第八章三元相图资料

合集下载

第8章(8~9) 三元相图(第二版)

第8章(8~9) 三元相图(第二版)

三元共晶(析)反应 三元共晶(
L( δ )→α+β+γ
(三)三元相图分析与判断 -A
根据三相区和四相平衡面的相邻关系可以判定四相平衡面的反应性质, 1.根据三相区和四相平衡面的相邻关系可以判定四相平衡面的反应性质,四 相平面与三相区相邻关系有三种类型: 相平面与三相区相邻关系有三种类型: 在四相平衡面之上邻接两个三相区,在其之下邻接两个三相区, (2) 在四相平衡面之上邻接两个三相区 ,在其之下邻接两个三相区 , 这 样的四相平面为四边形, 样的四相平面为四边形 , 这种四相平反应属于包共晶 ( 析 ) 反应 , 即 : L+α→β+γ或δ+α→β+γ。四边形的四个顶点为四个平衡相的成分,反 四边形的四个顶点为四个平衡相的成分, 应相和反应生成相分别位于四边形对角线的两个端点。 应相和反应生成相分别位于四边形对角线的两个端点。
(三)三元相图分析与判断 -A
根据三相区和四相平衡面的相邻关系可以判定四相平衡面的反应性质, 1 . 根据三相区和四相平衡面的相邻关系可以判定四相平衡面的反应性质, 四相平面与三相区相邻关系有三种类型: 四相平面与三相区相邻关系有三种类型: 在四相平衡面之上相邻接三个三相区, ( 1 ) 在四相平衡面之上相邻接三个三相区,在四相平面之下邻接一个三 相区。这样的四相平面为一三角形,三角形三个顶点连接三个固相区, 相区。这样的四相平面为一三角形,三角形三个顶点连接三个固相区,液 相成分点位于三角形之中 。 这种四相平衡反应为三元共晶反应 , 即 : L→α+β+γ;对于三元共析反应为δ→α+β+γ。
三元共晶( 三元共晶(析)反应
L( δ )→α+β+γ
(三)三元相图分析与判断 -B

第八章三元相图

第八章三元相图

第八章三元相图第八章三元相图三元合金系(ternery system)中含有三个组元,因此三元相图是表示在恒压下以温度变量为纵轴,两个成分变量为横轴的三维空间图形。

由一系列空间区面及平面将三元图相分隔成许多相区。

第一节三元相图的基础知识三元相图的基本特点:(1) 完整的三元相图是三维的立体模型;(2) 三元系中可以发生四相平衡转变。

四相平衡区是恒温水平面;(3) 三元相图中有单相区、两相区、三相区和四相区。

除四相平衡区外,一、二、三相平衡区均占有一定空间,是变温转变。

一、三元相图成分表示方法三元相图成分通常用浓度(或成分)三角形(concentration/composition triangle)表示。

常用的成分三角形有等边成分三角形、等腰成分三角形或直角成分三角形。

(一) 等边成分三角形-图形1. 等边成分三角形图形在等边成分三角形中,三角形的三个顶点分别代表三个组元A、B、C,三角形的三个边的长度定为0~100%,分别表示三个二元系(A—B系、B—C系、C—A系)的成分坐标,则三角形内任一点都代表三元系的某一成分。

其成分确定方法如下:由浓度三角形所给定点S,分别向A、B、C顶点所对应的边BC、CA、AB 作平行线(sa、sb、sc),相交于三边的c、a、b点,则A、B、C组元的浓度为:WA = sc = Ca WB = sa= AbWC = sb= Bc注:sa+ sb+ sc = 1 Ca + Ab+ Bc= 12. 等边成分三角形中特殊线(1) 平行等边成分三角形某一边的直线。

凡成分点位于该线上的各三元相,它们所含与此线对应顶角代表的组元的质量分数(浓度)均相等。

(2) 通过等边成分三角形某一顶点的直线位于该线上的所有三元系,所含另外两顶点所代表的的组元质量分数(浓度)比值为恒定值。

(二) 成分的其它表示法1.等腰成分三角形当三元系中某一组元B含量较少,而另外两组元(A、C)含量较多,合金点成分点必然落在先靠近成分三角形的某一边(如AC)附近的狭长地带内。

最新第8章-三元相图-笔记及课后习题详解(已整理-袁圆-.8.7)

最新第8章-三元相图-笔记及课后习题详解(已整理-袁圆-.8.7)

第8章三元相图8.1 复习笔记一、三元相图的基础三元相图的基本特点:完整的三元相图是三维的立体模型;三元系中的最大平衡相数为四。

三元相图中的四相平衡区是恒温水平面;三元系中三相平衡时存在一个自由度,所以三相平衡转变是变温过程,反应在相图上,三相平衡区必将占有一定空间。

1.三元相图成分表示方法(1)等边成分三角形图8-1 用等边成分三角形表示三元合金的成分三角形内的任一点S都代表三元系的某一成分点。

(2)等边成分三角形中的特殊线①等含量规则:平行于三角形任一边的直线上所有合金中有一组元含量相同,此组元为所对顶角上的元素。

②等比例规则:通过三角形定点的任何一直线上的所有合金,其直线两边的组元含量之比为定值。

③背向规则:从任一组元合金中不断取出某一组元,那么合金浓度三角形位置将沿背离此元素的方向发展,这样满足此元素含量不断减少,而其他元素含量的比例不变。

④直线定律:在一确定的温度下,当某三元合金处于两相平衡时,合金的成分点和两平衡相的成分点必定位于成分三角形中的同一条直线上。

(3)成分的其他表示方法:①等腰成分三角形:两组元多,一组元少。

②直角成分坐标:一组元多,两组元少。

③局部图形表示法:一定成分范围内的合金。

2.三元相图的空间模型图8-2 三元匀晶相图及合金的凝固(a)相图(b)冷却曲线3.三元相图的截面图和投影图(1)等温截面定义:等温截面图又称水平截面图,它是以某一恒定温度所作的水平面与三元相图立体模型相截的图形在成分三角形上的投影。

作用:①表示在某温度下三元系中各种合金所存在的相态;②表示平衡相的成分,并可以应用杠杆定律计算平衡相的相对含量。

图8-3 三元合金相图的水平截面图(2)垂直截面定义:固定一个成分变量并保留温度变量的截面,必定与浓度三角形垂直,所以称为垂直截面,或称为变温截面。

常用的垂直截面有两种:①通过浓度三角形的顶角,使其他两组元的含量比固定不变;②固定一个组元的成分,其他两组元的成分可相对变动。

材料科学基础第八章 三元相图

材料科学基础第八章 三元相图
材料科学基础 第八章 三元相图
1
本章章节结构 8.1 三元相图基础 8.2 固态互不溶解的三元共晶相图 8.3 固态有限互溶的三元共晶相图
2
内容预报
• 三元相图基础 • 三元相图有很多面
水平、垂直截面图 • 由平面回溯立体
3
8.1 三元相图基础
8.1.1 成分表示方法 1.成分三角形 2.成分三角形中的特殊线 3.杠杆定律及重心定律
49
典型合金的平衡结晶过程-3
3. 位于三相平衡共晶转变终了面及双析溶解度曲面 投影内的合金(图8.19中Ⅴ区)。 结晶过程:L→L+α初→α初+(α+β)共→α初+ (α+β)共+γⅡ
50
典型合金的平衡结晶过程-4
4. 位于三相平衡共晶转变终了面但不在双析溶解度 曲面投影内的合金Ⅳ(图8.19中)。 结晶过程:L→L+α初→α初+(α+β)共 可用同 样的方法分析其它合金的结晶过程,图8.19中所 标注的六个区域。
• 在垂直截面图中发生两相共晶转变的三相区为尖 点向上的曲边三角形。
43
投影图
44
45
相区接触法则
• 空间相图、水平截面、垂直截面相图。 • 相邻相区的相数差1; • 立体相图中在面两侧判断,截面图中在线两侧判
断; • 除截到的零变量点外,所有的点均有四条相界线
相交。
46
8.1 三元相图基础 8.2 固态互不溶解的三元共晶相图
B% 50
10
20
30
40 C%
50
40 30 20
AxC4x-B
60
70 80
10
90
A
90 80 70

第八章三元相图

第八章三元相图

●结晶速度足够慢,液、固 相均能充分扩散,固相成分 由S1→ S2 →S3 →S4变化, 液相成分由L1 →L2 →L3 →L4 ,直至液相耗尽。 最后得到与合金组成完 全相同、成分均匀的三元固 溶体。
4. 变温截面图 (垂直截面) ●三元系变温截面截取三 维相图中液相面及固相 面所得的两条曲线并非 固相及液相的成分变化 迹线,它们之间不存在 相平衡关系,因此,只 可以根据这些线判断合 金凝固的临界温度点, 而不能根据这些线确定 两平衡相的成分及相对 量(即,不能应用杠杆 定律)。
2. 等温截面图(水平截面) ●在等温截面上, l1l2为等温截面与液相面的交线,s1s2为等温截 面与固相面的交线,它们称为共轭曲线。 ●在等温截面上,根据直线法则,合金的成分点一定位于两平 衡相L相和α相对应成分点的共轭连线上。 ●通过给定的合金成分点, 只能有唯一但不定的共 轭连线。根据相率,一 个平衡相的成分可以独 立改变,而另一平衡相 的成分必定随之变化。 因此,在一定温度下, 欲确定两个平衡相的成 分,必须先用实验方法 确定其中一相的成分, 然后利用直线法则来确 定另一相的相应成分。
8.1.1 三元相图成分表示方法 一般用成分三角形或浓度三角形表示。三元系的成分常用的 成分三角形是等边三角形,另外,也采用等腰三角形和直角三角 形) 1. 等边成分三角形 ●三角形的三个顶点A、B、 C分别表示三个组元; ●三角形的三条边分别表示 3 个二元系的成分坐标; ●三角形内的任一点表示三 元系的某一成分。
练习
C2
g+e
C1+C2
C1
C2+e
a+ g a+ g
●液相面投影图特点
三 进
两进一出
一进两出
●截面:面→线;线→点 垂直截面

第八章 三元相图

第八章   三元相图
共晶转变线,这就是3个液相面两两相交所形成的3条熔化沟线e1E, e2E和e3E。当液相成分沿这3条曲线变化时,分别发生共晶转变:
e3 e1
LA+ C
e2
LA+ B
E
L B +C


图中a,b,c分别是组元A,B,C的熔点。在共 晶合金中,一个组元的熔点会由于其他组 元的加入而降低,因此在三元相图中形成 了三个向下汇聚的液相面。其中, ae1Ee3a是组元 A的初始结晶面; be1Ee2b是组元 B的初始结晶面; ce2Ee3c是组元C的初始结晶面
四、三元相图中的杠杆定律及重心定律
3.重心定律
当一个相完全分解成三个新相,或是一个相在分 解成两个新相的过程时,研究它们之间的成分和 相对量的关系,则须用重心定律。 根据相律,三元系处于三相平衡时,自由度为1。 在给定温度下这三个平衡相的成分应为确定值。 合金成分点应位于三个平衡相的成分点所连成的 三角形内。
第八章 三元相图
三元合金系(ternery system)中含有三个组元,因此 三元相图是表示在恒压下以温度变量为纵轴,两个成分变量 为横轴的三维空间图形。由一系列空间区面及平面将三元图 相分隔成许多相区。
8.1 三元相图的基础知识
三元相图的基本特点: (1) 完整的三元相图是三维的立体模型; (2) 三元系中可以发生四相平衡转变。四相 平衡区是恒温水平面; (3) 三元相图中有单相区、两相区、三相区 和四相区。除四相平衡区外,一、二、三相平 衡区均占有一定空间,是变温转变。
二、三元相图的空间模型
三、三元相图的截面图 投影图

三元相图各类图形有等温(水平)截面图、垂直 (变温)截面图、投影图。
1. 等温水平截面图

第8章三元系相图

第8章三元系相图

的室温组织是什么?
26
解:(1)O合金的室温组织为: A初+(A+B)共+(A+B+C)共。
oa 80 - 60 100 % 50% Aa 100 - 60 Ao 100 - 80 L 100 % 50% Aa 100 - 60 Ao Ea 40 - 20 (A B) 50% 25% Aa Em 40 - 0 Ao am 20 - 0 (A B C) 50% 25% Aa Em 40 - 0
57
58
例5、下图为某三元系相图的液相面投影图,写出此三元系发 生的四相平衡反应的名称及反应式。
答:有4个四相平衡反应如下 共晶反应:L 包晶反应:L 包晶反应:L 包共晶反应: L
59
例6、某三元合金的四相平衡平面如图所示。 (1)写出该四相平衡反应的名称和反应式。 (2)写出O点成分合金在稍高于四相平衡平面时的相组成物,并 计算各相组成物的相对量。

在一定温度下三组 元材料两相平衡时, 材料的成分点和其 两个平衡相的成分 点必然位于成分三 角形内的一条直线 上。
11
2、杠杆定律

三元系中当给定材料在一定温度下处于两相平衡时,则材 料的成分点与两平衡相的成分点位于一条直线上,两相的 相对量符合二元系中的杠杆法则。
12

12和s1s2称为共轭曲线。直线mn称为共轭连线,或称连 接线。 在等温截面上,通过给出的合金成分点,只能有唯一的一 条共轭连线。
④ 单相区的形状可以是各种各样的。
33
34
例4、下图为某三元系在某温度下的水平截面图,改正图中的 错误并说明理由。

第八章 三元相图..

第八章 三元相图..

垂直截面(2)
5、投影图
投影图是相图中各类相界面的交线在浓度三角形上的 投影,也可给出不同温度下液相面和固相面等温截面的投 影。利用投影图可方便的判断三元合金的各类反应并分析 其结晶过程。 由于面上无点和线,所以投影无意义。但可给出不同 等温截面固、液相线的投影,见图 三元合金相图投影图。 可确定不同成分合金的结晶开始温度和终了温度范围。实 线为液相线,虚线为固相线。
α、L成分确定后,可用杠杆定律求出相对量:
wα = ×100% wL = ×100%
通过分析不同T的等温截面图,可了解合金状态随T改变 的情况,如:何时开始凝固,何时凝固完毕等。表示合金 在结晶过程中发生的变化,它的外形与二元相图相似,但 两者有原则区别。
4、变温截面(垂直截面)
垂直截面是沿一组成分特性线(平行于一边的成分线或 过一顶点的成分线)垂直浓度三角形所截取的截面。根据垂 直截面可分析处于该成分特性线的一组三元合金,在不同温 度下相的状态及其变化的情况,即可分析在结晶过程中发生 的反应及反应前后相的状态。
图13 组元在固态完全不固溶 的三元共晶相图
线:E1E、E2E、E3E为二元共晶线,此线上发生二元共晶反应: E1E:L → A+B E2E:L → B+C E3E:L → A+C 面:液相面:TAE1EE3TA:L TBE1EE2TB:L → → A B
TCE3EE2TC:L

C
固相面:过E点的平面△A1B1C1,也是三元共晶面。 液固相面之间还有6个二元共晶曲面: 后: E1EB1B3E1 E1EA1A3E1 左:E3EA1A2E3 E3EC1C2E3 右:E2EB1B2E2 E2EC1C3E2
B1
A
B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
C
90
10 a
80
20
70
30
60
40
50
50
40
60
30
M
70
c 20
80
10
E
D
90
A 90 80 70 60 50 40 30 20 10
B
a
浓度三角形
C
M
A
b
c
B a
双线法确定三元组成
8
2. 浓度确定
1)确定O点的成分
B
1)过O作A角对边的平行线
2)求平行线与A坐标的截距
得组元A的含量
40
30
20
10
10 20 30 40 C% 50 60
70 80 90
A
90 80 70 60 50 40
30 20 10
C
14
← A%
课堂练习
B
3. 标出
90
50%A+20%B+30%C 80
的合金
70
60 B% 50
40
30
20
10
10 20 30 40 C% 50 60
70 80 90
A
90 80 70 60 50 40
B%
3)同理求组元B、C的含量
O
A
← A%
C%
C
9
课堂练习
B
1. 确定合金I、II、
90
III、IV的成分
80
I 点: A%=60% B%=30% C%=10%
70
60 B% 50
40 30 I
20
10
10 20 30 40 C% 50 60
70 80 90
A
90 80 70 60 50 40
30 20 10
← A%
2. 浓度三角形具有如下一些特性
B
M G
A
N
C18ຫໍສະໝຸດ (1)等含量规则——平行于三角形任一边的直线上所有合
金中有一组元含量相同,该直线为直线所对顶角上的元素, 如下图中的MN线上,B%之值恒定。(根据成分的确定方法)
(2)等比例规则——通过三角形顶点的任何一直线上的所
有合金,其直线两边的组元含量之比为定值,如图中CG线上 的任何合金,A%与B%的比值为定值,即A%/B%=BG/GA。 证明:在CG上任何一合金o,如下图所示, 过o点作MN//AC,bp//AB, aQ//BC。
A 90 80 70 60 50 40 30 20 10 16 C ← A%
课堂练习
B
4. 绘出A =40%的
90
合金
80
5. 绘出C =30%的
70
合金
60
B% 50
40
30
20
10
10 20 30 40 C% 50 60
70 80 90
A
90 80 70 60 50 40
30 20 10
C
17
90
III、IV的成分
80
III 点: A%=20% B%=20% C%=60%
70 60 B% 50 40
30
20
10
10 20 30 40 C% 50 60
70
III
80
90
A
90 80 70 60 50 40
30 20 10
C
12
← A%
课堂练习
B
1. 确定合金I、II、
90
III、IV的成分
80
IV 点: A%=40% B%=0% C%=60%
70 60 B% 50 40
10 20 30 40 C% 50 60
30 20
70 80
10
90
IV
A
90 80 70 60 50 40
30 20 10
C
13
← A%
课堂练习
B
2. 标出
90
75%A+10%B+15%C 80
的合金
70
60 B% 50
19
O合金成分: A%/B%=Ca/AM (定义)
=ob/op
B
Q G M
o
=BG/GAA.
p
b N C
a
20
21
3)推论:位于三角形高BH上任一点的合金,其两边 组元的含量相等。
4)背向规则——从任一三元合金M中不断取出某
一组元B,那么合金浓度三角形位置将沿BM的延长
30 20 10
C
15
← A%
2. 浓度三角形中具有
特定意义的直线
90
II点:20%A- 50%B- 30%C III 点:20%A- 20%B- 60%C IV 点:40%A- 0%B- 60%C
80 70
60
B% 50
B
10
20
30
40
II
C% 50
40
60
30 20
70
III
80
10
90
IV
6
例如,三角形ABC内S点所代表的成分可通过下述方法求出: 设等边三角形各边长为100%,AB,BC,CA顺序分别代表B,C,A三组元 的含量。由 S点出发,分别向A,B,C顶角对应边BC,CA,AB引平行线, 相交于三边的c,a,b点。根据 等边三角形的性质,可得 Sa十Sb十Sc=AB=BC=CA=100%, 其中,Sc=Ca=ωA/(%),Sa=Ab=ωB /(%), Sb=Bc= ωC /(%)。 于是,Ca,Ab,Bc线段分别代 表S相中 三组元A,B,C的各自质量分数。 反之,如已知3个组元质量分数时, 也可求出S点 在成分三角形中的位置。 确定合金某组元(如B)成分的方法: 通过合金成分点作B组元对边的平行线 与另两边中任一边相交于(如 b点),则Ab长度就是B组元的成分。
顶点:单元系统或纯组分; 边: 二元系统; 内部:三元系统
应用:1、已知组成点确定各物质的含量; 2、已知含量确定其组成点的物质。
5
8.1.1 三元相图成分表示方法
1. 等边成分三角形
图8.1为等边三角形表示 法,三角形的三个顶点A, B,C分别表示3个组元, 三角形的边AB,BC,CA 分别表示3个二元系的成 分坐标,则三角形内的任 一点都代表三元系的某一 成分。
2
三元凝聚系统: f = c - p +1=4 - p ,
当 p=1 时, fmax=3 ( 即组成x1、x2和温度的变化。)
相图
三坐标的立体图 平面投影图
3
c
M/

b

E2


a


E3 D/
E1

E/
C
M
e2
B
F
C
B
E
e1
e3
DA
4
A
三元系统组成的表示方法
在三元系统中用等边三角形来表示组成。
C
10
← A%
课堂练习
B
1. 确定合金I、II、
90
III、IV的成分
80
II点: A%=20% B%=50% C%=30%
70 60 B% 50 40
30
20
10
10
20
30
40
II
C% 50
60
70 80 90
A
90 80 70 60 50 40
30 20 10
C
11
← A%
课堂练习
B
1. 确定合金I、II、
第八章
三元相图
1
8.1 三元相图基础
三元相图的基本特点为: (1) 完整的三元相图是三维的立体模型。 (2) 二元系中可以发生3相平衡转变。由相律可以确定二元 系中的最大平衡相数为3,而 三元系中的最大平衡相数为4。 三元相图中的四相平衡区是恒温水平面。 (3) 根据相律得知, 三元系三相平衡时存在一个自由度, 所以三相平衡转变是变温过程,反映在相图上,三相平衡 区必将占有一定空间,不再是二元相图中的水平线。
相关文档
最新文档