最新九年级数学必考要点分类汇编精华版 分类讨论问题

合集下载

最新九年级数学必考要点分类汇编精华版 (新题解析)

最新九年级数学必考要点分类汇编精华版 (新题解析)

最新九年级数学必考要点分类汇编精华版探索规律 课堂测验1.如图,是一个装饰物品连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是( )。

2、观察下列图形:它们是按一定规律排列的,依照此规律,第9个图形中共有 个 3、先找规律,再填数:1111111111111111,,,,122342125633078456............111+_______.2011201220112012+-=+-=+-=+-=-=⨯则 4、将正偶数按下表排列:第1列 第2列 第3列 第4列第1行 2第2行 4 6第3行 8 10 12第4行 14 16 18 20 ……根据上面的规律,则2006所在行、列分别是 . 5、如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)根据这个规律探索可得,第100个点的坐标为____________.在平面直角坐标系xOy 中,点A 1,A 2,A 3,···和B 1,B 2,B 3,···分别在直线y=kx+b 和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形,如果A 1(1,1),A 27322⎛⎫⎪⎝⎭ ,,那么点n A 的纵坐标是 .(第1题图) B专题九 分类讨论 课堂测验班级__________姓名__________1、一次函数y kx b x =+-≤≤,当31时,对应的y 值为19≤≤x ,则kb 的值是( )。

A. 14B. -6C. -4或21D. -6或142、为了美化环境,计划在小区内用120m 2的草皮铺设一块一边长为20的等腰三角形绿地,请求出这个三角形的另两条边长分别是_____________.3、已知直角三角形两边x 、y 的长满足240x -+=,则第三边长为 .4、如图,正方形ABCD 的边长是2,BE =CE ,MN =1,线段MN 的两端在CD 、AD 上滑动。

最新九年级数学必考要点分类汇编精华版 分类讨论

最新九年级数学必考要点分类汇编精华版 分类讨论

最新九年级数学必考要点分类汇编精华版专题一:分类讨论简要分析在数学中,当被研究的问题存在多种情况,不能一概而论时,就需要按照可能出现的各种情况分类讨论,从而得出各种情况下的结论,这种处理问题的思维方法叫分类讨论思想,它不仅是一种重要的数学思想,同时也是一种重要的解题策略.在研究问题时,要认真审题,思考全面,根据其数量差异或位置差异进行分类,注意分类应不重不漏,从而得到完美答案. 典型例题例1 已知⊙O 的半径为13cm ,弦AB ∥CD ,AB =24cm ,CD =10cm ,则AB 、CD 之间的距离为【 】A .17cmB .7cmC .12cmD .17cm 或7cm例2 如图,点P 是菱形ABCD 的对角线AC 上的一个动点,过点P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点.设AC =2,BD =1,AP =x ,△AMN 的面积为y ,则y 关于x 的函数图象大致形状是【 】【分析】△AMN 的面积=12AP×MN ,通过题干已知条件,用x 分别表示出AP 、MN ,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤1;(2)1<x <2;例3 已知直角三角形两边x 、y 的长满足224560x y y -+-+=,则第三边长为 .例4 先阅读理解下面的例题,再按要求解答:例题:解一元二次不等式290x ->. 解:∵29(3)(3)x x x -=+-, ∴(3)(3)0x x +->.由有理数的乘法法则“两数相乘,同号得正”,有 (1)3030x x +>⎧⎨->⎩ (2)3030x x +<⎧⎨-<⎩解不等式组(1),得3x >, 解不等式组(2),得3x <-,故(3)(3)0x x +->的解集为3x >或3x <-, 即一元二次不等式290x ->的解集为3x >或3x <-.OOOO x x x x y y y y 1 2 1 2 1 2 1 2 A .B .C .D . ABCDMN P第2题图问题:求分式不等式51023x x +<-的解集. 例5 某园艺公司对一块直角三角形的花圃进行改造.测得两直角边长为6m 、8m .现要将其扩建成等腰三角形,且扩充部分是以8m 为直角边的直角三角形...........求扩建后的等腰三角形花圃的周长.【分析】原题并没有给出图形,要根据题意画出符合题意的图形,画出图形后,可知本题实际上应三类情况讨论:一是将△ABC 沿直线AC 翻折180°后,得等腰三角形ABD ,如图1;二是延长BC 至点D ,使CD =4,则BD =AB =10,得等腰三角形ABD ,如图2;三是作斜边AB 的中垂线交BC 的延长线于点D ,则DA =DB ,得等腰三角形ABD ,如图3.先作出符合条件的图形后,再根据勾股定理进行求解即可.图1668DC BA图2486BC AD图3x +6x 68BCDA考点训练一、选择题1.如图,点A 、B 、P 在⊙O 上,且∠APB =50°,若点M 是⊙O 上的动点,要使△ABM为等腰三角形,则所有符合条件的点M 有【 】A .1个B .2个C .3个D .4个2. 如图,已知⊙B 与△ABD 的边AD 相切于点C ,AC=4,⊙B 的半径为3,当⊙A 与⊙B 相切时,⊙A 的半径是【 】A .2B .7C .2或5D .2或8第1题图3.关于x 的方程068)6(2=+--x x a 有实数根,则整数a 的最大值是【 】A .6B .7C .7D .84. ⊙O 的半径为5㎝,弦AB ∥CD ,AB=6㎝,CD=8㎝,则AB 和CD 的距离是【 】A .7㎝B .8㎝C .7㎝或1㎝D .1㎝5. 已知一个等腰三角形两内角的度数之比为1∶4,则此等腰三角形顶角的度数是【 】A .20°B .120°C .20°或120°D .36°二、填空题6. 已知:如图,O 为坐标原点,四边形OABC 为矩形,A (10,0),C (0,4),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为5的等腰三角形时,则P 点的坐标为 .7. 如图,在正方形网格中,点A 、B 、C 、D 都是格点,点E 是线段AC 上任意一点.如果AD=1,那么当AE= 时,以点A 、D 、E 为顶点的三角形与△ABC 相似.8. 二次三项式 942+-mx x 是完全平方式,则m = .9. 腰长为5,一条高为4的等腰三角形的底边长为 错误!未找到引用源。

最新九年级数学必考要点分类汇编精华版 九年级数学专题复习

最新九年级数学必考要点分类汇编精华版 九年级数学专题复习

最新九年级数学必考要点分类汇编精华版九年级数学专题复习一,填空、选择题1. 如图,已知正方形ABCD 的边长为1,P 为正方形内一点,且PBC ∆为等边三角形,某同学根据条件得出四个结论:①PAD ∆为等腰三角形;②PBC ∆的面积为;③22AP =PBD ∆的面积为14.其中正确的是( ) A.①②③B.①②④C.①③④D.①②③④2. 如图,四边形ABCD 为一梯形纸片,AB//CD ,AD=BC .翻折纸片ABCD ,使点A 与点C 重合,折痕为EF .连接CE 、CF 、BD ,AC 、BD 的交点为O ,若CE AB ⊥,AB=7,CD=3.下列结论中:①AC=BD ,②EF ∥BD ,③S 四边形AECF =AC EF,④7EF =, ⑤连接FO ;则FO//AB .正确的序号是_________。

3. 如图,把矩形纸片ABCD 沿EF 折叠,使点B 落在AD 边上的点B '处,点A 落在点A '处.设AE=a ,AB=b ,BF=c ,下列结论:①B 'E=BF ; ②四边形B 'CFE 是平行四边形; ③222c b a =+; ④△A 'B 'E ∽△B 'CD ;其中正确的是( ) A .②④ B .①④C .②③D .①③4. 如图,正方形ABCD 中,在AD 的延长线上取点E ,F ,使DE=AD ,DF=BD ,连接BF 分别交CD ,CE 于H ,G 下列结论: ①EC=2DG ;②GDH GHD ∠=∠;③CDGDHGE SS =四边形;④图中有8个等腰三角形。

其中正确的是( )'(第10题图)B AA 、①③B 、②④C 、①④D 、②③5. 如图,Rt △ABC 中,AC ⊥BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AD 交AB 于点E ,M 为AE 的中点,BF ⊥BC 交CM 的延 长线于点F ,BD =4,CD =3.下列结论:①∠AED =∠ADC ;②DE DA =34;③AC ·BE =12;④3BF =4AC ,其中结论正确的个数有( )A .1个B .2个C .3个D .4个6. 如图,分别以ABC Rt ∆的斜边AB 、直角边AC 为边向外作等边ABD ∆和∆ACE ,F 为AB 的中点,连接DF 、EF 、DE ,EF 与AC 交于点O ,DE 与AB 交于点G ,连接OG ,若∠BAC=30°,下列结论:①∆DBF ≌EFA ∆;②AD=AE ;③EF ⊥AC ; ④AD=4AG ;⑤∆AOG 与∆EOG 的面积比 为1:4,其中正确结论的序号是( ) A .①②③ B .①④⑤ C .①③⑤ D .①③④7. 如图,已知边长为4的正方形ABCD ,E 为BC 的中点,连接AE 、DE , BD 、AE 交BD 于F ,连接CF 交DE 于G ,P 为DE 的中点,连接AP 、FP ,下列结论:①DE CF ⊥;②203CDFE S =四边形;③30EAP ∠=︒; ④FGP ∆为等腰直角三角形. 其中正确结论的个数有( ) A .1个 B. 2个 C. 3个 D. 4个8. 如图,在正方形ABCD 中,对角线AC 、BD 交于点D ,CE 平分,ACD ∠ 分别交AD 、BD 于,//E G EF AC 、交CD 于F ,连接OE 下列结论:①=,EF AE ,AEO AOE ∠=∠②,21AE OG =③2ACE DCE S S ∆∆= .)12(DG AB +=⑤其中正确的是( )A.①③⑤B.①②④C.①③④D.②③⑤9. 如图,正方形ABCD 中,E 为AD 的中点,DF CF ⊥于M ,交AC 于点N ,交AB 于点F ,连接EN 、BM 。

最新九年级数学必考要点分类汇编精华版 (数学中考复习专题 建立数学模型解决实际问题)

最新九年级数学必考要点分类汇编精华版 (数学中考复习专题 建立数学模型解决实际问题)

最新九年级数学必考要点分类汇编精华版1.某市电信局现有600部已申请装机的固定电话沿待装机,此外每天还有新申请装机的电话也待装机,设每天新申请装机的固定电话部数相同,每个电话装机小组每天安装的固定电话部数也相同,若安排3个装机小组,恰好60天可将待装固定电话装机完毕;若安排5个装机小组,恰好20天可将待装固定电话装机完毕。

(1)求每天新申请装机的固定电话部数;(2)如果要在5天内将待装固定电话装机完毕,那么电信局至少需安排几个电话装机小组同时装机?2、在车站开始检票时,有a(a>0)名旅客在候车室排队等候检票进站。

检票开始后,有旅客继续前来排队检票进站。

设旅客按固定的速度增加,检票口检票的速度也是固定.若开放一个检票口,则需30分钟才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10分钟便可将排队等候检票的旅客全部检票完毕,如果要在5分钟内将排队等候检票的旅客全部检票完毕,以使后来到站的旅客随到随检,至少要同时开放几个检票口。

3、(泰安卷)某面粉厂有工人20名,为获得更多利润,增设加工面条项目,用本厂生产的面粉加工成面条(生产1千克面条需用面粉1千克).已知每人每天平均生产面粉600千克,或生产面条400千克.将面粉直接出售每千克可获利润0.2元,加工成面条后出售每千克面条可获利润0.6元,若每个工人一天只能做一项工作,且不计其它因素,设安排x名工人加工面条.y(元);(1)求一天中加工面条所获利润1y(元);(2)求一天中剩余面粉所获利润2(3)当x为何值时,该厂一天中所获总利润y(元)最大?最大利润为多少元?4.(牡丹江市本小题满分10分)下岗职工王阿姨利用自己的一技之长开办了“爱心服装厂”,计划生产甲、乙两种型号的服装共40套投放到市场销售.已知甲型服装每套成本34元,售价39元;乙型服装每套成本42元,售价50元.服装厂预计两种服装的成本不低于1536元,不高于1552元.(1)问服装厂有哪几种生产方案?(2)该服装厂怎样生产获得利润最大?(3)在(1)的条件下,40套服装全部售出后,服装厂又生产6套服装捐赠给某社区低保户,这样服装厂仅获利润25元钱.请直接写出服装厂是按哪种方案生产的.5.(本小题满分10分)某工厂计划为震区生产A B ,两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A 型桌椅(一桌两椅)需木料30.5m ,一套B 型桌椅(一桌三椅)需木料30.7m ,工厂现有库存木料3302m .(1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套A 型桌椅的生产成本为100元,运费2元;每套B 型桌椅的生产成本为120元,运费4元,求总费用y (元)与生产A 型桌椅x (套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由. 6.(湖州市本小题10分)从有关方面获悉,在我市农村己经实行了农民新型合作医疗保险制度.享受医保的农民可在规定的医院就医并按规定标准报销部分医疗费用.下表是医疗费(说明:住院医疗费用的报销分段计算,如:某人住院医疗费用共30000元,则5000元按30%报销、15000元按40%报销、余下的10000元按50%报销;题中涉及到的医疗费均指允许报销的医疗费)(1)某农民在2006年门诊看病自己共支付医疗费l80元,则他在这一年中门诊医疗费用共__________元;(2)设某农民一年中住院的实际医疗费用为x 元(5001≤x ≤20000),按标准报销的金额为y元,试求出y 与x 的函数关系式; (3)若某农民一年内本人自负住院医疗费17000元(自负医疗费=实际医疗费-按标准报销的金额),则该农民当年实际医疗费用共多少元?7.(自贡市)抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A、B两仓库。

最新九年级数学必考要点分类汇编精华版 新课标数学新考题及答案

最新九年级数学必考要点分类汇编精华版 新课标数学新考题及答案

最新九年级数学中考必考要点分类汇编精华版新课标数学新考题及答案一.填空题(每小题3分,共45分)1.(3分)(昌平区一模)若二次根式有意义,则x的取值范围为_________.2.(3分)计算=_________.3.(3分)已知b>0,化简=_________.4.(3分)请给c的一个值,c=_________时,方程x2﹣3x+c=0无实数根.5.(3分)(沙河口区模拟)如果点P关于x轴的对称点p1的坐标是(2,3),那么点p关于原点的对称点p2的坐标是_________.6.(3分)如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB,则点P与点P′之间的距离为_________.7.(3分)(青铜峡市模拟)正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针方向旋转90°后,B点的坐标为_________.8.(3分)圆心在原点O,半径为5的⊙O,则点P(﹣3,4)在⊙O_________.9.(3分)台钟的时针长为8厘米,从上午7时到上午11时,时针针尖走过的路程是_________厘米.10.(3分)(点军区一模)两圆外切,圆心距为16cm,且两圆半径之比为5:3.若这两圆内切,则这两圆的圆心距为_________cm.11.(3分)如图,一圆内切四边形ABCD,且AB=16,CD=10,则四边形的周长为_________.12.(3分)如图,AB是⊙O的直径,弦CD垂直平分OB,则∠BDC的度数为_________.13.(3分)如图,在△ABC中,∠C=90°,BC=3,AC=4,内切圆半径是_________,外接圆半径_________.14.(3分)如图,PA、PB是⊙O的切线,A、B是切点,∠P=60°,PA=2,⊙O的直径等于_________.15.(3分)(路北区三模)随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率是_________.二.选择题(每小题3分,共15分)2三.解答题(本大题共8小题,满分60分.解答应写出文字说明.证明过程或演算步骤)21.(5分)(嘉兴)计算:+(﹣1)3﹣2×.22.(5分)(仙桃)先化简,再求值:,其中x=2﹣.23.(5分)解方程:3x2+5(2x+1)=0.24.(6分)在网格图中,每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=6.(1)试作出△ABC以A为旋转中心、沿顺时针方向旋转90°后的图形△AB′C′;(2)若点B的坐标为(﹣4,5),试建立合适的直角坐标系,并写出A、C两点的坐标;(3)作出与△ABC关于原点对称的图形△A″B″C″,并写出A″、B″、C″三点的坐标.25.(6分)一个家庭有3个孩子,(1)求这个家庭有2个男孩和1个女孩的概率;(2)求这个家庭至少有一个男孩的概率.26.(8分)莆田新美蔬菜有限公司一年四季都有大量新鲜蔬菜销往全国各地,已成为我区经济发展的重要项目.近年来它的蔬菜产值不断增加,2007年蔬菜的产值是640万元,2009年产值达到1000万元.(1)求2008年、2009年蔬菜产值的年平均增长率是多少?(2)若2010年蔬菜产值继续稳步增长(即年增长率与前两年的年增长率相同),那么请你估计2010年该公司的蔬菜产值将达到多少万元?27.(10分)(宁夏)已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.(1)求证:PD是⊙O的切线;(2)若∠CAB=120°,AB=2,求BC的值.28.(15分)(台州)如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)数学复习题答案参考答案与试题解析一.填空题(每小题3分,共45分)1.(3分)(昌平区一模)若二次根式有意义,则x的取值范围为x≥.﹣.2.(3分)计算=+.先将原式变形(+(=()+()﹣+(+故答案为()3.(3分)已知b>0,化简=﹣a.∴==a.a4.(3分)请给c的一个值,c=3(c的取值只要大于2.25即可)时,方程x2﹣3x+c=0无实数根.5.(3分)(沙河口区模拟)如果点P关于x轴的对称点p1的坐标是(2,3),那么点p关于原点的对称点p2的坐标是(﹣2,3).6.(3分)如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB,则点P与点P′之间的距离为6.7.(3分)(青铜峡市模拟)正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针方向旋转90°后,B点的坐标为(4,0).8.(3分)圆心在原点O,半径为5的⊙O,则点P(﹣3,4)在⊙O上.=59.(3分)台钟的时针长为8厘米,从上午7时到上午11时,时针针尖走过的路程是厘米.时针尖走过的路程为:=10.(3分)(点军区一模)两圆外切,圆心距为16cm,且两圆半径之比为5:3.若这两圆内切,则这两圆的圆心距为4cm.11.(3分)如图,一圆内切四边形ABCD,且AB=16,CD=10,则四边形的周长为52.12.(3分)如图,AB是⊙O的直径,弦CD垂直平分OB,则∠BDC的度数为30°.OC都对,CDB=∠13.(3分)如图,在△ABC中,∠C=90°,BC=3,AC=4,内切圆半径是1,外接圆半径 2.5.BA==514.(3分)如图,PA、PB是⊙O的切线,A、B是切点,∠P=60°,PA=2,⊙O的直径等于.APO=OA=PA=APO=∠OA=PA=的直径等于故答案为15.(3分)(路北区三模)随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率是..二.选择题(每小题3分,共15分)先估计的整数部分,然后即可判断所以所以2三.解答题(本大题共8小题,满分60分.解答应写出文字说明.证明过程或演算步骤)21.(5分)(嘉兴)计算:+(﹣1)3﹣2×.按照实数的运算法则依次计算,注意=2=2﹣=22.(5分)(仙桃)先化简,再求值:,其中x=2﹣.===时,﹣23.(5分)解方程:3x2+5(2x+1)=0.x==24.(6分)在网格图中,每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=6.(1)试作出△ABC以A为旋转中心、沿顺时针方向旋转90°后的图形△AB′C′;(2)若点B的坐标为(﹣4,5),试建立合适的直角坐标系,并写出A、C两点的坐标;(3)作出与△ABC关于原点对称的图形△A″B″C″,并写出A″、B″、C″三点的坐标.25.(6分)一个家庭有3个孩子,(1)求这个家庭有2个男孩和1个女孩的概率;(2)求这个家庭至少有一个男孩的概率.个女孩的概率为这个家庭至少有一个男孩的概率26.(8分)莆田新美蔬菜有限公司一年四季都有大量新鲜蔬菜销往全国各地,已成为我区经济发展的重要项目.近年来它的蔬菜产值不断增加,2007年蔬菜的产值是640万元,2009年产值达到1000万元.(1)求2008年、2009年蔬菜产值的年平均增长率是多少?(2)若2010年蔬菜产值继续稳步增长(即年增长率与前两年的年增长率相同),那么请你估计2010年该公司的蔬菜产值将达到多少万元?,﹣27.(10分)(宁夏)已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.(1)求证:PD是⊙O的切线;(2)若∠CAB=120°,AB=2,求BC的值.BP=,BC=228.(15分)(台州)如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)CD=OC CD=,=。

最新九年级数学必考要点分类汇编精华版 数的总结(正负数、相反数、绝对值、整数指数幂、平方根等

最新九年级数学必考要点分类汇编精华版 数的总结(正负数、相反数、绝对值、整数指数幂、平方根等

最新九年级数学必考要点分类汇编精华版专题一 数的理解(正负数、相反数、绝对值、倒数、科学记数法、整数指数幂、平方根等,每年必考1~2题)例1:(中招01).-5的绝对值是( )。

A 、-5B 、5C 、51 D 、51-例2(中招02).据了解,我市每年用于校舍维护维修的资金约需7300万元,用科学记数法表示这一数据为( )。

A 、7.3×106元B 、73×106元C 、7.3×107元D 、73×107元例3(中招 1.)-31的倒数是( )A . -3B . 3C . 31D . -31例4(中招 2.)在今年四川汶川地震抗震救灾过程中,国内外社会各界纷纷伸出援助之手,截止5月30日12时,共收到各类捐赠款物折合人民币约399亿元,这个数据用科学记数法表示为( )A . 3.99×109元B . 3.99×1010元C . 3.99×1011元D . 399×102元 中招 1.9-的相反数是( ) A .19B .19-C .9-D .92.某种流感病毒的直径是0.00000008m ,这个数据用科学记数法表示为( ) A .6810m -⨯B .5810m -⨯C .8810m -⨯D .4810m -⨯中招 1.计算2)1(-的值等于 A .﹣1B .1C .﹣2D .215. 中招5月1日世界博览会在我国上海举行,世博园开园一周以来,入园人数累计约为1050000人,该数字用科学记数法表示为 人。

中招 1、(•临沂)下列各数中,比﹣1小的数是( )A 、0B 、1C 、﹣2D 、21.(中招临沂)16-的倒数是( ) A .6 B .﹣6 C .16 D .16-2.(中招临沂)太阳的半径大约是696000千米,用科学记数法可表示为( ) A .696×103千米 B .69.6×104千米 C .6.96×105千米 D .6.96×106千米补偿练习1.(中招•烟台)的值是( )A .4B .2C .﹣2D .±2 2.(中招滨州)32- 等于( ) A .6- B .6 C .8- D .8 3. (中招日照)-5的相反数是( ) (A )-5 (B )-51(C )5 (D )51 5. (中招日照)据新华社报道:在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为(A) 1.94×1010 (B)0.194×1010 (C) 19.4×109 (D) 1.94×1096.(中招.潍坊)许多人由于粗心,经常造成水龙头“滴水”或“流水”不断.根据测定,一般情况下一个水龙头“滴水”1个小时可以流掉3.5千克水,若1年按365 天计算,这个水龙头一年可以流掉( )千克水.(用科学计数法表示,保留3个有效数字)A .3.1410⨯ B .0.31510⨯ C . 3.06410⨯ D .3.07410⨯专题二 整式的运算(包括整式的加减乘除乘方等运算) 例 :中招03.下列运算正确的是( )。

最新九年级数学必考要点分类汇编精华版 数学解答题的解题策略 如何破解难题、新题

最新九年级数学必考要点分类汇编精华版 数学解答题的解题策略 如何破解难题、新题

最新九年级数学必考要点分类汇编精华版数学解答题的解题策略完成解答题应把握好以下各个环节:(1)审题:这是解答题的开始,也是解答题的基础,一定要全面审视题目的所有条件和解题要求,以求正确全面的理解题意,在整体上把握试题的特点,结构,以利于解题方法的选择和解题步骤的设计。

审题时要注意各种数学语言的识别,要注意捕捉所有的信息,特别是重要的,关键的信息。

(2)寻求合题的解题思路和方法,破除模式化,力求创新是近几年中考数学试题的显著特点。

解答题体现得尤为突出,因此切记套用机械的模式寻求解题思路和方法,而应从各个不同的侧面、不同的角度,识别题目的条件和结论,认识条件和结论之间的关系,图形的几何特征与数式的数量特征的关系,谨慎地确定解题的思路和方法,当思维受阻是,应及时调整思路和方法,并重新审视题意,注意挖掘题目隐含的已知条件和内在联系,要防止钻牛角尖,又要防止轻易放弃。

(3)设计有效的解题过程和步骤初步确定解题的思路和方法后,就要设计好解题的过程和步骤,切忌盲目下笔,顾此失彼,解题过程中的每个步骤都要做到推理严谨,言必有据,演算准确,表达得当,及时核对数据,进行必要的检查,注意不要跳步,防止无根据的判断,防止只凭直观,以不存在的图形特征做为条件进行推理,有些单纯的数式计算步骤可以适当省略,但要注意不要因此而出现计算错误。

(4)力求表达得当:所答与所问要对应,且不要用不规范的语言,不要以某些习题中的结论为依据(定理除外),只写结论,不写过程。

(5)画好图形:做到定形(状),定性(质),定(数)量,定位(置),注意图形中的可变因素,注意图形的运动和变换,画好图形,对理解题意、寻求思路、检查答案都可以发挥重要的作用,切忌只求示意,不求准确。

【典例精析】----解答题的常见题型1、代数计算题(实数的计算、三角函数、方程、因式分解、不等式/ 组、代数式的求值,数轴题等,6分左右) 例1、先化简,再求值,11)1211(2+÷---+a a a a ,其中13+=a . 2、图形题(作图题/中心对称、轴对称、相似变换、位似变换,平分角、添线构成等腰三角形、图形的变换规律等等,一般只有1题,6~8分左右 ) 例2、如图所示,ABC △是等边三角形, D 点是AC 的中点,延长BC 到E ,使CE CD =,(1)用尺规作图的方法,过D 点作DM BE ⊥,垂足是M (不写作法,保留作图痕迹);(2)求证:BM EM =.3、统计与概率题(画统计图、填统计表、计算极差、平均数、方差、众数,方案设计,概率统计,经常与方程联系起来考利润问题,盈亏问题,一般8分左右)例3、李明对某校九年级(2)班进行了一次社会实践活动调查,从调查的内容中抽出两项. 调查一:对小聪、小亮两位同学的毕业成绩进行调查,其中毕业成绩按综合素质、考试成绩、体育测试三项进行计算,计算的方法按4:4:2进行,毕业成绩达80分以上(含80分)为“优秀毕业生”,小聪、小亮的三项成绩如右表:(单位:分)综合素质 考试成绩 体育测试 满分 100 100 100 小聪 72 98 60 小亮907595调查二:对九年级(2)班50名同学某项跑步成绩进行调查,并绘制了一个不完整的扇形统计图,请你根据以上提供的信息,解答下列问题:(1)小聪和小亮谁能达到“优秀毕业生”水平?哪位同学的毕业成绩更好些? (2)升入高中后,请你对他俩今后的发展给每人提一条建议. (3)扇形统计图中“优秀率”是多少?(4)“不及格”在扇形统计图中所占的圆心角是多少度?4、函数图象题(一般都会与三角形、四边形联系起来,通常求交点个数及坐标、平移后的AC B DE不及格O36%及格18%良好优秀3人解析式、长度问题,面积问题,与坐标轴夹角及夹角的三角函数值,10分左右) 例5、已知反.比例函数y =kx的图象经过点P (2,2),函数y =ax +b 的图象与直线y =-x 平行,并且经过反比例函数图象上一点Q (1,m ).(1)求出点Q 的坐标; (2)函数y =ax 2+bx +25k k-有最大值还是最小值?这个值是多少?5、圆、圆锥(证明线段/弦的平行、垂直位置关系及大小关系,切线的证明,圆与三角函数的求解,圆与函数、方程,圆/圆锥的相关计算,圆与直线位置问题, 10分左右) 例5、如图,090B ∠=,O 是AB 上的一点,以O 为圆心,OB 为半径的圆与AB 交于点E ,与AC 切于点D .若AD =23,且AB 、AE 的长是关于x 的方程280x x k -+=的两个实数根.(1)求⊙O 的半径.(2)求CD 的长.6、函数、方程、不等式应用题(与生活实际联系的一道应用题,10分左右)例6、近期,海峡两岸关系的气氛大为改善。

最新九年级数学必考要点分类汇编精华版 中考压轴题综合知识的理解与应用)

最新九年级数学必考要点分类汇编精华版 中考压轴题综合知识的理解与应用)

最新九年级数学必考要点分类汇编精华版九年级数学中考压轴题专题复习——综合知识的理解与应用一.解答题(共11小题,满分110分,每小题10分)1.(10分)已知:如图,抛物线与x、y轴分别相交于A、B两点,将△AOB绕着点O逆时针旋90°到△A′OB′,且抛物线y=ax2+2ax+c(a≠0)过点A′、B′.(1)求A、B两点的坐标;(2)求抛物线y=ax2+2ax+c的解析式;(3)点D在x轴上,若以B、B′、D为顶点的三角形与△A′B′B相似,求点D的坐标.2.(10分)如图,在平面直角坐标系中,矩形OABC的顶点A(3,0),C(0,1).将矩形OABC绕原点逆时针旋转90°,得到矩形OA′B′C′.设直线BB′与x轴交于点M、与y轴交于点N,抛物线y=ax2+bx+c的图象经过点C′、M、N.解答下列问题:(1)求出该抛物线所表示的函数解析式;(2)将△MON沿直线BB′翻折,点O落在点P处,请你判断点P是否在该抛物线上,并请说明理由;(3)将该抛物线进行一次平移(沿上下或左右方向),使它恰好经过原点O,求出所有符合要求的新抛物线的解析式.3.(10分)在平面直角坐标系中,点A坐标为(1,1),过点A作AB⊥x轴,垂足为点B,△AOB绕点O逆时针方向旋转90°,得到△MON(如图所示),若二次函数的图象经过点A、M、O三点.(1)求这个二次函数的解析式;(2)如果把这个二次函数图象向右平移2个单位,得到新的二次函数图象与y轴的交点为C,求tan∠ACO的值;(3)在(2)的条件下,设新的二次函数图象的对称轴与x轴的交点为D,点E在这条对称轴上,如果△BCO与以点B、D、E所组成的三角形相似(相似比不为1),求点E的坐标.4.(10分)如图,已知二次函数的图象经过点A(4,0)和点B(3,﹣2),点C是函数图象与y轴的公共点、过点C作直线CE∥AB.(1)求这个二次函数的解析式;(2)求直线CE的表达式;(3)如果点D在直线CE上,且四边形ABCD是等腰梯形,求点D的坐标.5.(10分)已知在△ABC中,∠A=45°,AB=7,,动点P、D分别在射线AB、AC上,且∠DPA=∠ACB,设AP=x,△PCD的面积为y.(1)求△ABC的面积;(2)如图,当动点P、D分别在边AB、AC上时,求y关于x的函数解析式,并写出函数的定义域;(3)如果△PCD是以PD为腰的等腰三角形,求线段AP的长.6.(10分)如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B 左侧),与y轴交于点C.(1)求抛物线的解析式及点A、B、C的坐标;(2)若直线y=kx+t经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;(3)点P在抛物线的对称轴x=1上运动,请探索:在x轴上方是否存在这样的P点,使以P为圆心的圆经过A、B两点,并且与直线CD相切?若存在,请求出点P的坐标;若不存在,请说明理由.7.(10分)如图,在菱形ABCD中,AB=2cm,∠BAD=60°,E为CD边中点,点P从点A开始沿AC方向以每秒cm 的速度运动,同时,点Q从点D出发沿DB方向以每秒1cm的速度运动,当点P到达点C时,P,Q同时停止运动,设运动的时间为x秒.(1)当点P在线段AO上运动时.①请用含x的代数式表示OP的长度;②若记四边形PBEQ的面积为y,求y关于x的函数关系式(不要求写出自变量的取值范围);(2)显然,当x=0时,四边形PBEQ即梯形ABED,请问,当P在线段AC的其他位置时,以P,B,E,Q为顶点的四边形能否成为梯形?若能,求出所有满足条件的x的值;若不能,请说明理由.8.(10分)如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B两点,开口向下的抛物线经过点A,B,且其顶点P在⊙C上.(1)求∠ACB的大小;(2)写出A,B两点的坐标;(3)试确定此抛物线的解析式;(4)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.9.(10分)如图,抛物线交x轴于点A、B,交y轴于点C,连接AC,BC,D是线段OB上一动点,以CD为一边向右侧作正方形CDEF,连接BF,交DE于点P.(1)试判断△ABC的形状,并说明理由;(2)求证:BF⊥AB;(3)连接CP,记△CPF的面积为S1,△CPB的面积为S2,若S=S1﹣S2,试探究S的最小值.10.(10分)已知二次函数y=﹣x2+(k+1)x﹣k的图象经过一次函数y=﹣x+4的图象与x轴的交点A.(如图)(1)求二次函数的解析式;(2)求一次函数与二次函数图象的另一个交点B的坐标;(3)若二次函数图象与y轴交于点D,平行于y轴的直线l将四边形ABCD的面积分成1:2的两部分,则直线l 截四边形ABCD所得的线段的长是多少?(直接写出结果)答案与评分标准一.解答题(共10小题,满分100分,每小题10分)1.(10分)已知:如图,抛物线与x、y轴分别相交于A、B两点,将△AOB绕着点O逆时针旋90°到△A′OB′,且抛物线y=ax2+2ax+c(a≠0)过点A′、B′.(1)求A、B两点的坐标;(2)求抛物线y=ax2+2ax+c的解析式;(3)点D在x轴上,若以B、B′、D为顶点的三角形与△A′B′B相似,求点D的坐标.考点:二次函数综合题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新九年级数学必考要点分类汇编精华版
专题六:分类讨论问题
【知识梳理】
分类讨论问题就是将要研究的数学对象按照一定的标准划分为若干不同的情形,然后再逐类进行研究和求解的一种数学解题思想。

对于因存在一些不确定因素、无法解答或者结论不能给予统一表述的数学问题,我们往往将问题划分为若干类或若干个局部问题来解决。

分类思想方法实质上是按照数学对象的共同性和差异性,将其区分为不同的种类的思想方法,其作用是克服思维的片面性,防止漏解。

要注意,在分类时,必须按同一标准分类,做到不重不漏. 【课前预习】
1、一个等腰三角形的一个外角等于110°,则这个三角形的三个角应该为______________.
2、矩形一个内角的平分线分矩形一边长为1cm 和3cm 两部分,则这个矩形的面积为 cm 2
.
3、若函数y =

⎪⎨⎪⎧
x 2

x ,2x x >,
则当函数值y =8时,自变量x 的值
是 .
4、如图所示,在梯形ABCD 中,AD ∥BC ,∠ABC =90°,AD =AB =6,BC =14,点M 是线段
BC 上一定点,且MC =8.动点P 从C 点出发沿C →D →A →B 的路线运动,运动到点B 停止.在点P 的运动过程中,使△PMC 为等腰三角形的点P 有________个.
5、如图,正方形ABCD 的边长是2,BE =CE ,MN =1,线段MN 的两端在CD 、AD 上滑动。

当DM = 时,△ABE 与以D 、M 、N 为顶点的三角形相似。

【例题精讲】
例1、王叔叔家有一块等腰三角形的菜地,腰长为40米,一条笔直的水渠从菜地穿过,这条水渠恰好垂直平分等腰三角形的一腰,水渠穿过菜地部分的长为15米(水渠的宽不计),请你计算这块等腰三角形菜地的面积.
例2、如图,点A 、B 在直线MN 上,AB =11 cm ,⊙A 、⊙B 的半径均为1 cm ,⊙A 以每秒2 cm 的速度自左向右运动,与此同时,⊙B 的半径也不断增大,其半径r (cm)与时间t (秒)之间
的关系式为r=1+t(t≥0),当点A出发后秒两圆相切.
例3、如图3,在直角梯形ABCD中,AD∥BC,∠C=900,BC=16,DC=12,AD=21,动点P 从D出发,沿射线DA的方向以每秒2个单位长度的速度运动,动点Q从点C出发,经线段CB上以每秒1个单位长度的速度向点B运动,点P、Q分别从D、C同时出发,当点Q运动
到点B时,点P随之停止运动。

设运动时间为秒。

⑴设△BPQ的面积为S,求S与之间的函数关系式。

⑵当为何值时,以B、P、Q三点为顶点的三角形是等腰三角形?
例4、已知A(1,0),B(0,-1),C(-1,2),D(2,-1),E(4,2)五个点,抛物线y=a(x-1)2+k
(a>0),经过其中三个点.
(1)求证:C、E两点不可能同时在抛物线y=a (x-1)2+k(a>0)上;
(2)点A在抛物线y=a (x-1)2+k(a>0)上吗?为什么?
(3)求a和k的值.
例5、如图,在矩形ABCD中,AD=8,点E是AB边上的一点,AE=2 2. 过D,E两点作直线PQ,与BC边所在的直线MN相交于点F.
(1)求tan∠ADE的值;
(2)点G是线段AD上的一个动点,GH⊥DE,垂足为H. 设DG为x,四边形AEHG的面积为y,试写出y与x之间的函数关系式;
(3)如果AE =2EB ,点O 是直线MN 上的一个动点,以O 为圆心作圆,使⊙O 与直线PQ 相切,同时又与矩形ABCD 的某一边相切. 问满足条件的⊙O 有几个?并求出其中一个圆的半径.
【巩固练习】
1.如图,点A 的坐标是(2,2),若点P 在x 轴上,且△APO 是等腰三角形, 则点P 的坐标不可能是( )
A .(4,0)
B .(1,0)
C .(-2 2,0)
D .(2,0)
2、在△ABC 中 ,AB =AC =12 cm ,BC =6 cm ,D 为BC 的中点,动点P 从B 点出发,以每秒1 cm 的速度沿B →A →C 的方向运动,设运动的时间为t 秒,过D 、P 两点的直线将△ABC 的周长分成两个部分,使其中一部分是另一部分的2倍,那么t 的值为________.
3、如图,AB 是⊙O 的直径,弦BC =2 cm ,F 是弦BC 的中点,∠ABC =60°.若动点E 以2 cm/s 的速度从A 点出发沿着A →B →A 方向运动,设运动时间为t (s)(0≤t <3),连接EF ,当t 值为多少时,△BEF 是直角三角形.
【课后作业】 班级 姓名 一、必做题:
1.已知三角形的两边长分别为3和6,第三边的长是方程x 2
-6x +8=0的解,则这个三角
形的周长是 ( )
A.11 B.13 C.11或13 D.11和13
2.一组数据2,3,4,x中,若中位数与平均数相等,则数x不可能是 ( )
A.1 B.2 C.3 D.5
3.已知⊙O的直径AB=40,弦CD⊥AB于点E,且CD=32,则AE的长为 ( )
A.12 B.8 C.12或28 D.8或32
4.如图,⊙B与△ABD的边AD相切于点C,AC=4,⊙B的半径为3,
当⊙A与⊙B相切时,⊙A的半径是( )
A.2 B.7
C.2或5 D.2或8
5.已知三角形相邻两边长分别为20 cm和30 cm,第三边上的高为10 cm,则此三角形的面积为_______cm2.
6.在平面直角坐标系中,若点M(-1,3)与点N(x,3)之间的距离是5,则x的值是________.7.已知两圆的半径分别为1和3,若两圆相切,则两圆的圆心距为_______.
8.已知⊙O的半径为5,圆心O到直线AB的距离为2.则⊙O上有且只有_______个点到直线AB的距离为3.
9.已知正方形ABCD,以CD为边作等边△CDE,则∠AED的度数是_______.
10.一次函数y x x轴、y轴交于A、B两点,点C(a,0)(a<0)使△ABC为等腰三角形,求经过B、C两点的一次函数解析式.
11.如图,直线l1的函数解析式为y=3x+6,直线l1与x轴、y轴分别交于A、B两点,直线l2经过B、C两点,点C的坐标为(8,0).又已知点P在x轴上从点A向点C移动,点Q在直线l2上从点C向点B移动,点P、Q同时出发,且移动的速度都为每秒1个单位长度,设移动的时间为t(1<t<10)秒.
(1)求直线l2的函数解析式;
(2)设△PCQ的面积为S,请求出S关于t的函数关系式;
(3)试探究:当t 为何值时,△PCQ 为等腰三角形?
二、选做题:
12、已知实数a 、b 满足,023,02322=--=--b b a a 试求代数式a
b
b a +的值.
13、已知关于x 的方程()01122
2=++--k x k x 的两根21x x 、满足321=+x x ,求x 的
值.
14.如图,以矩形OABC 的顶点O 为原点,OA 所在的直线为x 轴,OC 所在的直线为y 轴,建
立平面直角坐标系,已知OA =3,OC =2,E 是AB 的中点,在OA 上取一点D ,将△BDA 沿BD 翻折,使点A 落在BC 边上的点F 处. (1)直接写出点E 、F 的坐标;
(2)设顶点为F 的抛物线交y 轴正半轴于点P ,且以E 、F 、P 为顶点的三角形是等腰三角形,求该抛物线的解析式;
(3)在x 轴、y 轴上是否分别存在点M 、N ,使得四边形MNFE 的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.
15、如图,在矩形ABCD中,AB=3,BC=2,点A的坐标为(1,0),以CD为直径,在矩形ABCD 内作半圆,点M为圆心.设过A、B两点抛物线的解析式为y=ax2+bx+c,顶点为点N.
(1)求过A、C两点直线的解析式;
(2)当点N在半圆M内时,求a的取值范围;
(3)过点A作⊙M的切线交BC于点F,E为切点,当以点A、F,B为顶点的三角形与以C、N、
M为顶点的三角形相似时,求点N的坐标.。

相关文档
最新文档