2017-2018学年北师大版八年级(下)期中数学试卷(无答案)
安徽省合肥市第四十二中学2017-2018学年下期八年级期中考试数学试题(无答案)

合肥市第四十二中学2017-2018学年度八年级第二学期期中考试卷数学试卷一、单项选择题。
1.在式子3128214223++---+m y y a ,,,,,中,一定是二次根式的有A.2个B.3个C.4个D.5个2.如果x x -=2,则x 的取值范围是A.0>xB.0≥xC.0<xD.0≤x3.若最简二次根式12-a 与a 39-是同类二次根式,则a 的值为A.0B.8C.2D.2或84.下列方程中,是一元二次方程的是 A.0312=-+xx B.02=++c bx ax C.3522-=+x x x D.0232=+-x x5.元二次方程()042222=-+--a x x a 的一个根是0,则a 的值是A.2B.1C.2或-2D.-26.若方程()0422=+-+m x m x 的两个根互为相反数,则m 等于A.-2B.2C.2±D.47.某品牌网上专卖店1月份的营业额为50万元,已知第一季度的总营业额为218万元,如果平均每月增长率为x ,则由题意列方程为A.()2181502=+xB.()()218150150502=++++x xC.()2182150=+xD.()()218215015050=++++x x8.若直角三角形的两边长为b a 、,且满足()0432=-+-b a ,则该直角三角形的第三条边长为 A.5 B.7 C.75或 D.79.如图,在四边形ABCD 中,∠DAB=∠BCD=90°,分别以四边形的四条边为边向外作四个正方形,若36100341==+S S S ,,则=2SA.136B.64C.50D.8110.如图,在△ABC 中,AB=AC=5,BC=6,点M 为BC 中点,MN ⊥AC 于点N,则CN 的长是A.59B.512C.53D.54 二、填空题11.比较大小:32____23--(选填“>”、“<”或“=”).12.若y x 、都是实数,且22332+-+-=x x y ,则=xy _______.13.若0232222=-+-+b a b a ,则=+22b a ________. 14.某学校要组织一场篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排15场比赛,则共有_______个球队参加比赛。
2017-2018学年北师大版五年级(上)期中数学试卷(解析版)

2017-2018学年北师大版五年级(上)期中数学试卷一、填空题.(23分)1.(2分)3.25÷0.7保留一位小数约等于;保留两位小数约等于.2.(1分)7.2÷0.08商的最高位是在位上.3.(1分)2.5959…保留两位小数是.4.(2分)根据3596÷58=62,直接写出下列各题的得数.35.96÷58=35.96÷5.8=5.(2分)在横线里填上>,<或=.3.5÷0.2 3.51.78÷1.3 1.786.(4分)最小的质数是,最小的合数是,最小的偶数是,10以内既是奇数又是合数的是.7.(4分)在5和25中,是的倍数,是的约数,能被整除.8.(4分)在横线内填入适当的质数.10=+10=×9.(2分)长方形有条对称轴,等边三角形有条对称轴.10.(1分)选取三个数字组成一个三位数.它同时是2、3和5的倍数,这个数是.二、判断题.(5分)11.(1分)梯形是轴对称图形.(判断对错)12.(1分)一个数除以0.01与这个数乘100的结果相同..(判断对错)13.(1分)所有的质数都是奇数.(判断对错)14.(1分)个位上是3的数一定是3的倍数..(判断对错)15.(1分)无限小数比有限小数大.(判断对错)三、选择题.(12分)16.(2分)以下计算400÷20÷4正确的算法是()A.400÷(20×4)B.400÷(20÷4)C.400÷4×20 17.(2分)下列算式中,与9.6÷0.24得数不相等的式子是()A.96÷2.4B.960÷24C.96÷24 18.(2分)下列式子中的商最大的是()A.2.898÷18B.289.8÷1.8C.28.98÷18 19.(2分)3.2÷a>3.2,a应该()A.大于1B.小于1C.等于1 20.(2分)20以内的质数共有()个.A.7B.8C.9D.10 21.(2分)如果a表示任意自然数,那么相邻的三个偶数可以表示为()A.a﹣1,a,a+1B.2a﹣2,2a,2a+2C.2a﹣1,2a,2a+1四、我会算.(25分)22.(8分)直接写出得数.2.8÷0.4= 5.4÷0.9= 2.7÷0.3=3.6×5×0=5.3+7=0.5÷0.05= 1.6﹣0.16=0.6×1.8=23.(8分)竖式计算19.76÷5.210÷3.3(得数保留两位小数)5.25×0.248.64÷0.824.(9分)用你喜欢的方法算.24÷0.4÷0.63.8×10.13.6×2.5+7.5×3.6五、操作题.(10分)25.(4分)将图中的图案向左平移4格.26.(6分)按要求分一分.1、13、24、29、41、57、64、79、87、91、51合数有:质数有:六、解决问题.(25分,每题5分.)27.(5分)每一个油桶最多装4.5千克油,购买62千克,至少要准备多少只这样的油桶?28.(5分)15匹马9天喂了175.5千克饲料,每匹马一天要多少千克饲料?29.(5分)小丽家第一季度3个月共交水费146.4元.照这样计算,小丽家全年一共要交水费多少元?30.(5分)一瓶鲜奶的零售价为5元,淘气家9月份每天订5瓶鲜奶,按批发价共付495元,这样每瓶比零售价便宜多少元?31.(5分)六年级一班人数大约是50人,3人一组或4人一组,都刚好分完,该班一共多少人?2017-2018学年北师大版五年级(上)期中数学试卷参考答案与试题解析一、填空题.(23分)1.(2分)3.25÷0.7保留一位小数约等于 4.6;保留两位小数约等于 4.64.【解答】解:3.25÷0.7≈4.6429,3.25÷0.7保留一位小数约等于4.6;保留两位小数约等于4.64,故答案为:4.6,.4.642.(1分)7.2÷0.08商的最高位是在十位上.【解答】解:7.2÷0.08=720÷8,7<8,第一位商就要商在被除数的第二位上,即十位上.故答案为:十.3.(1分)2.5959…保留两位小数是 2.60.【解答】解:2.5959…保留两位小数是2.60.故答案为:2.60.4.(2分)根据3596÷58=62,直接写出下列各题的得数.35.96÷58=0.6235.96÷5.8= 6.2【解答】解:根据3596÷58=6235.96÷58=0.6235.96÷5.8=6.2故答案为:0.62,6.2.5.(2分)在横线里填上>,<或=.3.5÷0.2> 3.51.78÷1.3< 1.78【解答】解:由分析可得:3.5÷0.2>3.51.78÷1.3<1.78故答案为:>,<.6.(4分)最小的质数是2,最小的合数是4,最小的偶数是0,10以内既是奇数又是合数的是9.【解答】解:最小的质数2;最小的合数4;最小的偶数是0;10以内既是奇数又是合数的是9.故答案为:2,4,0,9.7.(4分)在5和25中,25是5的倍数,5是25的约数,25能被5整除.【解答】解:因为25÷5=5,所以,25能被5整除,25是5的倍数,5是275因数;故答案为:25,5,5,25,25,5.8.(4分)在横线内填入适当的质数.10=3+710=2×5【解答】解:10=3+7;10=2×5.故答案为:3;7;2;5.9.(2分)长方形有2条对称轴,等边三角形有3条对称轴.【解答】解:(1)因为长方形沿其对边中点的连线所在的直线对折,对折后的两部分都能完全重合,则长方形是轴对称图形,其对边中点的连线所在的直线就是对称轴,所以长方形有2条对称轴;(2)因为等边三角形分别沿三条边的中线所在的直线对折,对折后的两部分都能完全重合,则等边三角形是轴对称图形,三条边的中线所在的直线就是对称轴,所以等边三角形有3条对称轴;故答案为:2,3.10.(1分)选取三个数字组成一个三位数.它同时是2、3和5的倍数,这个数是180.【解答】解:由分析可知,同时是2、3和5的倍数,这个数是180.故答案为:180.二、判断题.(5分)11.(1分)梯形是轴对称图形.×(判断对错)【解答】解:梯形是轴对称图形,说法错误;故答案为:×.12.(1分)一个数除以0.01与这个数乘100的结果相同.√.(判断对错)【解答】解:设这个数是2,2×100=200,2÷0.01=200,所以,一个不为0的数乘100与这个数除以0.01的结果相同.故答案为:√.13.(1分)所有的质数都是奇数.×(判断对错)【解答】解:根据质数和奇数的定义,2是质数,但不是奇数,“所有的质数都是奇数”的说法是错误的.故答案为:×.14.(1分)个位上是3的数一定是3的倍数.×.(判断对错)【解答】解:根据是3的倍数的特征是各个数位上的数字之和能被3整除,可知个位上是3的倍数的数都是3的倍数这种说法不正确,例如23个位上是3的倍数,但23不是3的倍数.故答案为:×.15.(1分)无限小数比有限小数大.×(判断对错)【解答】解:无限小数,例如0.45547855…,有限小数,如1.9678;0.45547855…<1.9678;故答案为:×.三、选择题.(12分)16.(2分)以下计算400÷20÷4正确的算法是()A.400÷(20×4)B.400÷(20÷4)C.400÷4×20【解答】解:400÷20÷4=400÷(20×4)=400÷80=5故选:A.17.(2分)下列算式中,与9.6÷0.24得数不相等的式子是()A.96÷2.4B.960÷24C.96÷24【解答】解:9.6÷0.24=96÷2.4,9.6÷0.24=960÷24,9.6÷0.24≠96÷24,所以与9.6÷0.24不相等的式子是96÷24;故选:C.18.(2分)下列式子中的商最大的是()A.2.898÷18B.289.8÷1.8C.28.98÷18【解答】解:A、2.898÷18;B、289.8÷1.8=2898÷18;C、28.98÷18;2898>28.98>2.898所以商最大的是289.8÷1.8.故选:B.19.(2分)3.2÷a>3.2,a应该()A.大于1B.小于1C.等于1【解答】解:一个数不为零的数除以小于1的数时,商比原数大,3.2÷a>3.2,a<1;故选:B.20.(2分)20以内的质数共有()个.A.7B.8C.9D.10【解答】解:根据质数与合数的定义可知,20以内的质数有:2,3,5,7,11,13,17,19,共8个.故选:B.21.(2分)如果a表示任意自然数,那么相邻的三个偶数可以表示为()A.a﹣1,a,a+1B.2a﹣2,2a,2a+2C.2a﹣1,2a,2a+1【解答】解:如果a表示任意自然数,那么2a是一个偶数;比这个偶数小2的偶数是2a﹣2;多2的偶数是2a+2;即这相邻的三个偶数可以表示为2a﹣2,2a,2a+2.故选:B.四、我会算.(25分)22.(8分)直接写出得数.2.8÷0.4= 5.4÷0.9= 2.7÷0.3=3.6×5×0=5.3+7=0.5÷0.05= 1.6﹣0.16=0.6×1.8=【解答】解:2.8÷0.4=75.4÷0.9=6 2.7÷0.3=9 3.6×5×0=05.3+7=12.30.5÷0.05=101.6﹣0.16=1.440.6×1.8=1.0823.(8分)竖式计算19.76÷5.210÷3.3(得数保留两位小数)5.25×0.248.64÷0.8【解答】解:19.76÷5.2=3.810÷3.31≈3.035.25×0.24=1.268.64÷0.8=10.824.(9分)用你喜欢的方法算.24÷0.4÷0.63.8×10.13.6×2.5+7.5×3.6【解答】解:(1)24÷0.4÷0.6=24÷(0.4×0.6)=24÷0.24=100(2)3.8×10.1=3.8×(10+0.1)=3.8×10+3.8×0.1=38+0.38=38.38(3)3.6×2.5+7.5×3.6=3.6×(2.5+7.5)=3.6×10=36五、操作题.(10分)25.(4分)将图中的图案向左平移4格.【解答】解:作图如下:26.(6分)按要求分一分.1、13、24、29、41、57、64、79、87、91、51合数有:24、57、64、87、91、51;质数有:13、29、41、79.【解答】解:根据题干分析可得:合数有24、57、64、87、91、51;质数有13、29、41、79.故答案为:24、57、64、87、91、51;13、29、41、79.六、解决问题.(25分,每题5分.)27.(5分)每一个油桶最多装4.5千克油,购买62千克,至少要准备多少只这样的油桶?【解答】解:62÷4.5=13(只)…3.5千克;所以至少需要13+1=14(只)油桶.答:至要准备14只这样的油桶.28.(5分)15匹马9天喂了175.5千克饲料,每匹马一天要多少千克饲料?【解答】解:175.5÷15÷9=11.7÷9=1.3(千克)答:每匹马一天要1.3千克饲料.29.(5分)小丽家第一季度3个月共交水费146.4元.照这样计算,小丽家全年一共要交水费多少元?【解答】解:146.4÷3×12,=48.8×12,=585.6(元);答:小丽家全年一共要交水费585.6元.30.(5分)一瓶鲜奶的零售价为5元,淘气家9月份每天订5瓶鲜奶,按批发价共付495元,这样每瓶比零售价便宜多少元?【解答】解:495÷(30×5)=495÷150=3.3(元)5﹣3.3=1.7(元)答:这样每瓶比零售价便宜1.7元.31.(5分)六年级一班人数大约是50人,3人一组或4人一组,都刚好分完,该班一共多少人?【解答】解:先求3、4的最小公倍数:3、4的最小公倍数是:3×4=12;3、4的公倍数有:12、24,48,72…所以大约是50的有:48.答:该班一共有48人.第11页(共11页)。
2017-2018学年高中数学北师大版2学案:第一章立体几何初步1.5平行关系含答案

第1课时平行关系的判定[核心必知] 1.直线与平面的位置关系直线与平面的位置关系图形语言符号语言直线在平面内aα直线与平面相交a∩α=A直线与平面平行a∥α2。
直线与平面平行的判定文字语言图形语言符号语言若平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行3.文字语言图形语言符号语言如果一个平面内有两条相交直线都平行于另一个平面,则两平面平行[问题思考]1.若直线a平行于平面α内的无数条直线,则直线a平行于平面α吗?提示:不一定,因为直线a在平面α内时,与a平行的直线也有无数条.2.对于平面与平面平行的判定定理中,若把“相交”去掉,这两个平面是否一定平行,为什么?提示:不一定.如图中,平面α内的两条直线a,b均平行于β,而α与β却相交.讲一讲1。
如图,在四棱锥P.ABCD中,底面ABCD是矩形,E,F分别是PB,PC的中点.证明:EF∥平面PAD。
[尝试解答]证明:在△PBC中,E,F分别是PB,PC的中点,∴EF∥BC.又BC∥AD,∴EF∥AD。
又∵AD平面PAD,EF平面PAD,∴EF∥平面PAD。
1.判断或证明线面平行的方法(1)定义法:证明直线与平面无公共点(不易操作);(2)判定定理法:aα,bα,a∥b⇒a∥α;(3)排除法:证明直线与平面不相交,直线也不在平面内.2.证明线线平行的方法(1)利用三角形、梯形中位线的性质;(2)利用平行四边形的性质;(3)利用平行线分线段成比例定理.练一练1.如图,P是平行四边形ABCD所在平面外一点,Q是PA的中点,求证:PC∥平面BDQ.证明:连接AC交BD于O,连接QO。
∵四边形ABCD是平行四边形,∴O为AC的中点.又Q为PA的中点,∴QO∥PC。
显然QO平面BDQ,PC平面BDQ,∴PC∥平面BDQ.讲一讲2。
如图所示,正方体ABCD.A1B1C1D1中,M,N,E,F分别是棱A1B1,A1D1,B1C1,C1D1的中点.求证:平面AMN∥平面EFDB.[尝试解答] 证明:如图所示,连接MF。
2017-2018学年北师大版八年级物理下册全册单元测试卷及答案(含期中期末)

2017-2018学年八年级物理下册第六章测试卷(时间:45分钟满分:100分)一、选择题(共10小题,每小题3分,共30分。
下列各题给出的四个选项中,只有一项是符合题目要求的)1.下列光路图正确的是()2.在探究凸透镜成像的实验中,当烛焰位于凸透镜1倍焦距以内时,眼睛通过透镜观察到的虚像可能是下图所示中的()3.下列关于光的知识应用的说法,不正确的是()A.照相机的原理是利用凸透镜能成正立、缩小的实像B.电视机遥控器是利用红外线实现遥控的C.近视眼镜是利用凹透镜对光的发散作用D.投影仪的原理是利用凸透镜能成倒立、放大的实像4.把一个凸透镜正对着太阳光,在距凸透镜15 cm处得到一个最小最亮的光斑。
将点燃的蜡烛放在离凸透镜14 cm处,经凸透镜所成的像是()A.正立、放大的虚像B.倒立、放大的实像C.倒立、缩小的实像D.正立、放大的实像5.下列关于近视眼和远视眼的说法中正确的是()A.近视眼睫状体调节能力过强,远视眼睫状体对晶状体调节能力减弱B.近视眼使来自于近处物体的光会聚于视网膜前方,远视眼使来自远处物体的光会聚于视网膜后方C.近视眼用发散透镜矫正,远视眼用会聚透镜矫正D.近视眼晶状体太薄,远视眼晶状体太厚;近视眼眼球前后径太短,远视眼眼球前后径太长6.使用显微镜时,下列操作中符合要求的是()7.有一焦距为10 cm的凸透镜,将物体从距凸透镜30 cm处沿主光轴移到距凸透镜12 cm处,这个过程中()A.物距总大于像距B.始终是倒立、放大的实像C.像离凸透镜越来越远,像变大D.像离凸透镜越来越近,像变小8.在探究“凸透镜成像的规律”时,把蜡烛放在凸透镜前30 cm处,光屏上可接收到倒立、缩小清晰的像。
则该凸透镜的焦距可能为()A.10 cmB.15 cmC.20 cmD.30 cm9.如图所示,F和F'为凸透镜的两个焦点,A'B'为物体AB的像,则物体AB在()A.图中Ⅰ区域,比A'B'大,箭头方向向上B.图中Ⅱ区域,比A'B'大,箭头方向向下C.图中Ⅲ区域,比A'B'大,箭头方向向上D.图中Ⅳ区域,比A'B'小,箭头方向向下10.同学们用盛水的矿泉水瓶模拟眼球中的晶状体,来比较正常眼睛、近视眼睛和远视眼睛的焦距大小。
2017-2018学年北师大版八年级数学下册教案:5.2分式的乘除法

-难点举例:解决涉及分式乘除的应用题时,学生可能不懂得如何建立数学模型,将实际问题转化为数学表达式。
在教学过程中,教师应针对这些难点进行重点讲解,通过反复练习、实际操作和例题分析,帮助学生透彻理解并掌握分式乘除法的核心知识。
-通过实际例题演示和练习,使学生掌握分式除法法则。
3.分式乘除混合运算
-结合实际例题,让学生学会处理分式乘除混合运算,掌握运算顺序和法则。
4.简化分式结果
-学习如何将分式乘除的结果进行简化,包括约分、分解等操作。
5.应用题
-结合生活实际,设计一些涉及分式乘除的应用题,让学生运用所学知识解决问题。
二、核心素养目标
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用ቤተ መጻሕፍቲ ባይዱ5分钟)
今天的学习,我们了解了分式乘除法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对分式乘除法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
其次,在新课讲授环节,我尝试通过理论介绍和案例分析让学生掌握分式乘除法的概念和应用。从学生的反应来看,这种方法是有效的。但在讲解过程中,我发现部分学生对分式除法的转换法则理解不够深入,可能需要在接下来的课程中加强这一部分的讲解和练习。
至于学生小组讨论环节,我发现学生们在讨论分式乘除法在实际生活中的应用时,提出了很多有创意的想法。这说明他们已经能够将所学知识运用到实际情境中。但同时,我也注意到,有些学生在分享成果时表达不够清晰,这可能需要在日常教学中加强对他们表达能力的培养。
2017-2018学年高中数学北师大版选修2-3单元测试:第一章 计数原理 章末检测

(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.10种B.20种C.25种D.32种解析:完成这件事共分5步,即每个同学均报完一个小组才结束,每人有2种选择方法,故共有25=32种不同选择方法.答案:D2.(陕西高考)两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有()A.10种B.15种C.20种D.30种解析:分三种情况:恰好打3局,有2种情形;恰好打4局(一人前3局中赢2局,输1局,第4局赢),共有2C23=6种情形;恰好打5局(一人前4局中赢2局,输2局,第5局赢),共有2C24=12种情形.所有可能出现的情形共有2+6+12=20种.答案:C3.甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有()A.36种B.48种C.96种D.192种解析:从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有C24·C34·C34=96种.答案:C4.某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有()A.(C126)2A410个B.A226A410个C.(C126)2104个D.A226104个解析:某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有(C126)2A410个.答案:A5.⎝⎛⎭⎫3x -1x n的展开式中,第5项是常数项,则x 3的系数为( ) A .1215 B .405 C .-1215D .-405解析:T 5=C 4n 3n -4x n -6,由题意知,n -6=0,解得n =6. T r +1=C r 6(-1)r 36-r x 6-32r ,令6-32r =3得r =2,所以x 3的系数为C 26(-1)234=15×34=1 215.答案:A6.从1,2,-1,-2,-3中任取不同的3个数作为二次函数y =ax 2+bx +c 的系数a ,b ,c ,其中表示开口向上的抛物线的条数为( )A .10B .24C .48D .60解析:因为y =ax 2+bx +c 表示开口向上的抛物线,a 必须大于0,因此共有C 12A 24=24条抛物线.答案:B7.张、王两家夫妇各带一个小孩一起到动物园游玩,购票后排队依次入园.为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这6人的入园顺序排法种数共有( )A .12B .24C .36D .48解析:第一步,将两位爸爸排在两端有2种排法;第二步,将两个小孩视作一人与两位妈妈任意排在中间的三个位置上有2A 33种排法,故总的排法种数有2×2×A 33=24.答案:B8.(安徽高考)(x 2+2)⎝⎛⎭⎫1x 2-15的展开式的常数项是( ) A .-3 B .-2 C .2D .3解析:⎝⎛⎭⎫1x 2-15的展开式的通项为T r +1=C r 5⎝⎛⎭⎫1x 25-r (-1)r ,r =0,1,2,3,4,5.当因式(x 2+2)中提供x 2时,则取r =4;当因式(x 2+2)中提供2时,则取r =5,所以(x 2+2)⎝⎛⎭⎫1x 2-15的展开式的常数项是5-2=3.答案:D9.用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12 340应是第________个数( )A .6B .9C .10D .8解析:比12 340小的分三类:第一类是千位比2小为0,有A 33=6个;第二类是千位为2,百位比3小为0,有A 22=2个;第三类是十位比4小为0,有1个.共有6+2+1=9个,所以12 340是第10个数.答案:C10.在(1+x )n 的展开式中,奇数项之和为p ,偶数项之和为q ,则(1-x 2)n 等于( ) A .0 B .pq C .p 2-q 2D .p 2+q 2解析:由于(1+x )n 与(1-x )n 展开式中奇数项相同,偶数项互为相反数,因此(1-x )n =p -q ,所以(1-x 2)n =(1-x )n (1+x )n =(p +q )(p -q )=p 2-q 2.答案:C二、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中的横线上) 11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的方法.(用数字作答)解析:只需找到不同颜色的球所在的位置即可,有C 29C 37C 44=1 260种.答案:1 260 12.(天津高考)⎝⎛⎭⎫x -1x 6的二项展开式中的常数项为________. 解析:二项式⎝⎛⎭⎫x -1x 6展开式的第r +1项为T r +1=C r 6x 6-r ⎝⎛⎭⎫-1x r =C r 6(-1)rx 6-32r ,当6-32r =0,即r =4时是常数项,所以常数项是C 46(-1)4=15. 答案:1513.用数字0,1,2,3,4组成没有重复数字的五位数,则其中数字1,2相邻的偶数有________个.(用数字作答)解析:可以分情况讨论:①若末位数字为0,则1,2为一组,且可以交换位置,3,4各为1个数字,共可以组成2·A 33=12个五位数;②若末位数字为2,则1与它相邻,其余3个数字排列,且0不能是首位数字,则有2·A 22=4个五位数;③若末位数字为4,则1,2为一组,且可以交换位置,3,0各为1个数字,且0不能是首位数字,则有2·(2·A 22)=8个五位数,所以全部合理的五位数共有12+4+8=24个.答案:2414.如图,在杨辉三角中,从上往下数共有n 行(n ∈N +),在这些数中,非1的数之和为________.解析:所求和S =(20+21+22+…+2n -1)-(2n -1)=2n -12-1-2n +1=2n -2n .答案:2n -2n三、解答题(本大题共4小题,共50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)已知⎝ ⎛⎭⎪⎫3a -3a n 的展开式的各项系数之和等于⎝⎛⎭⎪⎫43b -15b 5展开式中的常数项,求⎝⎛⎭⎪⎫3a -3a n 展开式中含a -1的项的二项式系数. 解:设⎝⎛⎭⎪⎫43b -15b 5的展开式的通项为T r +1=C r5(43b )5-r ⎝⎛⎭⎫-15b r =⎝⎛⎭⎫-15r ·45-rC r 5·b 10-5r6,(r =0,1,2,3,4,5). 若它为常数项,则10-5r6=0,∴r =2.代入上式,得T 3=27. 即常数项是27,从而可得⎝ ⎛⎭⎪⎫3a -3a n中n =7, 同理⎝⎛⎭⎪⎫3a -3a 7二项展开式的通项公式为T r +1=(-1)r ·37-r C r 7·a 5r -216,令5r -21=-1,得r =4.故含a -1的项是第5项,其二项系数是35.16.(本小题满分12分)某单位职工义务献血,在体检合格的人中,O 型血的共有28人,A 型血的共有7人,B 型血的共有9人,AB 型血的有3人.(1)从中任选1人去献血,有多少种不同的选法?(2)从四种血型的人中各选1人去献血,有多少种不同的选法?解:从O 型血的人中选1人有28种不同的选法,从A 型血的人中选1人有7种不同的选法,从B 型血的人中选1人有9种不同的选法,从AB 型血的人中选1人有3种不同的选法.(1)任选1人去献血,即无论选哪种血型中的哪一个人,这件“任选1人去献血”的事情都能完成,所以由分类加法计数原理,共有28+7+9+3=47种不同的选法.(2)要从四种血型的人中各选1人,即要在每种血型的人中依次选出1人后,这件“各选1人去献血”的事情才完成,所以用分步乘法计数原理,共有28×7×9×3=5 292种不同的选法.17.(本小题满分12分)从1到6的六个数字中取两个偶数和两个奇数组成没有重复数字的四位数.试问:(1)能组成多少个不同的四位数?(2)四位数中,两个偶数排在一起的有几个?(3)两个偶数不相邻的四位数有几个?(所有结果均用数值表示)解:(1)分三步完成:第一步,取两个偶数,有C 23种方法;第二步,取两个奇数,有C 23种方法;第三步,将取出的四个数字排成四位数有A 44种方法.根据分步乘法计数原理,共能组成C 23C 23A 44=216个不同的四位数.(2)先取出两个偶数和两个奇数,有C 23C 23种方法;再将两个偶数看作一个整体与两个奇数排列,有A 22A 33种方法.根据分步乘法计数原理,偶数排在一起的四位数有C 23C 23A 22A 33=108个.(3)两个偶数不相邻用插空法,共有四位数C 23C 23A 23=108个.18.(本小题满分14分)设f (x )=(1+x )m +(1+x )n 展开式中x 的系数是19(m ,n ∈N +). (1)求f (x )展开式中x 2的系数的最小值;(2)当f (x )展开式中x 2的系数取最小值时,求f (x )展开式中x 7的系数. 解:(1)由题设条件,得m +n =19.∴m =19-n ,x 2的系数为C 2m +C 2n =C 219-n +C 2n =(19-n )(18-n )2+n (n -1)2=n 2-19n +171=⎝⎛⎭⎫n -1922+3234, ∵n ∈N +.∴当n =9或n =10时, x 2的系数取最小值⎝⎛⎭⎫122+3234=81.(2)当n =9,m =10或n =10,m =9时,x 2的系数取最小值,此时x 7的系数为C 710+C 79=C 310+C 29=156.。
北师大版2018-2019学年下学期八年级数学《因式分解》培优检测试题

2018-2019学年下学期八年级数学《因式分解》培优检测试题姓名:班级:______________________ 考号:一、单选题(共10题;共30分)1.下列多项式中能用平方差公式分解因式的是( )A. a2+ (-b) 2 ।B. 5m2-20mn 9.-x2-y2 । D. -x2+92.下列多项式能因式分解的是( )A. x2-yB. x2+1C. x2+xy+y2D. x2-4x+43.因式分解2x2-8的结果是( )A. (2x+4) (x-4) FB. (x+2) ( x-2)C. 2 (x+2) ( x-2) 卜D. 2 (x+4) (x-4)4.下列因式分解中正确的是( )-J 1 1 1A.串—8工+16=B.-仃2+口-彳三=三(2仃-1),C. x ( a- b) - y (b - a) = (a- b) ( x - y)D. b" = ।fr > )5.把代数式ab:- 6ab十9n分解因式,下列结果中正确的是A. B. C'-Q T■-「I; .,) C.,屋8 T厂 D.6.下列各式中,不能用完全平方公式分解的个数为( )① x2-10x+25;② 4a2+4a - 1 ;③ x2-2x-1;④-m2+m-;;⑤ 4x4-x2+1 .A. 1个B. 2个C. 3个D. 4个7.若X-+tm-15=,,则mn 的值为()A. 5B. -5C. 10D. -108.若a , b , c是三角形的三边之长,则代数式a; -2ac+c二-b2的值()A.小于0B.大于0C.等于0 "D.以上三种情况均有可能9.下列多项式中能用提公因式法分解的是( )A. x2+y2B. x 2-y2C. x2+2x+1D. x 2+2x10.已知:a=2014x+2015, b=2014x+2016 , c=2014x+2017 ,则a2+b2+c2-ab- ac- bc 的值是( )A. 0B. 1C. 2D. 3二、填空题(共8题;共24分)11.因式分解:一疝一/4忸一〃)=12.已知x- 2y= - 5, xy= — 2,贝U 2x2y - 4xy2= .13.分解因式:a3 - 4a2+4a=.14.若屋_a + l = U,那么屋叫1 一屋飒十型颊二.15.如果x+y=5 , xy=2 ,贝U x2y+xy 2=.16.已知= 而=2,求;门取岫'的值为17.多项式2ax2-12axy中,应提取的公因式是18.若x+y= 1,贝U x4+5x3y+x2y+8x2y2+xy2+5xy 3+y4的值等于。
北师大版2017-2018学年七年级(下)数学期中模拟题(含答案)

北师版七年级数学期中模拟试卷题号一二三总分得分第I卷(选择题)评卷人得分一、选择题(每小题3分,共30分)1.计算a5•a3正确的是()A.a2B.a8C.a10D.a15 2.若(x﹣1)0=1成立,则x的取值范围是()A.x=﹣1 B.x=1 C.x≠0D.x≠1 3.若(2a+3b)()=4a2﹣9b2,则括号内应填的代数式是()A.﹣2a﹣3b B.2a+3b C.2a﹣3b D.3b﹣2a 4.计算(﹣4x3+12x2y﹣7x3y2)÷(﹣4x2)等于()A.x+74xy2B.x﹣3y+74xy2C.x2﹣3y+74xy2D.x﹣3y+47x5.如图,下列说法中不正确的是()A.∠1和∠3是同旁内角B.∠2和∠3是内错角C.∠2和∠4是同位角D.∠3和∠5是对顶角6.两条直线相交于一点,则共有对顶角的对数为()A.1对B.2对C.3对D.4对7.如图,现要从村庄A修建一条连接公路PQ的小路,过点A作AH⊥PQ于点H,则这样做的理由是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点可以作无数条直线8.下列说法中,正确的是()A.两条不相交的直线叫做平行线B.一条直线的平行线有且只有一条C.若直线a∥b,a∥c,则b∥c D.若两条线段不相交,则它们互相平行9.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()A.B.C.D.10.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米第II卷(非选择题)评卷人得分二、填空题(每小题3分,共18分)11.计算:(﹣ab)2÷a2b=.12.若(x﹣ay)(x+ay)=x2﹣16y2,则a=.13.直线AB、CD、EF交于点O,则∠1+∠2+∠3=度.14.如图,圆锥的底面半径r=2cm,当圆锥的高h由小到大变化时,圆锥的体积V也随之发生了变化,在这个变化过程中,变量是(圆锥体积公式:V=13πr2h)15.已知一个长方形的长为5cm,宽为xcm,周长为ycm,则y与x之间的函数表达式为.16.在如图所示的三个函数图象中,近似地刻画如下a、b、c三个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.情境c:小芳从家出发,到校上,放回到了家.情境a,b,c所对应的函数图象分别是(按次序填写a,b,c对应的序号)评卷人得分三、解答题(共8小题,共62分)17.(6分)计算:(1)﹣(a2b)3+2a2b•(﹣3a2b)2(2)(a+2b﹣c)(a﹣2b+c)18.(8分)观察下列关于自然数的等式:(1)32﹣4×12=5(1)(2)52﹣4×22=9(2)(3)72﹣4×32=13(3)…根据上述规律解决下列问题:(1)完成第五个等式:112﹣4×2=;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.19.(8分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.20.(10分)如图,直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°求:(1)∠3的度数;(2)求∠2的度数.21.(10分)如图,直线AB与CD相交于点O,OE⊥A B.(1)如果∠AOD=140°,那么根据,可得∠BOC=度.(2)如果∠EOD=2∠AOC,求∠AOD的度数.22.(6分)某药物研究单位试制成功一种新药,经测试,如果患者按规定剂量服用,那么服药后每毫升血液中含药量y(微克)随时间x(小时)之间的关系如图所示,如果每毫升血液中的含药量不小于20微克,那么这种药物才能发挥作用,请根据题意回答下列问题:(1)服药后,大约分钟后,药物发挥作用.(2)服药后,大约小时,每毫升血液中含药量最大,最大值是微克;(3)服药后,药物发挥作用的时间大约有小时.23.(6分)探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=40°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数式)解:∵DE∥BC,∴∠DEF=.()∵EF∥AB,∴=∠AB C.()∴∠DEF=∠AB C.(等量代换)∵∠ABC=40°,∴∠DEF=°.应用:如图②,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=60°,则∠DEF=°.24.(10分)我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数等式.例如:由图1可得到(a+b)2=a2+2ab+b2.(1)写出由图2所表示的数等式:;写出由图3所表示的数等式:;(2)利用上述结论,解决下面问题:已知a+b+c=11,bc+ac+ab=38,求a2+b2+c2的值.参考答案第I卷(选择题)一、选择题(每小题3分,共30分)1.计算a5•a3正确的是()A.a2B.a8C.a10D.a15【答案】B.【解析】试题解析:a5•a3=a5+3=a8.故选:B.2.若(x﹣1)0=1成立,则x的取值范围是()A.x=﹣1 B.x=1C.x≠0D.x≠1【答案】D【解析】试题解析:由题意可知:x﹣1≠0,x≠1故选:D.3.若(2a+3b)()=4a2﹣9b2,则括号内应填的代数式是()A.﹣2a﹣3b B.2a+3b C.2a﹣3b D.3b﹣2a【答案】C【解析】试题解析:∵4a2﹣9b2=(2a+3b)(2a﹣3b),∴(2a+3b)(2a﹣3b)=4a2﹣9b2,故选:C.4.计算(﹣4x3+12x2y﹣7x3y2)÷(﹣4x2)等于()A.x+74xy2B.x﹣3y+74xy2C.x2﹣3y+74xy2D.x﹣3y+47x【答案】B【解析】试题解析:(﹣4x3+12x2y﹣7x3y2)÷(﹣4x2)=x﹣3y+74xy2.故选:B.5.如图,下列说法中不正确的是()A.∠1和∠3是同旁内角B.∠2和∠3是内错角C.∠2和∠4是同位角D.∠3和∠5是对顶角【答案】C6.两条直线相交于一点,则共有对顶角的对数为()A.1对B.2对C.3对D.4对【答案】B【解析】试题解析:如图所示,∠1与∠2,∠3与∠4都是对顶角,故两条直线相交于一点,则共有对顶角的对数为2对.故选:B.#网7.如图,现要从村庄A修建一条连接公路PQ的小路,过点A作AH⊥PQ于点H,则这样做的理由是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点可以作无数条直线【答案】C【解析】试题解析:∵从直线外一点到这条直线上各点所连线段中,垂线段最短,∴过点A作AH⊥PQ于点H,这样做的理由是垂线段最短.21世纪教育网故选:C.8.下列说法中,正确的是()A.两条不相交的直线叫做平行线B.一条直线的平行线有且只有一条C.若直线a∥b,a∥c,则b∥c D.若两条线段不相交,则它们互相平行【答案】C9.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()A.B.C.D.【答案】B【解析】试题解析:A、∠1和∠2的是对顶角,不能判断AB∥CD,此选项不正确;B、∠1和∠2的对顶角是同位角,又相等,所以AB∥CD,此选项正确;C、∠1和∠2的是内错角,又相等,故AC∥BD,不是AB∥CD,此选项错误;D、∠1和∠2互为同旁内角,同旁内角相等两直线不平行,此选项错误.故选:B.10.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米【答案】C第II卷(非选择题)评卷人得分二、填空题(每小题3分,共18分)11.计算:(﹣ab)2÷a2b=.【答案】b【解析】试题解析:原式=a2b2÷a2b=b故答案为:b12.若(x﹣ay)(x+ay)=x2﹣16y2,则a=.【答案】±4【解析】试题解析:∵(x﹣ay)(x+ay)=x2﹣(ay)2(x﹣ay)(x+ay)=x2﹣16y2,∴a2=16,∴a=±4.13.直线AB、CD、EF交于点O,则∠1+∠2+∠3=度.【答案】18014.如图,圆锥的底面半径r=2cm,当圆锥的高h由小到大变化时,圆锥的体积V也随之发生了变化,在这个变化过程中,变量是(圆锥体积公式:V=πr2h)【答案】V、h.【解析】试题解析:圆锥的底面半径是2cm,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化.故答案为:V,h.点睛:主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.15.已知一个长方形的长为5cm,宽为xcm,周长为ycm,则y与x之间的函数表达式为.【答案】y=2x+10【解析】试题解析:一个长方形的长为5c m,宽为xcm,周长为ycm,则y与x之间的函数表达式为y=2x+10;故答案为:y=2x+1016.在如图所示的三个函数图象中,近似地刻画如下a、b、c三个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.情境c:小芳从家出发,到校上,放回到了家.情境a,b,c所对应的函数图象分别是(按次序填写a,b,c对应的序号)【答案】③①②评卷人得分三、解答题(共8小题,共72分)17.(6分)计算:(1)﹣(a2b)3+2a2b•(﹣3a2b)2(2)(a+2b﹣c)(a﹣2b+c)【答案】(1) 17a6b3;(2)a2﹣4b2+4bc﹣c2;21世纪教育网18.(8分)观察下列关于自然数的等式:(1)32﹣4×12=5(1)(2)52﹣4×22=9(2)(3)72﹣4×32=13(3)…根据上述规律解决下列问题:(1)完成第五个等式:112﹣4×2=;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.【答案】(1)5;21. (2)(2n+1)2﹣4n2=4n+1.【解析】试题分析:(1)根据前三个找出规律,写出第五个等式;(2)用字母表示变化规律,根据完全平方公式计算,即可证明.试题解析:(1)112﹣4×52=21,故答案为:5;21;(2)第n个等式为:(2n+1)2﹣4n2=4n+1,证明:(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1.19.(8分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.【答案】63.点睛:本题考查的是多项式乘多项式,多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.20.(10分)如图,直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°求:(1)∠3的度数;(2)求∠2的度数.【答案】(1)65°.【解析】试题分析:(1)根据平角为180度可得∠3=180°﹣∠1﹣∠FOC(2)根据对顶角相等可得∠AOD的度数,然后再根据角平分线定义进行计算即可试题解析:(1)∵∠AOB=180°,∴∠1+∠3+∠COF=180°,∵∠FOC=90°,∠1=40°,∴∠3=180°﹣∠1﹣∠FOC=50°,(2)∠BOC=∠1+∠FOC=130°,∴∠AOD=∠BOC=130°,∵OE平分∠AOD,∴∠2=12∠AOD=65°.21.(10分)如图,直线AB与CD相交于点O,OE⊥A B.(1)如果∠AOD=140°,那么根据,可得∠BOC=度.(2)如果∠EOD=2∠AOC,求∠AOD的度数.【答案】(1)对顶角相等,140°.(2)150°.故答案为:(1)对顶角相等,140°.(2)150°.22.(6分)某药物研究单位试制成功一种新药,经测试,如果患者按规定剂量服用,那么服药后每毫升血液中含药量y(微克)随时间x(小时)之间的关系如图所示,如果每毫升血液中的含药量不小于20微克,那么这种药物才能发挥作用,请根据题意回答下列问题:(1)服药后,大约分钟后,药物发挥作用.(2)服药后,大约小时,每毫升血液中含药量最大,最大值是微克;(3)服药后,药物发挥作用的时间大约有小时.【答案】(1)20,(2)2,80;(3)6.7.23.(6分)探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=40°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数式)解:∵DE∥BC,∴∠DEF=.()∵EF∥AB,∴=∠AB C.()∴∠DEF=∠AB C.(等量代换)∵∠ABC=40°,∴∠DEF=°.应用:如图②,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=60°,则∠DEF=°.【答案】∠EFC,两直线平行,内错角相等,∠EFC,两直线平行,同位角相等,40;24.(10分)我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数等式.例如:由图1可得到(a+b)2=a2+2ab+b2.(1)写出由图2所表示的数等式:;写出由图3所表示的数等式:;(2)利用上述结论,解决下面问题:已知a+b+c=11,bc+ac+ab=38,求a2+b2+c2的值.【答案】4D:完全平方公式的几何背景.21世纪教育网【解析】试题分析:(1)运用几何直观理解、通过不同的方法计算图形的面积可以得到一个数等式然后再通过化简可得.(2)可利用(1)所得的结果进行等式变换直接带入求得结果.%网试题解析:(1)由图2可得正方形的面积为:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac故答案为:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac【点评】本题主要是在完全平方公式的几何背景图形的基础上,利用其解题思路求得结果.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018年度(下)半期考试
八年级下数学学科试卷
A 卷(100分)
一、选择题(本大题共10小题,每小题3分,共30分)
1、下列不等式变形正确的是( )
A 、由22-<->b a b a ,得
B 、由b a b a >>,得
C 、由b a b a 22-<->,得
D 、由22b a b a >>,得
2、下列等式从左到右的变形,属于因式分解的是( )
A 、ab a b a 4282•=
B 、()
b b ab ab ab ab 22223+-=--- C 、⎪⎭
⎫ ⎝⎛
-+=-+x x x x x 1244842 D 、4my -2=2(2my -1) 3、下列图形中,是轴对称图形但不是中心对称图形的是( )
A 、等边三角形
B 、正六边形
C 、正方形
D 、圆
4、要使式子x
x 1+有意义,x 的取值范围是( ) A 、1≠x B 、0≠x C 、01≠->x x 且 D 、01≠-≥x x 且
5、下列说法中,不正确的是( )
A 、两组对边分别平行的四边形是平行四边形
B 、对角线互相平分且垂直的四边形是菱形
C 、一组对边平行另一组对边相等的四边形是平行四边形
D 、有一组邻边相等的矩形是正方形
6、不等式组()⎪⎩⎪⎨⎧+<-≤-123
103x x x 的解集在数轴上表示正确的是( ) A. B.
C. D.
7、小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A 的全程是25千米,但交通比较拥堵,路线B 的全程比路线A 的全程多7千米,但平均车速比走路线A 时能提高60%,若走路线B 的全程能比走路线A 少用15分钟.若设走路线A 时的平均速度为x 千米/小时,根据题意,可列分式方程( )
A. =15
B.
C.
D.
8、若关于x 的分式方程3232-=--x m x x 有增根,则m 的值为( ) A 、3 B 、3- C 、3 D 、3±
9、如图,已知正比例函数
与一次函数的图象交于点P 。
下面有四个结论:
①;②;③当时,;④当时,。
其中正确的是( )
A. ①②
B. ②③
C. ①③
D. ①④
10、如图,在三角形ABC 中,AB=AC ,BC=6,三角形DEF 的周长是7,AF ⊥BC 于F ,
BE ⊥AC 于E ,且点D 是AB 的中点,则AF=( )
A 、5
B 、7
C 、3
D 、7
二、填空题(本大题共4小题,每小题4分,共16分)
11、分解因式:________1442
2=+-ab b a
12、如果一个正多边形的每一个内角都等于144°,那么这个正多边形的边数是
____________。
13、如图,在四边形ABCD 中,P 是对角线BD 的中点,E 、F 分别是AB 、CD 的中点,
AD=BC ,∠FPE=100°,则∠PFE 的度数是_____ 。
14、如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E ,AB=3,AC=2,BD=4,则AE 的长为_____.
三、解答题(本大题共6小题,共54分)
15、(12分)(1)(4分)分解因式:mn n m 69252
2++-
(2)(4分)解不等式组:()()⎪⎩⎪⎨⎧≤--+<--+-1213
128313x x x x ,并求出它的整数解的和。
(3)(4分)解方程:
12
244212=---++x x x x
16、(6分)先化简:1441132++-÷⎪⎭⎫ ⎝⎛+-+a a a a a ,并从0,-1,2中选一个合适的数作为a 的值代入求值。
17、每个小方格都是边长为1个单位长度的正方形,在建立
平面直角坐标系后,△ABC的顶点均在格点上,
(1)写出A、B、C的坐标.
(2)以原点O为中心,将△ABC围绕原点O逆时针旋转180°得到△A1B1C1,画出△A1B1C1.
(3)求(2)中C到C1经过的路径以及OB扫过的面积.
18、已知:如图,在菱形ABCD 中,点E,O,F分别是边AB,AC,AD的中点,连接CE、CF、OE、O
A.
(1)求证:△BCE≌△DCF;
(2)当AB与BC满足什么条件时,四边形AEOF正方形?请说明理由.
19、如图1,在Rt△ABC中,∠ACB=90°,点D是边AB的中点,点E在边BC上,AE=BE,点M是AE的中点,联结CM,点G在线段CM上,作∠GDN=∠AEB交边BC于N。
(1)如图2,当点G和M重合时,求证:四边形DMEN是菱形;
(2)如图1,当点G和M、C不重合时,求证:DG=DN。
20、已知正方形ABCD,点F是射线DC上一动点(不与C,D重合).连接AF并延长交直线BC于点E,交BD于H,连接CH,过点C作CG⊥HC交AE于点G.
(1)若点F在边CD上,如图1.
①证明:∠DAH=∠DCH;
②猜想:△GFC的形状并说明理由.
(2)取DF中点M,连接MG.若MG=2.5,正方形边
长为4,求BE的长.
B 卷(50分)
一、填空题(本大题共5小题,每小题4分,共20分)
21、若n mx x ++2
分解因式的结果是()()12-+x x ,则m+n 的值为__________。
22、已知21=-x
x ,则1242++x x x 的值等于_________。
23、在平行四边形ABCD 中,AE 平分∠BAD 交边BC 于E ,DF 平分∠ADC 交边BC 于F ,若AD=11,EF=5,则AB=________________。
24、若数a 使关于x 的不等式组⎪⎩⎪⎨⎧->++-≤-a
x x x x 472212,有且仅有四个整数解,且使关于y 的分式方程2222=-+-y y a 有非负数解,则所有满足条件的整数a 的值之和是________________。
25、如图,将边长为6的正三角形纸片ABC 按如下顺序进行两次折叠,展开后,得折痕AD 、BA .(如图①),点O 为其交点.如图①,若P 、N 分别为BE 、BC 上的动点.如图①,若点Q 在线段BO 上,BQ=1,则QN+NP+PD 的最小值=_______.
二、解答题(本大题共3小题,共30分)
26、甲、乙两工程队承包一项工程,如果甲工程队单独施工,恰好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则恰好如期完成.
(1)问原来规定修好这条公路需多少长时间?
(2)现要求甲、乙两个工程队都参加这项工程,但由于受到施工场地条件限制,甲、乙两工程队不能同时施工.已知甲工程队每月的施工费用为4万元,乙工程队每月的施工费用为2万元.为了结算方便,要求:甲、乙的施工时间为整数个月,不超过15个月完成.当施工费用最低时,甲、乙各施工了多少个月?
27、某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A出发,在矩形ABCD边上沿着A→B→C→D的方向匀速移动,到达点D时停止移动.已知机器人的速度为每秒1个单位长度,移动至拐角处调整方向需要1 s(即在B、C处拐弯时分别用时1 s).设机器人所用时间为t(s)时,其所在位置用点P表示,P到对角线BD的距离(即垂线段PQ的长)为d个单位长度,其中d与t的函数图象如图
②所示.
(1)求AB、BC的长;
(2)如图②,点M、N分别在线段EF、GH上,线段MN平行于横轴,M、N的横坐标分别为t1、t2.设机器人用了t1(s)到达点P1处,用了t2(s)到达点P2处(见图①).若CP1+CP2=7,求t1、t2的值.
28、如图,已知△BAD≌△BCE,∠BAD=∠BCE=90°,∠ABD=∠BEC=30°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.
(1)如图1,当A,B,E三点在同一直线上时,判断AC与CN数量关系为______;
(2)将图1中△BCE绕点B逆时针旋转到图2位置时,(1)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由;
(3)将图1中△BCE绕点B逆时针旋转一周,旋转过程中△CAN能否为等腰直角三角形?若能,直接写出旋转角度;若不能,说明理由.。