钢管混凝土柱组合梁框架的抗火性能研究
钢管混凝土柱的抗火性能实验方式及结果分析

引言混凝土作为传统的建筑材料,它具有很多的优势,比如抗压强度大、耐高温、耐腐蚀、制备简单方便,当然也同样具有很多明显的劣势,比如抗拉强度差,过于笨重等。
钢管混凝土柱是混凝土与钢材的一种组合方式,两种材料取长补短,充分发挥了混凝土抗压性能和钢材的抗拉性能,达到优化组合的作用效果。
钢管混凝土结构由于具有承载力高、塑性韧性好、施工速度快、综合效益好等工程特点,因而在高层、超高层建筑中的应用越来越普遍。
然而,在火灾作用下材料的力学性能有相当大的下降,承载力也随之下降。
1.试验概况1.1试件设计火灾试验的试件共有2个钢管混凝土柱Z1、Z2。
采用C40商品混凝土,PO42.5R水泥,粒径10mm~20mm的硅质粗骨料,中砂,掺加XTR-B外加剂,试验时混凝土立方体抗压强度为38MPa;钢管外径为219mm,壁厚4mm的钢管,钢材屈服强度为280MPa,极限强度390MPa。
在试件两端的各留4个直径20mm左右的排气孔,用于受火后混凝土内部的水汽排出。
1.2试验装置及试验方法室内火灾的发展一般可分为火灾的初期增长、充分发展和衰减熄灭三个阶段。
火灾充分发展阶段升温速率快、温度高,对结构破坏严重。
为了近似模拟快速升温阶段,采用燃油火灾试验炉通过喷嘴将轻柴油雾化,点燃后在炉体内产生高温。
炉内升温由直径为3mm的N型热电偶测量。
火灾试验中试件由油压千斤顶施加1600KN轴向压力,并通过高压油泵来控制和调整施加荷载的大小。
试件上端部伸出炉盖,防止高温使千斤顶失效。
试件下端部用砂子进行维护,防止支座温度过高,因此试件的实际受火高度约为2800mm左右。
试件轴向变形由量程为±200mm的2个差动式位移传感器测量,位移传感器放置在柱顶千斤顶的四周。
试件表面和核心混凝土内部的温度由直径为0.5mm 的K型热电偶测量。
位移计和热电偶测得的数据均由HP数据采集仪自动采集并存储。
2.高温条件下混凝土的热运动混凝土在加热过程中的形变受以下四种条件的影响,即:热应变,瞬时压力相关应变,瞬变应变和蠕变应变。
钢管混凝土叠合柱-RC_梁空间节点耐火性能分析

2024年3月第40卷第2期㊀沈阳建筑大学学报(自然科学版)JournalofShenyangJianzhuUniversity(NaturalScience)㊀Mar.㊀2024Vol.40ꎬNo.2㊀㊀收稿日期:2023-03-09基金项目:国家自然科学基金项目(51808351)ꎻ沈阳市科学技术计划项目(21-108-9-34)作者简介:张波(1979 )ꎬ男ꎬ教授级高级工程师ꎬ主要从事装配式建筑㊁道路工程及隧道工程等方面研究ꎮ文章编号:2095-1922(2024)02-0259-08doi:10.11717/j.issn:2095-1922.2024.02.08钢管混凝土叠合柱 ̄RC梁空间节点耐火性能分析张㊀波1ꎬ2ꎬ秦笑笑1ꎬ徐光朋3ꎬ任庆新4(1.沈阳建筑大学土木工程学院ꎬ辽宁沈阳110168ꎻ2.辽宁省交通高等专科学校建筑工程系ꎬ辽宁沈阳110122ꎻ3.中国建筑第八工程局有限公司东北分公司ꎬ辽宁大连116021ꎻ4.佛山科学技术学院交通与土木建筑学院ꎬ广东佛山528225)摘㊀要目的研究钢管混凝土叠合柱 ̄RC梁空间节点耐火性能ꎬ为实际工程提供参考ꎮ方法通过ABAQUS有限元分析软件建立ISO ̄834标准火灾下钢管混凝土叠合柱 ̄RC梁空间节点的温度场模型和力学模型ꎻ在试验与有限元模拟相吻合的基础上ꎬ分析此类构件空间节点的温度场分布㊁破坏模态㊁变形和内力分布等工作机理ꎮ结果由于梁板的保护作用ꎬ节点区温度远低于非节点区ꎻ当梁㊁柱火灾荷载比相同ꎬ梁由2根增加至3根㊁4根时ꎬ空间节点耐火极限分别降低了41 58%和43 75%ꎻ高温和轴向荷载的共同作用下ꎬ内部钢管混凝土承担内力从常温的43 27%增加至180min的52 9%ꎮ结论钢管混凝土叠合柱 ̄RC梁空间节点具有较好的耐火性能ꎬ能够满足实际工程中对耐火性能的要求ꎮ关键词钢管混凝土叠合柱ꎻRC梁ꎻ空间节点ꎻ工作机理ꎻ耐火性能中图分类号TU398㊀㊀㊀文献标志码A㊀㊀㊀引用格式:张波ꎬ秦笑笑ꎬ徐光朋ꎬ等.钢管混凝土叠合柱 ̄RC梁空间节点耐火性能分析[J].沈阳建筑大学学报(自然科学版)ꎬ2024ꎬ40(2):259-266.(ZHANGBoꎬQINXiaoxiaoꎬXUGuangpengꎬetal.FireresistanceanalysisofthespacenodesforCFSTRCcolumn ̄RCbeam[J].JournalofShenyangjianzhuuniversity(naturalscience)ꎬ2024ꎬ40(2):259-266.)FireResistanceAnalysisoftheSpaceNodesforCFSTRCColumn ̄RCBeamZHANGBo1ꎬ2ꎬQINXiaoxiao1ꎬXUGuangpeng3ꎬRENQingxin4(1.SchoolofCivilEngineeringꎬShenyangJianzhuUniversityꎬShenyangꎬChinaꎬ110168ꎻ2.DepartmentofStructuralEngineeringꎬLiaoningProvincialCollegeofCommunicationsꎬShenyangꎬChinaꎬ110122ꎻ3.NortheastBranchChinaConstructionEighthEngineeringDivisionCo.Ltd.ꎬDalianꎬChinaꎬ116021ꎻ4.SchoolofTransportationꎬCivilEngineering&ArchitectureꎬFoshanUniversityꎬFoshanꎬChinaꎬ528225)260㊀沈阳建筑大学学报(自然科学版)第40卷Abstract:ToinvestigatethefireresistanceofCFSTRCcolumn ̄RCbeamspacenodesandprovideareferenceforpracticalengineering.TheABAQUSsoftwarewasusedtoestablishtemperatureandmechanicalfieldmodelsofCFSTRCcolumn ̄RCbeamspacenodesunderISO ̄834standardfire.OnthebasisoftheresultsfromtestandFEAareingoodagreementꎬtheworkingmechanismofthetemperaturefielddistributionꎬfailuremodeꎬdeformationandinternalforcedistributionofthesemembers spatialnodeswereanalyzed.TheCFSTRCcolumn ̄RCbeamtemperatureatthebeam ̄columnjointregionsiswellbelowthetemperatureatthenon ̄jointregionsduetotheprotectionofthebeam ̄slab.Thefireresistancelimitofthejointnodesdecreasesby41 58%and43 75%underthesameloadratioofbeamandcolumnwhenthebeamincreasesfrom2to3and4.Thecoreconcretefilledsteeltubewithaxialforceincreasesfrom43 27%roomtemperatureto52 9%at180minunderhightemperatureandaxialcompression.CFSTRCcolumn ̄RCbeamspacenodeshavegoodfireresistanceꎬwhichcanmeetengineeringrequirements.Keywords:CFSTRCcolumnꎻRCbeamꎻspacenodesꎻmechanismꎻfireresistance㊀㊀钢管混凝土叠合柱和钢筋混凝土梁组合而成的框架结构是目前工程中最常见的组合结构形式ꎬ根据梁的根数及平面位置㊁柱所处位置不同ꎬ可将钢管混凝土叠合柱 ̄RC梁空间节点类型分为 L 形㊁ T 形㊁ 十 字形等空间节点ꎮ目前针对钢管混凝土叠合柱 ̄RC梁空间节点的耐火性能研究较少ꎬ实际工程中缺乏该类结构的应用ꎮ国内外学者针对钢管混凝土叠合柱和梁-柱空间节点耐火性能进行了大量研究:徐蕾等[1-2]和侯舒兰等[3]分别对不同受火边界工况下的钢管混凝土叠合柱开展了耐火性能研究ꎬ并对升温阶段和降温阶段进行分析ꎬ研究表明ꎬ钢管混凝土叠合柱耐火性能主要受到受火方式和降温时间比的影响ꎮT.Y.Song[4]采用试验与模拟相结合的方法对CFST ̄钢梁节点耐火性能进行了研究ꎬ研究表明ꎬ由于外围钢筋混凝土和梁板的保护作用ꎬ节点区温度远低于非节点区温度ꎮS.S.Huang等[5]对CFST柱 ̄钢梁节点的力学性能进行试验研究ꎬ结果表明ꎬ该类空间节点具有较好的延性和耐火性ꎮ周侃[6]对轴向荷载和全过程火灾作用下的钢管混凝土叠合柱 ̄RC梁空间节点进行了耐火性能的试验研究与理论分析ꎬ得出了空间节点耐火极限随不同参数的变化规律ꎮ包延红等[7-8]对钢管混凝土叠合柱-钢筋混凝土平面框架开展研究ꎬ结果表明ꎬ梁㊁柱荷载比是影响平面框架耐火性能的主要因素ꎮ宋天诣[9]采用试验与理论相结合的方法对钢-混凝土组合框架节点进行耐火研究ꎬ结果表明ꎬ梁㊁柱荷载比㊁升温时间比等是影响耐火性能的主要因素ꎮ谭清华[10]对型钢混凝土柱-混凝土梁在火灾全过程中的力学性能分析ꎬ结果表明ꎬ节点可能发生梁破坏㊁柱破坏㊁梁和柱均破坏的情况ꎮ丁发兴等[11]考虑混凝土的瞬态热应变和高温徐变 CDP 模型中的非弹性应变的影响ꎬ将其应用于钢-混凝土组合结构平面框架局部火灾的抗火性能分析ꎮ综上所述ꎬ目前针对钢-混凝土组合结构的耐火性能研究主要集中在柱㊁梁柱平面节点和平面框架ꎬ缺乏广泛应用于实际工程的钢管混凝土叠合柱 ̄RC梁空间节点的耐火性能研究ꎮ鉴于此ꎬ笔者考虑实际受火边界工况ꎬ按照节点所处位置设计不同的受火边界工况ꎬ采用ABAQUS有限元分析软件分析了其空间节点在火灾下的温度场㊁耐火性能以及节点破坏模态ꎻ研究表明:钢管混凝土叠合柱 ̄RC梁空间节点具有较好的耐火性能ꎬ能够满足实际工程中对耐火性能的要求ꎮ1㊀有限元模型1.1㊀模型建立基于ABAQUS有限元分析软件ꎬ通过第2期张㊀波等:钢管混凝土叠合柱 ̄RC梁空间节点耐火性能分析261㊀热-力顺序耦合 的方法进行耐火性能的研究ꎮ分析模型中外环板式牛腿㊁钢管和加载端板均选用壳单元ꎬ混凝土选用实体单元ꎬ钢筋选用桁架单元ꎮ钢与混凝土材料的热工参数选用T.T.Lie[12]建议的热工模型计算式ꎮ笔者参考实际梁㊁柱节点所处建筑内部的位置不同ꎬ假设钢管混凝土叠合柱四周以及楼板以下所受火灾作用以建筑构件耐火试验方法[13]为参考ꎮ综合辐射系数取0 5ꎬ热对流系数在受火面取25W/(m2 K)ꎬ在背火面取9W/(m2 K)ꎮ忽略接触面的热阻ꎬ钢管与混凝土采用 Tie 约束ꎬ钢筋 Embed 混凝土中ꎮ钢材选取文献[14]所建议的本构模型ꎬ钢管外围混凝土㊁梁和板混凝土均采用文献[14]所建议的本构关系ꎬ圆钢管内部核心混凝土选用文献[15]建议的本构关系ꎮ对于钢管与混凝土采用面面接触ꎬ在其法向采用 硬接触 ꎬ在其切向采用摩擦系数为0 6的罚摩擦ꎬ外环板与钢管外表面通过 Tie 约束ꎬ牛腿 Embed 混凝土中ꎮ为将有限元模型得到的温度场(ODB)文件正确地导入力学分析模型中ꎬ需要保持两个模型中的网格划分一致ꎮ对于混凝土高温徐变和瞬态热应变ꎬ针对硅质混凝土ꎬ参考文献[6]研究成果ꎬ笔者不考虑高温徐变和瞬态热应变的影响ꎻ参考文献[7ꎬ11]所取得成果ꎬ将过镇海[16]建议的高温徐变和瞬态热应变叠加至 CDP 模型中的非弹性应变ꎮ1.2㊀模型验证由于篇幅有限ꎬ笔者仅展示具有代表性的试验结果与有限元模拟计算结果ꎬ对比温度场具体详见文献[6-7]ꎮ1.2.1㊀钢管混凝土叠合柱对文献[6]中钢管混凝土叠合柱耐火试验进行有限元计算ꎬ其中混凝土为硅质混凝土ꎬ具体参数详见文献[6]ꎮ图1(a)为S0组试件截面温度-时间试验关系曲线与有限元模拟曲线对比ꎬ图1(b)为S0组试件竖向位移-受火时间关系试验曲线与有限元模拟曲线对比ꎮ耐火极限试验结果与模拟结果比值的平均值和方差为0 998和0 008ꎬ可见有限元模拟结果可较好地反映试验结果ꎮ图1㊀温度场和耐火极限对比Fig 1㊀Thecomparisonresultsoftemperaturefieldandfireresistancelimit1.2.2㊀钢管混凝土叠合柱 ̄RC梁板节点选取文献[6]中钢管混凝土叠合柱 ̄RC梁板节点耐火试验进行有限元分析ꎬ其边界条件为板底受火ꎬ板上部外包石棉ꎬ柱端固接ꎮ图1(c)为试件J0 ̄2梁非节点区温度-受火时间关系曲线ꎬ图1(d)为J0组试件竖262㊀沈阳建筑大学学报(自然科学版)第40卷向位移-受火时间关系试验曲线与有限元模拟结果对比ꎮ耐火极限试验结果与模拟结果比值的平均值和方差为1 045和0 05ꎬ可见有限元计算结果吻合度较好ꎮ1.2.3㊀钢管混凝土叠合柱平面框架选取文献[7]所进行的平面框架耐火性能试验进行有限元模拟ꎬ其采用的混凝土为钙质混凝土ꎬ选用文献[11]方法考虑混凝土高温徐变和瞬态热应变ꎮ图1(e)为试件SFRC ̄1梁板跨中处温度-受火时间关系曲线ꎬ图1(f)为SFRC组试件梁跨中挠度-受火时间关系曲线与SFRC ̄1的破坏模态对比ꎮ耐火极限试验结果与有限元模拟结果比值的平均值和方差分别为0 901和0 038ꎬ可见有限元模拟结果与试验值的吻合度较好ꎮ2㊀耐火性能分析2.1㊀模型设计以周侃[6]根据钢管混凝土叠合柱结构技术规程[17]所设计的梁㊁板㊁柱的主要参数为参考ꎬ笔者所设计的钢管混凝土叠合柱空间节点的受火工况及荷载比见表1㊁设计方案见表2ꎮ由于篇幅有限ꎬ空间节点具体的受火工况㊁边界条件和加载方式见图2ꎮ表1㊀空间节点受火工况及荷载比Table1㊀Thefireconditionsandloadratioofspacenodes节点类型部件名称受火工况荷载比 L 形空间节点柱双面0 4㊁0 8梁双面0 5㊁0 2 T 形空间节点柱三面0 4㊁0 8梁三面㊁双面0 5㊁0 2 十 字形空间节点柱四面0 4㊁0 8梁三面0 5㊁0 2表2㊀空间节点设计方案Table2㊀Thedesignschemeofspacenodes部件各部件截面尺寸/mm抗压强度/MPa纵筋型号箍筋型号屈服强度/MPa柱BCˑBCˑH(600ˑ600ˑ6000)50+8016Φ25Φ10@100400梁BLˑHLˑL(400ˑ600ˑ4000)508Φ25+4Φ22Φ8@100/200400板Bˑt(8600ˑ120)50 双层Φ10@150300钢管DSˑtS(300ˑ10) 345牛腿BnˑHnˑtn(500ˑ225ˑ10)345㊀㊀注:BC㊁H分别为柱的方形柱的截面边长㊁柱高ꎻBL㊁HL㊁L分别为梁的宽㊁高㊁长ꎻB㊁t分别为楼板宽和厚ꎻDS㊁tS分别为钢管直径㊁厚度ꎻBn㊁Hnn分别为牛腿的高㊁宽㊁厚ꎮ图2㊀火灾工况及加载条件Fig 2㊀Theon ̄fireconditionsandloadingconditions第2期张㊀波等:钢管混凝土叠合柱 ̄RC梁空间节点耐火性能分析263㊀2.2㊀计算结果分析2.2.1㊀空间节点温度场图3为构件截面温度-时间(T-t)关系曲线ꎬ其中图3(a)为钢管混凝土叠合柱温度-时间关系曲线ꎮ升温240min时ꎬ非节点区测点1处温度610ħ远高于节点区温度420ħꎬ这是由于节点区受到外围钢筋混凝土和梁板的保护作用ꎬ其测点温度普遍低于非节点区的温度ꎮ图3(b)为梁跨中截面温度-时间关系曲线ꎮ由于梁底部处于均匀受火的边界条件ꎬ升温240min时ꎬ测点1处的温度为918ħꎬ而测点4处的温度还不足300ħꎮ混凝土具有较好的吸热性能ꎬ随着测点距离梁下表面越近ꎬ其温度越高ꎬ越远离梁下表面ꎬ温度越低ꎮ图3㊀构件截面温度(T)-时间(t)关系曲线Fig 3㊀ThecurvesofsectionaltemperatureT-timet2.2.2㊀空间节点变形图4为钢管混凝土叠合柱 ̄RC梁板空间节点在不同梁㊁柱荷载比作用下ꎬ空间典型节点的竖向位移(Δ)-受火时间(t)关系曲线ꎮ试件编号中L表示梁ꎬ其后数字分别表示梁的根数和梁荷载比ꎻZ表示柱ꎬ其后数字表示柱荷载比ꎮ如试件编号(a)L2 ̄Z04 ̄L05表示为空间节点有2根梁㊁柱荷载比为0 4㊁梁荷载比为05ꎮ图4㊀竖向位移-受火时间关系曲线Fig 4㊀Thecurvesofverticaldisplacement ̄firetime264㊀沈阳建筑大学学报(自然科学版)第40卷㊀㊀由图4可见ꎬ空间节点的主要破坏形式有梁破坏㊁梁与柱先后破坏㊁柱破坏三种形式ꎮ(1)对于柱的耐火极限大于梁时的空间节点ꎬ其梁端竖向位移-受火时间关系曲线可能会呈现 Z 字形ꎮ这是由于梁挠曲变形增大后ꎬ梁上部受压钢筋转变为受拉钢筋ꎬ进而抑制梁的挠曲变形ꎬ随着受火时间的增加ꎬ梁会出现 二次破坏 的情况ꎮ但由于忽略梁在大变形下产生的裂缝ꎬ其耐火极限计算值可能偏高ꎮ(2)对于 T 形空间节点ꎬ虽然边(东西)梁处于双面受火㊁中(北)梁处于三面受火ꎬ但边(东西)梁的竖向位移在 一次破坏 后的竖向位移要远大于中(北)梁的竖向位移ꎮ(3)在相同的梁㊁柱荷载比下ꎬ当梁根数由2增加到3和4时ꎬ空间节点的耐火极限分别降低了41 58%和43 75%ꎬ空间节点的耐火极限随着梁根数的增加而减少ꎮ2.2.3㊀空间节点破坏模态图5为钢管混凝土叠合柱 ̄RC梁空间节点在不同的梁㊁柱荷载比和受火工况作用下ꎬ空间典型节点的等效塑性应变云图ꎬ可见牛腿区域存在较大的塑性变形ꎮ图5㊀空间节点等效塑性应变云图Fig 5㊀Theequivalentplasticstraincloudmapofspacenodes㊀㊀(1)对于 L 形空间节点ꎮ由于梁均处于双面受火ꎬ因温度场分布不呈单轴对称和材料在不同温度下的劣化程度不同ꎬ梁会出现不均匀的内力重分布ꎬ导致梁会出现一定程度的扭转变形ꎻ由于柱处于双面受火和双向压弯的共同作用ꎬ破坏时呈现典型的 双向压弯 破坏特征ꎮ(2)对于 T 形空间节点ꎮ由于边(东㊁西)梁处于双面受火㊁中(北)梁处于三面受火㊁柱处于三面受火的工况ꎮ虽然梁上的荷载一样ꎬ但由于南侧无梁布置ꎬ可能导致双面受火的边(东㊁西)梁在 一次破坏 后的竖向位移远大于三面受火的中(北)梁ꎻ由于柱处于三面受火㊁单向偏压的工况下ꎬ柱在破坏时呈现典型 压弯 破坏特征ꎮ(3)对于 十 字形空间节点ꎮ由于梁均处于三面受火ꎬ当梁的耐火极限小于柱时ꎬ各梁的破坏模态与耐火极限均相同ꎻ当柱的耐火极限小于梁时ꎬ由于初始缺陷的存在ꎬ可见柱呈现典型的 压弯 破坏特征ꎮ第2期张㊀波等:钢管混凝土叠合柱 ̄RC梁空间节点耐火性能分析265㊀2.2.4㊀空间节点内力图6为钢管混凝土叠合柱轴力-时间关系曲线ꎮ在火灾作用下ꎬ构件受热膨胀ꎬ钢管混凝土叠合柱在高温和外部轴向荷载的作用下引起截面内力重分布ꎮ受火初期:核心钢管混凝土和外围钢筋混凝土分别承担轴向荷载的43 27%和56 73%ꎻ火灾发展阶段:外围钢筋混凝土材料由于持续高温发生严重的劣化现象ꎬ承载能力减弱ꎬ不足以承担大量外部轴向荷载ꎬ外部荷载逐渐向内传递ꎬ核心钢管混凝土承担大部分内力ꎬ并逐渐趋于平缓ꎬ截面内力出现重分布的现象ꎮ此时核心钢管混凝土和钢筋混凝土分别承担轴向荷载的52 9%和47 1%ꎮ图6㊀轴力-时间关系曲线Fig 6㊀Theaxialforce ̄timecurves㊀㊀图7为梁跨中截面弯矩-时间关系曲线ꎮ在火灾全过程中ꎬRC梁跨中截面由于火灾和荷载作用下发生了弯矩重分布的现图7㊀梁跨中弯矩-时间关系曲线Fig 7㊀Themoment ̄timecurvesofbeam象ꎮ常温加载后ꎬRC梁底部受拉ꎻ受火作用阶段ꎬ由于叠合柱的约束作用ꎬRC梁底部受火发生膨胀ꎬ此时在一定程度上削弱了梁底部的弯矩大小ꎻ随着受火作用的持续ꎬ梁底部出现负弯矩ꎬ此时拉弯矩为300kN mꎬꎻ随着持续高温ꎬ发生材料劣化ꎬ负弯矩逐渐减小ꎬ直至180min时弯矩为170kN mꎮ3㊀结㊀论(1)钢管混凝土叠合柱 ̄RC梁空间节点由于其受火工况㊁构造形式和梁㊁柱荷载比等条件的复杂性ꎬ进而导致 L 形㊁ T 形㊁ 十 字形空间节点的ꎬ破坏主要形式有梁破坏㊁梁和柱先后破坏㊁柱破坏ꎮ(2)当梁㊁柱火灾荷载比相同时ꎬ梁由2根增加至3根㊁4根时ꎬ空间节点耐火极限分别降低了41 58%和43 75%ꎻ空间节点耐火极限随着梁根数的增加而减低ꎮ(3)当柱的耐火极限远大于梁时ꎬ随受火时间的增加ꎬ梁会出现 二次破坏 的情况ꎻ由于梁竖向变形增大后ꎬ梁上部受压钢筋转变为受拉ꎬ进而抑制梁的竖向位移ꎬ其梁端竖向位移-受火时间关系曲线呈现 Z字形ꎮ(4)由于高温和轴向荷载的共同作用ꎬ空间节点内力出现重分布的现象ꎬ外围钢筋混凝土和核心钢管混凝土分别由56 73%和43 27%重分布为47 1%和52 9%ꎬ在受火后期ꎬ外部荷载主要转移至内部钢管混凝土ꎮ参考文献[1]㊀徐蕾ꎬ王明涛ꎬ王文达.钢管混凝土叠合柱非均匀受火性能研究[J].自然灾害学报ꎬ2014ꎬ23(4):263-269.㊀(XULeiꎬWANGMingtaoꎬWANGWenda.Researchonthenon ̄uniformfireperformanceofconcretefilledsteeltubereinforcedconcrete(CFSTRC)column[J].Journalofnaturaldisastersꎬ2014ꎬ23(4):263-269.)[2]㊀徐蕾ꎬ刘玉彬.钢管混凝土叠合柱耐火性能研究[J].建筑结构学报ꎬ2014ꎬ35(6):33-41.266㊀沈阳建筑大学学报(自然科学版)第40卷㊀(XULeiꎬLIUYubin.ResearchonfireresistanceofSFSTRCcolumnssubjectedtofire[J].Journalofbuildingstructuresꎬ2014ꎬ35(6):33-41.) [3]㊀侯舒兰.均匀受火下钢管混凝土叠合柱耐火性能研究[D].北京:清华大学ꎬ2014.㊀(HOUShulan.Researchonfireresistanceofconcrete ̄encasedCFSTcolumnonallsides[D].Beijing:TsinghuaUniversityꎬ2014.) [4]㊀SONGTYꎬHANLHꎬUYB.PerformanceofCFSTcolumntosteelbeamjointssubjectedtosimulatedfireincludingthecoolingphase[J].Journalofconstructionalsteelresearchꎬ2010ꎬ66(4):591-604.[5]㊀HUANGSSꎬDAVISONBꎬBURGESSIW.Experimentsonreverse ̄channelconnectionsatelevatedtemperatures[J].Engineeringstructuresꎬ2013ꎬ49:973-982. [6]㊀周侃.钢管混凝土叠合柱 ̄RC梁节点耐火性能研究[D].北京:清华大学ꎬ2017.㊀(ZHOUKan.Fireperformanceofconcrete ̄encasedconcretefilledsteeltubularcolumn ̄RCbeamjoints[D].Beijing:TsinghuaUniversityꎬ2017.)[7]㊀包延红.钢管混凝土叠合柱平面框架结构耐火性能研究[D].兰州:兰州理工大学ꎬ2018.㊀(BAOYanhong.Researchonbehaviorofconcretefilledsteeltubereinforcedconcreteplaneframessubjectedtofire[D].Lanzhou:LanzhouUniversityofTechnologyꎬ2018.) [8]㊀包延红ꎬ孙建刚ꎬ王文达ꎬ等.钢管混凝土叠合柱-钢筋混凝土梁平面框架耐火性能有限元分析[J].建筑结构学报ꎬ2015ꎬ36(增刊1):47-53.㊀(BAOYanhongꎬSUNJiangangꎬWANGWendaꎬetal.FEAonCFSTRCcolumn ̄reinforcedconcretebeamplaneframessubjectedtofire[J].Journalofbuildingstructuresꎬ2015ꎬ36(S1):47-53.)[9]㊀宋天诣.火灾后钢-混凝土组合框架梁-柱节点的力学性能研究[D].北京:清华大学ꎬ2010.㊀(SONGTianyi.Researchonpost ̄fireperformanceofsteel ̄concretecompositebeam ̄columnjoints[D].Beijing:TsinghuaUniversityꎬ2010.) [10]谭清华.火灾后型钢混凝土柱㊁平面框架力学性能研究[D].北京:清华大学ꎬ2012.㊀(TANQinghua.Performanceofsteelreinforcedconcrete(SRC)columnandportalframeafterexposuretofire[D].Beijing:TsinghuaUniversityꎬ2012.)[11]丁发兴ꎬ周政ꎬ王海波ꎬ等.局部火灾下多层钢-混凝土组合平面框架抗火性能分析[J].建筑结构学报ꎬ2014ꎬ35(6):23-32.㊀(DINGFaxingꎬZHOUZhengꎬWANGHaiboꎬetal.Fireperformanceanalysisofmulti ̄storysteel ̄concretecompositeplaneframeunderlocalfire[J].Journalofbuildingstructuresꎬ2014ꎬ35(6):23-32.)[12]LIETT.Fireresistanceofcircularsteelcolumnsfilledwithbar ̄reinforcedconcrete[J].Journalofstructuralengineeringꎬ1994ꎬ120(5):1489-1509.[13]中华人民共和国国家质量监督检验总局ꎬ中国国家标准化管理委员会.建筑构件耐火试验方法:第1部分:通用要求:GB/T9978.1 2008[S].北京:中国标准出版社ꎬ2008.㊀(GeneralAdministrationofQualitySupervisionꎬInspectionandQuarantineofthePeopleᶄsRepublicofChinaꎬStandardizationAdministrationofthePeopleᶄsRepublicofChina.Fire ̄resistancetests ̄elementsofbuildingconstruction ̄part1:generalrequirements:GB/T9978.1 2008[S].Beijing:StandardsPressofChinaꎬ2008.) [14]LIETTꎬCHABOTM.Amethodtopredictthefireresistanceofcircularconcretefilledhollowsteelcolumns[J].Journaloffireprotectionengineeringꎬ1990ꎬ2(4):111-124. [15]韩林海.钢管混凝土结构-理论与实践[M].北京:科学出版社ꎬ2007.㊀(HANLinhai.Concretefilledsteeltubularstructures ̄theoryandpractice[M].Beijing:SciencePressꎬ2012.)[16]过镇海ꎬ时旭东.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版社ꎬ2003.㊀(GUOZhenhaiꎬSHIXudong.Behaviorofreinforcedconcreteatelevatedtemperatureanditscalculation[M].Beijing:TsinghuaUniversityPressꎬ2003.)[17]清华大学.钢管混凝土叠合柱结构技术规程:T/CECS188 2019[S].北京:中国建筑工业出版社ꎬ2020.㊀(TsinghuaUniversity.Technicalspecificationforsteeltube ̄reinforcedconcretecolumnstructure:T/CECS188 2019[S].Beijing:ChinaArchitecture&BuildingPressꎬ2020.)(责任编辑:刘春光㊀英文审校:范丽婷)。
钢管混凝土柱

4. 4 框架抗震性能分析
• 4. 4. 1 屈服及破坏荷载的确定 • 由于钢管混凝土柱-钢梁框架的其荷载-位移曲线没有明显的屈服 点, 目前对该类结构屈服和破坏的确定尚无统一的准则 。本文采 用文献[ 19] 确定钢管混凝土柱屈服点的方法来确定钢管混凝土框 架的屈服点和屈服荷载 ,
屈服位移 Δy 极限荷载Pmax 极限位移 Δmax Pu =0. 85Pmax 为破坏荷载
主要测试仪器及测试指标
• 为了跟踪梁柱构件在试验过程中的应力分布及塑性铰位置,在框架 柱底部和上部截面处均设置了应变片 ,底部截面在荷载作用平面 内和平面外的四个面上均布置了互成 90° 的双向应变片 ,以测试 框架柱底部截面荷载平面内及平面外的轴向及横向应变 ,而柱上 部截面只在荷载作用平面内的两侧布置了双向应变片。在框架梁 两端截面上下翼缘均布置了沿轴线方向的单向应变片, 腹板上布 置了双向应变片 。分别在框架梁两端及每个框架柱底截面附近布 置了测试曲率的装置。
• 为了系统地研究更大参数范围内钢管混凝土框架的抗震性能, 以 柱截面形状、柱截面含钢率、柱轴压比、梁柱线刚度比等为主要参 数, 本文进行了 4 组共计 12 个单层单跨圆形和方形截面钢管混凝土 柱-钢梁平面框架的低周反复荷载试验研究 。
试件设计与制作
• 框架试件的跨度和高度基本上是实际工程框架的1/3 尺寸,在梁 的刚度选取中已考虑了组合梁及楼板的刚度贡献,这样即使本文试 件中只有钢梁 ,但其刚度已考虑了楼盖的贡献,使得本文试验中选 用的梁柱线刚度比数值更具工程代表意义 。 • 柱采用冷弯薄壁钢管 ,钢梁由钢板焊接而成, 加强环板及钢梁腹板 均与钢管焊接 , 并保证焊缝质量。
4. 3 水平荷载与梁端及柱端曲率关系
• 可以看出 ,在弹性阶段梁端及柱脚的曲率很小 ; 当梁端进入屈服发 生屈曲以后, 梁端曲率才发展较快 。 • 柱脚曲率的发展过程类似 ,但由于柱内有混凝土, 框架柱的弯曲变 形并没有钢梁显著 ,因此柱脚的曲率在加载位移后期的发展较钢 梁缓慢, 直到柱钢管鼓曲非常严重并有局部断裂时曲率发展到最 大,而且其最大曲率数值也较梁端最大曲率小 。
火灾作用后钢管混凝土柱—钢梁节点力学性能研究共3篇

火灾作用后钢管混凝土柱—钢梁节点力学性能研究共3篇火灾作用后钢管混凝土柱—钢梁节点力学性能研究1火灾是建筑物中最常发生的灾害之一,可能对结构件产生很大的影响。
本文将探讨火灾作用后钢管混凝土柱—钢梁节点的力学性能研究。
随着近年来钢管混凝土结构的广泛应用,钢管混凝土柱—钢梁节点的力学性能一直是研究的热点。
而火灾作用后的钢管混凝土柱—钢梁节点从微观和宏观两个方面受到了很大的影响。
在微观方面,钢管混凝土柱—钢梁节点中的钢筋会因为高温而产生一定程度的软化和塑性韧性降低;混凝土也会因为高温而发生水化反应减弱,失去强度。
因此,这些因素加起来会降低节点连接部位的抗弯刚度和承载能力。
在宏观方面,火灾作用后的节点存在各种不同的破坏模式。
例如,节点可能会出现脆性破坏,也可能会出现韧性破坏。
在脆性破坏情况下,节点连接部位的刚度和承载能力减少很多;而在韧性破坏情况下,节点失去的承载能力主要来自于裂缝扩展和混凝土剥落。
针对以上这些因素,许多研究者进行了广泛的研究。
其中,一些研究聚焦于不同钢管混凝土节点类型的火灾性能,如框架节点、框架—框支节点、框架—剪力墙节点等。
研究发现,这些不同类型的节点在高温下的承载能力和抗弯刚度有很大差异。
此外,一些研究还针对节点的流变性质进行了深入研究。
例如,在环向加载下,钢管混凝土节点的应力、应变关系存在与普通混凝土不同的特点。
这些研究对于理解节点在火灾作用下的力学性能提供了重要的依据。
此外,还有越来越多的研究将数值模拟和实验相结合,以更加深入地了解火灾作用下的节点性能。
数值模拟的方法可以预测节点在高温下的受力变形,并研究节点承载能力和抗震性能等方面的性能。
而实验可以验证这些数值结果,并为数值模拟提供实验数据。
综上所述,火灾作用后的钢管混凝土柱—钢梁节点受到许多因素的影响,包括微观和宏观方面。
人们开展了广泛而深入的研究,以进一步了解这些因素对节点性能的影响,并寻找改进和防范的方法。
这对我们提高设计和防火技术能力、确保建筑物安全具有重要意义。
消防安全技术实务:建筑钢结构构件的设计耐火极限

消防安全技术实务:建筑钢结构构件的设计耐火极限
钢结构自重轻、强度高、抗震性能好,便于工业化生产,施工速度快,是建筑中应用得主要结构形式之一。
但钢材热传导系数大,火灾情况下随着温度的升高,钢材强度下降,其承载力随之下降,致使钢结构不能承受外部载荷作用而失效破坏。
因此,钢结构的耐火性能较差。
为确保建筑钢结构的防火安全,《建筑钢结构防火技术规范》(GB 51249-2017),对工业与民用建筑中的钢结构以及钢管混凝土柱、压型钢板—混凝土组合楼板、钢与混凝土组合梁等组合结构(包括建筑中局部采用钢结构及上述组合结构的情况),制定了针对性的防火设计和保护措施要求。
建筑钢结构构件的设计耐火极限
对于钢结构而言,构件的设计耐火极限能否达到要求,是关系到建筑结构安全的重要指标。
钢结构构件的最低耐火极限要求,按厂房、仓库和民用建筑的相应耐火等级分别确定。
其中,柱间支撑的设计耐火极限应与柱相同,楼盖支撑的设计耐火极限应与梁相同,屋盖支撑和系杆的耐火极限应与屋顶承重构件相同。
钢结构节点的耐火性能及防火保护要求均不应低于被连接构件中要求最高者。
钢结构构件的设计耐火极限要求见表2-3-10。
表2-3-10 建筑钢结构构件的设计耐火极限
注:1.建筑物中的墙等其他建筑构件的设计耐火极限应符合《建筑设计防火规范》(GB 50016-2014,2018年版)的规定;
2.一、二级耐火等级的单层厂房(仓库)的柱,其设计耐火极限可按上表规定降低0.50h;
3.一级耐火等级的单层、多层厂房(仓库)设置自动喷水灭火系统时,其屋顶承重构件的设计耐火极限可按上表规定降低0.50h;
4.吊车梁的设计耐火极限不应低于上表中梁的设计耐火极限。
钢管混凝土柱抗火性能浅析

i f u n e n h l i a e t e g h A l s , f r u a f r t e u t m t s r n t n h n l e c o t e u t m t s r n t . t a t om l s o h l ia e t e gh a d t e
r t o t e l n e n s r t o, a d h l a e c n r c t r t o p o e t v c v r。 T e a i , h s e d r e s a i n t e o d c e t i i y a i , r t c i e o e h r s l s h w t a , t e e t o a d m n i n a d t e s e d r e s a i a e i n f c n e u t s o h t h s c i n l i e s o , n h l n e n s r t o h v s g i i a t
1 研 究必要 性
随着钢 管混凝土在 国内外 高层建筑和拱桥结构等 工程 中
的广泛应用 ,其遭受火 灾的可 能性大为增加 。据统计,2 0 03
年1 l 至 O月份,我国共发生火灾 2 59 起 ,死亡 1 6 046 8 6人 ,
力状态之下 ,从而 使钢 管混凝土结构 具有承载力高 ,塑性和 韧性好 ,施工方便 ,耐火性能好 ,经济效果好等优点 ,能适 应现代工程结构向大跨 、高耸、重载发展和承受恶劣条件的
需要,符 合现代施工技 术的工业化要求 ,正被越来越广泛的
受伤 20 人 ,直接财产 损失 l . 61 2 7亿元 。在 国外 ,尤其是一 些 发达 国家 ,火灾 更为严 重 ,如 :19 年美 国的火灾 损失 91 约 为 6 6亿元人 民币,日本约为 10 5 9 3 . 亿元人 民币,英 国约
局部火灾作用下PEC柱组合框架抗火性能研究

A”
B”
C…
D7j=
A”
B q C”
D,2
- ● ● I ●
‘ ● ● ● ●
● ● ● ● ●
ZI
A ’
● - ● ‘ ●
Z2
B g
● ● ● ● A
B
C
4 500 l 4 500 I 4 500
温 度 场 分 析 时 ,混凝 土 、型 钢 、防 火 涂 料 均 采 用 实 体
基金项 目:国家 自然科学基金项 目(50708062);江苏省“六 大高峰”人才项 目(2012—5z一004);江苏省高校 自然科学基金重大项 目(14KJA5600o3)
(a)框 架 平 面 图
2 12
D n
框 架 结 构 作 为 一 个 超 静 定 结 构 ,其 构 件 之 间存 在 较 强 的相 互 作 用 ,在 火 灾 高 温 作 用 下 结 构 出 现 明 显 的 内力 重 分 布 ,构 件 的 内力 和 变 形 均 不 同于 独 立 的构 件 。
参 考 某 实 际 工 程 结 构 布 局 ,建 立 一 个 三 层 三 跨 PEC 柱 钢 梁 平 面 框 架 ,如 图 1所示 。框 架 柱 底 部 固结 ,约 束 框 架 平 面 外 自 由度 ,火 灾 时 只 考 虑 框 架 承 受 竖 向荷 载 。框 架 跨 度 4.5 m,层 高 3.0 ,采 用 Q235钢 材 ,c3o混 凝 土 。 框 架 柱 为 焊 接 H 型截 面 ,截 面 尺 寸 250 mm×250 miTt×9 mm×14 mm,在 翼 缘 之 间 填 充 混 凝 土 。采 用 4根 12纵 筋 ,西8@ 200箍 筋 ,保 护 层 厚 度 取 2O mm。钢 梁 截 面 尺 寸 300 mm × 150 miD_× 9 mm × 13 mm。 混 凝 土 板 厚 100 mm,钢 筋 为 中8@ 200双 层 双 向 。
钢管混凝土柱抗火分析方法及防火措施

钢管混凝土柱抗火分析方法及防火措施作者:郑永乾周继忠蔡雪峰来源:《海峡科学》2010年第10期[摘要]钢管混凝土柱耐火性能和防火措施已受到了人们的关注,以往的研究中大多先求出温度场,然后根据温度结果进行火灾下受力性能的计算分析。
温度场的分析可采用自编有限元程序和通用有限元软件,结构受力性能分析可采用纤维模型法、分段积分法和有限元方法。
该文简要介绍了上述方法及其特点,并对钢管混凝土柱的防火措施进行了探讨。
[关键词]钢管混凝土柱抗火分析防火措施钢管混凝土柱在工程中的应用日益广泛,其耐火性能和防火措施问题受到了人们的关注。
在火灾作用下,钢管混凝土柱构件截面会形成不均匀的温度场,同时材料性能在高温下会不断恶化,其温度效应和结构效应是同时存在的。
因此热力耦合分析是比较接近实际的方法,但是处理难度较大。
在一般情况下,结构构件的温度分布主要受到外界火焰温度、材料热工性能、构件形状和尺寸等的影响,而结构内力状态和变形等的影响非常小[1],因此可以先求出构件温度场,然后将温度场结果用于受力性能的计算,这在以往的理论研究中采用较多,例如韩林海[2]、Lie和Denham[3]、郑永乾[4]、王卫华[5]等。
纤维模型法、分段积分法和有限元法在常温下钢管混凝土构件的分析中已得到较为广泛的应用,通过考虑热工参数和力-热本构关系等,可以将上述方法用于高温分析中。
作者通过在以往福州大学组合结构课题组中的学习研究以及现在的探索,对上述分析方法及其特点进行了介绍,并对钢管混凝土柱的防火措施进行了探讨,以期为有关理论研究和工程实践提供参考。
1温度场分析方法1.1 自编截面温度场有限元程序钢管混凝土构件在四面受火时可近似地认为温度沿着构件长度方向不变化,因此可简化为沿截面的二维温度场问题。
根据孔祥谦[6]描述的方法编制了分析钢管混凝土构件在高温下截面温度场的非线性有限元程序。
材料热工参数暂取用Lie和Denham[3]建议的钢材和混凝土热工参数表达式,并考虑了混凝土中水分的影响,对混凝土热工参数进行了修正[7]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Abstract: This paper presents a finite element analysis(FEA) model of concrete-filled steel tubular(CFST) columns to steel beam frame with RC slab to investigate the fire performance and provide reasonable fire resistance design method based on ABAQUS. The reasonable thermal and material models were chosed in the FEA model. Due to lacking of experimental datas about the fire behavior of composite frame, the FEA model results were verified by the fire performance of CFST columns to composite beam joint and CFST columns to RC beam frame experiments, respectively. Typical failure modes and displacement of beam and column versus fire time relationships were studied to calculate the fire resistance of the frame. The results show that the fire duration time of composite frame is increased significantly with the increased of the thickness of fire protection and decreased the fire load ratio of columns. The fire resistance of composite frame columns is larger than the single columns due to the absorption of heat and the constraint function of the reinforced concrete slab. Keywords: CFST columns to composite beam frame, fire resistance, finite element analysis(FEA) model, factors analysis
The 12th International Symposium on Structural Engineering
PRELIMINARY RESEARCH ON FIRE RESISTANCE OF CONCRETE-FILLED STEEL TUBULAR COLUMNS TO COMPOSTE BEAM FRAME
columns in a complete fire stage including cooling process under axial load. Wang et al.(2012) reported the mechanical performance of CFST columns subjected to full stage fire under axial load, eccentric load and bending load based on ABAQUS. Huo et al.(2010) presented the experimental results and finite element analysis of eight specimens of repaired concrete filled steel tubular columns to steel beam joints after exposure to fire. Song et al.(2010) tested three concrete filled steel tubular columns to steel beam joints with RC slabs under loading and fire. Tan et al.(2012) reported threedimensional FEA model of typical-full scale CFST column to RC beam joint in fire, which the slip between steel bars and concrete was considered. Little theoretical and experimental research, however, has been done to investigate the fire resistance and fire performance of composite frame with CFST columns. Han et al.(2010) reported six tests on reinforced concrete beam to CFST columns planar frames with RC slab subjected to ISO-834 standard fire. Based on this experiment, Han et al.(2012) performed theoretical investigation on the fire performance of these frames. From above, there is little reports about fire resistance of CFST columns to steel beam planar frame with RC
2.1 Temperature Field Analysis
The temperature field model of concrete filled steel tubular columns to composite beam frame was established by choosing reasonable steel and concrete thermal parameters and the boundary conditions which followed ISO-834 standard fire curve. Thermal conductivity coefficient, specific heat and desity of concrete and steel were defined in the heat transfer model. In the thermal analysis, steel tube, concrete, steel beam and RC slab are modelled using 8-node brick elements(DC3D8) and 2-node heat transfer link element(DCID2) is used for rebar. The steel tube and core concrete of frame columns, stud and beam, RC slabs and flange of beam are all connected with *TIE command, relative slip is not taken into consideration among them. The effects of heat convection and radiation are included as boundary conditions and heat transfers from air to frame during heating stage. In order to transfer accurately temperature of nodes and elements to mechanical analysis model, “NODE FILE, ENTER NT” command must be written in the input FILE(*.inp). 2.2 Mechanical Aanalysis Model
slab. This paper will develop a FEA model of this frame to investigate the fire resistance and deformation and failure mechanism based on ABAQUS.
2 THE FINITE ELEMENT ANALYSIS MODELFire can bring serious threat to person′s life and property. The research on the fire resistance of architecture structures is beneficial to maintain their safety and prevent their collapse when exposure to fire. In recent years, Concrete-filled steel tubular structures have been widely used in practical structure due to the favorable composite characteristics of steel and concrete materials which providing the merits of higher strength and stiffness, higher fire resistance than bare steel structure for concrete filled and better fire performance than reinforced concrete structure as the tube casting prevents spalling of the concrete(Han, 2007). It has important theoretical significance and practical value to invenstigate the fire performance of concrete filled steel tubular structure exposure to fire. Up until now, a large number of research results on fire performance of concrete filled steel tubular members and joint with CFST column have been done, including exposure to overall stage fire. Such as Yang et al.(2008) reported the analysis of concrete filled steel tubular columns after exposure to overall stage fire. Song et al.(2010) developed a FEA model to investigate the behaviour of CFST stub