24.1.2垂直于弦的直径(第1课时)
《24.1.2垂直于弦的直径》学历案-初中数学人教版12九年级上册

《垂直于弦的直径》学历案(第一课时)一、学习主题本课学习主题为“垂直于弦的直径”,是初中数学中关于圆的基础知识之一。
通过本课的学习,学生将掌握垂直于弦的直径的定理及其应用,为后续学习圆的性质、计算以及解决实际问题打下基础。
二、学习目标1. 理解垂直于弦的直径的定理,并能够运用该定理解决简单的几何问题。
2. 掌握通过作图、计算等方式,验证垂直于弦的直径定理的正确性。
3. 培养学生的空间想象能力和几何直观能力,提高学生的数学思维能力。
三、评价任务1. 评价学生对垂直于弦的直径定理的理解程度,通过课堂提问和互动进行观察和记录。
2. 评价学生运用定理解决问题的能力,通过布置相关练习题,观察学生的完成情况和正确率。
3. 评价学生的作图和计算能力,通过学生的作图和计算过程及结果进行评价。
四、学习过程1. 导入新课:通过回顾之前学习的圆的相关知识,引出本课的学习主题——垂直于弦的直径。
2. 新课讲解:(1)讲解垂直于弦的直径的定理,包括定理的内容和定理的应用。
(2)通过作图、计算等方式,验证定理的正确性。
(3)举例说明定理在解决实际问题中的应用。
3. 学生活动:学生分组进行作图、计算等实践活动,加深对定理的理解和掌握。
4. 课堂小结:总结本课学习的重点和难点,强调垂直于弦的直径定理的重要性和应用价值。
五、检测与作业1. 检测:通过布置相关的练习题,检测学生对垂直于弦的直径定理的理解和运用能力。
2. 作业:布置适量的练习题和作业,包括作图、计算和应用等方面,要求学生认真完成并加以复习。
六、学后反思1. 本课的教学重点和难点是否把握得当?是否需要根据学生的实际情况进行调整?2. 学生在学习过程中是否存在困惑或疑问?如何帮助学生解决这些问题?3. 本课的教学方法和手段是否有效?是否需要采用更多的互动式教学或实践式教学方式?4. 学生在作图、计算和应用等方面是否存在不足?如何加强这方面的训练和提高?通过本课的反思,教师可以更好地了解学生的学习情况和自己的教学效果,从而调整教学策略,提高教学质量。
24.1.2垂直于弦的直径(第1课时)

A
B
第2题图
选择:
如图:在⊙O中,AB为直径,CD为非直径的弦,对于(1) AB⊥CD (2)AB平分CD (3)AB平分CD所对的弧。若以其 中的一个为条件,另两个为结论构成三个命题,其中真命题的 个数为 ( A ) A A、3 B、2 C、1 D、0
。 O
C B D
活动三
练习
1.如图,在⊙O中,弦AB的长为8cm,圆心O 到AB的距离为3cm,求⊙O的半径. 解: OE
B
(4)
(5)
填空:
1、如图:已知AB是⊙O的直径,弦CD与AB相交于点E,若 AB⊥CD(或AC=AD,或BC=BD) _____________________________________________________, 则CE=DE(只需填写一个你认为适当的条件) 2、如图:已知AB是⊙O的弦,OB=4cm,∠ABO=300,则O 2 4 到AB的距离是___________cm,AB=_________cm. A C E 。 O B 第1题图 D 。 O H
解得 R≈3.9(m). 在Rt△ONH中,由勾股定理,得
OH ON 2 HN 2 , 即OH 3.9 2 1.52 3.6. DH 3.6 1.5 2.1 2. ∴此货船能顺利通过这座拱桥.
小 结
1、圆的轴对称性 2、垂径定理及其推论的图式
直径平分弦所对的弧 直径垂直于弦 直径平分弦(不是直径) 直径平分弦所对的弧
OEA 90
EAD 90
ODA 90
C
∴四边形ADOE为矩形, ∵ OE⊥AC OD⊥AB 1 1 ∴ AE AC,AD AB 2 2 ∵AC=AB ∴ AE=AD ∴ 四边形ADOE为正方形.
垂直于弦的直径(第一课时)教案

24.1.2垂直于弦的直径(一)教案授课班级:初三(3)班授课形式:同课异构一、教材分析1、作为《圆》这章的第一个重要性质,它研究的是垂直于弦的直径和这弦的关系。
2、该性质是圆的轴对称性的演绎,也是今后证明圆中线段相等、角相等、弧相等、垂直关系的重要依据,同时为后面圆的计算和作图提供了方法和依据,所以它在教材中处于非常重要的作用。
二、教学目标1、知识目标:(1)充分认识圆的轴对称性。
(2)利用轴对称探索垂直于弦的直径的有关性质,掌握垂径定理。
(3)运用垂径定理进行简单的证明、计算和作图。
2、能力目标:(1)让学生经历“实验—观察—猜想—验证—归纳”的研究过程,培养学生动手实践、观察分析、归纳问题和解决问题的能力。
(2)让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。
3、情感目标:(1)通过实验操作探索数学规律,激发学生的好奇心和求知欲,同时培养学生勇于探索的精神。
(2)结合赵州桥资料的介绍,向学生进行爱国主义教育和美育渗透。
三、教学关键圆的轴对称性的理解四、教学重点垂直于弦的直径的性质及其应用。
五、教学难点1、垂径定理的证明。
2、垂径定理的题设与结论的区分。
六、教学辅助知识点试题化、可折叠的圆形纸板。
七、教学方法本节课采用的教学方法是“主体探究式”。
整堂课充分发挥教师的主导作用和学生的主体作用,注重学生探究能力的培养,鼓励学生认真观察、大胆猜想、小心求证。
令学生参与到“实验--观察--猜想--验证--归纳”的活动中,与教师共同探究新知识最后得出定理。
学生不再是知识的接受者,而是知识的发现者,是学习的主人。
八、教学过程:(一)复习引入1、请回答:(1)什么叫做等弧?(2)什么是轴对称图形?(3)等腰三角形是轴对称图形吗?有几条对称轴?对称轴是什么?2、情景问题:你知道赵州桥吗?它是1300多年前我国隋代建造的石孔桥。
赵州桥主桥拱的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦的距离)为7.2m ,你能求出赵州桥主桥拱的半径吗?①、实物图形是:②、请根据实物图形画出几何图形:二、引入新课(一)、请你拿出一张自己准备的圆形纸片,沿着圆的任意一条直径对折,重复做几次,你发现了什么?由此你能得到什么结论?(1)圆是轴对称图形。
数学人教版九年级上册24.1.2垂直于弦的直径(第1课时)教学设计

活动 3:定理的基础应用 1、如图,AB 是⊙O 的直径,CD 为弦,CD⊥AB 于 E,则下列结论中不成立的是( )
3
2、如图,OE⊥AB 于 E,若⊙O 的半径为 10cm,OE=6cm,则 AB=
cm。
3、如图,在⊙O 中,弦 AB 的长为 8cm,圆心 O 到 AB 的距离为 3cm,求⊙O 的半径
教学内容 分析
理第 1 课的定理,为考察 重点,所以至少需要 2 课时来探究。垂径定理的推论(知二推三)和灵活运 用及更深入的应用和拓展将在第 2 课时进行研究、探讨。
知识能力目标:探索圆的对称性,进而得到垂直于弦的直径所具有的性质及证明, 能够利用垂径定理的性质求线段的长、证明线段相等、角相等等问题 过程与方法:在探索问题的过程中培养学生的动手操作能力,使学生感受圆的对称性,
反馈评价
做的不太好,需要老师评讲才会。
评价量规
1、本节课在课堂教学中采取了自主、合作、探究学习的方式,由学生动手操 作、讨论观察得结果从而激发学生学习的兴趣。 2、将问题抛出引导学生进一步思考、小组讨论发现证明垂径定理的方法,从而归纳得 出垂径定理加深对垂径定理的理解,突出了重点。 3、基本应用的 3 题简单且典型,引导学生联系弦、半径、弦心距等条件通过做辅助线构造 直角三角形解决问题,第 4 题主要利用垂径定理、勾股定理、方程的知识进行综合应用,通 过这种有梯度的训练加强了学生对垂径定理,突破了难点。
1
2
图1 图2
在完成上述的操作过程后,观察图形你能发现有相等的线段和相等的弧吗?如有, 能证明吗?(探究垂径定理) 学生活动设计:如图 2 所示,连接 OA、OB,得到等腰△OAB,即 OA=OB.因 CD ⊥AB,故△OAM 与△OBM 都是直角三角形,又 OM 为公共边,所以两个直角三角形全 等,则 AM=BM.所以 CD 是 AB 的垂直平分线,就是说圆上的任意一点 A 在圆上都有 关于直线 CD 的对称点 B,因此⊙O 关于直径 CD 对称。由于⊙O 关于直径 CD 对称,所 以 A 点和 B 点关于 CD 对称, 当圆沿着直径 CD 对折时, 点 A 与点 B 重合, AC 与 BC
24.1.2垂直于弦的直径

O
A
E D
B
证明:连结OA、OB,则OA= OB.∵ 垂直于弦AB的直径CD所在 的直线 既是等腰三角形OAB的对称轴又 是⊙ O的对称轴. ∴ 当把圆沿着直径CD折叠时, CD两侧的两个半圆重合, A点和B点重合, ⌒ ⌒ AE和BE重合, ⌒ ⌒ AC、AD分别和BC、BD重合. ⌒ ⌒ ⌒ ⌒ ∴ AE=BE,AC=BC,AD=BD
A E B
解:连结OA.过O作OE⊥AB, . O 垂足为E, 则OE=3cm,AE=BE. ∵AB=8cm ∴AE=4cm 在Rt△AOE中,根据勾股定理有OA=5cm ∴⊙O的半径为5cm.
2. 在⊙O中,AB、AC为互相垂直且相等的两条弦, OD⊥AB于D,OE⊥AC于E, 求证:四边形ADOE是 正方形.
① 直径过圆心 ③ 平分弦 ⑤ 平分弦所对的劣弧
② 垂直于弦 ⑤ 平分弦所对的劣弧
① 直径过圆心 ③ 平分弦 ④ 平分弦所对优弧
(4)垂直于弦并且平分弦所对的一条弧的 直径过圆心,并且平分弦和所对的另一条弧.
③ 平分弦 ④ 平分弦所对优弧
① 直径过圆心 ② 垂直于弦 ⑤ 平分弦所对的劣弧
③ 平分弦 ⑤ 平分弦所对的劣弧
证明: Q O E A C O D A B A B A C
O EA 90
o
EAD 90
o
O D A 90
C E A
o
∴四边形ADOE为矩形, 1 1 AE AC,AD AB 2 2 又∵AC=AB ∴ AE=AD ∴ 四边形ADOE为正方形.
· O
D B
24.1
24.1.2
圆的有关性质
垂直与弦的直径
轴 中心 圆心
24.1.2垂直于弦的直径

赵洲桥的半径是多少?
问题 :你知道赵洲桥吗?它是1300多年前我国隋代建造 的石拱桥,是我国古代人民勤劳与智慧的结晶.它的主桥是 圆弧形,它的跨度(弧所对的弦的长)为37.4m,拱高(弧的中点 到弦的距离)为7.2m,你能求出赵洲桥主桥拱的半径吗?
实践探究 用纸剪一个圆,沿着圆的任意一 条直径对折,重复几次,你发现了 什么?由此你能得到什么结论?
弧: BC, BD AC AD
C
·
O E A D B
把圆沿着直径CD折叠时,CD两侧的两个半圆 重合,点A与点B重合,AE与BE重合, C , D A A 分别与 B C 、 B D 重合.
C
A AE=BE, D B D
, C BC A 即直径CD平分弦AB,并且平分 B 及 C B A A
C
37 . 4 18 . 7 ,
OD=OC-CD=R-7.2 在Rt△OAD中,由勾股定理,得
OA2=AD2+OD2
即 R2=18.72+(R-7.2)2
A R O
D
B
解得:R≈27.9(m)
因此,赵州桥的主桥拱半径约为27.9m.
课堂练习
1.如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距 离为3cm,求⊙O的半径.
我们就得到下面的定理:
·
O
垂直于弦的直径平分弦,并 且平分弦所对的两条弧.
我们还可以得到结论:
E
A D
B
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
这个定理也叫垂径定理,利用 这个定理,你能平分一条弧吗?
解决求赵州桥拱半径的问题? 在图中 AB=37.4,CD=7.2,
24.1.2-3圆的垂直定理及弦、弧、圆心角

B
(4)
(5)
填空:
1、如图:已知AB是⊙O的直径,弦CD与AB相交于点E,若 AB⊥CD(或AC=AD,或BC=BD) _____________________________________________________ , 则CE=DE(只需填写一个你认为适当的条件) 2、如图:已知AB是⊙O的弦,OB=4cm,∠ABO=300,则O 到AB的距离是___________cm ,AB=_________cm. 2 4 A C E 。 O B 第1题图 D 。 O H
⌒ ⌒ = AOB COD . (1)如果AB=CD,那么___________ AB CD ,_________________ AOB COD AB=CD (2)如果 ⌒ = ⌒ ,那么____________ , ______________ . AB CD ⌒ =⌒ AB=CD
又因为OE
所以
、OF是AB与CD对应边上的高,
O
·
F
D
OE = OF.
C
⌒ = ⌒ , ∠COD=35°, = 2.如图,AB是⊙O的直径, ⌒ BC CD DE
求∠AOE的度数.
解: E D C A
⌒
⌒ =⌒ = BC CD DE
BOC=COD=DOE=35
O
·
AOE 180 3 35
A O· B 如图中所示, ∠AOB就是一个圆心角。
三、探究
如图,将圆心角∠AOB绕圆心O旋转到∠A’OB’的位置,你能 发现哪些等量关系?为什么? A′ A′ B B B′ B′
O
·
A
O
·
A
根据旋转的性质,将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置时,显然 ∠AOB=∠A′OB′,射线OA与OA′重合,OB与OB′重合.而同圆的半径相等, OA=OA′,OB=OB′,从而点A与A′重合,B与B′重合.
24.1.2垂直于弦的直径(第1课时)16995

(2)⊙O的直径为10 cm,圆心O到弦AB的 距离OE=3 cm,则弦AB的长是 8cm .
A
O
E
B
练习二:
(3)半径为2cm的⊙O中,过半径中点E且 垂直于这条半径的弦AB长是 2 3cm . A
O
E
B
(4)已知AB是⊙O的弦,OB=4cm,∠ABO=30°,
则O到AB的距离是 2 cm,AB= 4 3 cm.
爱是什么? 一个精灵坐在碧绿的枝叶间沉思。 风儿若有若无。 一只鸟儿飞过来,停在枝上,望着远处将要成熟的稻田。 精灵取出一束黄澄澄的稻谷问道:“你爱这稻谷吗?” “爱。” “为什么?” “它驱赶我的饥饿。” 鸟儿啄完稻谷,轻轻梳理着光润的羽毛。 “现在你爱这稻谷吗?”精灵又取出一束黄澄澄的稻谷。 鸟儿抬头望着远处的一湾泉水回答:“现在我爱那一湾泉水,我有点渴了。” 精灵摘下一片树叶,里面盛了一汪泉水。 鸟儿喝完泉水,准备振翅飞去。 “请再回答我一个问题,”精灵伸出指尖,鸟儿停在上面。 “你要去做什么更重要的事吗?我这里又稻谷也有泉水。” “我要去那片开着风信子的山谷,去看那朵风信子。” “为什么?它能驱赶你的饥饿?” “不能。” “它能滋润你的干渴?” “不能。”爱是什么? 一个精灵坐在碧绿的枝叶间沉思。 风儿若有若无。 一只鸟儿飞过来,停在枝上,望着远处将要成熟的稻田。 精灵取出一束黄澄澄的稻谷问道:“你爱这稻谷吗?” “爱。” “为什么?” “它驱赶我的饥饿。” 鸟儿啄完稻谷,轻轻梳理着光润的羽毛。 “现在你爱这稻谷吗?”精灵又取出一束黄澄澄的稻谷。 鸟儿抬头望着远处的一湾泉水回答:“现在我爱那一湾泉水,我有点渴了。” 精灵摘下一片树叶,里面盛了一汪泉水。 鸟儿喝完泉水,准备振翅飞去。 “请再回答我一个问题,”精灵伸出指尖,鸟儿停在上面。 “你要去做什么更重要的事吗?我这里又稻谷也有泉水。” “我要去那片开着风信子的山谷,去看那朵风信子。” “为什么?它能驱赶你的饥饿?” “不能。” “它能滋润你的干渴?” “不能。”
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C O A D M B
;
分层作业
基础题 2.如图,⊙O的直径AB与弦CD相交于E,且弧BC= 弧BD,CD=6,AB=8,则EB的长为 .
A O E D B C
3.如图,已知⊙O的半径为5mm,弦AB=8mm, 则圆心O到AB的距离是 .
分层作业
提高题 4.如图,以O为圆心的两个同心圆中,大圆的弦AB交 小圆于C、D两点,若AB=10cm,CD=6cm,则AC 的长为 cm.
O A C D B
5.如图,△ABC为⊙O的内接三角形,O为圆心, OD⊥AB,垂足为D,OE⊥AC,• 垂足为E,若DE=3, 则BC=________.
分层作业
A B O
提高练习:
(5)如图,⊙M与x轴交于A,B两点,与y轴
交于C,D两点,若M(2,0),B(5,0),
则C点的坐标是
y C A D O
(0, 5 ) .
M
B
x
课堂小结
1.垂径定理相当于说一条直线如果具备 (1)过圆心;(2)垂直于弦; 则它有以下性质(3)平分弦;(4)平分弦 所对的劣弧;(5)平分弦所对的优弧.
提高题 6.如图,矩形ABCD与圆心在AB上的⊙O交于点G, B,F,E,GB=8cm,AG=1cm,DE=2cm, 则EF=___cm.
7.如图,AB是⊙O的弦,C、D是AB边延长线上的 点,且AC=BD,求证:△OCD是等腰三角形.
O C A B D
(5)平分弦所对的劣弧
练习
在下列图形中,哪些图形可用垂径定理
找到相等的线段或相等的圆弧?
(1)过圆心 (3)平分弦 思考:
(2)垂直于弦 (4)平分弦所对优弧
讨论
(5)平分弦所对的劣弧
C
1.若知道“过圆心”和“平分弦”,
A
你是否能得到另外三个结论?
O
D
O B
推论 过圆心平分非直径的弦的直线 2.若知道“垂直于弦”和“平分弦”, 垂直于弦,并且平分弦所对的两条弧 . O 你能得到另外三个结论吗?
A O B
(2)⊙O的直径为10 cm,圆心O到弦AB的 距离OE=3 cm,则弦AB的长是 8cm .
A
O
E
B
练习二:
(3)半径为2cm的⊙O中,过半径中点E且 垂直于这条半径的弦AB长是 2 3cmB是⊙O的弦,OB=4cm,∠ABO=30°,
则O到AB的距离是 2 cm,AB= 4 3 cm.
基本图形
2.在圆中解决有关弦的问题时, 经常是连结半径,过圆心作弦的垂线段(即弦心距) 等 辅助线,为应用垂径定理创造条件. 半弦
半径
A
E
. O
B
弦心距
弦心距2+半弦2=半径2
测验:如图, ⊙ O的半径OC=10㎝, DC=2㎝,直径CE⊥AB于D, 求弦AB的长.
E
O A D B C
分层作业
C
观察图形,回答问题: (1)图中有哪些相等的线段? (2)图中有哪些相等的弧? (3)为什么它们会相等?
A
E
O B
D
垂直于弦的直径 C 垂径定理 垂直于弦的直径
O
A
平分弦,并且平分弦所对的两条弧.
B 问题:此定理的条件和结论分别是什么?
E D
题设
(1)过圆心
结论
(2)垂直于弦
}
{
(3)平分弦
(4)平分弦所对的优弧
例题解析
例:如图,在⊙O中,弦AB=8㎝,圆心O 到AB的距离OE=3㎝,求⊙O的半径. 5cm
4 E A 5 .3
B
O
反思: 在⊙ O中, 若⊙ O的半径r、圆心到弦的距离d、弦长a中, 任意知道两个量,可根据勾股 定理求出第三个量.
E
O A D C B
练习:
(1)半径为4 cm的⊙O中,弦AB=4 cm, 那么圆心O 到弦AB 的距离是 2 3cm .
第二十四章
圆
24.1 圆
24.1.2 垂直于弦的直径 第1课时
测验(3分钟)
求图中m的值:
30
A
15
8
m
m
25 24
B 2
m
C
观察与猜想
沿着圆的任意一条直径对折,你发现了什么? 由此你能得到什么结论?
C
O
D
圆是轴对称图形, 它的对称轴是任意一条过圆心的直线.
观察与猜想
作弦AB⊥直径CD于点E.(AB是非直径的弦)