解决实际问题,提高解决问题的能力。
4.培养学生的抽象思维能力和合作交流能力。
四. 教学重难点1.反比例函数的定义和性质。
2.反比例函数图象的特点。
3.利用反比例函数解决实际问题。
五. 教学方法1.情境教学法:通过实例引入反比例函数,使学生能够从实际问题中抽象出反比例函数模型。
2.合作学习法:引导学生分组讨论,共同探究反比例函数的性质和图象特点。
3.实践操作法:让学生动手绘制反比例函数的图象,提高学生的实践操作能力。
4.问题驱动法:提出问题,引导学生思考,激发学生的求知欲。
六. 教学准备1.准备相关的实例,用于引入反比例函数。
2.准备反比例函数的图象资料,用于分析反比例函数的性质。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题,引入反比例函数的概念。
例如,一辆汽车以60千米/小时的速度行驶,行驶1小时后,行驶的距离与时间成反比例关系。
引导学生思考,如何表示这种关系。
2.呈现(10分钟)呈现反比例函数的定义,解释反比例函数的概念。
人教版九年级下册26.1.1反比例函数课程设计

人教版九年级下册26.1.1反比例函数课程设计1. 教学目标本节课的教学目标如下:1.了解反比例函数的概念与特性;2.掌握反比例函数的图像与性质;3.学会利用反比例函数解决实际问题。
2. 教学重点1.反比例函数的概念与特性;2.反比例函数的图像与性质。
3. 教学难点1.反比例函数的应用。
4. 教学准备1.讲义、板书、PPT等教具材料;2.反比例函数的定义、性质等相关背景知识。
5. 教学内容及方法5.1 课前预习让学生自学反比例函数在数学中的概念和常见性质,关注反比例函数的定义和性质,熟记常见图像和性质。
5.2 课堂讲解1.提出问题反比例函数的定义与常见性质,可以简要概括为“当x增大时,y随之减小,x 减小时,y随之增大”。
所以这个函数有什么其他性质呢?2.讲解反比例函数图像及其基础性质反比例函数的图像是两条曲线y=a/x和y=-a/x。
直截了当。
在这里,教师要讲解反比例函数的基础性质,包括单调性、对称性和渐近线等,以加深学生的理解。
3.运用反比例函数解决实际问题做实际问题是反比例函数学习的重要部分。
教师可以提供一些相关例子,向学生展示应如何建立数学模型以应对应用难题。
5.3 课后作业1.完成课后习题,巩固反比例函数的相关知识点;2.找到一些有关反比例函数的经典范例,并解读其中涉及的数学知识点及其应用。
6. 教学评估生动活泼地向学生解析反比例函数的概念、性质及应用,结合小组讨论或个人实际操作形式,通过探究和讨论等形式评估学生的反比例函数掌握程度。
7. 反思与总结综合反思本节课的教学方法、评估方式及效果,逐渐形成自己的教学理念,将教学不断提升到更高水平。
人教版九年级数学下册第二十六章26.1.1反比例函数k的几何意义教学设计

教师讲解:“大家总结得很好。反比例函数是我们学习函数的重要部分,希望大家能够掌握其定义、性质和几何意义,并在实际问题中灵活运用。”
五、作业布置
为了巩固学生对反比例函数知识的掌握,提高学生的应用能力和思维能力,特布置以下作业:
1.基础知识巩固:
(1)根据反比例函数的定义,求出以下函数的表达式,并说明k的几何意义:y=3/x、y=-2/x、y=5/|x|。
作业要求:
1.学生在完成作业时,要认真思考,规范解答,注意细节。
2.对于实践应用题,要求学生结合反比例函数的性质和几何意义,分析问题,列出方程,并求解。
3.拓展提高题要求学生独立思考,尝试不同的解题方法,锻炼数学思维能力。
4.思考题要求学生在理解反比例函数的基础上,深入思考,形成自己的见解。
2.教学策略:
(1)情境创设:以生活实例或有趣的故事引入反比例函数的学习,激发学生的学习兴趣;
(2)任务驱动:设置具有挑战性的任务,引导学生主动探究反比例函数的性质和应用;
(3)分层教学:针对不同学生的学习需求,设计难易适度的练习题,使每个学生都能在原有基础上得到提高;
(4)反馈与评价:及时关注学生的学习进度,给予有效的反馈和激励,提高学生的学习积极性。
教师提问:“同学们,我们之前学习了正比例函数和一次函数,谁能来说说它们的特点和性质?”
2.创设情境:通过生活中的实例,如物体在反比例力作用下的运动轨迹,引出反比例函数的概念。
教师讲解:“在生活中,我们经常会遇到一些与反比例关系相关的问题。比如,当物体受到一个与速度成反比的阻力时,它的运动轨迹是怎样的呢?这就涉及到我们今天要学习的反比例函数。”
人教版九年级数学下册第二十六章26.1.1反比例函数k的几何意义教学设计
人教版九年级数学下册26.1.1反比例函数教学设计

1.学生需独立完成作业,不得抄袭。
2.解题过程要求书写工整,步骤清晰。
3.小组合作作业需体现每个成员的参与和贡献。
4.作业完成后,请认真检查,确保无误。
3.教师揭示这种数量关系即为反比例关系,进而导入新课——反比例函数。
(二)讲授新知,500字
1.教师引导学生回顾正比例函数、一次函数的定义,然后提出反比例函数的定义:形如y=k/x(k≠0)的函数称为反比例函数。
2.教师通过实例解释反比例函数的定义,如:当速度v一定时,路程s与时间t的关系可以表示为s=v*t,若时间t变化,路程s与时间t的乘积s*t保持不变,即s*t=v*t^2=k(k为常数),这就是一个反比例关系。
7.课后作业:布置具有针对性和实用性的课后作业,巩固学生对反比例函数的理解,提高学生的应用能力。
具体教学设想如下:
(1)导入新课:通过展示实际生活中的反比例关系,引导学生思考反比例函数的定义。
(2)新课讲解:
1)讲解反比例函数的定义,引导学生理解y=k/x(k≠0)的含义。
2)演示反比例函数图像的绘制方法,引导学生观察、分析图像性质。
三、教学重难点和教学设想
(一)教学重点
1.反比例函数的定义及其一般形式y=k/x(k≠0)。
2.反比例函数图像的性质,如对称性、渐进线等。
3.反比例函数在实际问题中的应用。
(二)教学难点
1.学生对反比例函数图像的理解和性质的把握。
2.在实际问题中建立反比例函数模型,运用函数知识解决问题的能力。
3.对反比例函数与一次函数、正比例函数等函数之间的联系和区别的理解。
二、学情分析
九年级学生在学习反比例函数之前,已经掌握了正比例函数、一次函数等基本初等函数的概念及其图像性质,具备了一定的函数基础知识。在此基础上,学生对反比例函数的学习将更具挑战性。由于反比例函数在形式上与之前学习的函数有所不同,学生对y=k/x(k≠0)的理解和运用可能会存在一定的困难。此外,在解决实际问题时,如何将反比例函数与问题情境有效结合,对学生的抽象思维和建模能力提出了更高要求。
人教版数学九年级下册26.1.1《反比例函数》教学设计

人教版数学九年级下册26.1.1《反比例函数》教学设计一. 教材分析《反比例函数》是人教版数学九年级下册第26章第一节的内容,主要介绍了反比例函数的定义、性质及图象。
这一节内容是学生在学习了正比例函数和一次函数的基础上进行的,是进一步深化函数知识的重要环节,也为后续学习函数的应用打下了基础。
二. 学情分析九年级的学生已经具备了一定的函数知识,能够理解正比例函数和一次函数的概念和性质。
但是,对于反比例函数这一概念,学生可能较难理解,需要通过具体实例和生活实际来帮助学生理解和掌握。
三. 教学目标1.了解反比例函数的定义和性质。
2.能够绘制反比例函数的图象。
3.能够运用反比例函数解决实际问题。
四. 教学重难点1.反比例函数的定义和性质。
2.反比例函数图象的绘制。
五. 教学方法1.采用问题驱动法,通过设置问题引导学生思考和探索。
2.利用信息技术手段,如多媒体演示和数学软件,帮助学生直观理解反比例函数的性质和图象。
3.结合实际例子,让学生感受反比例函数在生活中的应用。
六. 教学准备1.多媒体演示文稿。
2.数学软件。
3.实际例子和问题。
七. 教学过程1.导入(5分钟)通过一个实际问题引入反比例函数的概念,如“一辆汽车以60千米/小时的速度行驶,行驶1小时后,剩余路程与速度之间的关系是什么?”引导学生思考和讨论。
2.呈现(10分钟)利用多媒体演示文稿,呈现反比例函数的定义和性质,引导学生直观理解。
同时,利用数学软件,展示反比例函数的图象,让学生感受反比例函数的特点。
3.操练(10分钟)让学生利用数学软件,自己绘制一些反比例函数的图象,加深对反比例函数性质的理解。
同时,让学生解答一些与反比例函数有关的问题,巩固所学知识。
4.巩固(10分钟)通过一些练习题,让学生进一步巩固反比例函数的概念和性质。
5.拓展(10分钟)让学生思考和讨论反比例函数在实际生活中的应用,如广告宣传、经济分析等,引导学生将所学知识运用到实际中。
26.1.1反比例函数教案初中数学反比例函数教案

26.1.1 反比例函数教案【课程目标】通过本课程的学习,学生将了解和掌握以下知识点: - 反比例函数的定义和性质; - 反比例函数的图像和变化规律;- 怎样求解反比例函数的实际应用题目。
【教学重点】•反比例函数的定义和性质;•反比例函数图像和变化规律。
【教学难点】•如何解决反比例函数的实际应用题目。
【教学准备】•教材:初中数学九年级课本上的反比例函数部分;•课件:准备好反比例函数的图像,以及维基百科中的反比例函数定义和性质的介绍。
【教学过程】第一步:引入反比例函数老师可以上黑板或者课件上展示“y = k/x”,解释这个式子称为反比例函数,其中k为比例系数,x和y都是变量。
老师可以在黑板上画出反比例函数的图像,解释它是一个相对于y轴对称的双曲线。
第二步:反比例函数的性质介绍接着,老师可以在课件上展示反比例函数的性质,其中常见的有: - 零点:当x=0时,y为无穷大或者无穷小; - 对称轴:对y轴对称; - 单调性:在x>0或者x<0时,y的单调性与k的正负性有关; - 渐近线:有y=0(x轴)和x=0(y轴)两条渐近线。
老师要带领着学生仔细体会这些性质,可以引导学生举一些实际例子进行理解。
第三步:反比例函数的图像分析老师可以引导学生观察反比例函数的图像,让他们找出一些规律,例如: - k>0时,反比例函数的图像位于第一象限和第三象限; - k<0时,反比例函数的图像位于第二象限和第四象限; - 当x的取值趋近于零时,y的绝对值趋近于无穷大。
此外,老师可以引导学生通过自己画图的方式,更加深入地理解反比例函数的变化规律。
第四步:反比例函数的实际应用题目最后,老师可以通过举一些实际应用题目,让学生掌握如何解决反比例函数的实际应用问题。
例如: - 计算两车追赶问题中,两车行驶距离与时间的关系就是一个反比例函数; - 计算变形问题中,计算两片相似的叶子所需要的扇形大小就是反比例函数。
人教版数学九年级下册教学设计26.1.1《反比例函数》

人教版数学九年级下册教学设计26.1.1《反比例函数》一. 教材分析人教版数学九年级下册第26.1.1节《反比例函数》是本册教材的重要内容之一,主要介绍了反比例函数的定义、性质及图象。
本节内容是在学生已经掌握了函数概念、正比例函数的基础上进行的,为后续学习比例函数、二次函数等奠定了基础。
二. 学情分析九年级的学生已经具备了一定的函数知识,对正比例函数有一定的了解。
但学生在学习过程中,可能对反比例函数的定义和性质理解不够深入,对反比例函数图象的认识和应用能力有待提高。
因此,在教学过程中,要注重引导学生从实际问题中抽象出反比例函数模型,培养学生运用函数知识解决实际问题的能力。
三. 教学目标1.知识与技能:使学生理解反比例函数的定义,掌握反比例函数的性质,会画反比例函数的图象。
2.过程与方法:通过观察、分析、归纳等方法,引导学生发现反比例函数的规律,培养学生的抽象思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神,使学生感受到数学在生活中的应用。
四. 教学重难点1.反比例函数的定义及其性质。
2.反比例函数图象的特点及应用。
五. 教学方法1.情境教学法:通过生活实例引入反比例函数,使学生感受到数学与生活的紧密联系。
2.启发式教学法:引导学生从实际问题中抽象出反比例函数模型,培养学生运用函数知识解决实际问题的能力。
3.小组合作学习:让学生在小组内讨论、探究,培养学生的团队协作精神。
六. 教学准备1.教学课件:制作反比例函数的课件,包括反比例函数的定义、性质、图象等内容。
2.教学素材:准备一些实际问题,用于引导学生从实际问题中抽象出反比例函数模型。
3.黑板、粉笔:用于板书反比例函数的重要性质和图象特点。
七. 教学过程1.导入(5分钟)利用生活实例引入反比例函数,如已知正方形的面积为25平方厘米,求其边长。
引导学生从实际问题中抽象出反比例函数模型。
2.呈现(10分钟)呈现反比例函数的定义、性质及图象,让学生初步感知反比例函数的特点。
九年级数学下册-26.1.1反比例函数 教案

26.1.1反比例函数教案
一、【教材分析】
二、【教学流程】
三、【板书设计】
四、【教后反思】
在教学反比例的定义时,我首先通过复习,巩固学生对正比例函数的理解.然后安排从中发现不成正比例,从而引入学习内容和学习目标。
这通过复习、比较,不成正比例,那么它成不成比例呢?又会成什么比例?通过设疑不仅激发了学生学习数学的兴趣,还激起了学生自主参与的积极性和主动性,为自主探究新知创造了条件并激发了积极的情感态度.
在教学时,我以学生学习的正比例的意义为基础,在学生之间创设了一种自主探究、相互交流、相互合作的关系,让学生主动、自觉地去观察、分析、概括、发现规律,培养了学生的自主探究的能力.
本节教案旨在实行启发式教学,主要以学生的自主探究为主,教师以问题的形式形成主导作用。
重视基础知识与基本技能、过程与方法、情感态度和价值观等课程目标的全面落实,注重数学思想方法的渗透.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k ,再把 x=2 x
k ,因为当 x=2 时 y=6,则有 x
精讲点拨
k .解得:k=12, 2 12 ∴y= . x 12 12 (2)把 x=4 代入 y= ,得 y= =3. x 4
例 2 已知 y 与 x2 成反比例,并且当 x=-2 时,y=2,那么当 x=4 时,y 等于( ) A.-2 B.2 C.
k ,y=kx-1,xy=k 是反比例函数的三种表现形式.其中 k x
是常数,k≠0. 活动 1 小组讨论 例 1 已知 y 是 x 的反比例函数,当 x=2 时,y=6. (1)写出 y 与 x 的函数关系式; (2)求当 x=4 时 y 的值. 分析:因为 y 是 x 的反比例函数,所以设 y= 和 y=6 代入上式就可求出常数 k 的值. 解:(1)设 y= 6=
自学探究
1463 t
(2)某住宅小区要种植一个面积为 1 000 m2 的矩形草坪,草 坪的长 y(单位:m)随宽 x(单位:m)的变化而变化. 解:y=
1000 x
(3)已知北京市的总面积为 1.68×104 平方千米,人均占有的 土地面积 S(单位:平方千米/人)随全市总人口 n(单成反比例,∴y= 代入 y=
k (k≠0).将 x=-2,y=2 x2
k 可求得 k,从而确定该函数表达式. x2 k (k≠0). x2
解:∵y 与 x2 成反比例, ∴y=
当 x=-2 时 y=2,
学习研讨
交流共享
峨山县初中数学集体备课教学设计
k .解得:k=8, (2) 2
课时
1.理解并掌握反比例函数的概念. 2.能判断一个给定的函数是否为反比例函数, 并会用待定系数法求函数解析式. 3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想. 1.理解并掌握反比例函数的概念. 2.能判断一个给定的函数是否为反比例函数, 并会用待定系数法求函数解析式. 1.理解并掌握反比例函数的概念. 2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式
引课明标
平均速度 v 与运行时间 t 成反比例函数,从函数角度来看,平均 速度 v 随运行时间 t 的变化而变化的规律,可表示为 v=s/t(s 为 常数)这类函数就是本章要研究的反比例函数. 自学指导:阅读课本 P2-3,完成下列问题. 知识探究 1.小学里我们知道:如果两个变量 x、y 满足 xy=k(k 为常数, k≠0),那么 x、y 就成为反比例关系.例如,速度 v、时间 t 与路 程 s 之间满足 vt=s,如果路程 s 一定,那么速度 v 与时间 t 就成 反比例关系. 2.一般地,在某一变化过程有两个变量 x 和 y,如果对于变 量 x 的每一个值,变量 y 都有唯一的值与它对应,我们就称 y 是 x 的函数.其中,x 是自变量,y 是因变量. 3.下列问题中,变量间的对应关系可用怎样的函数式表示? 这些函数有什么共同特点? (1)京沪线铁路全程为 1 463 km,某次列车的平均速度 v(单 位:km/h)随此次列车的全程运行时间 t(单位:h)的变化而变化. 解:v=
峨山县初中数学集体备课教学设计 主备教师 课题 教学 目标 教学重点 教学难点 教法学法 教学环节 教 学 过 程
同一条铁路线上,由于不同车次列车运行时间有长有短,所以它 们的平均速度有快又慢,由 s=vt 可知,在路程 s 一定的前提下, 二次备课 赵明珠
九
年级
下
册
年
月
日
1节
26.1.1
反比例函数
学习研讨
交流共享
峨山县初中数学集体备课教学设计
而变化. 解:S=
1.68 104 n
k 的形式,其中 k 是常数,k≠0. x
(4)上面三个函数关系式形式上有什么共同点? 解:都是 y= 4.形如 y=
k (k 是常数, k≠0)的函数称为反比例函数, 其中 x x
是自变量,y 是因变量.自变量 x 的取值范围是不等于 0 的一切实 数. 5.y=
1 中,自变量 x 的取值范围是( ) x
达标训练
A.x≠0 B.x>0 C.x<0 D.一切实数 4.下列函数表达式中,y 不是 x 的反比例函数的是( ) A.y=
3 x
B.y=
x 3
2
C.y=
1 2x
D.xy=
1 2
5.(安顺中考)若 y=(a+1) x a
2 是反比例函数,则
a 的取值为( )
8 . x2 8 1 得:y= . 2 x 2
∴2=
∴y=
把 x=4 代入 y=
所以选择 C. 活动 2 跟踪训练 1.一个矩形的面积为 20 cm2,相邻的两条边长分别为 x cm、 y cm,那么变量 y 是变量 x 的函数吗?是反比例函数吗? 2.某村有耕地 346.2 公顷,人口数量 n 逐年发生变化,那么 该村人均占有耕地面积 m(公顷/人)是全村人口数 n 的函数吗?是 反比例函数吗? 3.当 m 时,y=3xm-7 是反比例函数. 4.如果 y 是 z 的反比例函数,z 是 x 的反比例函数,那么 y 与 x 具有怎样的函数关系? 知识点 1 在实际问题中建立反比例函数模型 1.下列关系中,两个量之间为反比例函数关系的是( ) A.正方形的面积 S 与边长 a 的关系 B.正方形的周长 L 与边长 a 的关系 C.长方形的长为 a,宽为 20,其面积 S 与 a 的关系 D.长方形的面积为 40,长为 a,宽为 b,a 与 b 的关系 2.当某三角形一条边的长度为 3 时,这条边上的高为 4,若这个三角形的面积 不变,则这条边的长度 y 关于这条边上的高 x 的函数关系式为_____. 知识点 2 反比例函数的定义 3.在函数 y=
A.1 B.-1 C.±1 D.全体实数 知识点 3 确定反比例函数的解析式 6.已知 y 是 x 的反比例函数,并且当 x=-3 时,y=-2,则 y 与 x 的函数关系式 为_____. 7、(鄂州中考改编)点 A 为反比例函数 y=
k (k≠0)上一点,B 为 x 轴上一点, x
D.± 3
且△AOB 为等边三角形,△AOB 的边长为 2,则 k 的值为( ) A.2 3 B.±2 3 C. 3