钢管混凝土柱讲解

合集下载

钢管混凝土柱讲解课件

钢管混凝土柱讲解课件
在高层建筑中,钢管混凝土柱能够承受较大的竖向荷载和水 平荷载,提高建筑物的抗震性能和抗风能力。同时,其优良 的力学性能和稳定的承载能力也保证了高层建筑的安全性和 稳定性。
大跨度结构
大跨度结构是指跨度较大的桥梁、大跨度厂房等建筑结构。 由于大跨度结构的跨度较大,传统的梁、拱等结构形式难 以满足其承载力和稳定性的要求。
弯曲稳定性
分析钢管混凝土柱在弯曲作用下的稳定性,评估其在承受弯矩作 用时的安全性能。
稳定性调整
根据稳定性分析结果,对设计进行调整,以提高钢管混凝土柱的 整体稳定性和安全性。
01
钢管混凝土柱的施 工工艺
施工准 备
技术准备
熟悉施工图纸,掌握施工规范, 编制施工组织设计等技术文件。
材料准备
采购钢管、混凝土等原材料, 确保质量合格。
管混凝土柱的轴向承载力。
弯曲承载力
02
通过分析柱的弯矩分布和截面应力状态,计算钢管混凝土柱的
弯曲承载力。
承载力调整
03
根据实际工程需求和相关规范,对承载力计算结果进行调整,
以确保结构安全可靠。
稳定性分析
轴压稳定性
对钢管混凝土柱进行轴向压力作用下的稳定性分析,以确定其在 轴压作用下的极限承载力和安全储备。
钢管混凝土柱讲解课 件
THE FIRST LESSON OF THE SCHOOL YEAR
• 钢管混凝土柱的设计与计算 • 钢管混凝土柱的施工工艺 • 钢管混凝土柱的工程实例
01
钢管混凝土柱简介
定义与特点
定义
钢管混凝土柱是一种将混凝土填入钢 管内形成的一种组合结构,利用钢管 和混凝土的协同作用,达到提高结构 承载力和延性的效果。
便于维修加固

浅谈钢管混凝土柱施工工艺要点

浅谈钢管混凝土柱施工工艺要点

浅谈钢管混凝土柱施工工艺要点钢管混凝土柱结构与其它结构相比,具有承载力高、塑性和抗震性能好,施工简便等优点,应用于高层及超高层建筑中。

本文介绍了钢管混凝土柱的技术特点,重点阐述了关键技术及施工要点。

供同行交流借鉴。

标签:钢管混凝土柱;技术特点;施工要点在高层建筑结构中,钢管混凝土柱具有很大的优势,具有承载力高、抗震性能好的特点。

既可以取代钢筋混凝土柱,解决高层建筑结构中普通钢筋混凝土结构底部的“胖柱”问题和高强钢筋混凝土结构中柱的脆性破坏问题,也可以取代钢结构体系中的钢柱,以减少钢材用量,提高结构的抗侧移刚度。

钢管混凝土构件的自重较轻,可以减小基础的负担,降低基础的造价。

1 技术特点钢管混凝土柱是在圆形钢管内浇灌混凝土形成的组合结构构件,是套箍混凝土的一种特定形式,兼有钢结构和混凝土结构的优越性能,充分利用了混凝土受压性能好和钢管韧性、塑性好的优点,使管内混凝土受三向约束,充分发挥了混凝土的作用,提高了结构构件的承载能力、抗震能力,与钢筋混凝土柱比较,减小了柱子截面面积,增大了建筑使用面积。

2关键技术及施工要点2.1钢管及部件制作成品钢管要有质量合格证,并按规定进行规格、尺寸以及外观等项目检查验收。

下面仅对钢板卷制钢管进行叙述。

(1)下料:下料前,先通过试焊确定钢板对接焊缝收缩余量,在下料时一并考虑,根据钢管展开尺寸在钢板上划线,用自动气割机切割并坡口,坡口宜采用V型坡口,钢管现场对接端采用外坡口,其余为内坡口,坡口角度60°。

节点部件要制作样板,经检验评定合格后按样板分块尺寸划线下料,所有部件切割后,应及时清除割渣并矫正气割变形。

(2)钢板卷圆:将压好边的钢板放在卷板机上进行卷圆,卷圆过程中,卷管方向应与钢板压延方向一致,并严格控制钢管的椭圆度、焊缝间隙及错边量等。

(3)焊前准备:钢管组焊时的纵、环缝,现场对接焊缝、节点连接焊缝应进行焊接工艺评定,确定焊接工艺流程。

焊接前应编制如下文件:焊接工艺指导书,焊接工艺评定。

钢管混凝土短柱定义

钢管混凝土短柱定义

钢管混凝土短柱定义
钢管混凝土短柱是一种常见的建筑结构元素,具有较高的承载能力和抗震性能。

它由钢管和混凝土组成,钢管起到骨架的作用,混凝土填充在钢管内部,形成一种具有双重受力特性的结构。

钢管混凝土短柱的设计与施工需要考虑多方面的因素。

首先,需要确定短柱的几何形状和尺寸,根据设计荷载和使用要求确定柱截面的尺寸和钢管的直径。

其次,需要选择合适的材料,包括混凝土的配合比和钢管的材质等。

此外,还需要考虑连接形式和施工工艺,确保钢管与混凝土之间的紧密结合,以及整体结构的稳定性和耐久性。

钢管混凝土短柱的优点在于其承载能力强、抗震性能好以及施工方便等。

由于钢管的加固作用,短柱能够承受较大的压力和剪力,同时还能够有效地分散和抵抗地震力的作用。

此外,钢管混凝土短柱的施工相对简单,不需要复杂的模板和支撑体系,减少了施工周期和成本。

然而,钢管混凝土短柱也存在一些局限性。

由于钢管和混凝土之间的接触面积较小,柱的抗弯性能相对较差。

此外,柱截面形状的限制也可能导致柱的受力性能不均匀,影响结构的整体性能。

因此,在设计和施工中需要合理选择短柱的形状和尺寸,以及加固措施,确保结构的安全可靠。

钢管混凝土短柱是一种具有较高承载能力和抗震性能的建筑结构元素。

通过合理的设计和施工,可以充分发挥钢管和混凝土的优势,使短柱在建筑结构中发挥重要作用。

然而,在应用过程中需要注意其局限性,确保结构的安全和可靠性。

钢管混凝土柱的概况及优缺点

钢管混凝土柱的概况及优缺点

钢管混凝土柱的概况及优缺点钢管混凝土柱的概况及优缺点钢管混凝土是指在钢管中填充混凝土而形成的构件。

钢管混凝土研究最多的是圆钢管,在特殊情况下也采用方钢管或异型钢管,除了在一些特殊构造当中有采用钢筋混凝土的情况之外,混凝土一般为素混凝土。

早在十九世纪八十年代就出现了钢管混凝土构造,最初用作桥墩,然后渐渐地用作建筑物中的柱子。

在我国,六十年代开始了这种构造的研究,并首先用于首都地铁工程中。

##站至苹果园的地铁线路上,在##站和前门站的站台工程中首次试用,经济效果很好;和传统采用的钢筋混凝土柱相比,不但施工简捷得多,而且体积小,增加了地下有效使用空间,因此,在随后建造的地铁环线工程中,所有的站台柱,全部采用了钢管混凝土柱。

从七十年代开始,在工业厂房、高炉和锅炉构架及变电和输电塔架等工程中,钢管混凝土得到了推广应用。

工业厂房中采用钢管混凝土柱的有本钢、**、首钢及近几年**工程中的大量重工业厂房,还有各地的造船厂和火力发电厂等,厂房跨度最大的L=54m,柱高达60—70m,,桥式吊车最大的为Q=l00t 重级工作制吊车。

钢管混凝土在我国的应用范围很广,发展很快。

从应用范围和发展速度两个方面都能列于世界前列。

自八十年代后期开始,钢管混凝土由于本身具有的优点.开拓了两个新的应用领域。

一个是公路和城市桥梁,另一个是高层和超高层建筑。

钢管混凝土具有以下基本特点:1. 承载力大大提高:试验和理论分析证明,钢管混凝土受压构件的强度承载力可以到达钢管和混凝土单独承载力之和的1.7~2.0倍。

2. 具有良好的塑性和抗震性能:在钢管混凝土构件轴压试验中,试件压缩到原长的2/3,构件表面已褶曲,但仍有一定的承载力,可见塑性非常好。

钢管混凝土构件在压弯剪循环荷载作用下,水平力P与位移之间的滞回曲线十分饱满,说明有很好的吸能能力,基本无刚度退化,它的抗震性能大大优于钢筋混凝土。

3. 经济效果显著:和钢柱相比,可节约钢材50%,降低造价45%;和钢筋混凝土柱相比,可节约混凝土约70%,减少自重约70%,节省模板100%,而用钢量约略相等或略多。

钢管混凝土柱 节点域

钢管混凝土柱 节点域

钢管混凝土柱节点域一、前言钢管混凝土柱是一种结构形式,它是由钢管和混凝土组成的。

在建筑结构中,钢管混凝土柱常用于高层建筑中。

节点域是指连接钢管和混凝土的部分。

在本文中,将详细介绍钢管混凝土柱节点域的相关内容。

二、钢管混凝土柱节点域的概述1. 节点域的定义节点域是指连接钢管和混凝土的部分。

在钢管混凝土柱中,节点域是非常重要的部分,它关系到整个结构体系的安全性能。

2. 节点域的分类根据节点形式和连接方式不同,节点可以分为刚性连接和半刚性连接两种类型。

其中,刚性连接包括焊接、螺栓连接等;半刚性连接包括粘接、夹紧等。

3. 节点域设计原则(1)保证节点强度:节点应该具有足够强度承受荷载;(2)保证节点刚度:节点应该具有足够刚度抵抗变形;(3)保证节点耐久性:应该考虑到环境因素对节点的影响,如腐蚀、湿度等。

三、钢管混凝土柱节点域的设计1. 节点域的构造形式钢管混凝土柱节点域的构造形式有多种。

其中,常见的有以下几种:(1)套筒式节点:钢管和混凝土之间采用套筒连接,套筒内填充混凝土;(2)插接式节点:钢管和混凝土之间采用插接方式连接;(3)焊接式节点:钢管和混凝土之间采用焊接方式连接。

2. 节点域的设计要点(1)确定节点类型:根据实际情况选择刚性连接或半刚性连接;(2)确定节点构造形式:根据实际情况选择套筒式、插接式或焊接式等;(3)确定节点尺寸:根据荷载大小和结构要求确定节点尺寸;(4)考虑防腐措施:对于暴露在外的部分应该进行防腐处理。

3. 节点域设计实例以套筒式节点为例,其具体步骤如下:(1)确定钢管和混凝土的尺寸;(2)确定套筒的尺寸,套筒长度应该略大于钢管和混凝土的长度之和;(3)在钢管和混凝土上分别开孔,孔径应该略小于套筒的外径;(4)将套筒插入钢管和混凝土中,同时在套筒内部灌注混凝土;(5)在节点处进行加固处理,如加强筋等。

四、节点域的施工要点1. 节点域施工前的准备工作(1)制定施工方案:根据设计要求制定详细的施工方案;(2)检查材料:对钢管、混凝土、连接件等材料进行检查,确保质量合格;(3)清理现场:清理施工现场,确保安全有序。

钢管混凝土柱讲解课件

钢管混凝土柱讲解课件

过程质量控制
对生产过程进行质量监控,及时发现并处理 质量问题。
不合格品处理
对不合格品进行标识、隔离和处理,防止不 合格品流入下一道工序。
05
钢管混凝土柱的安装与维护
安装方法
准备工具与材料
在安装前,需要准备 钢管、混凝土、连接 件、固定件等材料, 以及滑轮、起重机等 工具。
基础制作
根据设计图纸,制作 符合要求的混凝土基 础,确保基础平整、 坚固。
形状设计
考虑美观和功能性,设计柱子 的形状,如圆形、方形或异形

节点设计
优化节点连接方式,如焊接、 螺栓连接或法兰连接,确保结
构安全。
防腐与防火设计
根据使用环境,对钢管表面进 行防腐处理,并考虑防火措施

04
钢管混凝土柱的生产与制造
生产流程
钢管加工
对钢管进行矫直、切割、打孔 等加工,以满足设计要求。
定期检查
在使用过程中,应定期对 钢管混凝土柱进行检查, 确保其安全可靠。
06
钢管混凝土柱的发展趋势与 未来展望
技术创新与改进
新型材料的应用
随着新材料技术的不断发展,钢管混 凝土柱在材料选择上将更加多样化, 例如高强度钢材、耐腐蚀材料等,以 提高其承载能力和耐久性。
施工工艺的优化
针对钢管混凝土柱的施工工艺,未来 将进一步优化,例如采用更先进的焊 接技术、无损检测技术等,以提高施 工效率和质量。
组装与浇筑
将钢管按照设计要求进行组装 ,并在钢管内浇筑混凝土。
原材料准备
根据设计要求,准备钢管、混 凝土等原材料,并进行质量检 验。
混凝土制备
按照设计配合比,制备混凝土 ,并进行质量检验。
养护与检测

钢管混凝土柱

钢管混凝土柱
7.1 概述
第七章 钢管混凝土柱
钢管混凝土柱
RC环梁 1
RC框架梁 钢管混凝土柱
RC框架梁
1
钢管混凝土柱
RC环R梁C环梁
抗剪环
RC框架梁
RC框架梁
RC框架梁
RC框架梁
RC框架梁
混凝土柱 环梁
RC框架梁
RC框架梁 RC环梁
环梁节点平面图 钢管混凝土柱
1 RC环梁连接的 1 STRC框C架C梁 柱-RC梁节RC点框架梁
RC框架梁
环梁节点侧面钢管图混凝土柱
抗剪环
RC环梁
RC框架梁
RC框架梁
7.1 概述
8.3.1 一般规定 钢管结构制作和安装的施工单位应具有相应的资质,施工单位应根据批准的施工图设计文
件编制施工详图,这样可以较好地把制作条件、安装技术与原设计文件结合起来,使设计 更趋完善。当需要修改时,应按有关规定办理设计变更手续。 钢管混凝土构件常用作各种柱子,构造较为复杂,应根据工程特点,结合制作厂的条件编
第8章 钢管混凝土结构
第七章 钢管混凝土柱 7.1 概述
第七章 钢管混凝土柱 7.1 概述
第七章 钢管混凝土柱 7.1 概述
第七章 钢管混凝土柱 7.1 概述
第七章 钢管混凝土柱 7.1 概述
第七章 钢管混凝土柱 7.1 概述
第七章 钢管混凝土柱 7.1 概述
第七章 钢管混凝土柱
Failure modes of plain concrete under uniaxial compression
较好的经济性
7.1 概述
第一章 绪论
钢管混凝土结构(Concrete Filled Steel Tube)
1.1 混凝土结构一般概念和特点

钢管混凝土柱讲解

钢管混凝土柱讲解
f ,fc -分别为钢材和混凝土的抗压强度设计值,考虑地震作用组 合时应除以抗震调整系数γRE
As Ac-分别为钢管和管内混凝土的截面面积 当钢管截面有削弱时,应按下式计算净截面强度
N≤Nun Nun=fAsn+fcAc
Asn-钢管的净截面面积
(2)轴心受压构件的稳定性计算
N Nu
-轴心受压杆件的稳定系数
第五章 钢管混凝土柱
5.1 钢管混凝土的特点
钢管混凝土也称作为钢管套箍混凝土(Steel Tube-Confined Concrete,或Concrete-Filled Steel Tube ),它是在钢管内灌入混 凝土而形成的一种组合结构.钢管混凝土结构按截面形式的不同 可以分为矩形截面、圆形截面和多边形截面,其中圆形截面和矩 形截面钢管混凝土结构应用最为广泛;实心和空心钢管混凝土.
c
fc Ac fAs fc Ac
N—u n— 净截面抗压承载力设计值 M—u n— 只有弯矩作用时净截面的抗弯承载力设计值,按下式计

M u n [ 0 . 5 A s n ( D 2 t d n ) B t ( t d n ) ] f
f —— 钢材抗弯强度设计值,考虑地震作用组合时应除以抗震
圆钢管混凝土柱中的核心混凝土的紧箍效应,受 力性能比矩形钢管混凝土柱好,相比而言承载力提高 最大,也最经济.
钢管混凝土结构设计与施工规程承载力设计方法 (CECS28:90) .
1.单肢柱承载力计算
N Nu
Nu leN0
N0fcAc(1 )
faAa / fcAc
N-轴向压力设计值; Nu-钢管混凝土单肢柱的承载力设计值; N0-钢管混凝土轴心受压短柱的承载力设计值; θ-钢管混凝土的套箍指标; fc - 混凝土的抗压强度设计值; Ac 、Aa-钢管内混凝土、钢管的横截面面积; fa -钢管的抗拉,抗压强度设计值;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
力折减系数。
在任何情况下都应满足下列条件:
φ1*φe* ≤φ0* φ0* - 按轴心受压柱考虑的φ1*值
3.变形计算
(1)压缩和拉伸刚度
EA Ea Aa Ec Ac
(2)弯曲刚度
EI Ea Ia Ec Ic
Aa Ia -钢管横截面的面积和对其重心轴的惯性矩 Ac Ic -钢管内混凝土横截面的面积和对其重心轴的惯性矩 Ec Ec -钢管和混凝土的弹性模量
钢管混凝土偏心受压构件的工作性能特点:在接近破坏时, 外荷载增量很小,而变形发展的很快。
和钢构件相比,曲线过B点后平缓的多,说明由于有紧箍力 的作用,不但提高了核心混凝土的承载力,而且还增加了 构件的延性。
影响钢管混凝土偏心受压构件承载力的两个重要参数:长 细比,偏心率。
5.3 圆钢管混凝土柱的计算和设计
圆钢管混凝土柱中的核心混凝土的紧箍效应,受 力性能比矩形钢管混凝土柱好,相比而言承载力提 高最大,也最经济。
《钢管混凝土结构设计与施工规程》承ห้องสมุดไป่ตู้力设计 方法(CECS28:90) 。
1.单肢柱承载力计算
N Nu
Nu le N0
N0 fc Ac (1 )
fa Aa / fc Ac
>1.0时,核心混凝土承载力的提高超过了钢管纵向承载
力的减小, 出现了曲线上升的强化阶段bc。
<1.0时,核心混凝土承载力的提高不足以弥补钢管纵向承
载力的减小,曲线出现下降段。
=0.4,曲线无塑性段,呈脆性破坏。
3. 轴心受钢管压混凝土长柱
轴心受压钢管混凝土长柱受力性能复杂,与钢结构相似。 存在强度破坏和稳定破坏。 (1)对于长细比小的短柱,破坏是由于钢管的屈服和混凝土 三向受压下的强度破坏所致。 (2)对于长细比大的长柱,其破坏是由于弹性失稳。欧拉公 式。 (3)对于中等长度的中柱,其破坏是由于弹塑性失稳。修正 的欧拉公式。
Nu=fAs+fcAc
f ,fc -分别为钢材和混凝土的抗压强度设计值,考虑地震作用
5.2 钢管混凝土柱的工作性能
1.钢管混凝土柱的几个影响参数
(1) 含钢率
As
Ac
(2) 约束效应系数
As fy
Ac fck As f
Ac fc
一般在0.3~4.0之间,宜大于等于3.0 钢管混凝土规程称为套箍系数(招标)
(3) 径厚比或高厚比
圆钢管
D/t≤150(235/fy)
第五章 钢管混凝土柱
5.1 钢管混凝土的特点
钢管混凝土也称作为钢管套箍混凝土(Steel Tube-Confined Concrete,或Concrete-Filled Steel Tube ),它是在钢管内灌入混 凝土而形成的一种组合结构。钢管混凝土结构按截面形式的不 同可以分为矩形截面、圆形截面和多边形截面,其中圆形截面 和矩形截面钢管混凝土结构应用最为广泛;实心和空心钢管混 凝土。
5.钢管混凝土柱考虑长细比影响的承载力折减系数
对单肢柱:
钢管混凝土柱考虑长细 比影响的承载力系数 1 当 Le D 4时,1 1 0.115 Le D 4 当 Le D 4时,1 1
D-钢管的外径; Le-柱子的等效计算长度,按规程公式计算。
6.钢管混凝土柱等效计算长度
4. 偏心受压钢管混凝土长柱
曲线①是钢管混凝土长柱偏心受压 强度破坏时截面偏心力N与杆中挠 度的关系。工作分两个阶段。弹性 阶段OA;弹塑性阶段AB。
曲线②③是当钢管混凝土长柱长细 比λ>12,偏心受压构件承载力由稳 定决定时的压力N与杆中挠度的关 系曲线。曲线的最高点是偏压构件 稳定承载力的极限。
1 e 0
φ0- 按轴心受压柱考虑的φ1值
2. 格构柱的承载力计算
N

N
* u
N
* u

l*
* e
N
* 0
i
N
* 0

N 0i
1
Nu * -格构柱的整体承载力设计值 N0i -格构柱各肢的轴心受压短柱承载力设计值,按
公式确定
φ1* ,φe* - 考虑长细比影响,偏心率影响的整体承载
N-轴向压力设计值; Nu-钢管混凝土单肢柱的承载力设计值; N0-钢管混凝土轴心受压短柱的承载力设计值; θ-钢管混凝土的套箍指标; fc - 混凝土的抗压强度设计值; Ac 、Aa-钢管内混凝土、钢管的横截面面积; fa -钢管的抗拉,抗压强度设计值;
1、e -考虑长细比影响,偏心率影响的承载力折减系数。
钢管混凝土的基本原理是依靠内填混凝土的支撑作用,使 得钢管的稳定性增强,同时核心混凝土受到钢管的“约束”作 用或称之为“套箍”作用,使核心混凝土处于三向受压应力状 态,延缓混凝土内部纵向微裂缝产生和发展的时间,从而使得 核心混凝土具有更强的抗压强度和抵抗变形能力。
特点: 1.承载力高 2.具有良好的塑性和抗震性能 3.施工简单,可以大大缩短工期 4.钢管混凝土柱的耐火性能好于钢柱 5.可采用高强度混凝土
4.钢管混凝土柱考虑偏心影响的承载力折减系数 对单肢柱
当e0/rc≤1.55时
e 1/(11.85e0 / rc ) e0 M 2 / N
当e0/rc > 1.55时
e 0.4 /(e0 / rc )
e0-柱两端轴向压力偏心距较大者; rc-核心混凝土横截面的半径; M2-柱两端弯矩设计值的较大者; N-轴向压力设计值。
方(矩形)钢管 D/t≤60(235/fy)1/2
(4) 长细比
2. 轴心受压的钢管混凝土短柱(L/D=3~3.5)
钢管混凝土短柱的一 次压缩工作曲线分为 三个阶段: (1)弹性阶段 oa (2)弹塑性阶段 ab (3)强化阶段 bc
=1.0时,核心混凝土因紧箍效应纵向承载力的提高恰好
弥补钢管因异号应力场使纵向承载力的减小,所以出现了塑 性的水平段bc。
钢管混凝土柱的等效长度应按下列公式确定:
Le=kl0 l0= µl l0-框架柱或杆件的计算长度 l-框架柱或杆件的长度 k-等效长度系数,按照规程进行计算。 µ-计算长度系数
5.4 矩形钢管混凝土柱的计算
1.轴心受力构件的计算 (1)轴心受压构件的强度
N≤Nu N-轴心压力设计值 Nu-轴心受压时截面抗压承载力设计值,按下式计算
相关文档
最新文档