解一元二次方程因式分解法
一元二次方程解法:因式分解法

x1 2; x2 4. 2.4 x2x 1 32x 1 0,
解下列方程:
2x 14x - 3 0,
2 x 1 0, 或4 x 3 0. 1 3 x1 , x2 . 2 4
1、因式分解:
(1)4 x 25; (2)9 x 6 x 1
1 .x2-4=0; 解:(x+2)(x-2)=0,
∴x+2=0,或x-2=0. ∴x1=-2, x2=2.
2.(x+1)2-25=0.
∴x+6=0,或x-4=0. ∴x1=-6, x2=4.
解:[(x+1)+5][(x+1)-5]=0
1.x 2x - 4 0, 2.4 x2 x 1 32 x 1. 解 :1.x 2 0,或x 4 0.
小颖是这样解的:
解 : x 3x 0.
2
小明是这样解的:
解 : 方程x 2 3 x两
3 9 x . 2
公 式 法
这个数是0或3.
小颖做得对吗?
漏 边都同时约去x, 得. x 3. 根 x≠0
这个数是3.
小明做得对吗?
你能解决这个问题吗
一个数的平方与这个数的3倍有可能相等吗?如果相 等,这个数是几?你是怎样求出来的? 小颖,小明,小亮都设这个数为x,根据题意得 x 2 3x.
(1) x 3 x 4 x 4 x 1
2
(2) x 3 x 18 x 6 x 3
2
1
6 3
4 4 (1) 3 4 (1)
6 3
常数项分解成两个因数的积, 这两个因数的和恰好是一次项系数。
一元二次方程因式分解法的步骤

一元二次方程因式分解法的步骤一元二次方程是指只有一个未知数的二次方程,通常形式为ax^2+bx+c=0,其中a、b、c为已知常数,且a≠0。
求解一元二次方程的一个常见方法是因式分解法。
下面将介绍一元二次方程因式分解法的具体步骤。
步骤一:观察方程我们需要观察一元二次方程的形式,判断是否适合使用因式分解法。
一元二次方程可以写成两个一次因子相乘的形式,即(ax+m)(bx+n)=0,其中m、n为已知常数。
如果方程可以写成这种形式,那么我们就可以使用因式分解法来解方程。
步骤二:找出一次因子接下来,我们需要找到方程中的一次因子。
一次因子是指形如px+q 的一次多项式,其中p、q为已知常数。
为了找出一次因子,我们需要将方程的二次项和常数项进行拆分,并找到合适的一次因子。
步骤三:写出因式分解形式一旦找到了一次因子,我们就可以将方程写成因式分解的形式。
具体而言,我们可以将方程写成(ax+m)(bx+n)=0的形式。
步骤四:解方程现在,我们需要解方程。
根据因式分解的形式,我们可以得到两个一次方程:ax+m=0和bx+n=0。
我们可以分别解这两个一次方程,得到两个解x1和x2。
步骤五:验证解我们需要验证解是否符合原方程。
我们可以将解代入原方程,检查等式是否成立。
如果解符合原方程,那么我们就可以确定这个解是正确的。
通过以上五个步骤,我们可以使用一元二次方程因式分解法来解决一元二次方程问题。
这种方法在一些特定的情况下特别有效,例如方程的系数比较简单或者方程有特殊的形式。
需要注意的是,一元二次方程因式分解法并不是解决一元二次方程的唯一方法。
在实际应用中,我们可以根据具体情况选择适合的解法。
除了因式分解法,还有配方法、求根公式等方法可以用来解决一元二次方程。
总结起来,一元二次方程因式分解法是解决一元二次方程问题的一种常见方法。
通过观察方程、找出一次因子、写出因式分解形式、解方程和验证解等步骤,我们可以求解一元二次方程并得到正确的解。
一元二次次方程 因式分解法

一元二次次方程因式分解法一元二次方程是指形式为ax^2+bx+c=0的方程,其中a、b、c都是已知实数且a≠0。
解一元二次方程的方法之一是因式分解法。
因式分解法是将一元二次方程转化成二元一次方程,然后利用分解公式将方程因式分解为两个一次因式的乘积,并求解得到方程的解。
下面详细介绍一元二次方程的因式分解法。
1. 首先,将一元二次方程写成标准形式,即ax^2+bx+c=0。
2. 判断方程的判别式D=b^2-4ac的值。
- 若D>0,方程有两个不相等的实数根。
- 若D=0,方程有两个相等的实数根。
- 若D<0,方程没有实数根,但有复数根。
3. 根据判别式D的值,采取相应的方法进行因式分解。
- 若D>0,假设方程的解为x1和x2,则方程可以因式分解为(x-x1)(x-x2)=0。
- 若D=0,假设方程的解为x0,则方程可以因式分解为(x-x0)^2=0。
- 若D<0,假设方程的解为x1和x2,则方程可以因式分解为(x-x1+i√(-D))(x-x2-i√(-D))=0,其中i为虚数单位。
4. 将方程因式分解后的形式转化为二元一次方程,进行求解。
- 若D>0,将方程转化为两个一次方程进行求解。
分别令(x-x1)=0和(x-x2)=0,得到x1和x2的值。
- 若D=0,将方程转化为一个一次方程进行求解。
令(x-x0)^2=0,得到x0的值。
- 若D<0,将方程转化为一个一次方程进行求解。
令(x-x1+i√(-D))(x-x2-i√(-D))=0,分别令x-x1+i√(-D)=0和x-x2-i√(-D)=0,得到x1和x2的值。
5. 根据求解得到的x1、x2和x0的值,得到方程的解。
综上所述,一元二次方程可以通过因式分解法进行求解。
根据方程的判别式的值,将方程进行因式分解,并转化为二元一次方程进行求解。
这种方法在某些情况下可以简化求解过程,帮助我们更好地理解和解决一元二次方程的问题。
解一元二次方程--因式分解法

10.已知(x2+y2﹣3)(x2+y2+1)=12,求x2+y2的值.
3.灵活选用方法解一元二次方程
【例3】选择适当方法解下列方程:
(1)x2﹣5x+1=0;
(2)3(x﹣2)2=x(x﹣2);
(3)2x2﹣2 x﹣5=0;
(4)(y+2)2=(3y﹣1)2.
总结:解一元二次方程常用的方法有直接开平方法、配方法、公式法和因式分解法,根据一元二次方程的特征,灵活选用解方程的方法,可以起到事半功倍的作用.(1)一般地,当一元二次方程一次项系数为0时,即形如ax2+c=0形式的一元二次方程,应选用直接开平方法.
解一元二次方程---因式分解法
一、学习目标
1.会用因式分解法解一元二次方程;
2.会用换元法解一元二次方程;
3.灵活选用简便的方法解一元二次方程.
二、知识回顾
1.分解因式的常用方法有哪些?
(1)提取公因式法:
am+bm+cm=m(a+b+c)
(2)公式法:
Байду номын сангаас, ,
(3)十字相乘法:
三、新知讲解
1.因式分解法
③令每一个因式分别等于0,得到两个一元一次方程;
④解这两个一元一次方程,它们的解就是原方程的解.
3.因式分解法的条件、理论依据
因式分解法解一元二次方程的条件是:方程右边等于0,而左边易于分解;
理论依据是:如果两个因式的积等于零,那么至少有一个因式等于零.
四、典例探究
1.用因式分解法解一元二次方程
【例1】用因式分解法解方程:
一元二次方程因式分解法的四种方法

一元二次方程因式分解法的四种方法【实用版3篇】目录(篇1)一、引言二、一元二次方程的概述三、因式分解法概述四、四种因式分解方法1.提取公因式法2.完全平方公式法3.平方差公式法4.完全平方公式与平方差公式的结合法五、每种方法的例题解析六、总结正文(篇1)一、引言在解决一元二次方程时,因式分解法是一种常用的方法,它可以帮助我们快速找到方程的解。
本文将为大家介绍四种因式分解的方法,以帮助大家更好地理解和运用这一方法。
二、一元二次方程的概述一元二次方程是指形如 ax+bx+c=0 的方程,其中 a、b、c 为常数,且 a≠0。
在这个方程中,a、b、c 分别称为二次项系数、一次项系数和常数项。
三、因式分解法概述因式分解法是将一元二次方程的左边化为两个一次因式的积的形式,从而得到方程的解。
通过因式分解,我们可以将一元二次方程转化为两个一元一次方程来求解,从而简化了解题过程。
四、四种因式分解方法1.提取公因式法提取公因式法是指在方程的两边同时提取公因式,以达到简化方程的目的。
这种方法适用于当方程的一次项系数 b 为零的情况。
2.完全平方公式法完全平方公式法是指利用完全平方公式 (a+b)=a+2ab+b将方程进行因式分解。
这种方法适用于当方程的二次项系数 a 为 1 的情况。
3.平方差公式法平方差公式法是指利用平方差公式 (a+b)(a-b)=a-b将方程进行因式分解。
这种方法适用于当方程的一次项系数 b 不等于零且二次项系数 a 不等于 1 的情况。
4.完全平方公式与平方差公式的结合法当方程的二次项系数 a 不为 1,一次项系数 b 不为 0 时,我们可以将完全平方公式和平方差公式结合使用,以达到因式分解的目的。
五、每种方法的例题解析这里我们分别对四种因式分解方法进行例题解析,以便大家更好地理解和掌握这些方法。
六、总结因式分解法是一种解决一元二次方程的有效方法,掌握四种因式分解方法有助于我们在解题过程中更加灵活地选择合适的方法。
一元二次方程的解法(因式分解法)

解:1)方程左边分解因式,得χ(χ-3)=0.
5 解得 χ1=- 4
5 ,χ2= 。 4
用你喜欢的方法解下列方程:
(1)(χ+2)2-16=0; (2) χ2-2χ+1=49; (3)(χ-2)2-χ+2=0 (4)(2χ+1)2-χ2=0
小张和小林一起解方程 χ(3χ+2)-6(3χ+2)=0. 小张将方程左边分解因式,得 (3χ+2)(χ-6)=0, ∴ 3χ+2=0,或χ-6=0. 方程的两个解为 χ1=- ,χ2=6. 小林的解法是这样的: 移项,得 χ(3χ+2)=6(3χ+2). 方程两边都除以(3χ+2),得 χ=6. 小林说:“我的方法多简单!”可另一个解χ=- 哪里去了?小林的解法对吗?你能解开这个谜吗?
☞
用分解因式法解方程:
(1)5x2=4x; (2)x-2=x(x-2); (3)x2+6x-7=0
1.解下列方程
(1) x x 0
2
(2) x 2 3x 0
2
(3)3x 6x 3
2
(4)4 x 2 121 0
(5)3x(2 x 1) 4 x 2
(6)(x 4)2 (5 2x)2
采用因式分解法解方程的一般步骤:
(1)将方程右边的各项移到方程的左边,使方程右边为0; (2)将方程左边分解为两个一次因式的乘积形式: (3)令每个因式分别为零,得到两个一元一次方程:
(4)解这两个一元一次方程,它们的解就是原方程的解。
1、利用因式分解法解下列方程: 1) χ2-3χ=0; 2) 16χ2=25; 3)(2χ+3)2-25=0. ∴ χ=0,或χ-3=0, 解得 χ1=0,χ2=3. 2) 方程移项,得16χ2-25=0 方程左边分解因式,得 (4χ+5)(4χ-5)=0 ∴ 4χ+5=0,或4χ-5=0,
因式分解法解一元二次方程

例3把a2 7a 10分解因式;
解:原式= (a+5) (a+2)
a
5
a
2
5a+2a=7a
练习一
1. 分解a 2 a 12的结果为( B )
A. (a - 3)(a 4); B. a 3a 4; C. a 6a 2; D. a 6a 2;
用因式分解法解方程
(1)(x+2)2=2x+4
(2)4(x-3)2-x(x-3)=0 (3)x2 x 0
(4)9(x-2)2=4(x+1)2 (5)( x 4)2 (5 2x)2
一.因式乘法
1:计算: (1). (x+2)(x+3); 解:原式 x2 2x 3x 23
B. x2 5x 6;
C. x2 5X 6;
D. x2 5x 6;
(4). 分解a 2 3ab 2b2的结果为 ( D )
A. a ba 2b;
B. (a b)(a - 2b);
C. (a - b)(a 2b);
D. (a - b)(a- 2b);
分解因式解一元二次 方程的方法称为分解 因式法.
解后思考
1、什么样的一元二次方程适合因式分解法? 方程左边易于因__式__分解, 而右边等于零___
即 (一次因式A)(一次因式B) =0
例:用因式分解法解方程:
解(:2原x+方1程)2=变(x形-3为)2 : (2x+1)2-(x-3)2=0
把方程左边进行因式分解,得
3. 你能把下列各式分解因式吗? (1) x2+7x =x(x+7)
(2) 4x2-9 =(2x+3)(2x-3)
因式分解法求解一元二次方程

因式分解法求解一元二次方程一元二次方程是指形如ax^2+bx+c=0的方程,其中a、b、c是常数且a≠0。
解一元二次方程的一种常见方法是因式分解法。
因式分解法的基本思想是将方程两边表示为多个因式的乘积,然后令每个因式等于零,得到多个简单的方程,再解这些方程得到所有的解。
对于一元二次方程ax^2+bx+c=0,首先需要判断方程的根的个数。
根据判别式Δ(delta)=b^2-4ac的值,可以得到如下结论:1.当Δ>0时,方程有两个不相等的实根。
此时可以使用因式分解法求解。
2.当Δ=0时,方程有两个相等的实根。
此时可以使用因式分解法求解。
3.当Δ<0时,方程没有实根。
此时无法使用因式分解法求解。
对于情况1和情况2,下面将详细介绍因式分解法的步骤和解题思路。
步骤一:将方程整理成一般形式。
将方程ax^2+bx+c=0移项得到ax^2+bx=-c。
步骤二:将方程左边进行因式分解。
根据二次三项完全平方式分解公式,将左边进行因式分解得到(a*x+p)(x+q)=0,其中p和q是待定常数。
步骤三:将方程化简并分别解得p和q的值。
将方程(a*x+p)(x+q)=0展开并与原方程进行对比,得到以下等式:ax^2+(a*q+p)*x+a*p*q=-c将该等式与原方程对应的系数进行比较,可得到以下等式组:a*q+p=ba*p*q=-c通过解这个等式组,得到p和q的值。
步骤四:求解x的值。
将得到的p和q的值带入最初的因式分解形式(a*x+p)(x+q)=0中,分别令每个因式等于零,求解得到x的值。
以上就是因式分解法求解一元二次方程的基本步骤。
下面通过一个具体的例子来演示如何使用因式分解法求解一元二次方程。
例题:解方程2x^2+7x+3=0。
解:根据判别式Δ=b^2-4ac,计算出Δ=49-24=25>0,所以方程有两个不相等的实根。
步骤一:将方程整理成一般形式。
将方程2x^2+7x+3=0移项得到2x^2+7x=-3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小结
一元二次方程的解法:
1、配方法; 2、公式法;
适用任何一元二次方程
3、因式分解法. 适用部分一元二次方程
x 2 3, x 1 1 ×
则x1 1, x2 2
这个方程需要先转化为一般形式再求解.
(2)解方程: y2 4 y
解: y 2 4 y ×
y 4
根据等式性质,等式两边都除以一个不 为0的数时,等式仍然成立。上式中,方程两 边同除以y,而y有可能为0.那么,这个方程应 该怎样解呢?
y2 4y
解:移项,得 y2 4y 0
因式分解,得 y( y 4) 0
y 0 或 y 4 0 则 y1 4, y2 0
例题讲解
解方程:
5x2 2x 1 x2 2x 3
4
4
分析:等号右边不为0,需要先移项整
理。使方程右边为0,再对方程左边因式分
解。
(1)5x 2 2 x 1 x 2 2 x 3
(2)( y 2)( y 3) 0 y1 2, y2 3
(3)(3x 2)(2x 1) 0 x1
(4)x2 x x1 0, x2 1
2 3 , x2
1 2
2.下面的解法正确吗?如果不正确,错误 在哪? (1)解方程: ( x 2)(x 1) 3
解: ( x 2)(x 1) 31
4
4
解:移项,合并得:
4x2 1 0
因式分解,得:
(2x 1)(2x 1) 0
2 x 1 0或2 x 1 0
则 x1
-1 2 ,x2
1 2
练习
解下列方程:
(1)(2a-3)2=(a-2)(3a-4) (2)(4x-3)2=(x+3)2
小结
因式分解法的基本步骤: (1)将方程变形,使方程的右边为零; (2)将方程的左边因式分解; (3)根据若A·B=0,则A=0或B=0,将解一元 二次方程转化为解两个一元一次方程.
1、 什么样的一元二次方程可以 用因式分解法来解?
2、用因式分解法解一元二方程, 必须要先化成一般形式吗?
3、用因式分解法解一元二次方程, 其关键是什么?
例题讲解
解下列方程:
(1)3x(x 2) 5(x 2) (2)(3x 1)2 5 0
(1)3x(x 2) 5(x 2)
解:移项,得
ax2+bx+c=0(a≠0)有两个相等实数根:
x1
x2
b 2a
3、当b2-4ac<0时,一元二次方程
ax2+bx+c=0(a≠0)没有实数根:
一个数的平方与它本身互为相反数
,问:这个数是多少?
解:设这个数为x,则有:
x2+x=0
你可以有哪些方法 解这个方程?
观察
x2+x=0 除了配方法、公式法外,还有没有更简 便的方法解这个方程呢? 方程右边为0。左边因式分解,得:Fra bibliotek1 3
5
梳理
用因式分解法解一元二次方程的步骤: 1、方程右边化为 零 。 2、将方程左边分解成两个一次因式 的乘积 。 3、至少 有一个因式为零,得到两个一元 一次方程。 4、两个一元一次方就程是的原解方程的解。
练习
1.不计算,请你说出下列方程的根.
(1)x(x 2) 0 x1 0, x2 2
复习回顾
一元二次方程的解法有: 1、配方法;(直接开平方法) 2、公式法;
复习回顾
1、当b2-4ac>0时,一元二次方程 ax2+bx+c=0(a≠0)有两个不等实数根:
x b b2 4ac 2a
b b2 4ac
x1
2a
,
x2 b
b2 4ac 2a
2、当b2-4ac=0时,一元二次方程
3x( x 2) 5( x 2) 0
提公因 (x+2)(3x-5)=0
式. x+2=0或3x-5=0
∴ x1=-2 , x2=
5 3
(2)(3x+1)2-5= 0
解:原方程可变形为
平方差 公式.
(3x 1 5 )(3x 1 5 ) 0
3x 1 5 0
3x 1 5 0
则x1
1 3
5
,
x2
x(x+1)=0
x2+x=0 解:因式分解,得:
x(x+1)=0 ∴x=0 或 (x+1)=0 则x1=0 ,x2=-1 可以发现,利用因式分解可以很快捷地 解出方程。
梳理
上述解法中,通过因式分解使一元二次 方程化为两个一次式的乘积等于0的形式,再 使这两个一次式分别等于0,从而实现降次, 求出方程的根,这种解法叫做因式分解法。