【期望杯】2009年七年级数学竞赛试题
2009年秋七年级数学竞赛试卷

2009年秋七年级“希望杯”数学竞赛试卷 考试时间2009年12月6日8:30—10:30一、选择题(每小题4分,共40分)1.-︱-21︳的倒数是( ) A 21 B -21C 2 D -22. 下列四个等式: ab =0, ab=0, a 2=0, a 2+b 2=0中,可以确定a=0的式子共有( )A .3个.B .2个.C .1个.D .0个.3.计算:1-2-3+4+5-6-7+8+---+2005-2006-2007+2008等于( ) A 0 B.1 C.-1 D.20084. 若|a|=4,|b|=2,且|a+b|=a+b, 那么a-b 的值只能是( ). A 、2; B 、—2; C 、6; D 、2或6。
5文具店的老板卖均以60元的价格卖了两个计算器,其中一个赚了 20﹪,另一个亏了20﹪,则该老板( )A. 赚了5元B. 亏了25元C.赚了25元D. 亏了5元. .6.若2a 与1-4a 互为相反数,则a= ( )A .1B .21C .-1D .317.若2a m+2b 2n+2与a 3b 8的和仍是一个单项式,则m 与n 的值分别是( ):A 、1,2;B 、2,1;C 、1,1;D 、1,3。
8.一件标价为600元的上衣,按8折销售仍可获利20元,设这件上衣的成本为x 元,根据题意,下面所列的方程式正确的是( ):A 、600×80%-x=20;B 、600×8-x=20;C 、600×80%=x-20;D 、600×8=x-20。
9.时针与分针在下列哪个时段内重合过一次 ( )A 、2:30—3:00B 、7:30—8:00C 、12:30—13:00D 、18:00—18:3010.据报道目前用超级计算机找到的最大质数是2859433-1,这个质数的末尾数字是( )A .1B .3C .7D .9二、填空题(每小题4分,共24分) 11、53=-x ,则x=12、已知代数式y x 2+的值是3,则代数式142++y x 的值是_______13、某次数学竞赛共出了25道选择题,评分办法是:答对一道加4分,答错一道倒扣1分,不答记0分, 已知小王不答的题比答错的题多2道,他的总分是74分,则他答对了________________ 道题。
2009年全国初中数学联合竞赛试题及详细解答(含一试二试)

2009年全国初中数学联合竞赛试题第一试一、选择题(本题满分42分,每小题7分)1.设1a =,则32312612a a a +--=( )A.24.B. 25.C. 10.D. 12.2.在△ABC 中,最大角∠A 是最小角∠C 的两倍,且AB =7,AC =8,则BC =( )A. B. 10.C.D. 3.用[]x 表示不大于x 的最大整数,则方程22[]30x x --=的解的个数为( ) A.1. B. 2. C. 3. D. 4.4.设正方形ABCD 的中心为点O ,在以五个点A 、B 、C 、D 、O 为顶点所构成的所有三角形中任意取出两个,它们的面积相等的概率为( )A.314. B. 37. C. 12. D. 47. 5.如图,在矩形ABCD 中,AB =3,BC =2,以BC 为直径在矩形内作半圆,自点A作半圆的切线AE ,则sin ∠CBE = ( )A.3B. 23.C. 13.D. 10.6.设n 是大于1909的正整数,使得19092009n n--为完全平方数的n 的个数是( )A.3.B. 4.C. 5.D. 6. 二、填空题(本题满分28分,每小题7分)1.已知t 是实数,若,a b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根,则22(1)(1)a b --的最小值是____________.2. 设D 是△ABC 的边AB 上的一点,作DE//BC 交AC 于点E ,作DF//AC 交BC 于点F ,已知△ADE 、△DBF 的面积分别为m 和n ,则四边形DECF 的面积为______.3.如果实数,a b 满足条件221a b +=,22|12|21a b a b a -+++=-,则a b +=______.4.已知,a b是正整数,且满足是整数,则这样的有序数对(,)a b 共有DC_____对.第二试 (A )一.(本题满分20分)已知二次函数2(0)y x bx c c =++<的图象与x 轴的交点分别为A 、B ,与y 轴的交点为C.设△ABC 的外接圆的圆心为点P.(1)证明:⊙P 与y 轴的另一个交点为定点.(2)如果AB 恰好为⊙P 的直径且2ABC S △=,求b 和c 的值.二.(本题满分25分)设CD 是直角三角形ABC 的斜边AD 上的高,1I 、2I 分别是△ADC 、△BDC 的内心,AC =3,BC =4,求1I 2I .三.(本题满分25分)已知,,a b c 为正数,满足如下两个条件:32a b c ++= ①14b c a c a b a b c bc ca ab +-+-+-++= ②为三边长可构成一个直角三角形.第二试 (B )一.(本题满分20分)题目和解答与(A )卷第一题相同.二. (本题满分25分) 已知△ABC 中,∠ACB =90°,AB 边上的高线CH 与△ABC 的两条内角平分线 AM 、BN 分别交于P 、Q 两点.PM 、QN 的中点分别为E 、F.求证:EF ∥AB.三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )一.(本题满分20分)题目和解答与(A )卷第一题相同.二.(本题满分25分)题目和解答与(B )卷第二题相同.三.(本题满分25分)已知,,a b c 为正数,满足如下两个条件:N32a b c ++= ① 14b c a c a b a b c bc ca ab +-+-+-++= ②.2009年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题(本题满分42分,每小题7分) 1.设1a =,则32312612a a a +--= ( )A.24.B. 25.C. 10.D. 12. 【答】A.由1a =,得2862a a =-=-,故226a a +=.所以32223126123(2)6612a a a a a a a a +--=++--=261212661224a a +-=⨯-=.2.在△ABC 中,最大角∠A 是最小角∠C 的两倍,且AB =7,AC =8,则BC = ( )A. B. 10.C.D. 【答】C. 延长CA至D,使AD =AB ,则DB1D =ABD =CAB =C 2∠∠∠∠,所以△CBD ∽△DAB ,所以B D C D=A B B D,故2B D A BCD 7(87)105=⋅=⨯+=,所以B D 5=.又因为C D ∠=∠,所以BC BD ==3.用[]x 表示不大于x 的最大整数,则方程22[]30x x --=的解的个数为( )A.1.B. 2.C. 3.D. 4. 【答】C.由方程得232[]x x -=,而[]x x ≤,所以232x x -≤,即2230x x --≤,解得13x -≤≤,从而[]x 只可能取值1,0,1,2,3-.当[]1x =-时,21x =,解得1x =-; 当[]0x =时,23x =,没有符合条件的解; 当[]1x =时,25x =,没有符合条件的解; 当[]2x =时,27x =,解得x =当[]3x =时,29x =,解得3x =.因此,原方程共有3个解.4.设正方形ABCD 的中心为点O ,在以五个点A 、B 、C 、D 、O 为顶点所构成的所有三角形中任意取出两个,它们的面积相等的概率为 ( )A.314. B. 37. C. 12. D. 47. 【答】B.不妨设正方形的面积为1.容易知道,以五个点A 、B 、C 、D 、O 为顶点所构成的三角形都是等腰直角三角形,它们可以分为两类:(1)等腰直角三角形的直角顶点为正方形ABCD 的四个顶点之一,这样的三角形有4个,它们的面积都为12; (2)等腰直角三角形的直角顶点为正方形ABCD 的中心O ,这样的三角形也有4个,它们的面积都为14.所以以五个点A 、B 、C 、D 、O 为顶点可以构成4+4=8个三角形,从中任意取出两个,共有28种取法.要使取出的两个三角形的面积相等,则只能都取自第(1)类或都取自第(2)类,不同的取法有12种.因此,所求的概率为123287=.5.如图,在矩形ABCD 中,AB =3,BC =2,以BC 为直径在矩形内作半圆,自点A 作半圆的切线AE,则s i∠CBE=( )B. 23.C. 13.D. .【答】 D.设BC 的中点为O ,连接OE 、CE.因为A B ⊥BC ,A E ⊥OE ,所以A 、B 、O 、E 四点共圆,故∠BAE =∠COE. 又AB =AE ,OC=OE ,所以△AB E ∽△OCE ,因此CE OC 1=BE AB 3=,即BE 3CE =.又C E ⊥BE,所以BC ==,故sin ∠CBE=CE =BC .6.设n 是大于1909的正整数,使得19092009n n--为完全平方数的n 的个数是( )A.3.B. 4.C. 5.D. 6. 【答】B.设2009n a -=,则190910010012009n a n a a--==--,它为完全平方数,不妨设为21001m a -=(其中m 为正整数),则21001m a=+.验证易知,只有当1,2,3,7m =时,上式才可能成立.对应的a 值分别为50,20,10,2. 因此,使得19092009n n--为完全平方数的n 共有4个,分别为1959,1989,1999,2007.二、填空题(本题满分28分,每小题7分)1.已知t 是实数,若,a b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根,则22(1)(1)a b --的最小值是____________.O DC【答】3-.因为,a b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根,所以2(2)4(1)0,10,2,t ab t a b ⎧∆=---≥⎪=-≥⎨⎪+=⎩解得12t ≤≤. 2222222(1)(1)()()1()()21a b ab a b ab a b ab --=-++=-+++22(1)42(1)14t t t =--+-+=-,当1t =时,22(1)(1)a b --取得最小值3-.2. 设D 是△ABC 的边AB 上的一点,作DE//BC 交AC 于点E ,作DF//AC 交BC 于点F ,已知△ADE 、△DBF 的面积分别为m 和n ,则四边形DECF 的面积为______.【答】.设△ABC 的面积为S ,则因为△ADE ∽△ABC,所以ADAB =. 又因为△BDF ∽△BAC,所以BDAB =. 两式相加得1AD BDAB AB=+=,即1=,解得2S =+. 所以四边形DECF的面积为2m n +--=3.如果实数,a b 满足条件221a b +=,22|12|21a b a b a -+++=-,则a b +=______.【答】 1-.因为221a b +=,所以11,11a b -≤≤-≤≤.由22|12|21a b a b a -+++=-可得2222|12|21121a b b a a a a a -+=---=----222a a =--,从而2220a a --≥,解得10a -≤≤.从而120a b -+≥,因此21222a b a a -+=--,即22122(1)b a b +=-=--,整理FC得2230b b --=,解得1b =-(另一根32b =舍去). 把1b =-代入212b a +=-计算可得0a =,所以1a b +=-.4.已知,a b是正整数,且满足是整数,则这样的有序数对(,)a b 共有_____对.【答】 7.2k =(k 为正整数),则215154k b a =+-. 令2215q a p =,其中,p q 均为正整数且(,)1p q =.从而2215aq p =,所以2|15q ,故1q =1p=.1m =(其中m 为正整数),则112kp m +=. 又1,1m p ≥≥,所以1122k p m=+≤,所以1,2,3,4k =. (1)1k =时,有1112p m +=,即(2)(2)4p m --=,易求得(,)(4,4)p m =或(3,6)或(6,3).(2)2k =时,同理可求得(,)(2,2)p m =. (3)3k =时,同理可求得(,)(2,1)p m =或(1,2). (4)4k =时,同理可求得(,)(1,1)p m =.因此,这样的有序数对(,)a b 共有7对,分别为(240,240),(135,540),(540,135),(60,60),(60,15),(15,60),(15,15).第二试 (A )一.(本题满分20分)已知二次函数2(0)y x bx c c =++<的图象与x 轴的交点分别为A 、B ,与y 轴的交点为C.设△ABC 的外接圆的圆心为点P. (1)证明:⊙P 与y 轴的另一个交点为定点.(2)如果AB 恰好为⊙P 的直径且2ABC S △=,求b 和c 的值.解 (1)易求得点C 的坐标为(0,)c ,设1A (,0)x ,2B(,0)x ,则12x x b +=-,12x x c =.设⊙P 与y 轴的另一个交点为D ,由于AB 、CD 是⊙P 的两条相交弦,它们的交点为点O ,所以O A ×OB =O C ×OD ,则121x x c OA OB OD OC c c⨯====.因为0c <,所以点C 在y 轴的负半轴上,从而点D 在y 轴的正半轴上,所以点D 为定点,它的坐标为(0,1). …………………………………10分(2)因为AB ⊥C D ,如果AB 恰好为⊙P 的直径,则C 、D 关于点O 对称,所以点C 的坐标为(0,1)-,即1c =-. …………………………………15分又12AB x x =-===,所以1122ABC S AB OC =⋅==△,解得b =±. …………………………………20分二.(本题满分25分)设CD 是直角三角形ABC 的斜边AD 上的高,1I 、2I 分别是△ADC 、△BDC 的内心,AC =3,BC =4,求1I 2I .解 作1I E ⊥AB 于E ,2I F ⊥AB 于F.在直角三角形ABC 中,AC =3,BC =4,AB =5=.又C D ⊥AB ,由射影定理可得2AC 9A D =AB 5=,故16BD =AB AD 5-=,12CD =5=. …………………………………5分C因为1I E 为直角三角形ACD 的内切圆的半径,所以1I E =13(AD CD AC)25+-=. …………………………………10分连接D 1I 、D 2I ,则D 1I 、D 2I 分别是∠ADC 和∠BDC 的平分线,所以∠1I DC =∠1I DA =∠2I DC =∠2I DB =45°,故∠1I D 2I =90°,所以1I D ⊥2I D ,1113I E 5DI sin ADI sin 45===∠︒. …………………………………15分同理,可求得24I F 5=,2D I 5=. …………………………………20分 所以1I 2I=. …………………………………25分三.(本题满分25分)已知,,a b c 为正数,满足如下两个条件:32a b c ++= ①14b c a c a b a b c bc ca ab +-+-+-++= ②为三边长可构成一个直角三角形. 证法1 将①②两式相乘,得()()8b c a c a b a b ca b c bc ca ab+-+-+-++++=, 即222222()()()8b c a c a b a b c bc ca ab+-+-+-++=, ………………………………10分即222222()()()440b c a c a b a b c bc ca ab+-+-+--+-+=, 即222222()()()0b c a c a b a b c bc ca ab----+-++=, ………………………………15分即()()()()()()0b c a b c a c a b c a b a b c a b c bc ca ab-+---+--+++-++=,即()[()()()]0b c a a b c a b c a b c a b c abc -+----++++=,即222()[2]0b c a ab a b c abc -+--+=,即22()[()]0b c a c a b abc -+--=,即()()()0b c a c a b c a b abc-++--+=, (20)分所以0b c a -+=或0c a b +-=或0c a b -+=,即b a c +=或c a b +=或c b a +=.因此,以为三边长可构成一个直角三角形. ……………………………25分证法2 结合①式,由②式可得32232232214a b c bc ca ab ---++=, 变形,得222110242()4a b c abc -++=③ ………………………10分又由①式得2()1024a b c ++=,即22210242()a b c ab bc ca ++=-++, 代入③式,得110242[10242()]4ab bc ca abc --++=, 即16()4096abc ab bc ca =++-. …………………………………15分3(16)(16)(16)16()256()16a b c abc ab bc ca a b c ---=-+++++-3409625632160=-+⨯-=, ……………20分所以16a =或16b =或16c =.结合①式可得b a c +=或c a b +=或c b a +=.为三边长可构成一个直角三角形. …………25分第二试 (B )一.(本题满分20分)题目和解答与(A )卷第一题相同.二. (本题满分25分) 已知△ABC 中,∠ACB =90°,AB 边上的高线CH 与△ABC 的两条内角平分线 AM 、BN 分别交于P 、Q 两点.PM 、QN 的中点分别为E 、F.求证:EF ∥AB.解 因为BN 是∠ABC 的平分线,所以ABN CBN ∠=∠. 又因为C H ⊥AB ,所以CQN BQH 90ABN 90CBN CNB ∠=∠=︒-∠=︒-∠=∠,NB因此CQ NC =. …………………………………10分又F 是QN 的中点,所以C F ⊥QN ,所以CFB 90CHB ∠=︒=∠,因此C 、F 、H 、B 四点共圆. …………………15分又FBH =FBC ∠∠,所以FC =FH ,故点F 在CH 的中垂线上. ……20分 同理可证,点E 在CH 的中垂线上.因此E F ⊥CH.又AB ⊥CH ,所以EF ∥AB. ………………25分三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )一.(本题满分20分)题目和解答与(A )卷第一题相同.二.(本题满分25分)题目和解答与(B )卷第二题相同.三.(本题满分25分)已知,,a b c 为正数,满足如下两个条件:32a b c ++= ①14b c a c a b a b c bc ca ab +-+-+-++= ②. 解法1 将①②两式相乘,得()()8b c a c a b a b c a b c bc ca ab+-+-+-++++=, 即222222()()()8b c a c a b a b c bc ca ab+-+-+-++=, ………………………………10分 即222222()()()440b c a c a b a b c bc ca ab+-+-+--+-+=, 即222222()()()0b c a c a b a b c bc ca ab----+-++=, ………………………………15分 即()()()()()()0b c a b c a c a b c a b a b c a b c bc ca ab-+---+--+++-++=, 即()[()()()]0b c a a b c a b c a b c a b c abc-+----++++=, 即222()[2]0b c a ab a b c abc -+--+=,即22()[()]0b c a c a b abc -+--=, 即()()()0b c a c a b c a b abc-++--+=, …………………………………20分 所以0b c a -+=或0c a b +-=或0c a b -+=,即b a c +=或c a b +=或c b a +=.为三边长可构成一个直角三角形,它的最大内角为90°.……………………………25分解法2 结合①式,由②式可得32232232214a b c bc ca ab ---++=, 变形,得222110242()4a b c abc -++= ③ ………………………10分又由①式得2()1024a b c ++=,即22210242()a b c ab bc ca ++=-++, 代入③式,得110242[10242()]4ab bc ca abc --++=, 即16()4096abc ab bc ca =++-. …………………………………15分3(16)(16)(16)16()256()16a b c abc ab bc ca a b c ---=-+++++-3409625632160=-+⨯-=, ………20分所以16a =或16b =或16c =.结合①式可得b a c +=或c a b +=或c b a +=.为三边长可构成一个直角三角形,它的最大内角为90°. ……………………………25分。
2009-2010学年第一学期七年级总分竞赛数学试卷(含答案)

2009学年第一学期七年级总分竞赛(数学学科)一、选择题(每题3分,共30分)1.计算2)3(-的结果是( ▲ ).A .-6B .9C .-9D .62. 把代数式“21-x”用文字语言叙述,其中表述不正确...的是( ▲ ) A .比x 的倒数小2的数 B .x 与2的差的倒数 C .x 的倒数与2的差 D .1除以x 的商与2的差3.下列各式中:①)2(--;②2--;③22-;④2)2(--,计算结果为负数..的式子有( ▲ ) A .①②③ B . ①②④ C .②③④ D .②④ 4. 方程1412=--y y 去分母得( ▲ ) A. 1)1(2=--y y B. 412=--y y C. 112=--y y D. 4)1(2=--y y 5. 下列运算正确的是( ▲ )A. 22330a b ba -=B.44321m m -=C.235325x x x +=D. 325a b ab += 6. 下列说法正确的是( ▲ )A.两点之间直线最短B.若AC =BC ,则点C 为线段AB 的中点C.经过直线外一点,有且只有一条直线平行于已知直线D.若∠1+∠2+∠3=180°,则∠1,∠2,∠3互补7.如图,一块砖的外侧面积为x ,那么图中残留部分墙面的面积 为( ▲ )A .4xB .12xC .8xD .16x8.甲、乙两人参加体育项目训练,为了便于研究,把最近五次成绩分别用实线和虚线连接,如上右图所示,下面结论错误..的是( ▲ )A .乙的第二次成绩与第五次成绩相同B .第三次测试甲的成绩与乙的成绩相同C .第四次测试甲的成绩比乙的成绩多2分D .五次测试甲的成绩都比乙的成绩高 9.方程12009200735153=⨯++++x x x x 的解是=x ( ▲ ) A .20092008 B.20082009 C.10042009 D.20091004是有理数 (第10题)10. 如右图,依次连结4×4方格上的四个点,得到一个小正方形,若每个方格的边长为1,则所得小正方形的面积以及边长分别为( ▲ )A. 16,4B. 10,10C.9,3D.无法确定 二、填空题(每题3分,共24分)11. 已知∠A=50°,则∠A 的补角是 ▲ 度. 12. 若单项式2323m x y 与45n xy -是同类项,则m+n = ▲ . 13. 若()25+x 与|y -2|的值互为相反数,则x+2y 的值为 ▲ .14. 已知一立方体的棱长是8cm ,再做一个立方体,使它的体积是原立方体体积的3倍,则所做的立方体的表面积是 ▲ cm 2(精确到0.1cm 2). 15.有一个数值转换器,原理如图:当输入的a=81时,则输出的b= ▲ .16.古代有个雇工,他工作一年的报酬是年终发给他一件衣服和10枚银币,但他干满了8 个月就决定不干了,结帐时,老板发给他一件衣服和2枚银币.则这件衣服值 ▲ 枚银币.17. 数学的美无处不在.数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的 长度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐.如三根弦长度之比是15:12:10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do 、mi 、so .研究15、12、10这三个数的倒数发现:111112151012-=-.我们称15、12、10这三个数为一组调和数.现有一组调和数:x 、5、3(x >5),则x 的值是 ▲ .18. ⑴若直线l 1与直线l 2相交,能构成_ _▲_ _对对顶角;⑵若在⑴的基础上再任意的画一条直线l 3 ,则能构成_ ▲ _对对顶角.三、解答题(本题共8题,共66分)19.计算或化简求值(第小题4分,共8分) (1) 计算:[]4514(3)23-+--⨯÷(2)先化简,再求值2),311(3)2421(22-=-+-+-a a a a 其中.20.解方程(每小题4分,共8分)(1)2151136x x +--= 4213(2)2()3324x x x ⎡⎤--=⎢⎥⎣⎦21.(本题满分8分)前不久,我校某同学不幸身患尿毒症,昂贵的医疗费,让这个普通家庭陷入困境之中。
希望杯竞赛试题七年级数学

“希望杯”全国数学邀请赛赛前模拟题姓名_____________ 班级____________ 学校_______________一、选择题:1、在ABC ∆中,∠A+∠C=2∠B ,2∠A+∠B=2∠C ,则 ABC ∆是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、等腰三角形2、有理数d c b a ,,,满足d c b a <<<<0,且d a c b <<<,则d c b a +++的值( )A 、大于0B 、等于0C 、小于0D 、与0的大小关系不确定3、一个多边形的内角和为900°,则从这个多边形的某一个顶点引出的对角线有( )条.A 、3B 、4C 、5D 、64、若322=-x x ,则=--20047223x x ( )A 、2012B 、-2012C 、2013D 、-20135、若20131001,20121000,2011999===c b a ,则( )A 、c b a <<B 、a c b <<C 、a b c <<D 、b c a <<二、填空题6、算式20102013543⨯⨯的结果末尾有_______________个0.7、如图12,半圆O 的直径AB=2,四边形COAD 为正方形,连接AC ,若正方形内三部分的面积分别为S 1,S 2、S 3,则S 1:S 2:S 3=。
8、如图,在ABC ∆中,BC>AC ,∠A=60°,D 、E 分别是AB 、AC 的中点,若PC 平分∠ACB ,PD 平分∠ADE ,则∠DPC=___________9、z and y x w ,,, are all whole numbers.If 5887532=⋅⋅⋅zy x w ,then 2w+3x+5y+7z=______C EP AB D三、解答题1、已知:222)()()(b a a c c b -=-=-,求证:c b a ==2、宝石鉴定师张宝不小心在26颗0.5克拉(1克拉=0.2克)的钻石中混入了1颗外观一样的仿钻,张宝除了一台非常准的宝石天平以外没有其他检测设备,他用天平只称了3次,就把这颗仿钻挑出来了,你知道他是怎么做的吗?(仿钻比钻石重60-70%)。
2009年全国初中数学联合竞赛试题及答案

2009年全国初中数学联合竞赛试题参考答案第一试一、选择题(本题满分42分,每小题7分)1. 设,则( A )A.24.B. 25.C..D.2.在△ABC中,最大角∠A是最小角∠C的两倍,且AB=7,AC=8,则BC=( C )A..B. .C. .D. .3.用表示不大于的最大整数,则方程的解的个数为 ( C )A.1.B. 2.C. 3.D. 4.4.设正方形ABCD的中心为点O,在以五个点A、B、C、D、O为顶点所构成的所有三角形中任意取出两个,它们的面积相等的概率为( B )A..B. .C. .D. .5.如图,在矩形ABCD中,AB=3,BC=2,以BC为直径在矩形内作半圆,自点A作半圆的切线AE,则si n∠CBE=( D )A..B. .C. .D.6.设是大于1909的正整数,使得为完全平方数的的个数是( B )A.3.B. 4.C. 5.D. 6.二、填空题(本题满分28分,每小题7分)1.已知是实数,若是关于的一元二次方程的两个非负实根,则的最小值是____________.2.设D是△ABC的边AB上的一点,作DE//BC交AC于点E,作DF//AC交BC于点F,已知△ADE、△DBF的面积分别为和,则四边形DECF的面积为______.3.如果实数满足条件,,则______.4.已知是正整数,且满足是整数,则这样的有序数对共有___7__对.选择题解答:1. 解:a=√7-1a+1=√7(a+1)²=7a²+2a+1=7a³=-2a²+6a代入原式原式=3(-2a²+6a)+12a²-12=6a²+18a-12=6(a+1)²-18=42-18=242. 解:如图,作∠BAC平分线,AD交BC于D∠BAD=∠DAC=∠BCA△ABC △DBAAB/DB=BC/BA=AC/DA7/DB=BC/7=8/DADB×BC=49DA×BC=56DB×BC+DA×BC=105BC×(DB+DA)=105又∠C=∠DACDA=DCBC×(DB+DC)=105BC²=105BC=√(105)3. 解:x²-2[x]-3=0[x]=((x²-3)/2)≤x ([x]表示不大于X的最大整数) (1)x²-2x-3≤0(x-3)(x+1)≤0即:-1 ≤ x ≤3由[x]≤x 可得,[x]的可能取值为 -1, 0, 1, 2, 3当[x]=-1 代入(1)式,解得X=±1, 根据[x]表示不大于X的最大整数,则[x]=-1或[x]=1,x=-1有一个解;当[x]=0 代入(1)式,解得X=±√3, 根据[x]表示不大于X的最大整数,则[x]=1或[x]=-2,产生矛盾,x无解;当[x]=1 代入(1)式,解得X=±√5, 根据[x]表示不大于X的最大整数,则[x]=2或[x]=-3,产生矛盾,x无解;当[x]=2 代入(1)式,解得X=±√7, 根据[x]表示不大于X的最大整数,则[x]=2或[x]=-3,x=√7有一个解;当[x]=3 代入(1)式,解得X=±√(11), 根据[x]表示不大于X的最大整数,则[x]=3或[x]=-4,x=√(11)有一个解;综上,满足条件的方程的解有3个。
2009年湖州市初一数学期望杯竞赛试卷(浙教版,含答案)

2009年湖州市七年级数学竞赛试卷(考试时间:(2009年5月10日 上午9:00—11:00)2.解答书写时不要超过装订线. 3.可以用计算器。
一、选择题(共8小题,每小题5分,满分40分.以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里.不填、多填或错填均得零分)1.一个正数x 的两个平方根分别是a +l 与a -3,则a 值为( ) A .2 B .-l C.1 D .0 2.若01a<<,21b -<<-,则1212a b a ba b a b-++-+-++的值是( ) A .0 B .-1 C .-3 D .-43.将长为15dm 的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同的截法有 ( ) A.5种 B.6种 C.7种 D.8种4.如图所示,在△ABC 中,D、E 分别是边AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数为 ( )A.15°B.20° C.25° D.30° 5.如图,边长为1的正方形ABCD 绕点A 逆时针旋转30°到正方形A ′B ′C ′D′,图中阴影部分的面积为 ( ) A.12B.C.1D.1 6. 如图,是一个装饰物品连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是( )(第1题) B7.当x=-2时,37ax bx +-的值为9,则当x=2时,37ax bx +-的值是( )A.-23B.-17C.23D.178、QQ 空间是一个展示自我和沟通交流的网络平台.它既是网络日记本,又可以上传图片、视频等.QQ 空间等级是用户资料和身份的象征,按照空间积分划分不同的等级.当用户在10级以上,每个等级与对应的积分有一定的关系.现在知道第10级的积分是90,第11级的积分是160,第12级的积分是250,第13级的积分是360,第14级的积分是490……若某用户的空间积分达到1 000,则他的等级是( ) A 、18 B 、17 C 、16 D 、15二、填空题(共6小题,每小题5分,满分30分)9. 设y 1=x +2,y 2=x -2,当y 1=y 2时,x 的取值范围是 。
2009年全国初中数学竞赛试题及答案.doc

2009年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题7分,共35分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.已知非零实数a ,b 满足24242a b a -+++=,则a b +等于( ).(A )-1 (B )0 (C )1 (D )2【答】C . 解:由题设知a ≥3,所以,题设的等式为20b +=,于是32a b ==-,,从而a b +=1.2.如图,菱形ABCD 的边长为a ,点O 是对角线AC 上的一点,且OA =a ,OB =OC =OD =1,则a 等于( ).(A(B(C )1 (D )2 【答】A . 解:因为△BOC ∽ △ABC ,所以BO BC AB AC =,即11a a a =+,所以,2a 由0a >,解得a =. 3.将一枚六个面编号分别为1,2,3,4,5,6后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b ,则使关于x ,y 的方程组322ax by x y +=⎧⎨+=⎩, 只有正数解的概率为( ). (A )121 (B )92 (C )185 (D )3613 【答】D .解:当20a b -=时,方程组无解.当02≠-b a 时,方程组的解为62,223.2b x a b a y a b -⎧=⎪⎪-⎨-⎪=⎪-⎩由已知,得⎪⎪⎩⎪⎪⎨⎧>-->--,0232,0226b a a b a b 即⎪⎪⎩⎪⎪⎨⎧<>>-,3,23,02b a b a 或⎪⎪⎩⎪⎪⎨⎧><<-.3,23,02b a b a 由a ,b 的实际意义为1,2,3,4,5,6,可得2345612a b =⎧⎨=⎩,,,,,,,共有 5×2=10种情况;或1456a b =⎧⎨=⎩,,,,共3种情况. 又掷两次骰子出现的基本事件共6×6=36种情况,故所求的概率为3613. 4.如图1所示,在直角梯形ABCD 中,AB ∥DC ,90B ∠=︒. 动点P 从点B 出发,沿梯形的边由B →C →D →A 运动. 设点P 运动的路程为x ,△ABP 的面积为y . 把y看作x 的函数,函数的图像如图2所示,则△ABC 的面积为( ).(A )10 (B )16 (C )18 (D )32【答】B .解:根据图像可得BC 5,AB △ABC =12×8×4=16. 5.关于x ,y 的方程2x y =x ,y ).(A )2组 (B )3组 ( (D )无穷多组【答】C .解:可将原方程视为关于x 的二次方程,将其变形为22(229)0x yx y ++-=.由于该方程有整数根,则判别式∆≥0,且是完全平方数.由 2224(229)7116y y y ∆=--=-+≥0,解得 2y ≤11616.57≈.于是 显然,只有216y =时,4∆=是完全平方数,符合要求.当4y =时,原方程为2430x x ++=,此时121,3x x =-=-;当y =-4时,原方程为2430x x -+=,此时341,3x x == .所 以,原方程的整数解为111,4;x y =-⎧⎨=⎩ 223,4;x y =-⎧⎨=⎩ 331,4;x y =⎧⎨=-⎩ 443,4.x y =⎧⎨=-⎩二、填空题(共5小题,每小题7分,共35分)6.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶 3000 km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶 km .【答】3750.解:设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1 km 磨损量为5000k ,安装在后轮的轮胎每行驶1km 的磨损量为3000k .又设一对新轮胎交换位置前走了x km ,交换位置后走了y km .分别以一个轮胎的总磨损量为等量关系列方程,有,50003000,50003000kx ky k ky kx k ⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相加,得 ()()250003000k x y k x y k +++=, 则 237501150003000x y +==+.7.已知线段AB 的中点为C ,以点A 为圆心,AB 的长为半径作圆,在线段AB 的延长线上取点D ,使得BD =AC ;再以点D 为圆心,DA 的长为半径作圆,与⊙A 分别相交于F ,G 两点,连接FG 交AB 于点H ,则AH AB的值为 . 解:如图,延长AD 与⊙D 交于点E ,连接AF ,EF . 由题设知13AC AD =,13AB AE =,在△FHA 和△EF A 中,EFA ∠=∠FAH EAF ∠=∠ 所以Rt △FHA ∽Rt △EF A , AH AF AF AE=. 而AF AB =以AH AB 13=. 8.已知12345a a a a a ,,,,是满足条件123459a a a a a ++++=的五个不同的整数,若b 是关于x 的方程()()()()()123452009x a x a x a x a x a -----=的整数根,则b 的值为 .【答】 10. 解:因为()()()()()123452009b a b a b a b a b a -----=,且12345a a a a a ,,,,是五个不同的整数,所有12345b a b a b a b a b a -----,,,,也是五个不同的整数.又因为()()2009117741=⨯-⨯⨯-⨯,所以1234541b a b a b a b a b a -+-+-+-+-=. 由123459a a a a a ++++=,可得10b =.9.如图,在△ABC 中,CD 是高,CE 为ACB ∠的平分线.若AC =15,BC =20,CD =12,则CE 的长等于 .【答】7.解:如图,由勾股定理知AD =9,BD =16,所以AB =AD +BD =25 . 故由勾股定理逆定理知△ACB且90ACB ∠=︒.作EF ⊥BC,垂足为F .设EF =x ,由12ECF ∠=CF =x ,于是BF =20-x .由于EF ∥AC ,所以 EF BF AC BC =,即 15x =解得607x =.所以7CE ==. 10.10个人围成一个圆圈做游戏.游戏的规则是:每个人心里都想好一个数,并把自己想好的数如实地告诉他两旁的两个人,然后每个人将他两旁的两个人告诉他的数的平均数报出来.若报出来的数如图所示,则报3的人心里想的数是 . 【答】2-. 解:设报3的人心里想的数是x ,则报5于是报7的人心里想的数是 12(8)4x x --=+,报9数是16(4)12x x -+=-,报1的人心里想的数是 20(12)8x x --=+是4(8)4x x -+=--.所以4x x =--,解得2x =-.三、解答题(共4题,每题20分,共80分)11.已知抛物线2y x =与动直线c x t y --=)12(有公共点),(11y x ,),(22y x ,且3222221-+=+t t x x . (1)求实数t 的取值范围;(2)当t 为何值时,c 取到最小值,并求出c 的最小值.解:1.联立2y x =与c x t y --=)12(,消去y 得二次方程2(21)0x t x c --+= ①有实数根1x ,2x ,则121221,x x t x x c +=-=.所以2221212121[()()]2c x x x x x x ==+-+ =221[(21)(23)]2t t t --+-=21(364)2t t -+. ②………………5分 把②式代入方程①得221(21)(364)02x t x t t --+-+=. ③………………10分 t 的取值应满足2221223t t x x +-=+≥0, ④ 且使方程③有实数根,即22(21)2(364)t t t ∆=---+=2287t t -+-≥0,⑤解不等式④得 t ≤-3或t ≥1,解不等式⑤得 2t ≤2+所以,t 的取值范围为22-≤t ≤22+⑥ ………………15分(2) 由②式知22131(364)(1)222c t t t =-+=-+.由于231(1)22c t =-+在22-≤t ≤22+22t =-时,2min 3111(21)2224c -=--+=. ………………20分 12.已知正整数a 满足3192191a +,且2009a <,求满足条件的所有可能的正整数a 的和.解:由3192191a +可得31921a -.619232=⨯,且()[]311(1)1(1)(1)(1)a a a a a a a a -=-++=-++-. ………………5分 因为()11a a ++是奇数,所以6321a -等价于621a -,又因为3(1)(1)a a a -+,所以331a -等价于31a -.因此有1921a -,于是可得1921a k =+.………………15分又02009a <<,所以0110k =,,,.因此,满足条件的所有可能的正整数a 的和为11+192(1+2+…+10)=10571. ………………20分13.已知AB 为⊙O 的直径,弦//DC AB ,连接DO .过点D 作DO 的垂线,与BA 的延长线交于点E ,过点E 作AC 的平行线交CD 于点F ,过点D 作AC 的平行线交BF 于点G .求证:AG BG ⊥. (第13题)证明:连接AD ,BC ,因为四边形AEFC 是平行四边形,所以AE FC =.由于AD CB DAE BCF =∠=∠,,因此有DAE ∆≌BCF ∆,于是可得ADE CBF ∠=∠. ………………10分又因为DE 与⊙O 相切于点D ,所以DCA ADE ∠=∠.结合//DG AC ,可得 GDC DCA ADE GBC ∠=∠=∠=∠,于是D B C G ,,,四点共圆.因此点G 在⊙O 上,从而有AG BG ⊥.……………20分14.n 个正整数12n a a a ,,,满足如下条件:1212009n a a a =<<<=;且12n a a a ,,,中任意n -1个不同的数的算术平均数都是正整数.求n 的最大值.解:设12n a a a ,,,中去掉i a 后剩下的n -1个数的算术平均数为正整数i b ,12i n =,,,.即 12()1n i i a a a a b n +++-=-. 于是,对于任意的1≤i j <≤n ,都有1j ii j a a b b n --=-, 从而 1()j i n a a --. ………………5分由于 11200811n n a a b b n n --==--是正整数,故312251n -⨯. ………………10分 由()()()112211n n n n n a a a a a a a ----=-+-++- ≥()()()2111(1)n n n n -+-++-=-, 所以,2(1)n -≤2008,于是n ≤45. 结合312251n -⨯,所以,n ≤9. ……15分另一方面,令123801,811,821a a a =⨯+=⨯+=⨯+,…,8871a =⨯+,982511a =⨯+,则这9个数满足题设要求.综上所述,n 的最大值为9. ………20分情感语录1.爱情合适就好,不要委屈将就,只要随意,彼此之间不要太大压力2.时间会把最正确的人带到你身边,在此之前,你要做的,是好好的照顾自己3.女人的眼泪是最无用的液体,但你让女人流泪说明你很无用4.总有一天,你会遇上那个人,陪你看日出,直到你的人生落幕5.最美的感动是我以为人去楼空的时候你依然在6.我莫名其妙的地笑了,原来只因为想到了你7.会离开的都是废品,能抢走的都是垃圾8.其实你不知道,如果可以,我愿意把整颗心都刻满你的名字9.女人谁不愿意青春永驻,但我愿意用来换一个疼我的你10.我们和好吧,我想和你拌嘴吵架,想闹小脾气,想为了你哭鼻子,我想你了11.如此情深,却难以启齿。
历届(第1-23届)希望杯数学竞赛初一七年级真题及答案

“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题............................................. 003-0052.希望杯第一届(1990年)初中一年级第二试试题............................................. 010-0123.希望杯第二届(1991年)初中一年级第一试试题............................................. 018-0204.希望杯第二届(1991年)初中一年级第二试试题............................................. 024-0265.希望杯第三届(1992年)初中一年级第一试试题............................................. 032-0326.希望杯第三届(1992年)初中一年级第二试试题............................................. 038-0407.希望杯第四届(1993年)初中一年级第一试试题............................................. 048-0508.希望杯第四届(1993年)初中一年级第二试试题............................................. 056-0589.希望杯第五届(1994年)初中一年级第一试试题............................................. 064-06610.希望杯第五届(1994年)初中一年级第二试试题 .......................................... 071-07311.希望杯第六届(1995年)初中一年级第一试试题........................................... 078-080 12希望杯第六届(1995年)初中一年级第二试试题........................................... 085-08713.希望杯第七届(1996年)初中一年级第一试试题........................................... 096-09814.希望杯第七届(1996年)初中一年级第二试试题........................................... 103-10515.希望杯第八届(1997年)初中一年级第一试试题............................................ 111-11316.希望杯第八届(1997年)初中一年级第二试试题........................................... 118-12017.希望杯第九届(1998年)初中一年级第一试试题........................................... 127-12918.希望杯第九届(1998年)初中一年级第二试试题........................................... 136-13819.希望杯第十届(1999年)初中一年级第二试试题........................................... 145-14720.希望杯第十届(1999年)初中一年级第一试试题........................................... 148-15121.希望杯第十一届(2000年)初中一年级第一试试题....................................... 159-16122.希望杯第十一届(2000年)初中一年级第二试试题....................................... 167-16923.希望杯第十二届(2001年)初中一年级第一试试题....................................... 171-17424.希望杯第十二届(2001年)初中一年级第二试试题....................................... 176-17825.希望杯第十三届(2002年)初中一年级第一试试题....................................... 182-18426.希望杯第十三届(2001年)初中一年级第二试试题....................................... 186-18927.希望杯第十四届(2003年)初中一年级第一试试题....................................... 193-19628.希望杯第十四届(2003年)初中一年级第二试试题....................................... 198-20029.希望杯第十五届(2004年)初中一年级第一试试题 (203)30.希望杯第十五届(2004年)初中一年级第二试试题 (204)31.希望杯第十六届(2005年)初中一年级第一试试题....................................... 213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (204)33.希望杯第十七届(2006年)初中一年级第一试试题....................................... 228-23334.希望杯第十七届(2006年)初中一年级第二试试题....................................... 234-23835.希望杯第十八届(2007年)初中一年级第一试试题....................................... 242-246 26.希望杯第十八届(2007年)初中一年级第二试试题....................................... 248-25137.希望杯第十九届(2008年)初中一年级第一试试题....................................... 252-25638.希望杯第十九届(2008年)初中一年级第二试试题....................................... 257-26239.希望杯第二十届(2009年)初中一年级第一试试题....................................... 263-26620.希望杯第二十届(2009年)初中一年级第二试试题....................................... 267-27121.希望杯第二十一届(2010年)初中一年级第一试试题................................... 274-27622.希望杯第二十二届(2011年)初中一年级第二试试题................................... 285-28823.希望杯第二十三届(2012年)初中一年级第二试试题................................... 288-301希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么( )A.a,b都是0.B.a,b之一是0.C.a,b互为相反数.D.a,b互为倒数.2.下面的说法中正确的是( )A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.C.多项式与多项式的和是多项式.D.整式与整式的和是整式.3.下面说法中不正确的是( )A. 有最小的自然数.B.没有最小的正有理数.C.没有最大的负整数.D.没有最大的非负数.4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么( )A.a,b同号.B.a,b异号.C.a>0.D.b>0.5.大于-π并且不是自然数的整数有( )A.2个.B.3个.C.4个.D.无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是( )A.0个.B.1个.C.2个.D.3个.7.a代表有理数,那么,a和-a的大小关系是( )A.a大于-a.B.a小于-a.C.a大于-a或a小于-a.D.a不一定大于-a.8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数.B.乘以同一个整式.C.加上同一个代数式.D.都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A.一样多.B.多了.C.少了.D.多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A.增多.B.减少.C.不变.D.增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.198919902-198919892=______. 3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______.8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989) =(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+1 2468;C.(-13579)×12468; D.(-13579)÷124686.3.1416×7.5944+3.1416×(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )A.-1120; B.-413; C.-316; D.-617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x .B.甲方程的两边都乘以43x; C. 甲方程的两边都乘以43; D. 甲方程的两边都乘以34. 10.如图: ,数轴上标出了有理数a ,b ,c 的位置,其中O 是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30.12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A .225.B .0.15.C .0.0001.D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( ) A.%2p q +; B.()%mp nq +; C.()%mp nq p q ++;D.()%mp nq m n++.二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______.3.计算:(63)36162-⨯=__________.4.求值:(-1991)-|3-|-31||=______.5.计算:111111 2612203042-----=_________.6.n为正整数,1990n-1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫---⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年湖州市七年级数学竞赛试卷
2.解答书写时不要超过装订线. 3.可以用计算器。
一、选择题(共8小题,每小题5分,满分40分.以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里.不填、多填或错填均得零分)
1.一个正数x 的两个平方根分别是a +l 与a
-3,则a 值为( ) A .
2 B .-l C .1 D .0 2.若01a <<,21b -<<-,则
121
2
a b a b a b a b
-++-+-++的值是( )
A .0
B .-1
C .-3
D .-4
3.将长为15dm 的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同的截法有 ( ) A.5种 B.6种 C.7
种 D.8种
4.如图所示,在△ABC 中,D 、E 分别是边AC
、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数为 (
)
A.15°
B.20°
C.25°
D.30°
5.如图,边长为1的正方形ABCD 绕点A 逆时针旋转30
°到正方形A ′
B ′
C ′
D ′,图中阴影部分的面积为 ( )
A.
1
2
B.3
C.1
3- D.14-
6. 如图,是一个装饰物品连续旋转闪烁所成的三个图形,照此规律闪烁,
下一个呈现出来的图形是 ( )
7.当x=-2时,3
7ax bx +-的值为9,则当x=2时,3
7ax bx +-的值
(第1题)
B
是( ) A.-23
B.-17
C.23
D.17
8、QQ 空间是一个展示自我和沟通交流的网络平台.它既是网络日记本,又可以上传图片、视频等.QQ 空间等级是用户资料和身份的象征,按照空间积分划分不同的等级.当用户在10级以上,每个等级与对应的积分有一定的关系.现在知道第10级的积分是90,第11级的积分是160,第12级的积分是250,第13级的积分是360,第14级的积分是490……若某用户的空间积分达到1 000,则他的等级是( ) A 、18 B 、17 C 、16 D 、15
二、填空题(共6小题,每小题5分,满分30分)
9. 设y 1=x +2,y 2=x -2,当y 1=y 2时,x 的取值范围是 。
10.从3点15分开始到时针与分针第一次成30°角,
需要的时间是 分
11.如图所示,已知AC 与BD 相交于E ,AE=AB -1,AE =DC ,AD=BE ,∠ADC =∠DEC ,则EC
= .
12.7公斤桃子的价钱等于1公斤苹果和2公斤梨的价钱;7公斤苹果的价钱等于10公斤梨
和1公斤桃子的价钱 ,则购买12公斤苹果所需的钱可以购买梨 公斤 。
13、如下图,是5×5的网格图,任意上下左右相邻的两点间距离都是1,则以网格图中的格点为顶点画正方形, 共能画出面积互不相等的正方形的个数是 个 14.如图有一长条型链子,其外型由边长为1cm 的正六边形排列而成。
其中每个黑色六边形
与6个白色六边形相邻。
若链子上有35个黑色六边形,则此链子有 个白色六边形
三、解答题:(共4题,分值依次为12分、12分、13分和13分,满分50分))
15.已知关于x,y的二元一次方程,06)52()3(=-+-+-a y a x a 当a每取一个值时就有一个方程,这些方程有一个公共解. (1)求出这个公共解;
(2)请说明,无论a取何值,这个公共解都是二元一次方程,06)52()3(=-+-+-a y a x a 的解
16.如图,五边形ABCDE 中,AB = AE ,BC + DE = CD ,180.ABC AED ∠+∠=
连结AD.
(1)同学们学习了图形的变换后知道旋转是研究几何问题的常用方法,请你在图中作出△ABC 绕着点A 按逆时针旋转“∠BAE 的度数”后的像; (2)试判断 AD 是否平分CDE ∠,并说明理由.
17.老师带着两个学生到离学校33千米的博物馆参观. 老师开一辆摩托车,速度为25千米/
小时. 这辆摩托车后坐可带乘一名学生,带人后速度为20千米/小时. 学生如果步行,速度为5千米/小时. 请你设计一种方案,使得师生3人同时出发后用3个小时同时到达博物馆.
B
第17题
18.已知1x ,2x ,3x ,…,n x 中每一个数值只能取-2,0,1中的一个,且满足1x +2x +…
+n x =-17,21x +22x +…+2n x =37,求31x +3
2x +…+3n x 的值.
2009年初一数学竞赛试题参考答案
三、解答题:(共4题,分值依次为12分、12分、13分和13分,满分50分))
15.已知关于x,y的二元一次方程,06)52()3(=-+-+-a y a x a 当a每取一个值时就有一个方程,
这些方程有一个公共解. (1)求出这个公共解;
(2)请说明,无论a取何值,这个公共解都是二元一次方程,06)52()3(=-+-+-a y a x a 的解
解:(1)这个解为⎩
⎨⎧-==37
y x _____________________(4分)
(2) ∵把,06)52()3(=-+-+-a y a x a 化为下面的形式;
0653)12(=+---+y x a y x _________(3分)
⎩⎨⎧=+--=-+0653012y x y x 得 ⎩⎨
⎧-==3
7y x _____(3分) ∴无论a取何值,这个公共解都是二元一次方程,06)52()3(=-+-+-a y a x a 的解__(2分) 16.(1)做图正确————————(4分) (2)AD 平分CDE ∠————————(2分) 证明:∵,AB = AE ,
180.ABC AED ∠+∠=
∴把△ABC 旋转∠BAE 的度数后DE 和E B / 重合,且∠ABC=∠AEB / BC = EB / ∴△ABC ≌△AEB /
∴AC = A B /, ——————(2分) 又BC + DE = CD BC = EB / ∴CD = D B /, 在△ACD 和△ADB /中
⎪⎩⎪
⎨⎧===//DB CD AD AD AB AC ∴△ACD ≌△ADB /
B
B /
∴∠CAD=∠DAB /
∴AD 平分CDE ∠ ——————(4分)
17.解:设计方案:学生乙先步行,老师带学生甲乘摩托车走出一定路程,让学生甲步行,老师返回接学
生乙,然后老师带乘学生乙,与学生甲步行同时到达博物馆即可.关键在确定摩托车中途接乙的返回点. ——————(4分)
设两个学生为甲、乙二人.学生乙先步行,老师带学生甲乘摩托车走了x 千米,共用了20
x
小时. 他们比乙多行了
3
(205)204
x x -=(千米).这时老师让甲步行前进,而自 己返回接乙,中途遇到学生乙时,用了3(255)4
40
x
x ÷+=(小时).乙遇到老师时,已
经步行了3(
)520408
x x x +⨯=(千米)
,离博物馆还有3
338x -(千米).如果甲、乙二人搭乘摩托车的路程相同,那么3
338
x x =-,解得24x =(千米). ——————(4分)
这样,在路上学生甲共计用的时间为33249
3205205
x x -+=+=(小时)
,学生乙共计用的时间为2432040208
x x x ++==(小时). ——————(5分) 因此,上述方案可使师生3人同时出发后只用3小时就可同时到达博物馆.
18、已知1x ,2x ,3x ,…,n x 中每一个数值只能取-2,0,1中的一个,且满足1x +2x +…
+n x =-17,21x +22x +…+2n x =37,求31x +3
2x +…+3n x 的值.
解:设有p 个x 取1,q 个x 取-2,有⎩⎨⎧=+-=-374172q p q p ,——————(5分)
解得⎩
⎨⎧==91q p ——————(5分)
所以原式=71)2(91133-=-⨯+⨯ ——————(3分)。