新人教版九年级综合复习数学试题
人教版九年级数学(上下全册)综合测试卷(附带参考答案)

人教版九年级数学(上下全册)综合测试卷(附带参考答案)(考试时长:100分钟;总分:120分)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.方程2269x x -=的二次项系数、一次项系数、常数项分别为( ) A .6,2,9 B .2,-6,9 C .-2,-6,9 D .2,-6,-92.下列方程中,属于一元二次方程的是( )A .233x x =-;B .5(1)(51)2x x x x +=-+;C .()2333y x -=;D .21210x x -+=.3.一元二次方程2410x x --=的根的情况是( )A .没有实数根B .只有一个实根C .有两个相等的实数D .有两个不相等的实数根4.把二次函数2243y x x =--+用配方法化成()2y a x h k =-+的形式( )A .()2215y x =-++B .()2215y x =--+C .()2215y x =++D .()2215y x =-+5.下图是由几个相同的小正方体搭成的一个几何体,它的主视图是( )A .B .C .D .6.关于x 的一元二次方程x 2+kx ﹣2=0(k 为实数)根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .不能确定7.若a ,b 为一元二次方程2710x x --=的两个实数根,则33842a ab b a ++-值是()A .-52B .-46C .60D .668.如图所示,在坐标系中放置一菱形OABC ,已知60ABC ∠=︒,OA=1,先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60︒,连续翻转2020次,点B 的落点一次为123,,B B B ……则2020B 的坐标为( )A .(1346,3)B .(1346,0)C .(1346,23)D .(1347,3)9.将一副三角板如下图摆放在一起,连结AD ,则∠ADB 的正切值为( )A .31-B .21-C .312+D .312- 10.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A 滑行至B ,已知AB=500米,则这名滑雪运动员的高度下降了__米.(sin34°≈0.56,cos34°≈0.83,tan34°≈0.67) ( )A .415B .280C .335D .25011.二次函数y =x 2+4x −5的图象的对称轴为( )A .x =−4B .x =4C .x =−2D .x =212.如图,在平面直角坐标系中,O 为原点35OA OB ==,点C 为平面内一动点32BC =,连接AC ,点M 是线段AC 上的一点,且满足:1:2CM MA =.当线段OM 取最大值时,点M 的坐标是( )A .36,55⎛⎫ ⎪⎝⎭B .365,555⎛⎫ ⎪⎝⎭C .612,55⎛⎫ ⎪⎝⎭D .6125,555⎛⎫ ⎪⎝⎭ 二、填空题 13.芜湖宣州机场(Wuhu Xuanzhou Airport ,IATA :WHA ,ICAO :ZSWA ),简称“芜宣机场”,位于中国安徽省芜湖市湾沚区湾沚镇和宣城市宣州区养贤乡,为4C 级国内支线机场、芜湖市与宣城市共建共用机场,如图是芜宣机场部分出港航班信息表,从表中随机选择一个航班,所选航班飞行时长超过2小时的概率为 .航程 航班号 起飞时间 到达时间 飞行时长芜宣-贵阳 C54501 9:15 11:552h40m 芜宣-南宁 G54701 9:15 11:55 2h40m 芜宣-沈阳 G54517 9:20 11:502h30m 芜宣-济南 JD5339 10:15 11:451h30m 芜宣-重庆 3U8072 12:35 14:552h20m 芜宣-北京 KN5870 14:00 16:152h15m 芜宣-长沙 G52817 14:20 16:001h40 m 芜宣-青岛 DZ6253 16:30 18:201h50m 芜宣-三亚 TD5340 17:5521:10 3h15m 14.抛物线()2318y x =-+的对称轴是: .15.如图,在O 中,AB 切O 于点A ,连接OB 交O 于点C ,点D 在O 上,连接CD 、AD ,若50B ∠=︒,则D ∠为 .16.直角三角形一条直角边和斜边的长分别是一元二次方程的两个实数根,该三角形的面积为 . 17.写出一个开口向下、且经过点(-1,2)的二次函数的表达式 ;18.如图,将ABC 绕点A 顺时针旋转85︒,得到ADE ,若点E 恰好在CB 的延长线上,则BED ∠= .19.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外其他都相同,分别从两袋里任摸一球,同时摸到红球的概率是 .20.如图,点A ,B 的坐标分别为()()4004A B ,,,,C 为坐标平面内一点,2BC =,点M 为线段AC 的中点,连接OM OM ,的最大值为 .21.如图,在Rt△ABC 中,∠ACB =90°,AB =5,BC =3,将△ABC 绕点B 顺时针旋转得到△A′B C′,其中点A ,C 的对应点分别为点,A C ''连接,AA CC '',直线CC '交AA '于点D ,点E 为AC 的中点,连接DE .则DE 的最小值为22.如图,在平面直角坐标系中,ACE ∆是以菱形ABCD 的对角线AC 为边的等边三角形23AC =点C 与点E 关于x 轴对称,则过点C 的反比例函数的表达式是 .23.若粮仓顶部是圆锥形,且这个圆锥的高为2m ,母线长为2.5m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是 m 2.(结果保留π)24.如图,在矩形ABCD 中,4,6,AB BC E ==是AB 的中点,F 是BC 边上一动点,将BEF △沿着EF 翻折,使得点B 落在点B '处,矩形内有一动点,P 连接,,,PB PC PD '则PB PC PD '++的最小值为 .(21题图) (22题图) (24题图)三、解答题25.计算:(﹣2)3+16﹣2sin30°+(2016﹣π)0.26.(1)计算:112cos30|32|()44-︒+---.(2)如图是一个几何体的三视图(单位:cm ).①这个几何体的名称是 ;②根据图上的数据计算这个几何体的表面积是 (结果保留π)27.水务部门为加强防汛工作,决定对马边河上某电站大坝进行加固.原大坝的横断面是梯形ABCD ,如图所示,已知迎水面AB 的长为20米,∠B =60°,背水面DC 的长度为203米,加固后大坝的横断面为梯形ABED.若CE的长为5米.(1)已知需加固的大坝长为100米,求需要填方多少立方米;(2)求新大坝背水面DE的坡度.(计算结果保留根号).28.某校举行了“防溺水”知识竞赛.八年级两个班各选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).班级八(1)班八(2)班最高分100 99众数a98中位数96 b平均数c94.8(1)统计表中,=a_______,b=_________,c=_______;(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.29.某口罩生产厂生产的口罩1月份平均日产量为18000个,1月底市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产量,3月份平均日产量达到21780个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?30.阳阳超市以每件10元的价格购进了一批玩具,定价为20元时,平均每天可售出80个.经调查发现,玩具的单价每降1元,每天可多售出40个;玩具的单价每涨1元,每天要少售出5个.如何定价才能使每天的利润最大?求出此时的最大利润.31.(1)一个矩形的长比宽大2cm,面积是168cm?.求该矩形的长和宽.(2)如图,两个圆都以点O为圆心.求证:AC BD.32.国庆与中秋双节期间,小林一家计划在焦作市内以下知名景区选择一部分去游玩.5A级景区四处:a.云台山景区,b.青天河景区,c.神农山景区;d.峰林峡景区;4A级景区六处:e.影视城景区,f.陈家沟景区,g.嘉应观景区,h.圆融寺景区,i.老家莫沟景区,j.大沙河公园;(1)若小林一家在以上这些景区随机选择一处,则选到5A级景区的概率是.(2)若小林一家选择了“a.云台山景区”,此外,他们决定再从b,c,d,e四处景区中任选两处景区去游玩,用画树状图或列表的方法求恰好选到b,e两处景区的概率.33.综合与探究问题情境:某商店购进一种冬季取暖的“小太阳”取暖器,每台进价为40元,这种取暖器的销售价为每台52元时,每周可售出180台.探究发现:①销售定价每增加1元时,每周的销售量将减少10台;②销售定价每降低1元时,每周的销售量将增多10台.问题解决:若商店准备把这种取暖器销售价定为每台x元,每周销售获利为y元.(1)当54x 时,这周的“小太阳”取暖器的销售量为______台,每周销售获利y为______元.(2)求y与x的函数关系式(不必写出x的取值范围),并求出销售价定为多少时,这周销售“小太阳”取暖器获利最大,最大利润是多少?(3)若该商店在某周销售这种“小太阳”取暖器获利2000元,求x的值.答案:1.D 2.A 3.D 4.A 5.C 6.C 7.C 8.B 9.D 10.B 11.C 12.D 13.2314.直线1x=15.20︒16.24.17.23y x=-+(答案不唯一).18.95︒19.92520.122+/221+21.122.23yx=23.154π.24.423+25.-4.26.(1)4-;(2)①圆锥;②几何体的表面积为220cmπ27.(1)需要填方25003立方米;(2)新大坝背水面DE的坡度为237.28.(1)96;96;94.5;(2)3529.(1)口罩日产量的月平均增长率为10% (2)预计4月份平均日产量为23958个30.当定价为16元时,每天的利润最大,最大利润是1440元31.(1)矩形的长为14cm,宽为12cm32.(1)25(2)1633.(1)160,2240;(2)当销售定价为55元时,利润最大,最大为2250元;(3)当x为60或50时,每周获利可达2000元.。
人教版2021-2022学年度上学期九年级数学综合复习题(含答案)

人教部编版2021—2022学年度上学期九年级数学综合复习题(考试时间120分钟. 满分150分)一、选择题(本大题共12小题,每小题4分,共48分)1、下面图案中既是轴对称图形又是中心对称图形的是( )A B C D 2、一元二次方程2x x 20--=的解是( )A.,12x 1x 2==B.,12x 1x 2==-C.,12x 1x 2=-=-D.,12x 1x 2=-=3、如图,∠=O 30,C 为OB 上一点,⊥CD OA 于点D ,且=OC 6,以点D 为圆心,半径为3的圆与OB 的位置关系是( )A.相离B.相交C.相切D.以上三种情况均有可能4、如图,在⊙O 内过点M 最长的弦长为10cm ,最短的弦长为8cm ,则OM 的长为( ) A.5cm B.4cm C.3cm D.2cm5、社会主义核心价值观中:“富强、民主、文明、和谐”是国家层面的价值目标;“自由、平等、公正、法治”是社会层面的价值取向;“爱国、敬业、诚信、友善”是公民个人层面的价值准则.现将12个词语写在12张不透明的卡片上(背面完全一样),背面朝上放在桌面上,从中随机抽取一张,抽到公民个人层面的价值准则的卡片的概率为 ( )A.14B.112C.13D.166、要得到11822---=x x y 的图象,需将抛物线2y 2x =-作如下平移( ) A.先向右平移2个单位长度,再向上平移3个单位长度 B.先向右平移2个单位长度,再向下平移3个单位长度 C.先向左平移2个单位长度,再向上平移3个单位长度 D.先向左平移2个单位长度,再向下平移3个单位长度7、如图,△ABC 的边AC 与⊙O 相交于C D 、两点,且经过圆心O ,边 AB 与⊙O 相切,切点为B .已知A 30∠=,则C ∠的大小是 ( ) A.30°B.45°C.60°D.40°8.已知抛物线=+2y ax bx 和直线a ax y -=同一坐标系内的图象如图,其中可能的是()9、已知实数m ,n 满足0272=+-x x ,则n m +m n 的值为( )A 、452B 、152C 、152 或2D 、452 或210、某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x ,根据题意列方程得( )A .()21681x 108+= B.()21681x 108-= C.()16812x 108-= D.()21681x 108-=11、如图,点E 在正方形ABCD 的边CD 上,将△ADE 绕点A 顺时针旋转90°到△ABF 的位置,连接EF ,过点A 作EF 的垂线,垂足为H ,与BC 交于点G.若BG =3,CG =2,则CE 的长为( )A 、54B 、4C 、92D 、15412、已知二次函数()2y ax bx c 0a 0=++=≠的图象如图所示,分析下列四个结论: ①.abc 0<;②.2b 4ac 0->;③.3a c 0+>;④.()22a c b +<. 其中正确的结论有 ( )A. 1个B. 2个C. 3个D. 4个(3题图)(4题图)(7题图)(11题图)(12题图) 二、填空题(本大题共6小题,每小题4分,共24分) 13、抛物线)2)(1(+--=x x y 的对称轴是 .14、若一个圆锥的底面半径为2cm ,高为42cm ,则圆锥的侧面展开图中圆心角的度数为 . 15、已知平面直角坐标中的两点()(),,A a 3B 12a b -+、关于原点对称,则a = ,b =.16、如图(1),是二次函数c bx ax y ++=2图象的一部分,其对称轴为直线1=x ,若其与x 轴一交点为A (3,0),则由图象可知不等式c bx ax ++2<0的解集是_____________. 17、如图(2),⊙O 的半径OD AB ⊥于点C ,连接AO 并延长交⊙O 于点E ,连接EC .若 AB 4,CD 1==,则EC 的长为 .(1) (2) 18、如图,一段抛物线()()y x x 10x 1=--≤≤记为1m ,它与x 轴的交点为1O,A ,顶点为1P ;将1m 绕点1A 旋转180°得到2m ,交x 轴于点为2A ,顶点为2P ;将2m 绕点2A 旋转180°得到3m ,交x 轴于点为3A ,顶点为3P ;……,如此进行下去,直至到10m ,顶点为10P ,则顶点10P 的坐标为 .三、 解答题(本大题共8小题,共78分) 19、(8分)解方程:0)1(2)1(2=-+-x x xD AO B C D C O A B xy–11ODC O EABxy PPPAAAOOM 密封20、(8分)先化简,再求值:2a 22a 1a 1a 1a 2a 1--⎛⎫÷-- ⎪+++⎝⎭,其中a 是方程2x x 30+-=的解.21、(8分)福州国际马拉松赛事设有“马拉松(42.195公里)”,“半程马拉松(21.0975)”,“迷你马拉松(5公里)”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小智被分配到“马拉松(42.195公里)”项目组的概率为_____________. (2)用树状图或列表法求小智和小慧被分到同一个项目组进行志愿服务的概率. 22、(8分)为满足市场需求,某超市在新年来临前夕,购进一款商品,每盒进价40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,如果每盒售价每提高1元,则每天要少卖出20盒.(1)试求出每天的销售量y (盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P (元)最大?最大利润是多少? 23、(10分)如图,⊙O 是△ABC 的外接圆,AC 为直径,弦BD BA =, BE DC ⊥的延长线于点E . ⑴.求证:1BAD ∠=∠; ⑵.求证:BE 是⊙O 的切线.24、(10分)在Rt △ABC 中,∠ABC=90°,∠BAC=30°,将△ABC 绕点A 顺时针旋转一定的角度α得到△AED ,点B 、C 的对应点分别是E 、D.(1)如图1,当点E 恰好在AC 上时,求∠CDE 的度数;(2)如图2,若α=60°时,点F 是边AC 中点,求证:四边形BFDE 是平行四边形. 25、(12分)观察下列方程及解的特征:⑴.1x 2x +=的解为12x x 1==;⑵.15x x 2+=的解为,121x 2x 2==;⑶.110x x 3+=的解为,121x 3x 3==; ……解答下列问题:⑴.请猜想:方程126x x5+=的解为 ; ⑵.请猜想:关于x 的方程1x x += 的解为(),121x a x a 0a==≠;⑶.下面以解方程126x x 5+=为例,验证⑴中猜想结论的正确性.26、(14分)如图,抛物线c bx x y ++-=2与x 轴相交于A 、B 两点,与y 轴相较于点C ,且点B 与点C 的坐标分别为B (3,0).C (0,3),点M 是抛物线的顶点. (1)求二次函数的关系式;(3分) (2)点P 为线段MB 上一个动点,过点P 作PD ⊥x 轴于点D ,若OD=m ,△PCD 的面积为S ,①求S 与m 的函数关系式,写出自变量m 的取值范围;(4分) ②当S 最大时求点P 的坐标.(4分)(3)在MB 上是否存在点P ,使△PCD 为直角三角形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.(3分)1E B O CA D参考答案一、 选择题D D B C , C D A D , D B D B二、 填空题13、直线21-=x ; 14、120°; 15、-1 , 5 ;16、31<<x -; 17、13;18、 ⎝⎛⎪⎭⎫-41,219三、 解答题 19、31,121==x x()()a a a a a a a a a a a a +=-+•+-=+-÷+-=2221)2(1121)2(1220、解:原式 31,3,0303222=∴=+=-+∴=-+原式即的解,是方程∵a a a a x x a21、22、23、24、25、(1)51,521==x x (2)aa 1+26、(3)。
人教版数学九年级上、下册综合达标测试卷(含答案)

人教版数学九年级上、下册综合达标测试卷(本试卷满分120分)一、选择题(本大题共10小题,每小题3分,共30分)1.在Rt△ABC中,∠C=90°,AC=3,BC=4,则tan A的值为()A.34B.43C.35D.452.(2021·泰州)如图所示几何体的左视图是()A B C D 第2题图3.一个不透明的袋子里装有黄、红两种颜色的小球,摇匀后每次随机从袋中摸出1个小球,记录下颜色后放回袋中.通过多次试验后,发现摸到红球的频率稳定在0.4,则摸到黄球的概率约为()A.0.2 B.0.4 C.0.6 D.0.84.如图,将△OAB绕点O顺时针旋转40°得到△OCD,则∠BOD的度数是()A.33°B.35°C.40°D.45°第4题图第5题图第6题图5.如图,四边形ABCD为⊙O的内接四边形.若四边形OBCD是菱形,则∠BAD的度数为()A.45°B.60°C.72°D.36°6. (2021·朝阳)如图,O是坐标原点,点B在x轴上,在△OAB中,AO=AB=5,OB=6,点A在反比例函数y=kx(k≠0)图象上,则k的值()A.﹣12B.﹣15C.﹣20D.﹣307.若关于x的方程kx2+2x+1=0有实数根,则实数k的取值范围是()A.k≠0B.k≤1C.k≥1D.k≤1且k≠08.(2021·深圳)二次函数y=ax2+bx+1的图象与一次函数y=2ax+b在同一平面直角坐标系中的图象可能是()A B C D9.《几何原本》里有一个图形:在△ABC 中,D ,E 是边AB 上的两点(AD <AE ),且满足AD =BE .过点D ,E 分别作BC 的平行线,过点D 作AC 的平行线,将△ABC 分成如图的5个部分,其面积依次记为S 1,S 2,S 3,S 4,S 5.若S 2=18,S 3=6,则S 4的值为( ) A .9B .18C .27D .54第9题图 第10题图10.如图,已知抛物线y =-x 2+px+q 的对称轴为直线x =-3,过其顶点M 的一条直线y =kx+b 与该抛物线的另一个交点为N (-1,1).若要在坐标轴上找一点P ,使得△PMN 的周长最小,则点P 的坐标为( ) A .(0,2) B .4,03⎛⎫- ⎪⎝⎭ C .(0,2)或4,03⎛⎫- ⎪⎝⎭D .以上都不正确 二、填空题(本大题共6小题,每小题3分,共18分)11.已知∠A 是锐角,且1-2sin A=0,则∠A 的度数为 . 12.若m 是方程x 2-3x+1=0的一个根,则3m 2-9m-2021的值为 .13.(2021·阜新)如图,在6×8的正方形网格中,每个小正方形的边长均为1,点A ,B ,D ,E 均在网格的交点上,则△ABC 与△CDE 的周长比为 .第13题图 第14题图 第16题图14.如图,AB 是⊙O 的直径,半径OA 的垂直平分线交⊙O 于C ,D 两点.若∠C=30°,CD=23,则图中阴影部分的面积是 .15.已知抛物线y =ax 2+2ax+c 经过点A (3,m ),B (-2,n ),且函数y 有最大值,则m ,n 的大小关系为 . 16.(2021·抚顺)如图,在△ABC 和△DEC 中,∠ACB =∠DCE =90°,∠BAC =∠EDC =60°,AC =2 cm ,DC =1 cm .下列结论:①△ACD ∽△BCE ;②AD ⊥BE ;③∠CBE+∠DAE =45°;④在△CDE 绕点C 旋转的过程中,△ABD 面积的最大值为(23+2)cm 2.其中正确的是 .(填序号)三、解答题(本大题共8小题,共72分) 17.(每小题4分,共8分)(1)计算:4sin 45°-2tan 30°cos 30°+cos 45cos 60︒︒; (2)解方程:x 2-4x-5=0.18.(8分) (2021·黑龙江)在正方形网格中,每个小正方形的边长均为1,建立平面直角坐标系xOy ,△ABC 的位置如图所示.(1)在图中以点C 为位似中心,将△ABC 放大至原来的2倍,得到位似图形△A 1B 1C ,作出△A 1B 1C 并写出点A 1的坐标;(2)作出△ABC 绕点C 逆时针旋转90°后的图形△A 2B 2C ; (3)在(2)的条件下,求点B 所经过的路径长.第18题图 第19题图19.(8分)(2021·重庆)在如图所示的电路图中,有四个断开的开关A ,B ,C ,D 和一个灯泡L . (1)若任意闭合其中一个开关,则灯泡L 发亮的概率为 ; (2)若任意闭合其中两个开关,请用列表法求灯泡L 发亮的概率.20.(8分)(2021·枣庄)2020年7月23日,我国首次火星探测“天问一号”探测器,由长征五号遥四运载火箭在中国文昌航天发射场发射成功,正式开启了中国的火星探测之旅.运载火箭从地面O 处发射,当火箭到达A 处时,地面D 处的雷达站测得AD =4000米,仰角为30°,经过3秒后,火箭直线上升到达B 处,此时地面C 处的雷达站测得B 处的仰角为45°.已知点O ,C ,D 在同一条直线上,C ,D 两处相距460米,求火箭从A处到B 处的平均速度.(结果精确到1米/ 1.732 1.414)第20题图 第22题图 第23题图21.(2021·辽阳)某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x 元,每星期销售量为y 个. (1)请直接写出y (个)与x (元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?22.(10分)(2021·湘潭)如图,点A(a,2)在反比例函数y=4x的图象上,AB∥x轴,且交y轴于点C,交反比例函数y=kx于点B,已知AC=2BC.(1)求直线OA的解析式;(2)求反比例函数y=kx的解析式;(3)D为反比例函数y=kx上一动点,连接AD交y轴于点E,当E为AD的中点时,求△OAD的面积.23.(10分)(2021·柳州)如图,在四边形ABCD中,AD∥BC,AD⊥AB,AD=AB=1,,以点A 为圆心,AD长为半径作圆,延长CD交⊙A于点F,延长DA交⊙A于点E,连接BF,交DE于点G.(1)求证:BC为⊙A的切线;(2)求cos ∠EDF的值;(3)求线段BG的长.24.(12分)(2021·黔东南州)如图,抛物线y=ax2-2x+c(a≠0)与x轴交于点A,B(3,0),与y轴交于点C(0,-3),抛物线的顶点为D.(1)求抛物线的解析式;(2)已知点P在抛物线的对称轴上,点Q在x轴上,若以P,Q,B,C为顶点,BC为边的四边形是平行四边形,求点P,Q的坐标;(3)已知M是x轴上的动点,过点M作x轴的垂线交抛物线于点G,是否存在这样的点M,使得以点A,M,G为顶点的三角形与△BCD相似?若存在,求点M的坐标;若不存在,请说明理由.第24题图人教版数学九年级上、下册综合达标测试卷参考答案一、1.B 2.C 3.C 4.C 5.B 6.A 7.D 8.A 9.C 10.A二、11.30°12.-2024 13.2∶1 14.2π315.m<n 16.①②④三、17.(1)1.(2)x1=5,x2=-1.18. 解:(1)如图,△A1B1C即为所求作,点A1的坐标为(3,-3).(2)如图,△A2B2C即为所求作.第18题图(3)因为CB B .19.解:(1)14(2)列表如下:由表格知,任意闭合两个开关,所有机会均等的结果共有12种,其中能使灯泡L 发亮的结果有6种,所以P (灯泡L 发亮)=612=12. 20.解:由题意,知AD =4000,CD =460,∠ADO =30°,∠BCO =45°.在Rt △AOD 中,OA =12AD =2000,OD =AD·cos 30°=在Rt △BOC 中,OB =OC =OD-CD =.所以AB =OB-OA =2000≈1004. 所以1004÷3≈335(米/秒).答:火箭从A 处到B 处的平均速度约为335米/秒. 21. 解:(1)根据题意,得y=100-2(x-60)=-2x+220.(2)根据题意,得(-2x+220)(x-40)=2400,解得x1=70,x2=80. 答:当销售单价是70元或80元时,该网店每星期的销售利润是2400元. (3)设该网店每星期的销售利润为w 元.根据题意,得w=(-2x+220)(x-40)=-2x2+300x-8800=-2(x-75)2+2450. 当x=75时,w 有最大值,最大值为2450.答:当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元. 22.解:(1)将A (a ,2)代入y =4x,解得a =2.所以A (2,2). 设直线OA 的解析式为y =mx ,将A (2,2)代入,解得m =1.所以直线OA 的解析式为y =x. (2)由(1)可得AC =2.因为AC =2BC ,AB ∥x 轴,所以B (﹣1,2). 将B (﹣1,2)代入y =k x ,解得k =﹣2.所以反比例函数y =k x 的解析式为y =﹣2x. (3)因为A (2,2),E 为AD 的中点,点E 在y 轴上,所以x D =-2. 将x D =-2代入y =﹣2x ,解得y D =1.所以D (﹣2,1).所以E 302⎛⎫ ⎪⎝⎭,. 所以S △OAD =S △AOE +S △DOE =12×32×2+12×32×2=3. 23.(1)证明:因为AD ⊥AB ,所以∠BAD =90°.因为AD ∥BC ,所以∠ABC =180°﹣∠BAD =90°,即AB ⊥BC . 因为AB =AD ,即AB 为⊙A 的半径,所以BC 为⊙A 的切线.(2)解:过点D 作DH ⊥BC 于点H ,则∠DHB =∠ABH =∠BAD =90°.所以四边形ABHD 是矩形. 又因为AB =AD =1,所以矩形ABHD 是正方形.所以BH =DH =AB =1.在Rt △DHC 中,,由勾股定理,得,所以cos C=CH CD ==因为AD ∥BC ,所以∠EDF =∠C .所以cos ∠EDF =. (3)解:连接EF .因为DE 是⊙A 的直径,所以∠EFD =90°.在Rt △EFD 中,DE =2AD =2,所以DF =DE·cos ∠EDF .所以CF ==因为AD ∥BC ,所以△DFG ∽△CFB .所以DF DGCF CB =,12DG =+.所以DG=43.所以AG =DG ﹣AD=13.在Rt △BAG 中,. 24.解:(1)将点B (3,0),C (0,-3)分别代入y =ax 2-2x+c ,得92303a c c -⨯+=⎧⎨=-⎩,,解得13.a c =⎧⎨=-⎩,所以抛物线的解析式为y =x 2-2x-3.(2)由抛物线的解析式,知其对称轴为直线x =1. 设P (1,b ),Q (x ,0).当以点P ,Q ,B ,C 为顶点,BC 为边的四边形是平行四边形时,点C 向右平移3个单位,向上平移3个单位得到点B ,同样P (Q )向右平移3个单位,向上平移3个单位可得到点Q (P ). 所以1+3,30x b =⎧⎨+=⎩或+31,03.x b =⎧⎨+=⎩解得34b x =-⎧⎨=⎩,或32.b x =⎧⎨=-⎩,所以点P ,Q 的坐标分别为(1,-3),(4,0)或(1,3),(-2,0). (3)在y =x 2-2x-3中,令y =0,解得x 1=-1,x 2=3.所以A (-1,0). 因为y =x 2-2x-3=(x-1)2-4,所以顶点D (1,-4).因为B (3,0),C (0,-3),所以BD 2=20,CD 2=2,BC 2=18.所以BD 2=CD 2+BC 2.所以△BCD 是直角三角形,且∠BCD =90°.由题意,知∠AMG =∠BCD =90°,所以要使以点A ,M ,G 为顶点的三角形与△BCD 相似,需满足的条件为AM MG BC CD =或AM MGCD BC=. 设M (m ,0),则G (m ,m 2-2m-3). ①当m <-12=,解得83m =或m =-1;2=,解得m =0或m =-1.均不符合m <-1,所以舍去;②当-1<m≤3223m m ---=,解得83m =或m =-1(舍去);223m m ---=m =0或m =-1(舍去).所以M 8,03⎛⎫⎪⎝⎭或M (0,0);③当m >32103m =或m =-1(舍去); 2m =6,m =-1(舍去).所以M 10,03⎛⎫ ⎪⎝⎭或M (6,0). 综上,存在点M 使得以点A ,M ,G 为顶点的三角形与△BCD 相似,点M 的坐标为(0,0),8,03⎛⎫ ⎪⎝⎭,10,03⎛⎫ ⎪⎝⎭或(6,0).。
人教版数学九年级下册综合达标测试卷(含答案)

人教版数学九年级下册综合达标测试卷(本试题满分120分)一、选择题(本大题10小题,每小题3分,共30分)1. 若△ABC与△DEF的相似比为14,则△ABC与△DEF的周长比为()A. 14B.13C.12D.1162. 在△ABC中,∠C=90º,若cos B=32,则sin A的值为()A. 3B.33C.12D.323. 下列立体图形中,主视图是四边形的立体图形的个数是()A. 1B. 2C. 3D. 4第3题图第4题图第6题图4. 反比例函数y=kx在第一象限的图象如图所示,则k的值是()A. 1B. 2C. 3D. 45. 在阳光下,一块三角尺的投影不会是()A. 点B. 与原三角板全等的三角形C. 变形的三角形D. 线段6. 如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是()A. EA EGBE EF= B.EG AGGH GD= C.AB BCAE CF= D.FH CFEH AD=7. 已知一次函数y1=ax+b与反比例函数y2=kx的图象如图所示,当y1<y2时,x的取值范围是()A. x<2B. x>5C. 2<x<5D. 0<x<2或x>5第7题图第8题图8. 如图,正方形OABC的边长为8,点P在边AB上,CP交对角线OB于点Q.若S△BPQ=19S△OQC,则OQ的长为()A. 6B. 62C. 1623D.1639. 如图,小叶与小高欲测量公园内某棵树DE的高度.他们在这棵树正前方的一座凉亭前的台阶上的点A处,测得这棵树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得这棵树顶端D的仰角为60°.已知台阶A处到地面的高度AB为3 m,台阶AC的坡度为1∶3,且B,C,E三点在同一条直线上,则这棵树DE 的高度为()A. 6 mB. 7 mC. 8 mD. 9 m第9题图第10题图10. 已知两个反比例函数y=kx和y=1x在第一象限内的图象如图所示.点P在y=kx的图象上,PC⊥x轴于点C,交y=1x的图象于点A,PD⊥y轴于点D,交y=1x的图象于点B.当点P在y=kx的图象上运动时,有下列结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当A是PC的中点时,B一定是PD的中点.其中一定正确的是()A. ①②③B. ②③④C. ①②④D. ①③④二、填空题(本大题7小题,每小题4分,共28分)11. 如图是由小正方体组成的几何体的三视图,则该几何体有__________个小正方体组成.第11题图第13题图第14题图第15题图12. 反比例函数y=kx与一次函数y=ax+b的图象的两个交点分别为A(-1,-4),B(2,m),则a+2b=__________.13. 如图,已知△ABC是等边三角形,D是边AB上一点,E为边BC上一点.若∠CDE=60°,AD=3,BE=2,则△ABC的边长为__________.14. 如图,在半径为5的⊙O中,弦AB=6,C是优弧AB上一点(不与点A,B重合),则cos C的值为__________.15. 如图,在□ABCD中,E是边AD的中点,EC交对角线BD于点F.若S△DEC=3,则S△BCF =__________.16. 在△ABC中,已知O为AC的中点,点P在边AC上.若5,tan A=12,∠B=120°,BC=23AP=__________.三、解答题(本大题8小题,共72分)17. (6分)计算:tan30°cos30°+sin 260°- sin 245°tan45°.18. (8分)如图,在8×6的网格图中,每个小正方形的边长均为1,点O 和四边形ABCD 的顶点均在小正方形的顶点上.(1)以点O 为位似中心,在网格图中作四边形A 1B 1C 1D 1与四边形ABCD 位似,且相似比为12; (2)根据(1)填空:OD 1∶D 1D=__________.第18题图 第19题图19 (8分)如图,一次函数的图象与x 轴,y 轴分别相交于A ,B 两点,且与反比例函数y=kx(k ≠0)的图象在第一象限交于点C.如果点B 的坐标为(0,2),OA=OB ,B 是线段AC 的中点. (1)求点A 的坐标及一次函数的解析式; (2)求点C 的坐标及反比例函数的解析式.20. (10分)学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数(个)与碟子的高度(厘米)的关系如下表:(1)当桌子上放有x 个碟子时,请写出此时碟子的高度h ;(用含x 的式子表示)(2)桌子上摆放碟子的三视图如图所示,厨房师傅想把所有的碟子整齐叠成一摞,求叠成一摞后的高度.第20题图 第21题图 第22题图21. (10分)如图,小东在教学楼距地面9 m 高的窗口C 处,测得正前方旗杆顶部A 点的仰角为37°,旗杆底部B 点的俯角为45°.(1)求旗杆AB 的高;(结果精确到0.01 m ;参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)碟子的个数 1 2 3 4 … 碟子的高度22+1.52+32+4.5…(2)升旗时,国旗上端悬挂在距地面2.25 m处.若国旗随国歌声冉冉升起,并在国歌播放45 s结束时到达旗杆顶端,求国旗匀速上升的速度.22. (10分)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC与BD相交于点E,且DC2=CE•CA. (1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD,交CD的延长线于点F.若PB=OB,CD=22,求⊙O的半径.23. (10分)如图,一次函数y=kx+b与反比例函数y=mx(x>0)的图象交于点P,与x轴交于点A(-4,0),与y轴交于点C(0,1),PB⊥x轴于点B,且AC=BC.(1)求一次函数、反比例函数的解析式;(2)反比例函数的图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.第23题图第24题图24.(12分)如图,在△ABC中,已知AB=AC=5 cm,BC=6 cm.点P从点B出发,沿BA方向匀速运动,速度为1 cm/s;同时,直线QD从点C出发,沿CB方向匀速运动,速度为1 cm/s,且QD⊥BC,与AC,BC分别交于点D,Q.当直线QD停止运动时,点P也停止运动,连接PQ,设运动时间为t s(0<t<3).解答下列问题:(1)当t为何值时,PQ∥AC?(2)设四边形APQD的面积为S cm2,求S与t之间的函数解析式;(3)是否存在某一时刻,使S四边形APQD∶S△ABC=23∶45?若存在,求出t的值;若不存在,请说明理由.人教版数学九年级下册综合达标测试卷一、1. A 2. D 3. B 4. C 5. A 6. C 7. D 8. B 9. D 10. C 二、11. 5 12. -2 13. 9 14.4515. 416. 提示:延长AB ,构造含60º角的直角三角形.三、17. 解:原式+2⎝⎭-2⎝⎭×1=34. 18. 解:(1)如图所示,四边形A 1B 1C 1D 1即为所求.第18题图(2)119. 解:(1)因为OA=OB,B(0,2),所以A(-2,0).将点A(-2,0),B(0,2)代入y=kx+b,得202k bb-+=⎧⎨=⎩,,解得12.kb=⎧⎨=⎩,所以一次函数的解析式为y=x+2.(2)因为B是线段AC的中点,所以C(2,4).将点C(2,4)代入y=kx,得k=8,所以反比例函数的解析式为y=8x.20. 解:(1)由题意,得h=2+1.5(x﹣1)=1.5x+0.5.(2)由三视图可知共有12个碟子,所以叠成一摞的高度为1.5×12+0.5=18.5(cm).21. 解:(1)过点C作CD⊥AB于点D,则∠ADC=∠BDC=90°.因为∠ACD=37°,∠DCB=45°,所以△CDB是等腰直角三角形.由题意,知CD=BD=9 m,所以AD=CD•tan37º≈9×0.75=6.75(m).所以AB=BD+AD=9+6.75=15.75(m).答:旗杆AB的高度为15.75 m.(2)由(1)及题意,得(15.75-2.25)÷45=0.3(m/s).答:国旗匀速上升的速度是0.3 m/s.22.(1)证明:因为DC2=CE•CA,所以DC CACE DC=.因为∠ACD=∠DCE,所以△CAD∽△CDE.所以∠CAD=∠CDE.所以BC DC=.所以BC=DC. (2)解:连接OC.设⊙O的半径为r.由(1),知CD CB=,所以∠BOC=∠BAD.所以OC∥AD.所以2PC PO rCD OA r===2.所以PC=2CD=42.因为四边形ABCD内接于⊙O,所以∠DAB+∠DCB=180º.又∠DCB+∠PCB=180º,所以∠PCB=∠DAB.因为∠CPB=∠APD,所以△PCB∽△PAD.所以PC PBPA PD=4262=,解得r=4.所以⊙O的半径为4.23. 解:(1)将C(0,1),A(-4,0)代入y=kx+b,得140bk b=⎧⎨-+=⎩,,解得141.kb⎧=⎪⎨⎪=⎩,所以一次函数的解析式为y=14x+1.因为AC=BC,CO⊥AB,所以BO=AO=4.所以B(4,0).因为PB⊥x轴,所以点P的横坐标为4.当x=4时,y=14×4+1=2.所以P(4,2).将点P(4,2)代入y=mx,得m=8.所以反比例函数的解析式为y=8x.(2)假设存在这样的点D,使四边形BCPD为菱形,连接DC与PB交于点E. 因为四边形BCPD为菱形,所以CE=DE=4.所以CD=8.将x=8代入y=8x,得y=1,所以D(8,1).所以反比例函数的图象上存在点D,使四边形BCPD为菱形,此时点D的坐标为(8,1).24. 解:(1)由题意,知BP=t,BQ=6﹣t.因为PQ∥AC,所以△BPQ∽△BAC.所以BP BQBA BC=,即656t t-=,解得t=3011.所以当t=3011s时,PQ∥AC.(2)过点A作AN⊥BC于点N,过点P作PM⊥BC于点M.因为AB=AC=5 cm,BC=6 cm,所以BN=CN=3 cm.所以AN=4(cm).因为AN⊥BC,PM⊥BC,所以AN∥PM.所以△BPM∽△BAN.所以BP PMBA AN=,即54t PM=,解得PM=45t.所以S△BPQ=12BQ·PM=12(6﹣t)•45t=225t-+125t.在Rt△ANC中,AN=4,CN=3,所以tan C=43.所以tan C=DQQC=43,即DQt=43,得DQ=43t.所以S△CDQ=12CQ·DQ=23t2.因为S△ABC=12BC·AN=12×6×4=12,所以S=S四边形APQD=S△ABC﹣S△CDQ﹣S△BPQ=12﹣23t2﹣221255t t⎛⎫-+⎪⎝⎭=﹣415t2﹣125t+12(0<t<3). (3)存在.由(2),知S四边形APQD=﹣415t2﹣125t+12,S△ABC=12,所以24121215512t t--+=2345,解得t1=2,t2=﹣11(舍去).所以当t的值为2时,S四边形APQD∶S△ABC=23∶45.。
人教版九年级数学期末考试综合复习测试题(含答案)

人教版九年级数学期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分)1.计算,3(2)a -结果正确的是( )A .32a -B .36a -C .38a -D .38a2.据教育部统计,2022年高校毕业生约1076万人,用科学记数法表示1076万为( )A .4107610⨯B .61.07610⨯C .71.07610⨯D .80.107610⨯3.下列汽车标志中,是中心对称图形的是( ) A . B . C . D .4.如图所示,直线//EF GH ,射线AC 分别交直线EF 、GH 于点B 和点C ,AD EF ⊥于点D ,如果20A ∠=︒,则(ACH ∠= )A .160︒B .110︒C .100︒D .70︒5.如图,已知ABC ADE ∆≅∆,若70E ∠=︒,30D ∠=︒,则BAC ∠的度数是( )A .70︒B .80︒C .40︒D .30︒6.方程2210x x --=实数根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定7.在平面直角坐标系中,若点(1,)A a b -+与点(,3)B a b -关于原点对称,则点(,)C a b 在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC ∆相似的是( )A .B .C .D .9.已知正比例函数11(0)y k x k =≠的图象与反比例函数22(0)k y k x =≠的图象交于A ,B 两点,其中点A 在第二象限,横坐标为2-,另一交点B 的纵坐标为1-,则12(k k ⋅= )A .4B .4-C .1-D .110.已知(3,2)A --,(1,2)B -,抛物线2(0)y ax bx c a =++>顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论:①2c -;②当0x >时,一定有y 随x 的增大而增大;③若点D 横坐标的最小值为5-,则点C 横坐标的最大值为3;④当四边形ABCD 为平行四边形时,12a =. 其中正确的是( )A .①③B .②③C .①④D .①③④二.填空题(共5小题,每小题3分,共15分)11.因式分解:22416x y -= . 12.若2|2|(3)0x y -++=,则2()x y += .13.已知m ,()n m n ≠是一元二次方程220230x x +-=的两个实数根,则代数式22m m n ++的值为 .14.如图,A ,B ,C ,D 是O 上的四点,且点B 是AC 的中点,BD 交OC 于点E ,60OED ∠=︒,35OCD ∠=︒,那么AOC ∠的度数是 .15.如图,E 为正方形ABCD 内一点,5AD =,4AE =,将ADE ∆绕点A 顺时针旋转90︒到ABE ∆',则边DE 所扫过的区域(图中阴影部分)的面积为 .题14图 题15图三.解答题(一)(共3小题,每小题8分,共24分)16.(1)计算:0111(2021)()2cos45221π--++-︒+; (2)先化简,再求值:23210(1)19x x x x --⋅---,其中x 是1、2、3中的一个合适的数.17.如图,DE AB ⊥于E ,DF AC ⊥于F ,若BD CD =,BE CF =.求证:(1)AD 平分BAC ∠;(2)2AC AB BE =+.18.今年,我市某学校举办了为贫困生捐赠书包活动.该学校用2000元在某商店购进一批学生书包,随后发现书包数量不够,于是又购进第二批同样的书包,所购数量是第一批的3倍,每个书包比第一批购买时贵了4元,结果第二批用了6300元.(1)该学校第一批购进的学生书包每个多少元?(2)如果该商店第一批、第二批学生书包每个的进价分别是68元、70元,售给该学校的这些学生书包,该商店盈利多少元?四.解答题(二)(共3小题,每小题9分,共27分)19.某银行柜台在储户人数较多时常开放1、2、3、4号窗口办理日常业务,一般是先到取号机拿号,按顾客“先到达,先服务“的方式服务(1)求某储户在3号窗口办业务的概率是(2)储户乙取号时发现储户甲已办理完业务准备离开(储户甲、乙先后到达银行取号办理业务),请用树状图或列表法求储户甲、乙两人在同一柜台办理业务的概率.20.如图,在平行四边形ABCD 中,BD AB ⊥,延长AB 至点E ,使BE AB =,连接EC .(1)求证:四边形BECD 是矩形.(2)连接AC ,若3AD =,2CD =,求AC 的长.21.Rt ABO ∆的顶点A 是双曲线k y x =与直线(1)y x k =--+在第二象限的交点,AB 垂直x 轴于点B 且32ABO S ∆=. (1)求这两个函数解析式;(2)求AOC ∆的面积;(3)根据图象直接写出不等式(1)k x k x >-+的解集.五.解答题(三)(共2小题,每小题12分,共24分)22.如图,AB 是⊙O 的直径,C 、D 是⊙O 上两点,连接CD ,C 是的中点,过点C 作AD 的垂线,垂足是E .连接AC 交BD 于点F .(1)求证:CE 是⊙O 的切线;(2)求证:△CDF ∽△CAD ;(3)若DF =2,CD =,求AC 值.23.如图,在平面直角坐标系中,抛物线21y ax bx =++交y 轴于点A ,交x 轴正半轴于点(4,0)B ,交直线AD 于点5(3,)2D ,过点D 作DC x ⊥轴于点C . (1)求抛物线的解析式;(2)点P 为x 轴正半轴上一动点,过点P 作PN x ⊥轴交直线AD 于点M ,交抛物线于点N ;若点P 在线段OC 上(不与O 、C 重合),连接CM ,求PCM ∆面积的最大值。
人教版九年级数学中考复习:选择、填空综合训练1

选择、填空综合训练(时间:40分钟分值:54分)一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项.1.√(−8)33的立方根是( )A.8 B.-8 C.2 D.-22.下列计算结果是x5的为( C )A.x10÷x2B.x6-x1C.-x2·(-x)3D.(-x)3·(-x)2 3.一个物体的三视图如图所示,根据图中的数据,可求这个物体的表面积为( )第3题图A.60π cm2B.48π cm2C.96π cm2D.80π cm2 4.一组数据3,5,5,7,若添加一个数据5,则发生变化的统计量是( )A.平均数B.中位数C.方差D.众数5.满足下列条件的三条线段a,b,c能构成三角形的是( )A.a∶b∶c=1∶2∶3 B.a+b=4,a+b+c=9C.a=3,b=4,c=5 D.a∶b∶c=1∶1∶26.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为( )第6题图A.34B.13C.12D.147.如图所示,在正五边形ABCDE中,过顶点A作AF⊥CD,垂足为点F,连接对角线AC,则∠CAF的度数是( )第7题图A.16° B.18° C.24° D.28°8.如图,在长为62米、宽为42米的矩形草地上修同样宽的路,余下部分种植草坪.要使草坪的面积为2400平方米,设道路的宽为x米,则可列方程为( )第8题图A.(62-x)(42-x)=2400 B.(62-x)(42-x)+x2=2400C.62×42-62x-42x=2400 D.62x+42x=24009.已知二次函数y=-14x2+bx+c的图象如图,则一次函数y=-14x-2b与反比例函数y=cx在同一平面直角坐标系中的图象大致是( )第9题图10.如图1,点P为矩形ABCD边上的一个动点,运动路线是A→B→C→D→A.设点P运动的路径长为x,△ABP的面积S△ABP=y,图2是y随x变化的函数图象,则矩形ABCD的对角线BD的长是( )第10题图A.34B.41 C.8 D.10二、填空题:本大题共8小题,每小题3分,共24分.11.比较大小:-3-22(填“>”“<”或“=”).12.要使式子x+3x-1+(x-2)0有意义,则x的取值范围为.13.如果在解关于x的分式方程xx-1+k1-x=2时出现了增根x=1,那么常数k的值为.14.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作MN∥BC,分别交AB,AC于点M,N.若AB=8,AC=10,则△AMN的周长为.第14题图15.《九章算术》第九章“勾股”问题十九:“今有邑方(正方形小城)不知大小,各开中门.出北门三十步有木,出西门七百五十步见木.问:邑方几何(小城的边长)?”根据描述如图所示,其中E表示西门,F表示北门,G,H处是木(E,F 分别是所在边的中点).则邑的边长为步.第15题图16.如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.若OA=4,∠BCM=60°,则图中阴影部分的面积为 .第16题图17.如图,点O是▱ABCD的对称中心,AD>AB,E,F是边AB上的点,且EF=12 AB,G,H是BC边上的点,且GH=13BC,若S1,S2分别表示△EOF和△GOH的面积,则S 1与S2之间的等量关系是.第17题图18.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+2;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+2;….按此规律继续旋转,直至得到点P2020为止,则AP2020=.第18题图选择、填空综合训练(时间:40分钟分值:54分)一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项.1.√(−8)33的立方根是( D )A.8 B.-8 C.2 D.-22.下列计算结果是x5的为( C )A.x10÷x2B.x6-x1C.-x2·(-x)3D.(-x)3·(-x)2 3.一个物体的三视图如图所示,根据图中的数据,可求这个物体的表面积为( C )第3题图A.60π cm2B.48π cm2C.96π cm2D.80π cm2 4.一组数据3,5,5,7,若添加一个数据5,则发生变化的统计量是( C )A.平均数B.中位数C.方差D.众数5.满足下列条件的三条线段a,b,c能构成三角形的是( C )A.a∶b∶c=1∶2∶3 B.a+b=4,a+b+c=9C.a=3,b=4,c=5 D.a∶b∶c=1∶1∶26.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为( C )第6题图A.34B.13C.12D.147.如图所示,在正五边形ABCDE中,过顶点A作AF⊥CD,垂足为点F,连接对角线AC,则∠CAF的度数是( B )第7题图A.16° B.18° C.24° D.28°8.如图,在长为62米、宽为42米的矩形草地上修同样宽的路,余下部分种植草坪.要使草坪的面积为2400平方米,设道路的宽为x米,则可列方程为( A )第8题图A.(62-x)(42-x)=2400 B.(62-x)(42-x)+x2=2400C.62×42-62x-42x=2400 D.62x+42x=24009.已知二次函数y=-14x2+bx+c的图象如图,则一次函数y=-14x-2b与反比例函数y=cx在同一平面直角坐标系中的图象大致是( C )第9题图10.如图1,点P为矩形ABCD边上的一个动点,运动路线是A→B→C→D→A.设点P运动的路径长为x,△ABP的面积S△ABP=y,图2是y随x变化的函数图象,则矩形ABCD的对角线BD的长是( B )第10题图A.34B.41 C.8 D.10二、填空题:本大题共8小题,每小题3分,共24分.11.比较大小:-3<-22(填“>”“<”或“=”).12.要使式子x+3x-1+(x-2)0有意义,则x的取值范围为 x≥-3且x≠1且x≠2.13.如果在解关于x的分式方程xx-1+k1-x=2时出现了增根x=1,那么常数k的值为 1 .14.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作MN∥BC,分别交AB,AC于点M,N.若AB=8,AC=10,则△AMN的周长为 18 .第14题图15.《九章算术》第九章“勾股”问题十九:“今有邑方(正方形小城)不知大小,各开中门.出北门三十步有木,出西门七百五十步见木.问:邑方几何(小城的边长)?”根据描述如图所示,其中E表示西门,F表示北门,G,H处是木(E,F 分别是所在边的中点).则邑的边长为 300 步.第15题图16.如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.若OA=4,∠BCM=60°,则图中阴影部分的面积为16π3-4 3 .第16题图17.如图,点O是▱ABCD的对称中心,AD>AB,E,F是边AB上的点,且EF=12 AB,G,H是BC边上的点,且GH=13BC,若S1,S2分别表示△EOF和△GOH的面积,则S 1与S2之间的等量关系是 S1=32S2.第17题图18.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+2;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+2;….按此规律继续旋转,直至得到点P2020为止,则AP2020= 1346+674 2 .第18题图。
人教版九年级下册数学全册综合复习练习试卷【答案+解析】

人教版九年级下册数学全册综合复习练习试卷一.选择题(共10小题,每小题2分,共20分)1.反比例函数y=的图象生经过点(1,﹣2),则k的值为()A.﹣1 B.﹣2 C.1 D.2【答案】B【精准解析】解:∵反比例函数y=的图象生经过点(1,﹣2),∴k=1×(﹣2)=﹣2.故选B.2.如图,点A(1.5,3)在第一象限,OA与x轴所夹的锐角为α,tanα=()A.1 B.1.5 C.2 D.3【答案】C【精准解析】解:根据题意得:tanα==2;故选:C.3.如图,不能判定△AOB和△DOC相似的条件是()A.AO•CO=BO•DO B.C.∠A=∠D D.∠B=∠C【答案】B【精准解析】解:A、能判定.利用两边成比例夹角相等.B、不能判定.C、能判定.两角对应相等的两个三角形相似.D、能判定.两角对应相等的两个三角形相似.故选B.4.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.【答案】D【精准解析】解:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.5.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A.(1,2)B.(1,1)C.(,)D.(2,1)【答案】B【精准解析】解:∵∠OAB=∠OCD=90°,AO=AB,CO=CD,等腰Rt△OAB与等腰Rt△OCD 是位似图形,点B的坐标为(1,0),∴BO=1,则AO=AB=,∴A(,),∵等腰Rt△OAB与等腰Rt△OCD是位似图形,O为位似中心,相似比为1:2,∴点C的坐标为:(1,1).故选:B.6.一个三角形三遍的长分别为3,5,7,另一个与它相似的三角形的最长边是21,则该三角形的最短边是()A.6 B.9 C.10 D.15【答案】B【精准解析】解:设与它相似的三角形的最短边的长为x,∵一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,∴=,解得:x=9.故选B.7.如图所示,平行四边形ABCD中,点E是AD边的中点,BE交对角线AC于点F.若AF=2,则对角线AC的长为()A.4 B.5 C.6 D.8【答案】C【精准解析】解:∵四边形ABCD是平行四边形,AD=BC,∴AD∥BC,∴△AEF∽△CBF.∵E是A的中点,∴AE=AD=BC,∴==∵AF=2,∴CF=4.∴AC=AF+CF=6.故选:C.8.在同一平面直角坐标系中,函数y=mx+m与y=﹣(m≠0)的图象可能是()A.B.C.D.【答案】B【精准解析】解:方法一:A、y=﹣的图象在一三象限,则﹣m>0,即m<0.y=mx+m 中,与y轴相交于正半轴,则常数项m>0,y随x的增大而增大,则一次项系数m>0,三个m 不同号,故选项错误;B、y=﹣的图象在一三象限,则﹣m>0,即m<0.y=mx+m中,与y轴相交于负半轴,则常数项m<0,y随x的增大而增大,则一次项系数m<0,三个m同号,故选项正确;C、y=﹣的图象在二、四象限,则﹣m<0,即m>0.y=mx+m中,与y轴相交于正半轴,则常数项m>0,y随x的增大而减小,则一次项系数m<0,三个m不同号,故选项错误;D、y=﹣的图象在二、四象限,则﹣m<0,即m>0.y=mx+m中,与y轴相交于负半轴,则常数项m<0,y随x的增大而增大,则一次项系数m>0,三个m不同号,故选项错误.故选B.方法二:①当m>0时,一次函数y=mx+m的图象过第一、二、三象限,符合一次函数图象的只有A选项,反比例函数y=﹣的图象过点第二、四象限,符合反比例函数图象的有C,D选项,∴同时符合的一次函数和反比例函数图形的选项没有;②当m<0时,一次函数y=mx+m的图象过第二、三、四象限,符合一次函数图象的只有B选项,反比例函数y=﹣的图象过点第一、三象限,符合反比例函数图形的有A,B选项,∴同时符合一次函数图象和反比例函数图象的选项是B,故选B.9.反比例函数y=﹣的图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A.y1<y2<0 B.y1<0<y2C.y1>y2>0 D.y1>0>y2【答案】D【精准解析】解:∵反比例函数y=﹣中k=﹣2<0,∴此函数图象在二、四象限,∵x1<0<x2,∴A(x1,y1)在第二象限;点B(x2,y2)在第四象限,∴y1>0>y2,故选D.10.如图,在矩形ABCD中,点E为AB的中点,EF⊥EC交AD于点F,连接CF(AD>AE),下列结论正确的是()①∠AEF=∠BCE;②AF+BC>CF;③S△CEF=S△EAF+S△CBE;④若=,则△CEF≌△CDF.A.①②③B.①②④C.①③④D.①②③④【答案】C【精准解析】解:∵EF⊥EC,∴∠AEF+∠BEC=90°,∵∠BEC+∠BCE=90°,∴∠AEF=∠BCE,故①正确;又∵∠A=∠B=90°,∴△AEF∽△BCE,∴,∵点E是AB的中点,∴AE=BE,∴,又∵∠A=∠CEF=90°,∴△AEF∽△ECF,∴∠AFE=∠EFC,过点E作EH⊥FC于H,则AE=HE,在△AEF和△HEF中,∴△AEF≌△HEF(HL),∴AF=FH,同理可得△BCE≌△HCE,∴BC=CH,∴AF+BC=CF,故②错误;∵△AEF≌△HEF,△BCE≌△HCE,∴S△CEF=S△EAF+S△CBE,故③正确;若=,则cot∠BCE═=,∴∠BCE=30°,∴∠DCF=∠ECF=30°,在△CEF和△CDF中,,∴△CEF≌△CDF(AAS),故④正确,综上所述,正确的结论是①③④.故选C.二.填空题(共10小题,每小题2分,共20分)11.已知C是线段AB上一点,若=,则=.【答案】【精准解析】解:∵C是线段AB上一点,=,∴=,即=.故答案为.12.如图是某超市楼梯示意图,若BA与CA的夹角为α,∠C=90°,AC=6米,则楼梯高度BC为米.【答案】6tanα【精准解析】解:在Rt△ABC中,=tanα;即=tanα,BC=6tanα米.故答案为6tanα.13.如图,小明想测量院子里一棵树的高度,在某一时刻,他站在该树的影子上,前后移动,直到他本身的影子的顶端正好与树影的顶端重叠.此时,他与该树的水平距离2m,小明身高1.5m,他的影长是1.2m,那么该树的高度为.【答案】4m【精准解析】解:如图,CE=1.5m,∵CE∥BD,∴△ACE∽△ABD,∴=,即=,∴BD=4(m),即树的高度为4m.故答案为:4m.14.在平面直角坐标系中,直线y=x+1与反比例函数y=的图象的一个交点A(a,2),则k 的值为.【答案】2【精准解析】解:当y=x+1=2时,x=1,∴点A的坐标为(1,2).∵点A(1,2)在反比例函数y=的图象上,∴k=1×2=2.故答案为:2.15.在△ABC中,∠A,∠B都是锐角,cosA=,sinB=,则△ABC的形状是.【答案】等边三角形【解析】解:∵cosA=,sinB=,∴∠A=60°,∠B=60°.∴∠C=60°.则△ABC是等边三角形.16.小明骑自行车以15千米/小时的速度在公路上向正北方向匀速行进,如图,出发时,在B 点他观察到仓库A在他的北偏东30°处,骑行20分钟后到达C点,发现此时这座仓库正好在他的东南方向,则这座仓库到公路的距离为千米.(参考数据:≈1.732,结果保留两位有效数字)【答案】1.8【解析】解:过点A作AD⊥BC于点D.设AD=x,则BD=x.∵△ACD是等腰直角三角形,∴CD=AD=x.∵小明骑自行车以15千米/小时的速度在公路上向正北方向匀速行进,骑行20分钟后到达C点,∴15×=5,∴BC=5.∴x+x=5.∴x=≈1.8(千米).即仓库到公路的距离为1.8千米.17.若α为锐角,且3tan2α﹣4tanα+3=0,则α的度数为.【答案】60°或30°【解析】解:∵α为锐角,∴tanα=x(x>0),则由原方程,得3x2﹣4x+3=0,∴x==,∴x1=,x2=;当x1=,即tanα=时,α=60°;当x2=,即tanα=时,α=30°;综上所述,α的度数为60°或30°;故答案是:60°或30°.18.如图,等边△OAB和等边△BCD的顶点A、C分别在双曲线y=的图象上,若OA=1,则点C的坐标为.【答案】(,)【解析】解:过A作AE⊥OB于E,过C作CF⊥BD于F,∵△OAB是等边三角形,∴∠AOB=∠OAB=60°,OB=OA=1,∴OE=,AE=,∴k=,∴双曲线的解析式为y=,设等边三角形CBD的边长为2a,∴BF=a,CF=a,∴C(1+a,a),∴(1+a)•a=,∴a=,(负值舍去),∴C(,).故答案为:(,).19.如图,△ABB1,△A1B1B2,…,△A n﹣2B n﹣2B n﹣1,△A n﹣1B n﹣1B n是n个全等的等腰三角形,其中AB=2,BB1=1,底边BB1,B1B2,…,B n﹣2B n﹣1,B n﹣1B n在同一条直线上,连接AB n 交A n﹣2B n﹣1于点P,则PB n﹣1的值为.【答案】【解析】解:∵△ABB1,△A1B1B2,…,△A n﹣2B n﹣2B n﹣1,△A n﹣1B n﹣1B n是n个全等的等腰三角形,∴∠AB1B=∠PB n﹣1B,∴AB1∥PB n﹣1,∴PB n B n﹣1∽△AB n B1,∴=,∵AB1=AB=2,B1B n=n﹣1,B n B n﹣1=1,∴=,∴PB n﹣1=.故答案为:.20.如图,矩形ABCD的一边BC与⊙O相切于G,DC=6,且对角线BD经过圆心O,AD 交⊙O于点E,连接BE,BE恰好是⊙O的切线,已知点P在对角线BD上运动,若以B、P、G三点构成的三角形与△BED相似,则BP=.【答案】4或12【解析】解:连接OE、OG、DG,如图,GO的延长线交AD于H,∵BE和BG为⊙O的切线,∴BG=BE,OB平分∠GBE,OG⊥BC,而BC∥AD,∴GH⊥AD,∴EH=DH,易得四边形CDHG为矩形,∴CG=DH,∴DE=2CG,∵∠EDB=∠CBD,∴∠EBD=∠EDB,∴EB=ED,∴BE=BG=DE,∴AE=CG,四边形BGDE为菱形,在Rt△ABE中,∵sin∠ABE==,∴∠ABE=30°,∴∠EBD=∠CBD=30°,∴BC=6,BD=12,∴BE=DE=BG=4,当=时,△PBG∽△EBD,即=,解得PB=4;当=时,△PBG∽△DBE,即=,解得PB=12,综上所述,BP的长为4或12.故答案为4或12.三.解答题(共10小题,每小题6分,共60分)21.(1)计算sin245°+cos30°•tan60°(2)在直角三角形ABC中,已知∠C=90°,∠A=60°,BC=3,求AC.【答案】解:(1)sin245°+cos30°•tan60°=+=2;(2)∵∠B=90°﹣∠A=90°﹣60°=30°,tanB==,∴AC=3•tanB=3tan30°=3×=.22.已知点P(﹣2,3)在反比例函数y=(k为常数,且k≠0)的图象上.(1)求这个函数的解析式;(2)判断该反比例函数图象是否经过点A(﹣1,﹣3),并说明理由.【答案】解:(1)∵将P(﹣2,3)代入反比例函数y=,得3=,解得,k=﹣6.∴反比例函数表达式为:y=﹣;(2)反比例函数图象不经过点A.理由是:∵将x=﹣1代入y=,得y=6≠﹣3,∴反比例函数图象不经过点A.【解析】(1)直接把点P(﹣2,3)代入反比例函数y=,求出k的值即可;(2)把点A (﹣1,﹣3)代入反比例函数的解析式进行检验即可.23.如图,四边形ABCD是平行四边形,E为边CD延长线上一点,连接BE交边AD于点F.请找出一对相似三角形,并加以证明.【答案】解:△ABF∽△DEF.①选择:△ABF∽△DEF理由:∵四边形ABCD是平行四边形,∴AB∥CD.∴∠ABF=∠E,∠A=∠FDE,∴△ABF∽△DEF.②选择:△EDF∽△ECB理由:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠C=∠FDE.又∵∠E=∠E,∴△EDF∽△ECB.③选择:△ABF∽△CEB理由:∵四边形ABCD是平行四边形,∴AB∥CD,∠A=∠C.∴∠ABF=∠E.∴△ABF∽△CEB.【解析】选择△ABF∽△DEF,根据四边形ABCD是平行四边形可知AB∥CD,再由平行线的性质得出∠ABF=∠E,∠A=∠FDE,据此可得出结论.24.如图,已知∠A=36°,线段AB=6.(1)尺规作图:求作菱形ABCD,使线段AB是菱形的边,顶点C在射线AP上;(2)求(1)中菱形对角线AC的长.(精确到0.1,参考数据:sin36°≈0.5878,cos36°≈0.8090,tan36°≈0.7265)【答案】解:(1)如图,菱形ABCD为所求作的图形.(2)连接BD交AC于点O.∵四边形ABCD是菱形,∴BD⊥AC,AC=2AO.在Rt△ABO中,∠A=36°,AB=6.∵cos∠BAO=,∴AO=AB•cos36°≈4.85.∴AC=2AO≈9.7.【解析】(1)根据菱形的性质画出图形即可;(2)连接BD交AC于点O,根据菱形的性质可知BD⊥AC,AC=2AO,再由锐角三角函数的定义即可得出结论.25.近年来交通事故发生率逐年上升,交通问题成为重大民生问题,鄱阳二中数学兴趣小组为检测汽车的速度设计了如下实验:如图,在公路MN(近似看作直线)旁选取一点C,测得C到公路的距离为30米,再在MN上选取A、B两点,测得∠CAN=30°,∠CBN=60°;(1)求AB的长;(精确到0.1米,参考数据=1.41,=1.73)(2)若本路段汽车限定速度为40千米/小时,某车从A到B用时3秒,该车是否超速?【答案】解:(1)作CD⊥MN于D,如图所示:则CD=30米,在Rt△CBD中,BC===20≈34.6(米),又∵∠CBN=60°,∠CAN=30°,∴∠ACB=60°﹣30°=30°=∠CAN,∴AB=BC=34.6米;(2)∵40千米/小时≈11.1米/秒,34.6÷3≈11.53(米/秒),11.1<11.53,∴该车是超速.(1)作CD⊥MN于D,则CD=30米,在Rt△CBD中,由三角函数求出BC=【解析】≈34.6(米),由三角形的外角性质求出∠ACB=∠CAN,得出AB=BC=34.6米即可;(2)求出汽车的速度,即可得出答案.26.如图,在正方形ABCD中,点A在y轴正半轴上,点B的坐标为(0,﹣3),反比例函数y=﹣的图象经过点C.(1)求点C的坐标;(2)若点P是反比例函数图象上的一点且S△PAD=S正方形ABCD;求点P的坐标.【答案】解:(1)∵点B的坐标为(0,﹣3),∴点C的纵坐标为﹣3,把y=﹣3代入y=﹣得,﹣3=﹣,解得x=5,∴点C的坐标为(5,﹣3);(2)∵C(5,﹣3),∴BC=5,∵四边形ABCD是正方形,∴AD=5,设点P到AD的距离为h.∵S△PAD=S正方形ABCD,∴×5×h=52,解得h=10,①当点P在第二象限时,y P=h+2=12,此时,x P==﹣,∴点P的坐标为(﹣,12),②当点P在第四象限时,y P=﹣(h﹣2)=﹣8,此时,x P==,∴点P的坐标为(,﹣8).综上所述,点P的坐标为(﹣,12)或(,﹣8).【解析】(1)先由点B的坐标为(0,﹣3)得到C的纵坐标为﹣3,然后代入反比例函数的解析式求得横坐标为5,即可求得点C的坐标为(5,﹣3);(2)设点P到AD的距离为h,利用△PAD的面积恰好等于正方形ABCD的面积得到h=10,再分类讨论:当点P在第二象限时,则P点的纵坐标y P=h+2=12,可求的P点的横坐标,得到点P的坐标为(﹣,12);②当点P在第四象限时,P点的纵坐标为y P=﹣(h﹣2)=﹣8,再计算出P点的横坐标.于是得到点P的坐标为(,﹣8).27.如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°,若坡脚∠FAE=30°,求大树的高度.(结果保留整数,参考数据:sin48°≈0.7,cos48°≈0.7,tan48°≈1.1,≈1.7)【答案】解:如图,过点D作DG⊥BC于G,DH⊥CE于H,则四边形DHCG为矩形.故DG=CH,CG=DH,在直角三角形AHD中,∵∠DAH=30°,AD=6,∴DH=3,AH=3,∴CG=3,设BC为x,在直角三角形ABC中,AC==,∴DG=3+,BG=x﹣3,在直角三角形BDG中,∵BG=DG•tan30°,∴x﹣3=(3+)×,解得:x≈13,∴BC=13米,答:大树的高度为13米.【解析】过点D作DG⊥BC于G,DH⊥CE于H,设BC为x,根据矩形性质得出DG=CH,CG=DH,再利用锐角三角函数的性质求x的值即可.28.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.(1)求边AB的长;(2)求反比例函数的解析式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.【答案】解:(1)∵点E(4,n)在边AB上,∴OA=4,在Rt△AOB中,∵tan∠BOA=,∴AB=OA×tan∠BOA=4×=2;(2)根据(1),可得点B的坐标为(4,2),∵点D为OB的中点,∴点D(2,1)∴=1,解得k=2,∴反比例函数解析式为y=,又∵点E(4,n)在反比例函数图象上,∴=n,解得n=;(3)如图,设点F(a,2),∵反比例函数的图象与矩形的边BC交于点F,∴=2,解得a=1,∴CF=1,连接FG,设OG=t,则OG=FG=t,CG=2﹣t,在Rt△CGF中,GF2=CF2+CG2,即t2=(2﹣t)2+12,解得t=,∴OG=t=.【解析】(1)根据点E的纵坐标判断出OA=4,再根据tan∠BOA=即可求出AB的长度;(2)根据(1)求出点B的坐标,再根据点D是OB的中点求出点D的坐标,然后利用待定系数法求函数解析式求出反比例函数解析式,再把点E的坐标代入进行计算即可求出n的值;(3)先利用反比例函数解析式求出点F的坐标,从而得到CF的长度,连接FG,根据折叠的性质可得FG=OG,然后用OG表示出CG的长度,再利用勾股定理列式计算即可求出OG的长度.29.如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.(1)求证:AD=BC;(2)求证:△AGD∽△EGF;(3)如图2,若AD、BC所在直线互相垂直,求的值.【答案】(1)证明:∵GE是AB的垂直平分线,∴GA=GB,同理:GD=GC,在△AGD和△BGC中,,∴△AGD≌△BGC(SAS),∴AD=BC;(2)证明:∵∠AGD=∠BGC,∴∠AGB=∠DGC,在△AGB和△DGC中,,∴△AGB∽△DGC,∴,又∵∠AGE=∠DGF,∴∠AGD=∠EGF,∴△AGD∽△EGF;(3)解:延长AD交GB于点M,交BC的延长线于点H,如图所示:则AH⊥BH,∵△AGD≌△BGC,∴∠GAD=∠GBC,在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB,∴∠AGB=∠AHB=90°,∴∠AGE=∠AGB=45°,∴,又∵△AGD∽△EGF,∴==.【解析】(1)由线段垂直平分线的性质得出GA=GB,GD=GC,由SAS证明△AGD≌△BGC,得出对应边相等即可;(2)先证出∠AGB=∠DGC,由,证出△AGB∽△DGC,得出比例式,再证出∠AGD=∠EGF,即可得出△AGD∽△EGF;(3)延长AD交GB 于点M,交BC的延长线于点H,则AH⊥BH,由△AGD≌△BGC,得出∠GAD=∠GBC,再求出∠AGB=∠AHB=90°,得出∠AGE=∠AGB=45°,求出,由△AGD∽△EGF,即可得出的值.30.如图,四边形ABCD是平行四边形,点A(1,0),B(4,1),C(4,3),反比例函数y=的图象经过点D,点P是一次函数y=mx+3﹣4m(m≠0)的图象与该反比例函数图象的一个公共点;(1)求反比例函数的解析式;(2)通过计算说明一次函数y=mx+3﹣4m的图象一定过点C;(3)对于一次函数y=mx+3﹣4m(m≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围,(不必写过程)【答案】解:(1)∵B(4,1),C(4,3),∴BC∥y轴,BC=2,又∵四边形ABCD是平行四边形,∴AD=BC=2,AD∥y轴,而A(1,0),∴D(1,2),∴由反比例函数y=的图象经过点D,可得k=1×2=2,∴反比例函数的解析式为y=;(2)∵在一次函数y=mx+3﹣4m中,当x=4时,y=4m+3﹣4m=3,∴一次函数y=mx+3﹣4m的图象一定过点C(4,3);(3)点P的横坐标的取值范围:<x<4.如图所示,过C(4,3)作y轴的垂线,交双曲线于E,作x轴的垂线,交双曲线于F,当y=3时,3=,即x=,∴点E的横坐标为;由点C的横坐标为4,可得F的横坐标为4;∵一次函数y=mx+3﹣4m的图象一定过点C(4,3),且y随x的增大而增大,∴直线y=mx+3﹣4m与双曲线的交点P落在EF之间的双曲线上,∴点P的横坐标的取值范围是<x<4.【解析】(1)根据四边形ABCD是平行四边形,可得AD=BC=2,AD∥y轴,进而得出D(1,2),再根据反比例函数y=的图象经过点D,可得反比例函数的解析式;(2)在一次函数y=mx+3﹣4m中,当x=4时,y=3,据此可得一次函数y=mx+3﹣4m的图象一定过点C;(3)过C(4,3)作y轴的垂线,交双曲线于E,作x轴的垂线,交双曲线于F,根据一次函数y=mx+3﹣4m的图象一定过点C(4,3),且y随x的增大而增大,可知直线y=mx+3﹣4m与双曲线的交点P落在EF之间的双曲线上,据此可得点P的横坐标的取值范围.训练小能手1.如图,点A是反比例函数y=2x(x>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣3x的图象于点B,以AB为边作▱ABCD,其中C、D在x轴上,则S□ABCD为()A.2 B.3 C.4 D.5【答案】D【解析】解:设A的纵坐标是b,则B的纵坐标也是b.把y=b代入y=得,b=,则x=,即A的横坐标是,;同理可得:B的横坐标是:﹣.则AB=﹣(﹣)=.则S□ABCD=×b=5.故选D.2.如图所示几何体的左视图是()A.B.C.D.【答案】B【解析】解:如图所示几何体的左视图是.故选:B.3.由下列光源产生的投影,是平行投影的是()A.太阳B.路灯C.手电筒D.台灯【答案】A【解析】解:用光线照射物体所产生的投影为平行投影,而用路灯、手电筒、台灯等照射物体所产生的投影为中心投影.故选A.4.如图,以点O为位似中心,将△ABC缩小后得到△DEF,已知OD=1,OA=3.若△DEF的面积为S,则△ABC的面积为()A.2S B.3S C.4S D.9S【答案】D【解析】解:∵△ABC与△DEF位似,∴=()2=,∴△ABC的面积=9S.故选D.5.如图,菱形ABCD的对角线BD与x轴平行,点B、C的坐标分别是(0,1)、(2,0),点A、D在函数y=(x>0)的图象上,则k的值为.【答案】4【解析】解:连结AC,如图,∵四边形ABCD为菱形,∴AC与BD互相垂直平分,∵BD∥x轴,∴AC⊥x轴,∴A点坐标为(2,2),∴k=2×2=4.故答案为4.6.如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB 于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线.(2)过点E作EH⊥AB于点H,求证:EF2=CD•BF.【答案】(1)证明:如图1,连接OE.∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径.∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC是⊙O的切线;(2)证明:如图2,连结DE.∵∠CBE=∠OBE,EC⊥BC于C,EH⊥AB于H,∴EC=EH.∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,∴∠CDE=∠HFE.在△CDE与△HFE中,,∴△CDE≌△HFE(AAS),∴CD=HF.∵∠BEF=∠EHF=90°,∠BFE=∠EFH,∴△BEF∽△EHF,∴EF2=HF•BF,∴EF2=CD•BF.【解析】(1)连接OE,由于BE是角平分线,则有∠CBE=∠OBE;而OB=OE,就有∠OBE=∠OEB,等量代换有∠OEB=∠CBE,那么利用内错角相等,两直线平行,可得OE∥BC;又∠C=90°,所以∠AEO=90°,即AC是⊙O的切线;(2)连结DE,先根据AAS证明△CDE ≌△HFE,再由全等三角形的对应边相等即可得出CD=HF,证明∴△BEF∽△EHF,得出对应边成比例,即可得出结论.例7.如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣2,0),B(1,0),交y轴于C(0,2);(1)求二次函数的解析式;(2)连接AC,在直线AC上方的抛物线上是否存在点N,使△NAC的面积最大,若存在,求出这个最大值及此时点N的坐标,若不存在,说明理由.(3)若点M在x轴上,是否存在点M,使以B、C、M为顶点的三角形是等腰三角形,若存在,直接写出点M的坐标;若不存在,说明理由.(4)若P为抛物线上一点,过P作PQ⊥BC于Q,在y轴左侧的抛物线是否存在点P使△CPQ ∽△BCO(点C与点B对应),若存在,求出点P的坐标,若不存在,说明理由.【答案】解:(1)∵二次函数y=ax2+bx+c的图象交x轴于A(﹣2,0),B(1,0),设二次函数的解析式为:y=a(x+2)(x﹣1),把C(0,2)代入得:2=a(0+2)(0﹣1),解得a=﹣1,∴y=﹣(x+2)(x﹣1)=﹣x2﹣x+2,∴二次函数的解析式为:y=﹣x2﹣x+2;(2)如图1,过N作ND∥y轴,交AC于D,设N(n,﹣n2﹣n+2),设直线AC的解析式为:y=kx+b,把A(﹣2,0)、C(0,2)代入得:,解得:,∴直线AC的解析式为:y=x+2,∴D(n,n+2),∴ND=(﹣n2﹣n+2)﹣(n+2)=﹣n2﹣2n,∴S△ANC=×2×[﹣n2﹣2n]=﹣n2﹣2n=﹣(n+1)2+1,∴当n=﹣1时,△ANC的面积有最大值为1,此时N(﹣1,2),(3)存在,分三种情况:①如图2,当BC=CM1时,M1(﹣1,0);②如图2,由勾股定理得:BC==,以B为圆心,以BC为半径画圆,交x轴于M2、M3,则BC=BM2=BM3=,此时,M2(1﹣,0),M3(1+,0);③如图3,作BC的中垂线,交x轴于M4,连接CM4,则CM4=BM4,设OM4=x,则CM4=BM4=x+1,由勾股定理得:22+x2=(1+x)2,解得:x=,∵M4在x轴的负半轴上,∴M4(﹣,0),综上所述,当B、C、M为顶点的三角形是等腰三角形时,M的坐标为(﹣1,0)或(1±,0)或(﹣,0);(4)存在两种情况:①如图4,过C作x轴的平行线交抛物线于P1,过P1作P1Q⊥BC,此时,△CP1Q∽△BCO,∴点P1与点C关于抛物线的对称轴对称,∴P1(﹣1,2),②如图5,由(3)知:当M(﹣,0)时,MB=MC,设CM与抛物线交于点P2,过P2作P2Q⊥BC,此时,△CP2Q∽△BCO,易得直线CM的解析式为:y=x+2,则,解得:P2(﹣,﹣),综上所述,点P的坐标为:(﹣1,2)或(﹣,﹣).【解析】(1)利用交点式求二次函数的解析式;(2)求直线AC的解析式,作辅助线ND,根据抛物线的解析式表示N的坐标,根据直线AC的解析式表示D的坐标,表示ND的长,利用铅直高度与水平宽度的积求三角形ANC的面积,根据二次函数的最值可得面积的最大值,并计算此时N的坐标;(3)分三种情况:当B、C、M为顶点的三角形是等腰三角形时,分别以三边为腰,画图形,求M的坐标即可;(4)存在两种情况:①如图4,点P1与点C关于抛物线的对称轴对称时符合条件;②如图5,图3中的M(﹣,0)时,MB=MC,设CM与抛物线交于点P2,则△CP2Q∽△BCO,P2为直线CM的抛物线的交点.。
人教版九年级下册数学综合复习达标测试卷(含答案)

人教版九年级下册数学综合复习达标测试卷(本试卷满分120分)一、选择题(本大题共10小题,每小题3分,共30分)1. 下列函数中,y 是x 的反比例函数的是( )A. y =2x +1B. y =4xC. y =21xD. y =2x 2. 如图所示的钢块零件的主视图为( )A B C D 第2题图3. 如图,在△ABC 中,点D 在边AB 上,过点D 作DE ∥BC ,交AC 于点E .若AD =2,BD =3,则AE AC 的值是( ) A. 25 B. 12 C. 35 D. 23第3题图 第4题图 第5题图 第6题图4. 如图,在Rt △ABC 中,∠C =90°,AB =5,AC =3,则sin A 的值为( ) A. 34 B. 45 C. 7 D. 355. 如图,已知△ABC 与△DEF 位似,位似中心为点O ,且32AO DO .若△ABC 的周长为9,则△DEF 的周长为( ) A. 4 B. 6 C. 12 D. 13.56. 已知蓄电池的电压为定值,使用蓄电池时,电流I 与电阻R 是反比例函数关系,它的图象如图所示.下列说法正确的是( )A. 函数解析式为I =R 13B. 蓄电池的电压是18 VC. 当R =3.6 Ω时,I =4 AD. 当I ≤10 A 时,R ≥3.6 Ω7. 7. 如图,学校操场上有一棵与地面垂直的树,数学小组两次测量它在地面上的影子,第一次是阳光与地面成30°,第二次是阳光与地面成60°,两次测量的影长相差6米,则树高为( )A. 3B. 33 C .6 D .3第7题图 第8题图 第9题图 第10题图8. 如图,在△ABC 中,∠B 和∠C 都是锐角,若∠B =α,∠C =β,则( )A. AB ·cos β=AC ·cos αB. AB ·sin α=AC ·cos βC. AB ·sin β=AC ·sin αD. AB ·sin α=AC ·sin β9. 如图,在△ABC 中,点D 在边AC 上,AD ∶DC =1∶2,O 是BD 的中点,连接AO 并延长交BC 于点E .若BE =1,则EC 的长为( )A. 2B. 2.5C. 3D. 410. 如图,在四边形ABCD 中,∠B =60°,∠C =90°,E 为边BC 上的点,△ADE 为等边三角形,BE =8,CE =2,则tan ∠AEB 的值为( ) A. 375 B.75 C. 335 D. 435二、填空题(本大题共6小题,每小题4分,共24分) 11. 3sin 60°= .12. 如图是一个几何体的三视图,该几何体的体积是 .第12题图 第13题图 第14题图 第15题图 第16题图13. 如图,在平面直角坐标系xOy 中,第一象限内的点P (x ,y )与A (2,2)在同一个反比例函数的图象上.若PC ⊥y 轴于点C ,PD ⊥x 轴于点D ,则矩形ODPC 的面积为 .14. 如图,斜坡AB 的坡度i 1=1∶3,现需要在不改变坡高AH 的情况下将坡度变缓,调整后的斜坡AC 的坡度i 2=1∶2.4.若斜坡AB =10米,则斜坡AC = 米.15. 如图,在平面直角坐标系中,已知A (1,0),B (2,0),C (0,1),在坐标轴上有一点P ,与A ,C 两点形成的三角形与△ABC 相似,则点P 的坐标是 .16. 如图,在Rt△ABC 中,△ABC =90°,直角边BC 在x 轴上,AD =3CD ,E 是AB 的中点,点D ,E 在反比例函数y =xk (x >0)的图象上,连接DE .若S 1+6=S 2,则k 的值为 . 三、解答题(本大题共8小题,共66分)17. (每小题3分,共6分)(1)计算:3cos 30°-tan 2 45°+2sin 60°;(2)如图,AC 为菱形ABCD 的对角线,点E 在AC 的延长线上,且∠E =∠ABC.求证:△ACD ∽△ABE .第17(2)题图 第18题图18. (6分)把边长为1个单位长度的6个相同正方体放在地面上,摆成如图所示的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)直接写出该几何体的表面积为 ; 19. (8分)如图,小明欲测量一座信号发射塔的高度,他站在该塔的影子上前后移动,直到自己影子的顶端正好与塔的影子顶端重合,此时他距离该塔20米.已知小明的身高是1.8米,他的影长是2米.(1)图中△ABC 与△ADE 是否相似?说明理由;(2)求信号发射塔BC 的高度.第19题图 第20题图 20.(8分)如图,在△ABC 中,点D 在BC 边上,点E 在AC 边上,且AD =AB ,∠DEC =∠B .(1)求证:△AED ∽△ADC ;(2)若AE =1,EC =3,求AB 的长.21.(8分)如图,一次函数y 1=k 1x +b 的图象与x 轴、y 轴分别交于A ,B 两点,与反比例函数y 2=x k 2的图象分别交于C ,D 两点,点C 的坐标为(2,4),点B 的坐标为(0,2).(1)求一次函数与反比例函数的解析式;(2)已知点D 的坐标为(-4,-2),求△COD 的面积;(3)直接写出k 1x +b <xk 2时x 的取值范围.第21题图 第22题图 22.(8分)中国迎来智慧农田时代,某地使用无人机给稻田喷洒农药,当无人机飞行到C 处时,操控者在A 处测得。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级综合复习数学试题姓名 得分一、选一选(下列各题中,只有一个正确的答案,每题3分,本题共18分)1.不等式6-2x <0的解集在数轴上表示为( )2.下列多项式中,不能运用公式进行分解因式的是( ) A.412+-x x B.a 4+b 2-2a 2b C.m 4-25 D.x 2+2xy-y 2 3.在ab a b a 2=,2babb a = ,bc ac b a =,()()1122++=x b x a b a 这几个等式中,从左到右的变形一定正确的有( )A.1个B.2个C.3个D.4个4.若dcb a =,则下列式子正确的是( ) A. 22dc b a = B.d c d b c a =++ C. b c d a = D. m d m c b a ++=5.下列说法正确的是( )A.所有的等腰三角形都相似B.四个角都是直角的两个四边形一定相似C.所有的正方形都相似D.四条边对应成比例的两个四边形相似 6.调查某班级的学生对数学老师的喜欢程度,下列最具有代表性的样本是( ) A.调查单数学号的学生 B.调查所有的班级干部C.调查全体女生D.调查数学兴趣小组的学生二、填一填(每空3分,本题共27分)7.若分式123+x x有意义,则x 满足的条件是_______________.8.分解因式:m 2(x-y)+4n 2(y-x)=_________________________.9.若4a 2+kab+9b 2可以因式分解为(2a-3b)2,则k 的值为________. 10.若不等式3a≥5a 成立,则a______________. 11.如图,在△ABC 中,EF∥BC,AE=2BE ,则△AEF 与梯形BCFE 的面积比为___________. 12.下列调查中,___________适宜使用抽样调查方式,___________适宜使用普查方式.(只填相应的序号)①张伯想了解他承包的鱼塘中的鱼的生长情况;②了解全国患非典型性肺炎的人数;③评价八年十班本次期末数学考试的成绩;④张红想了解妈妈煲的一锅汤的味道. 13.100个数据分成5组,其中第一、二小组的频率之和等于0.11,第四、五小组的频率之和等于0.27,则第三小组的频数等于_______________. 14.命题“同角的余角相等”的条件是___________________________________________,结论是_______________________________.15.在人体躯干和身高的比例上,肚脐是理想的黄金分割点,即比例越接近0.618越给人以美感.张女士的身高为1.60米,身体躯干(脚底到肚脐的高度)与身高的比为0.60,那么她应选择约__________厘米的高跟鞋看起来更美.(精确到十分位)三、算一算(每题6分,本题共18分)16.求不等式 的最大整数解17.化简求值:其中a=1,b=-2.18.解方程:四、做一做(19题7分,20、21题9分本题共25分)19.如图,已知AB∥ED,∠1=35°,∠2=80°,求∠ACD 的度数.20、(10分)如图,梯形ABCD 中,AB ∥DC ,∠B=︒90,E 为BC 上一点,且AE ⊥ED ,若BC=12,DC=7,BE :EC=1:2,求AB 的长D()22111b a b a b a -⎪⎭⎫⎝⎛+--+ABEC21.某校八年一班的一节数学活动课安排了测量操场上悬挂国旗的旗杆的高度.甲、乙、丙三个学习小组设计的测量方案如图所示:甲组测得图中BO=60米,OD=3.4米,CD=1.7米;乙组测得图中,CD=1.5米,同一时刻影长FD=0.9米,EB=18米;丙组测得图中,EF∥AB、FH∥BD,BD=90米,EF=0.2米,人的臂长(FH)为0.6米,请你任选一种方案,利用实验数据求出该校旗杆的高度.六、想一想(每题8分,本题共16分)22.随着IT技术的普及,越来越多的学校开设了微机课.某初中计划拿出72万元购买电脑,由于团体购买,结果每台电脑的价格比计划降低了500元,因此实际支出了64万元.学校共买了多少台电脑?若每台电脑每天最多可使用4节课,这些电脑每天最多可供多少学生上微机课?(该校上微机课时规定为单人单机)23.某工艺品厂的手工编织车间有工人20名,每人每天可编织5个座垫或4个挂毯.在这20名工人中,如果派x人编织座垫,其余的编织挂毯.已知每个座垫可获利16元,每个挂毯可获利24元.(1)写出该车间每天生产这两种工艺品所获得的利润y(元)与x(人)之间的函数关系式;(2)若使车间每天所获利润不小于1800元,最多安排多少人编织座垫?七、试一试(每题8分,本题共16分)24.已知:D是△ABC中BC边上的一点,AB=6cm,BC=4cm,BD=1.5cm,在AB边上是否存在点E,使由顶点B、D、E组成的三角形与△ABC相似?如果存在,求出BE的长;如果不存在,请说明理由.25.为了迎接奥运,某市教育局要举办中学生体育知识竞赛.在大赛之前红光中学和育英中学先举办了一次对抗赛,每所学校各选派10人参赛,两校代表队取得的成绩如下表所示:(1)分别计算两队平均成绩;(2)分别计算两队的极差和方差;(3)这两个队的成绩各有什么特点?(4)你认为哪个队的团体赛的成绩会好一些?个人比赛中,哪个队的队员夺冠的可能性更大?请说明理由.参考答案及评价标准:(如有其它正确答案请参照相应的标准执行)一、选一选(每题2分,本题共12分)1.C2.D3.B4.B5.C6.A二、填一填(每空2分,本题共22分)7.8.(x-y)(m+2n)(m-2n) 9.-12 10.a≤011.4:512.①④,②③13.62 14.两个角是同角的余角,这两个角相等15.7.5三、画一画(本题共5分)16.利用位似图形方法作图正确得3颗★,写出结论:则以C为端点的“”即为所求得1颗★,共4颗★四、算一算(每题5分,本题共15分)17.233)2(2 1-<--x x解:6-4(2-x)<3(x-3)解得x<-7所以x的最大整数解为x=-818.解:=a-b-a-b+a2-b2=a2-b2-2b将a=1,b=-2代入,原式=12-(-2)2-2×(-2)=119.解:方程两边都乘以x(x-1),得3x-(x+2)=0解得x=1检验:将x=1代入x(x-1)=0所以x=1是增根所以原方程无解五、做一做(每题6分,本题共18分)注:20、21题因为分数有限,每步推理后的注明理由不列入评价之中;证明过程中,只要推理严谨,结论正确,即可得满分.但在数学中应尽量要求学生注明理由,说明其依据的合理性.20.证明:∵∠DCB是△DCE的一个外角(外角定义),∴∠DCB>∠CDE(三角形的一个外角大于任何一个和它不相邻的外角)∵∠ADB是△BCD的一个外角(外角定义),∴∠ADB>∠DCB(三角形的一个外角大于任何一个和它不相邻的外角)∴∠ADB>∠CDE(不等式的性质)21.证法一:过C点作CF∥AB,则∠1=∠ACF=35°(两直线平行,内错角相等)∵AB∥ED,CF∥AB(已知),∴CF∥ED(平行于同一直线的两直线平行)∴∠FCD=180°-∠2=180°-80°=100°(两直线平行,同旁内角内角互补)∴∠ACD=∠ACF+∠FCD=35°+100°=135°证法二:延长DC交AB于F∵AB∥ED(已知),∴∠BFC=∠2=80°(两直线平行,内错角相等),∵∠ACF=∠BFC-∠1=80°-35°=45°(三角形一个外角等于它不相邻的两个内角的和)∴∠ACD=180°-∠ACF=180°-45°=135°(1平角=180°)证法三:延长AC、ED交于F∵AB∥ED,∴∠DFC=∠1=35°∵∠CDF=180°-∠2=180°-80°=100°∴∠ACD=∠CDF+∠DFC=100°+35°=135°22.选择甲组方案计算:解:在△ABO和△CDO中,因为∠ABO=∠CDO=90°,∠COD=∠AOB,所以△ABO∽△CDO.所以,所以,又BO=60米,OD=3.4米,CD=1.7米,即该校的旗杆为30米选择乙组方案计算:连AE,CF,在△ABE和△CDF中,因为∠ABE=∠CDF=90°,∠AEB=∠CFD,所以△ABE∽△CDF.所以,又CD=1.5米,FD=0.9米,EB=18米所以,即该校的旗杆为30米选择丙组方案计算:由FH∥BD,可得∠CFH=∠CBD,∠FCH=∠BCD,所以△CFH∽△CBD,,又EF∥AB,可得∠FEC=∠BAC,∠FCE=∠BCA,△CFE∽△CBA,,所以又BD=90米,EF=0.2米,FH=0.6米,,即该校的旗杆为30米.六、想一想(每题6分,本题共12分)23.方法一:设学校共买了x台电脑,得,解得x=160检验:将x=160代入所列方程,左=4000=右,因此x=160是原方程的根160×4=640(人)答:学校共买了160台电脑,每天可供640人上课方法二:此可设降价前每台电脑的价格为x元,则,得x=4500方法三:此可设降价后每台电脑的价格为x元,则,得x=400024.解:(1)y=16×5x+24×4(20-x),即y=-16x+1920(2)根据题意,得-16x+1920≥1800解得x≤7.5x取整数,当x=8时,-16×8+1920=1792≯1800所以x=7答:若使车间每天所获利润不小于1800元,最多安排7人编织座垫.七、试一试(每题8分,本题共16分)25.解法一:存在(1)假设AB边上存在点E,使△BDE∽△BCA,所以有因为AB=6cm,BC=4cm,BD=1.5cm,所以因为2.25<6,即BE<BA,即点E在BA上.(2)除(1)外还存在点E,使△BED∽△BCA,所以,因为AB=6cm,BC=4cm,BD=1.5cm,所以,因为1<6,即BE<BA,即点E在AB上.所以AB边上存在点E,使由顶点B、D、E组成的三角形与△ABC相似,DE的长为1cm或2.25cm.解法二:存在(1)过D作DE∥AC交AB于E,可得△BDE∽△BCA,求得BE=2.25(cm)因为2.25<6,即BE<BA,因此点E在AB上.(2)以D为顶点作∠BDE=∠A,也可得△BED∽△BCA,求得BE=1(cm)因为1<6,即BE<BA,因此点E在AB上所以AB边上存在点E使由顶点B、D、E组成的三角形与△ABC相似,DE的长为1cm或2.25cm.注:①此题答对一种情况(求出一个BE的值)得适当分;②解答过程只要合理,解题的格式不必追求统一,只要说明存在,并有求BE两个值的过程即可得满26.解:(1)(2)红光队极差=35,育英队极差=30(3)此问题答案具有开放性,只要学生说明有道理,答出两点就应得适当分数例如:①红光代表队有潜力,红光队比育英队的最好成绩好;②育英成员的成绩比较稳定,因为方差小;③红光队队员成绩离散度大,队员之间差距大;④两队的平均成绩相同;⑤红光队成绩在90分以上的人数比育英队要多,有实力的队员多;⑥红光队的众数为90分,育英队的众数是85分,红光队的高分数段队员比育英队多;⑦红光队的中位数是77.5分,育英队的中位数是82.5分,育英队整体成绩比红光队好(4)育英队,因为此队方差小,所以队员的成绩稳定,队员之间差距小;红光队,因为红光队最好成绩要比育英队高(或最高成绩在红光队),所以乙队队员夺冠的可能性大.。