第五章相交线与平行线5.3.1平行线的性质
克山县一中七年级数学下册第五章相交线与平行线5.3平行线的性质5.3.1平行线的性质导学案新版新人教

5.3 平行线的性质一、新课导入1.导入课题:利用同位角、内错角、同旁内角之间的关系可以判定两条直线平行.你还记得这些判定方法分别是如何叙述的吗?反过来,如果两条直线平行,那么同位角、内错角、同旁内角又各有什么关系呢?这就是本节课我们所要研究的内容.(板书课题)2.学习目标:(1)能叙述平行线的三条性质.(2)能运用平行线的三条性质进行简单的推理和计算.3.学习重、难点:重点:对平行线性质的理解及它们与平行线的判定之间的关系.难点:性质2和性质3的推理过程的逻辑表述.二、分层学习1.自学指导:(1)自学内容:课本P18的内容.(2)自学时间:8分钟.(3)自学要求:正确画图、测量、验证、归纳.(4)探究提纲:①画图:画两条平行线a∥b,再画一条截线c与直线a、b相交(如图1所示).②测量:测量这些角的度数,把结果填入表内.③分析:∠1~∠8中,哪些是同位角?它们的度数之间有什么关系?答案:同位角有:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8,相等.④猜想:两条平行线被第三条直线截得的同位角有什么关系?⑤验证:如果改变截线的位置,你的猜想还成立吗?⑥归纳:a.你能用文字语言表述你发现的结论吗?b.你还能用符号语言表述该结论吗?2.自学:学生按探究提纲进行研讨式学习.3.助学:(1)师助生:①明了学情:了解学生围绕探究提纲进行学习的情况及存在的困惑.②差异指导:对个别学生在学法和认知有偏差时进行点拨引导.(2)生助生:小组内学生之间相互交流,展示成果,查找并纠正不正确的认识或结论.4.强化:(1)平行线的性质1及其几何表述.(2)经历平行线的性质1的探究过程,体会研究几何图形的一般方法.1.自学指导:(1)自学内容:课本P19的内容.(2)自学时间:8分钟.(3)自学要求:阅读教材,重要的部分做好圈点,疑点处做好记号.(4)自学参考提纲:①与平行线的判定类似,你能由性质1推出两条平行线被第三条直线截得的内错角之间的关系吗?a.结合图2,你能写出推理过程吗?b.类比性质1,你能用文字语言表述上面的结论吗?答案:两直线平行,内错角相等.c.你还能用几何语言表述该结论吗?②a.类似地,可以推出平行线关于同旁内角的性质3:两直线平行,同旁内角互补,如图2,用几何语言表述为:∵a∥b,∴∠2+∠4=180°.b.试写出用性质1推出性质3的推理过程.c.试写出用性质2推出性质3的推理过程.③如图3,平行线AB、CD被直线AE所截.a.从∠1=110°,可以知道∠2是多少度吗?为什么?答案:∠2=110°.两直线平行,内错角相等.b.从∠1=110°,可以知道∠3是多少度吗?为什么?答案:∠3=110°.两直线平行,同位角相等.c.从∠1=110°,可以知道∠4是多少度吗?为什么?答案:∠4=70°.两直线平行,同旁内角互补.④如图4,AB∥CD,AE∥CF,∠A=39°,∠C是多少度?为什么?答案:∠C=39°.∵AB∥CD,∴∠C=∠FGB,又∵AE∥CF,∴∠A=∠FGB,∴∠A=∠C=39°.2.自学:同学们可参照自学参考提纲进行自学.3.助学:(1)师助生:①明了学情:教师深入课堂巡视了解学生的自学情况,尤其是性质2和性质3的推理过程,看学生能否写出来.②差异指导:对部分感到困难的学生进行点拨引导.(2)生助生:小组内相互交流、研讨、订正.4.强化:(1)平行线的性质1、2、3及其几何表述.(2)判定与性质的区别:从角的关系得到两直线平行,就是判定;从已知直线平行得到角相等或互补,就是性质.(3)练习:课本P20“练习”第1题和第2题.三、评价1.学生学习的自我评价:各小组组长对本组的学习成果和困惑进行总结交流.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法、成效及不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):这节课比较成功的地方是:①对教学的方式进行了一定的尝试,注重学生的分析能力,启发学生用不同方法解决问题.②尽量锻炼学生使用规范性的几何语言.不足的是师生之间的互动配合和默契程度有待加强.(时间:12分钟满分:100分)一、基础巩固(60分)1.(10分)如图,由AB∥CD可以得到(C)A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠4第1题图第2题图2.(10分)如图,如果AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=(C)A.180°B.270°C.360°D.540°3.(10分)如图,一条公路两次转弯后,和原来的方向相同,那么如果第一次拐的角是76°,那么第二次拐的角是76度,根据是两直线平行,内错角相等.4.(10分)如图,要在公路的两侧铺设平行管道,如果公路一侧铺设的管道与纵向联通管道的角度为120°,那么,为了使管道对接,另一侧应以60°角度铺设纵向联通管道,根据是两直线平行,同旁内角互补.第3题图第4题图第5题图5.(20分)如图,已知a∥b,c、d是截线,若∠1=80°,∠5=70°,求∠2、∠3、∠4各是多少度?为什么?解:∵a∥b,∴∠2=∠1=80°(两直线平行,内错角相等),∠3=180°-∠5=110°(两直线平行,同旁内角互补).∵∠4=∠3(两直线平行,同位角相等),∴∠4=110°.二、综合运用(20分)6.光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,∠1=45°,∠2=122°,求图中其他角的度数.解:由题意得:∠3=∠1=45°,∠1+∠7=180°,∴∠7=180°-∠1=135°.∴∠8=∠7=135°.又∠4=∠2=122°,∠2+∠5=180°,∴∠5=180°-∠2=58°.∴∠6=∠5=58°.三、拓展延伸(20分)7.如图,直线DE经过点A,DE∥BC,∠B=44°,∠C=57°.(1)∠DAB等于多少度?为什么?(2)∠EAC等于多少度?为什么?(3)∠BAC等于多少度?(4)由(1)、(2)、(3)的结果,你能说明为什么三角形的内角和是180°吗?解:(1)∵DE∥BC,∴∠DAB=∠B=44°(两直线平行,内错角相等).(2)∵DE∥BC,∴∠EAC=∠C=57°(两直线平行,内错角相等).(3)∵∠DAB+∠BAC+∠EAC=180°,∴∠BAC=180°-∠DAB-∠EAC=180°-44°-57°=79°.第3课时解含分母的一元一次方程【知识与技能】理解并掌握去分母解方程的方法,归纳解一元一次方程的一般步骤.【过程与方法】通过去分母解方程的过程,体会把“复杂”转化为“简单”,把“新知识”转化为“旧知识”的转化思想方法.【情感态度】结合本课教学特点,培养学生热爱数学,独立思考与合作交流的能力,激发学生学习兴趣.【教学重点】去分母解一元一次方程.【教学难点】解含有分母的一元一次方程.一、情境导入,初步认识前面我们已学习到了哪些一元一次方程的方法?【教学说明】学生很容易想到移项,去括号等方法,进一步巩固前面所学知识.二、思考探究,获取新知1.去分母解一元一次方程问题1 解方程:1/7(x+14)=1/4(x+20).【教学说明】学生通过思考、分析,确定先做什么,后做什么,尝试不同的解法.解法一:去括号,得1/7x+2=1/4x+5移项,合并同类项,得-3=3/28x.系数化为1,得-28=x.即x=-28.解法二:去分母,得4(x+14)=7(x+20).去括号,得4x+56=7x+140.移项,合并同类项,得-3x=84.系数化为1,得x=-28.问题 2 问题1中的两种解法哪一种简便些?从中你能得出解一元一次方程有哪些步骤?【教学说明】学生很容易得出第二种解法简便些,再通过观察、交流,归纳解一元一次方程的步骤.【归纳结论】解一元一次方程,一般要通过去分母、去括号、移项、合并同类项、未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.2.解含有分母的一元一次方程问题3 解方程1/5(x+15)=1/2x-1/3(x-7).【教学说明】学生按解一元一次方程的一般步骤来做,进一步掌握解一元一次方程的一般步骤.【归纳结论】当方程中含有分母时,方程两边同乘以所有分母的最小公倍数,即可去掉分母.注意:去分母时,方程两边的每一项都要乘以这个最小公倍数,不要漏乘分母为1的项;当分子是多项式,去分母时,分子要添加括号.3.一元一次方程的应用问题 4 为了参加2013年威海国际铁人三项(游泳,自行车,长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟.求自行车路段和长跑路段的长度.【教学说明】学生通过设未知数,根据题意找出相等关系,列出方程求解.进一步体会一元一次方程的应用,熟练掌握解一元一次方程的步骤和方法.三、运用新知,深化理解1.解方程2113424x x-+-=,去分母后得到的方程是( ).A.2(2x-1)-(1+3x)=-4B.2(2x-1)-(1+3x)=16C.2(2x-1)-1+3x=-16D.2(2x-1)-[1-(-3x)]=-42.方程311126x x+--=的解是().A.x=-1/8B.x=1/2C.x=1/4D.x=-3/83.当x=_______时,代数式1/3(1-2x)与代数式2/7(3x+1)的值相等.4.解下列方程.5.小华同学在解方程21236x x a-+=-去分母时,方程的右边-2没有乘6,因而求得方程的解为x=2,试求a 的值,并正确地解方程.6.某工厂购进了一批煤,原计划每天烧煤5吨,实际每天少烧2吨,这批煤多烧了20天.求这批煤有多少吨?【教学说明】学生自主完成,加深对新学知识的理解,检测对去分母解一元一次方程的掌握情况,对学生的疑惑,教师应及时加以指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】 1.B2.C3.1/324.(1)x=1/5 (2)x=-16 (3)x=8 (4)x=7(5)x=-2/5(6)x=35.由题意可知:x=2是2(2x-1)=x+a-2的解,解得a=6. 则原方程为21236x x a -+=-, 解得x=-4/3.6.设这批煤有x 吨,由题意得:20.552x x+=- 解得:x=150. 所以这批煤有150吨. 四、师生互动,课堂小结1.师生共同回顾解一元一次方程的一般步骤.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.【板书设计】1.布置作业:从教材问题“5.5”中选取.2.完成练习册中本课时的相应作业.本节课从学生解含有分母的一元一次方程,到归纳解一元一次方程的一般步骤,培养学生动手,动脑习惯,加深对所学知识的认识,熟练运用所学知识解决实际问题,体验应用知识的成就感,激发学生学习的兴趣.有理数的除法教学目标一、知识与能力理解有理数除法法则,会进行有理数的除法运算,会求有理数的倒数;渗透化归思想,合学生初步会用已有知识解决新问题.二、过程与方法经历利用已有知识解决新问题的探索过程,通过观察、归纳、推断等方法获得数学猜想.三、情感、态度、价值观体验数学活动充满着探索性和创造性,认识到学习必须循序渐进.教学重难点一、重点:会进行有理数的除法运算;会求有理数有倒数.二、难点:理解商的符号及其绝对值与被除数和除数的关系.教学过程一、创设情景,谈话导入计算: (-6)÷2=根据除法的意义,这就是要求一个数“?”,使(?)×2=(-6)根据有理数的乘法运算,有2×(-3)=-6,所以,(-6)÷2=-3.另外,我们还知道:(-6)×12=-3.所以,(-6)÷2=(-6)×1 2.这表明除法可以转化为乘法来进行. 做一做填空:8÷(-2)=8×( );6÷(-3)=6×( );-6÷( )=-6×1 3;-6÷( )=-6×23.【答案】12-13- 3 32做完上述填空后,你有什么发现?怎样计算8÷(-4)呢?根据除法的意义,这就是求一个数,使它与-4相乘得8,因为 (-2)×(-4)=8,那么8÷(-4)等于多少呢? 8×⎪⎭⎫ ⎝⎛-41等于多少呢?二、精讲点拨质疑问难从上面的解题过程中,我们发现8÷(-4)=8×(-14)=-2引导学生思考:换其他数的除法是否发现类似上面有的等式?是否仍有除以a (a≠0)可能化为乘a 1?引导学生讨论,得:有理数除法法则:(1)除以一个不等于0的数,等于________a÷b=a×_____(b≠0)(2)两数相除,同号得 _____,异号得_____,并把绝对值相________,零除以任何一个不等于零的数,都得.【答案】(1)乘以这个数的倒数1b(2)正负除零三、课堂活动强化训练例1. 计算:(1)()186-÷;(2) 1255⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭; (3) 64255⎛⎫÷- ⎪⎝⎭.解:()()1861863-÷=-÷=-; 1215155522⎛⎫⎛⎫⎛⎫⎛⎫-÷-=-⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ; 6465325525410⎛⎫⎛⎫÷-=⨯-=- ⎪ ⎪⎝⎭⎝⎭.例2.把下列有理数写成整数之商:(1)-3;(2)-2.4.解:(1)-3===(-22)÷7;(2)-2.4===12÷(-5). 注意:本例题的答案并不是唯一的. 例3. 化简下列分数:(1) 123-(2) 2416--解:(1) ()()1212312343-=-÷=-÷=-(2) ()()241241624161162-=-÷-=÷=- 例4.计算:(1);(2) ÷×解:(1)===;(2) ÷×=××=.四、布置作业教材练习题。
人教版七年级数学下册课件第五章相交线与平行线5.3.1平行线的性质

● A.平行
B.相交C.平行或相交 D.不能确定
● 4.如果∠A与∠B的两边分别平行,∠A比∠B的3倍少36°,则∠A的度数是
(
)
● A.18°
B.126°
C.18°或126°
D.以上都不对
● 5.下列说法:①垂直于同一条直线的两条直线互相平行;②相等的角是对顶 角;③两条直线被第三条直线所截,同位角相等;④两点之间直线最短,其 中正确的有( )
● A.0个
B.1个 C.2个 D.3个
● 6.小明从A处出发沿正东方向行驶至B处,又沿南偏东15°方向行驶至C处,此时需把 方向调整到正东方向,则小明应该( )
● A.右转165° B.左转75°
C.右转15°
D.左转15°
9∴1∴∴∴A直(④性1三平两简内解性∴∵理位求再小①线C解1A思∴讨A1问的1∴2直A④(解●●●●●●●●●1. .、 .22....AA∠∠∠∠∠∠.线两两质、行直单错:质由置角任结在所:考论题角线两两:...BM3A31B1∵∵下下 掌下004277①的位A8①平是A9A相1==+=a直 点 3平 线 线 说 角 1: 关 的 意 : 同 截 : : 。 得 a点 直 A∥小BA若若∥个个个0aa0∠列列 ∥::握面∥BCE. . . . . . 0C°//°C1∠∠线之行和平成相∵系度画平一,类平到之线明//∠∠2bb∥bb=在 两 角 内 行 这 交1=D.说命 两两平的N2AA(AA, ,平间线角行:等得数一行平所似行新间平5在C两((((下 已 下10若B(B∠∠与与内两法°题 条条行语同D所所同 条 相 错 ; 两 ,(行直的的时两,C到的条线面得地线的直行∥楼个 若A直B已已等∠∠,错直一: 平平线句位+列 知 列直CCC以以,线基大,直两角基截的内的,三一线,BBB上线BB知知量一 线 等 角 ④ 点 则BDD理角D线两定① 行行的,...角∠∠∠的的同最本小应线直的本线判,同已个组最内点平))((.说 下 说线.代2由已相2两 2平正相 线线基不113相两两平 段 ; 相 同 间 它=位短性关联平线数思定不位知性平短错dA个==行,,个个个换如知等直行确等 被被本正,等处1a法列法边边1角,质系想行平量路与相角两质行,角∠∠,)同面必⑤等旁的们下8),线∥角的 的第 第 , 性 确同.,行11分分,相其是到,行关:性交相直的线其相30中 结 一==位:两平是角 三三质的样同°两到别别内 平 两 ; 内 距 互等中紧平内系根质的等线条,中等,的b77角行直(是 条条,是度位直楼正 论 定平平,00)正密行错,据两⑤平件这正)CCC相, 行 条 ② 角 离 相BC°°,线两对 直直能(量角线...下行行..确联线角通平条两行是种确. .确 : 正a等同平顶 线线用各相)平222点,,不 ; 平 相 互 ; 平的系的相过行直条,什角的边∥个个个)位行角 所所几个等)行B.22的 确且且有在三等上线线平能么的有处重 ③ 行 等 补 其 行))角分; 截截何个角c)∠∠..(一个述的必行否?大(..有 的的,相,,语A的A合 相 线 的 ; 中D起性相判平线得结小别比比小等同同言度.( 是的质互定行被到论关则DDD))∠∠丽的 等 被 角 ⑤ 正CD)平旁位准数....BB,,转由②第同是系. . 两(的b内角确,的的331两 的 第 是 垂 确由化角过三旁什与行个 个 个∥俯角相表你3333条两,的一条内么直倍倍角条 角 三 对 直 的,个互等述的)c条从数点直角?少少不是补性猜.B直 是 条 顶 于 有直而量有线之它而443.质想.00相2且所间与)°°线 对 直 角 同D(°其,还,,,一只截的判. 交会成则则那若 顶 线 ; 一有,数定中条用立∠∠4的么一一量有BB不 角 所 ③ 条一个基吗)点直条对关什==直个本?B相 ; 截 过 直直内系么__个线性__处线线错?区__交 ④ , 直 线角质的__的与角别__叫进小度度, 两 一 线 的已的?比平行丽做..知角(则 条 对 外 两另简看行直平分平单点必 直 内 一 条线分组一线的A行垂线讨处平 线 错 点 直个推有直互论的线理行 被 角 有 线③相)角小且,相平明; 第 的 且 平的并只等行的能②三角只行的3仰有有倍角角在条平有;条一是是少理同直分一⑥对_条地_4顶_一线线条两将0_C角_°过.平所互直点:__程④,_若面截相线之写_两_那出两_内,平与间条_来_直么条_,所行已的,_线这度且线不得.知线被.能第两段相的直段解三个决不交同线就条实直际 角的度数是( )
平行线的性质 优秀课件ppt

素材:探索平行线的性质(播放状态下,点击画面操作)
探索平行线的性质.swf
当堂练习
1.如图,已知平行线AB、CD被直线AE所截
(1)从 ∠1=110o可以知道∠2 是多少度吗,为什么?
(2)从∠1=110o可以知道 ∠3是多少度吗,为什么?
(3)从 ∠1=110o可以知道∠4 是多少度吗,为什么?
又∵∠A=100°,∠C=110°(已知),
∴∠ 1 = 80 °, ∠ 2 = 70 °.
∴∠AEC=∠1+∠2= 80 °+ 70 ° = 150 °.
4.已知AB⊥BF,CD⊥BF,∠1= ∠2,试说明∠3=∠E.
65
度数
78
c
观察 ∠1~ ∠8中,哪些是同位角?它们的度数 之间有什么关系?说出你的猜想:
a
21
34
b
65
78
c
猜想 两条平行线被第三条直线所截,同位角_相_等_.
再任意画一条截线d,同样度量各个角的度 数,你的猜想还成立吗?
d
a
b
如果两直线不平行,上述结论还成立吗?
总结归纳
一般地,平行线具有如下性质:
当堂练习
1.填空:如图,
(1)∠1=∠2 时,AB∥CD. (2)∠3= ∠5或∠4时,AD∥BC.
A 1 B
D
5 2
3 C
4 F
E
2.直线a,b与直线c相交,给出下列条件:
①∠1= ∠2;
②∠3= ∠6;
③∠4+∠7=180o; ④∠3+ ∠5=180°, c
其中能判断a//b的是( B )
A. ①②③④ B .①③④
3.如图,直线 a ∥ b,直线b垂直于直线c,那么直线a
[数学]-5.3 平行线的性质(原版)
![[数学]-5.3 平行线的性质(原版)](https://img.taocdn.com/s3/m/ff73d3ceb8d528ea81c758f5f61fb7360b4c2bd3.png)
(2)若∠F=∠G,求证:DG∥BF.
【变式3-4】(2022春•温江区校级期中)如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠D+∠AED=180°,∠C=∠EFG.
(1)求证:AB∥CD;(2)若∠CED=75°,求∠FHD的度数.
D.第一次向左拐53°,第二次向左拐127°
【变式4-4】(2022春•东湖区校级月考)工人师傅对一个如图所示的零件进行加工,把材料弯成了一个40°的锐角,然后准备在A处第二次加工拐弯,要保证弯过来的部分与BC保持平行,弯的角度应是.
【变式4-5】(2022•小店区校级开学)如图1是一个由齿轮、轴承、托架等元件构成的手动变速箱托架,其主要作用是动力传输.如图2是乎动变速箱托架工作时某一时刻的示意图,已知AB∥CD,CG∥EF,∠BAG=150°,∠AGC=80°,则∠DEF的度数为( )
A.120oB.80oC.60oD.75o
解题技巧提炼
平行线的判定和性质在解题中经常反复使用,见到角相等或互补就应该联想到能否判定两条直线平行,见到直线平行就应该联想到能否证明相关的角相等或互补.
【变式3-1】(2022秋•南岗区校级期中)如图,AB∥CD∥EF,则下列各式中正确的是( )
A.∠1+∠2+∠3=180°B.∠1+∠2=180°+∠3
几何语言表示:
∵a∥b(已知),
∴∠2=∠4.(两直线平行,内错角相等).
性质定理3:两条平行线被地三条直线所截,同旁内角互补.
简单说成:两直线平行,同旁内角互补.
简单说成:同旁内角互补,两直线平行.
几何语言表示:
∵a∥b(已知),
平行线和相交线的性质

平行线和相交线的性质在几何学中,平行线和相交线是研究直线之间关系的重要概念。
平行线指在同一个平面内永远不会相交的两条直线,而相交线则是两条或多条直线在同一个点处相交。
本文将讨论平行线和相交线的性质,以及它们在解决实际问题中的应用。
一、平行线的性质1. 平行线具有唯一性:在同一个平面内,通过一点外一条直线的平行线只有一条。
2. 平行线的性质延续:如果两条直线分别与第三条直线平行,那么这两条直线也是平行的。
3. 平行线的特殊关系-互补角:当两条平行线被一条横切线相交时,所形成的内角相加为180度;外角相等。
二、相交线的性质1. 相交线的特殊关系-垂直交线:当两条相交线的内角相等时,这两条线称为垂直交线。
2. 相交线的性质延续:如果两条直线与第三条直线相交,并且所形成的相邻内角互补(和为180度),那么这两条直线的延长线也会相交。
3. 相交线的特殊关系-对顶角:当两条直线相交时,相邻内角与非相邻内角互补。
三、平行线和相交线的应用1. 几何证明:平行线和相交线的性质在几何证明中具有重要作用。
通过运用上述性质,我们可以证明两条线段平行、两个三角形相似等等,并解决各种几何问题。
2. 角度测量:相交线的角度测量是日常生活中常用的数学应用。
例如,两条直线的夹角可以通过相交线的内角来测量,这在建筑设计、工程规划中尤其重要。
3. 平行线的应用:平行线的特性在地理测量、图形设计等领域经常使用。
例如,在制作无扭曲地图时,为了准确表示地球表面,经纬线需要以平行线的形式呈现。
综上所述,平行线和相交线在几何学中有着重要的性质和应用。
理解和掌握这些性质可以帮助我们解决几何问题,并在实际生活中应用数学知识。
通过对平行线和相交线的深入研究,我们能够提升对直线关系的理解和认知,从而扩大数学的应用范围。
平行线性质

两直线平行
平行线的三个判定: 平行线的三个判定: 同位角相等 内错角相等 同旁内角互补 两直线平行
3、已知:如图,∠ADE=600,∠B=600,∠C=800。 、已知:如图, A 问∠ AED等于多少度?为什么? 等于多少度?为什么? 等于多少度
解: ∠ADE=∠B=600 (已知). 已知) ∵ ∠ ∴ DE//BC(同位角相等,两直线平行 ). B (同位角相等,
∵ AB//CD ( ∴∠1=∠2 =∠2
两直线平行, ( 两直线平行,同位角相等) C 2
已知
)
A
1
B D
活动三: 活动三:分析与比较
两直线平行,同位角相等。 两直线平行,同位角相等。
问题3 性质1已知的是什么? 问题3:性质1已知的是什么?得到的结论是什 么?它和我们前面学习的平行线判定条件1: 它和我们前面学习的平行线判定条件1 “
1150 1000
D
?
? C
D
600 ?
E C
600
800
两直线平行, ∴ ∠AED=∠C=800 ( 两直线平行,同位角相等 ). ∠ 注意:此处 注意: 应用的是平 判定。 行线的判定 行线的判定。 注意:此处 注意: 应用的是平 行线的性质 性质。 行线的性质。
课堂小结
1、平行线的三个性质: 、平行线的三个性质: 两直线平行,同位角相等。 两直线平行,同位角相等。 两直线平行,内错角相等。 两直线平行,内错角相等。 两直线平行,同旁内角互补。 两直线平行,同旁内角互补。 2、平行线的性质与平行线的判定的区别。 、平行线的性质与平行线的判定的区别。 判定: 判定: 角的关系 平行的关系 角的关系 c a b
1 2
c
5.3.1 平行线的性质(第2课时)平行线的性质和判定的综合运七年级数学下册同步备课系列(人教版)

又∵∠A=100°,∠C=110°(已知),
∴∠ 1 = 80 °,∠ 2 = 70 °(等量代换).
∴∠AEC=∠1+∠2= 80 °+ 70 ° = 150 °.
当堂巩固
1. 填空:如图,
A
(1)∠1=∠2 时,AB∥CD.
1
(2)∠3= ∠5 或∠4 时,AD∥BC. B
D
5 2
3 C
4 F
解:过点C作CF∥AB,
A
则 _∠__B_=_∠__1( 两直线平行,内错角相等 )
C
又∵AB∥DE,AB∥CF,
D
∴___C_F__∥__D_E___(平行于同一直线的两条直线互相平行 )
∴∠E=∠__2__( 两直线平行,内错角相等 )
∴∠B+∠E=∠1+∠2
即∠B+∠E=∠BCE.
B 1F 2
感受中考
2.(3分)(2021•包头8/26)如图,直线l1∥l2,直线l3交l1于点A,交l2于点B, 过点B的直线l4交l1于点C.若∠3=50°,∠1+∠2+∠3=240°,则∠4等于( )
A.80°
B.70°
C.60°
D.50°
【 分 析 】 由 题 意 得 , ∠ 2=60° , 由 平 角 的 定 义 可 得 ∠5=70°,再根据平行线的性质即可求解.
c 图1
b
c
a 图2
3. 运用平行线的性质填一填
图形
同a 位 角b
1 2 c
内 错 角
a 3
b
2
c
同 旁
a
内 角
b
42 c
已知 a//b
结果 ∠1 = ∠2
5.3.1平行线的性质(集体备课)

5.3.1平行线的性质(集体备课)集体备课记录表章节名称第五章相交线与平行线内容5.3.1 平行线的性质主备人刘建新案别一案授课教师集体备课时间授课时间领导审核签字具体内容集体研讨教学目标知识与技能1.探索并掌握平行线的性质.2.能用平行线的性质定理进行简单的计算、证明.3.知道对平行线的性质和判定进行的区别.过程与方法1.经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.2.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.情感态度与价值观1.通过对平行线性质的探究,使学生初步认识数学与现实生活的密切联系.2.通过师生的共同活动,促使学生在学习活动中培养良好的情感、合作交流、主动参与的意识,在独立思考的同时能够认识他人.教学重点平行线三个性质的探究及运用教学难点平行线的性质定理与判定定理的区别及综合运用.教学方法观察、发现、归纳、总结教学资源多媒体教学过程教学内容学生活动设计意图一、搭桥引课,明确目标(一)活动1(二)创设情景,引入新知(三)上一节课我们学习了平行线的判定,也就是说知道角的关系能够判断两条直线是否平行。
可是老师从一张轻轨的图片和伸缩门的情景看到的却恰好是另一种有意思的情况,这种情况具有普遍意义吗?二、探究新知,展示交流活动2自主探究,构建新知1. 猜想:∠1, ∠2有怎样的大小关系?问题:你能验证你的猜想吗?(测量法、叠合法)欣赏直线相交的图片,学生独立思考抽象出的数学问题,学生代表将自己的想法在全班进行交流.学生提出猜想后,结合图形的特点,简单谈谈理由.请学生说出自己量出的同位角的度数.教师进行分类板书,并对踊跃回答问题的学生进行及时的表扬.老师引导学生注意他们量的角虽然不一样,但是总体是分为三类的,并且强调指出这种研究方法叫“测量法”.由现实中的的实际问题入手,设置情景问题,激发学生对生活热情和学习兴趣,让学生谈理由也是为公理的得出作好铺垫,同时也自然的引出课题.加深对“两直线平行,同位角相等”的直观感受,培养学生的分类意识.在启发性设问的引导下发现规律,并用自己的语言叙述:“两直线平行,同位角相等”教师和学生还要一起总结平行线的性质的符号语言,并写在黑板上.性质1∵a∥b,∴∠1= ∠2教师演示,学生观察教师倾听学生交流,并和学生一起总结性质2、性质3.在黑板上板书并总结平行线的三条性质(文字语言和符号语言).性质2∵a∥b,∴∠ 2 = ∠3性质3∵a∥b,∴∠2+ ∠4=180老师提炼性质的关键词并指导学生在书本上勾画,强调平行线的性质的前提条件是两直线的位置关系平行.只有在两直线平行的条件下才有同位角、内错角相等,同旁内角互补.学法指导:这道题我选择学生独立完成,并请一名学生到黑板展示他做题的过程.并且要强调解题的步骤与格式.解:∵AD ∥BC(已知)∴∠A+∠B=180°,∠D+∠C=180°(两直线平行,同旁内角互补)∴∠B=180°-115°=65°,学生自主探索,动手剪一剪、叠一叠、比一比并让部分同学上台展示.学生讨论之后简述验证过程.°学生自主辨析.问题1以学生进行抢答的形式进行,并对其中的一个简要说明理由学生独立出题,解答然后进行组内交流,判断正误,评选全班交流作品。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
40
题目已知:AB∥CD
找出的截线只能是CF,由图可知:
∠ C和 ∠ 1
构成同位角。
∠C和∠AEC构成内错角。
∠C和∠BEC 构成同旁内角。
利用平行线的 性质,以上三种类 型的角,存在着什 么样的数量关系?
已知:如图所示,AG//CF,AB//CD, ∠A=40
复习回顾 平行线的判定方法:
1、同位角相等 2、内错角相等 3、同旁内角互补
两直线平行
反过来,如果两条直线平行,同位角、 内错角、同旁内角各有什么关系呢?
交流合作,探索发现 猜一猜∠1和∠2相等吗?
a
b
2 1
c
心动
不如行动
合作交流一
65°
c
1 2 65°
a
b
是不是任意一条直线去
截平行线a、b,所得的同位 角都相等呢?
水平镜面后被发射,此时∠1=∠2 , ∠3=∠4 。
(2 )发射光线BC与EF也平行吗?
已知:如图所示, ∠ADE=60 °, ∠B=60 °, ∠AED=40 ° (1)求证:DE∥BC;
(2)求∠C的度数。
已知:如图所示,直线a、b被 c、d 所截,且c⊥a,c⊥b. 求证:∠1=∠2.
已知:如图所示,∠1=∠2,CE∥BF 求证: AB∥CD. ∵ CE∥BF E ∴∠1=∠B A 1 ∵∠1=∠2 ∴∠2=∠B C ∴ AB∥CD
110
°
已知: AB∥CD ,∠1=110 ° 求:∠2,∠3, ∠4的度数
110 °
已知:如图所示,AG//CF,AB//CD, ∠A=40
求:∠C的度数。
40
题目已知:AG∥CF
找出的截线只能是AB,由图可知:
∠A和 ∠1 构成同位角。 ∠A和 ∠AEC构成内错角。
∠A和∠AEF构成同旁内角。
性质发现
a
3 1 2
结论
平行线的性质1
b
两条平行线被第三条直线所截, c 同位角相等.
简写为: 两直线平行,同位角相等. 符号语言: ∵a∥b,
∴∠2=∠3
性质发现
a
3 1 2
结论
平行线的性质2
b
两条平行线被第三条直线所截, 内错角相等. c 简写为: 两直线平行,内错角相等. 符号语言: ∵a∥b,
求:∠C的度数。
40
解: ∵ AG//CF ∴ ∠A=∠1
又∵AB//CD
∴ ∠1=∠C ∴ ∠A=∠C ∵ ∠A=40
∴ ∠C=40
如图:一束平行光线AB和DE射向一个
水平镜面后被发射,此时∠1=∠2 , ∠3=∠4 。
(1 )∠1和∠3的大小有什么关系? ∠2与∠4的大小有什么关系?
如图:一束平行光线AB和DE射向一个
∴∠1=∠2
性质发现
结论
平行线的性质3
两条平行线被第三条直线所截, 同旁内角互补.
简写为: 两直线平行,同旁内角互补. 符号语言: ∵a∥b
∴ 2+ 4=180°.
同位角相等 两直线平行 内错角相等 同旁内角互补 性质
线的关系
判定
角的关系
几何语言的书写格式:
已知:在四边形ABCD中,
AB∥CD,∠B = 600. 求:∠C的度数 分析:题目的已知条件,已经告诉我们 有AB∥CD(两条线),肯定是想让 我们利用平行线的性质。
C D
?
1420
A
B
师生互动,典例示范 已知:直线 a∥b,∠1 = 500 求:∠2的度数. 解:∵ a∥b ∴∠ 1= ∠ 2 ∵∠ 1 = 500 ∴∠ 2= 500
2 1
c
3
a b
4
变式1:已知条件不变,求∠3,∠4的度数?
已知:∠3 =∠4,∠1=47° 求:∠2的度数 解:∵ ∠3=∠4 ∴ a∥ b ∵ a∥ b ∴ ∠1=∠2 ∵ ∠1=47° ∴ ∠2 =47°
吗?
即利用:两直线平行,找出同位角、 内错角、同旁内角之间的数量关系。
已知:在四边形ABCD中, AB∥CD,∠B = 600.
求:∠C的度数 分析:而构成这三种类型的角,需要
三条线(“三线八角”问题)。 因此我们需要结合已知图形,找 出第三条线(截线),构成我们需要
的角。
题目已知:
AB∥CD
B C
求:∠C的度数
已知:在梯形ABCD中,AB∥CD ∠A=100°,∠B=115°
求:∠D、∠C的度数
D 115° C
100° A
B
如图,在汶川大地震当中,一辆抗震救 灾汽车经过一条公路两次拐弯后,和原来 的方向相同,也就是拐弯前后的两条路互 相平行(即AB∥CD).第一次拐的角∠B等于 1420,第二次拐的角∠C是多少度?
d c
2 1
a
b
4
3
已知: AB∥CD ,∠1=110 °
求:∠2,∠3, ∠4的度数
110 °
题目已知:AB∥CD
找出的截线只能是AE,由图可知:
∠1和 ∠3 构成同位角。
∠1和 ∠2 构成内错角。 ∠1和 ∠4 构成同旁内角。
利用平行线的 性质,以上三种类 型的角,存在着什 么样的数量关系?
求证:①∠2=∠3;
②PM∥NQ. 证明:∵ AB∥CD ∴ ∠2=∠3
∵∠1=∠2 ,∠3=∠4,
∠2=∠3.
∴∠1=∠2 =∠3=∠4.
∵∠1+∠2 +∠5=180º ,
∠3+∠4 +∠6=180º , ∴∠5=∠6
∴ PM∥NQ
4.归纳小结
在解决具体问题过程中, 你能区别:
①什么时候需要使用平行线的性质 ②什么时候需要使用平行线的判定
如果找出的截线是AD,
从原图中抽象出基本图形,可知: ∠A和∠D,这一对角构成 角,
∠A和∠D 存在着什么样的数量关系?
A
题目已知:
AB∥CD 如果找出的截线是BC,
D
从原图中抽象出基本图形,可知: ∠C和∠D,这一对角构成 角,
∠C和∠D 存在着什么样的数量关系?
已知:在四边形ABCD中,
AB∥CD,∠B = 600.
B 2 D
F
已知:如图,AB∥CD,BE平分∠ABC,
CF平分∠BCD
求证:BE∥CF
A E
2
1
B
F C D
如图,潜望镜中的两面镜子是互 相平行放置的,光线经过镜子反射时,
∠1=∠2,∠3=∠4,∠2和∠3有什么
关系?为什么进入潜望镜的光线和离 开潜望镜的光线是平行的?
已知:如图,AB∥CD,∠1=∠2, ∠3=∠4.