热力学与统计物理--第一章 热力学基本规律

合集下载

热力学统计物理第一章热力学的基本规律

热力学统计物理第一章热力学的基本规律

p p1
p1
p2
§1.5 热力学第一定律
能量守恒定律:自然界一切物质都具有能量,能量有各种不 同的形式,可以从一种形式转化为另一种形式,从一个物体 传递到另一个物体,在传递与转化中能量的数量不变。
另一种表述:第一类永动机是不可能造成的。
热力学U系 BUA 统 W: Q W:以外界对系统所功作为的正 Q:以吸热为正
WW 'QRln V V 1 2(T1T2)
热机效率定义: W Q1
卡 诺 热 W T 1 机 T 21 : T 21
Q 1 T 1
T 1
§1.10 热力学第二定律 克劳修斯(克氏)表述: 不可能把热量从低温物体传到高温物体而不引起其他变化 卡尔文(开氏)表述: 不可能从单一热源吸热使之完全变成有用的功而不引起 其他变化
AT B T
A BdTQ A BdTQ r SBSA
SB SA
BdQ AT
dS dQ T
第二定律的数学表述
绝热过 :d程 Q0
SBSA0 ——熵增加原理的数学表述
熵增加原理:经绝热过程后,系统的熵永不减少,经可逆 绝热过程后熵不变,经不可逆绝热过程后熵增加,在绝热 条件下熵减少的过程是不可能实现的。
第一章 热力学的基本规律 §1.1 热力学系统的平衡状态及其描述
1.系统
孤立系 (极限概念) 闭系 开系
热力学系统的状态
平衡态 非平衡态
热力学平衡态:
(1)定义: 一个孤立系统,不论其初态如何复杂,经过 足够长的时间后,将会到达这样的状态,系 统的各种宏观性质在长时间内不发生任何变 化,这样的状态称为热力学平衡态。
n称 为 多 方 指 数: 。理 试想 证气 明体 多的 方热 过容 程

《热力学与统计物理》第四版(汪志诚)课后题答案

《热力学与统计物理》第四版(汪志诚)课后题答案

若,式(3)可表为(4)选择图示的积分路线,从积分到,再积分到(),相应地体积由最终变到,有即(常量),或(5)式(5)就是由所给求得的物态方程。

确定常量C 需要进一步的实验数据。

1.3 在和1下,测得一铜块的体胀系数和等温压缩系数分别为可近似看作常量,今使铜块加热至。

问:(a )压强要增加多少才能使铜块的体积维持不变?(b )若压强增加100,铜块的体积改变多少?解:(a )根据1.2题式(2),有(1)上式给出,在邻近的两个平衡态,系统的体积差,温度差和压强差之间的关系。

如果系统的体积不变,与的关系为(2)在和可以看作常量的情形下,将式(2)积分可得11,T T pακ==11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰00(,)T p ()0,T p ,T pV V000ln=ln ln ,V T pV T p -000p V pV C T T ==.pV CT =11,T T pακ==0Cnp 51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和10Cnp np .T dVdT dp Vακ=-dVdTdpdpdT.Tdp dT ακ=αTκ(1)(2)(3)根据1.13题式(6),对于§1.9中的准静态绝热过程(二)和(四),有(4) (5)从这两个方程消去和,得(6)故(7)所以在是温度的函数的情形下,理想气体卡诺循环的效率仍为(8)1.14试根据热力学第二定律证明两条绝热线不能相交。

解:假设在图中两条绝热线交于点,如图所示。

设想一等温线与两条绝热线分别交于点和点(因为等温线的斜率小于绝热线的斜率,这样的等温线总是存在的),则在2111ln ,V Q RT V =3224ln,V Q RT V =32121214lnln .V V W Q Q RT RT V V =-=-1223()(),F T V F T V =2411()(),F T V F T V =1()F T 2()F T 3214,V V V V =2121()ln,V W R T T V =-γ2111.T WQ T η==-p V-CAB故电阻器的熵变可参照§1.17例二的方法求出,为1.19 均匀杆的温度一端为,另一端为,试计算达到均匀温度后的熵增。

热力学与统计物理教案:第一章 热力学的基本规律

热力学与统计物理教案:第一章 热力学的基本规律

n mol .Van der Walls 气体:考虑分子有一定体积,气体分子活动的有效体积变为V − nb , b
为实验常数。在这种考虑下,理想气体方程修改为 P = nRT ,再考虑分子间在较远距离有 V − nb
弱的相互吸引,使得压强低于没有相互作用时的气体压强。压强的降低与粒子数密度平方成
正比,所以压强降低量为
( ) μ0 (真空磁导率)= 4π ×10−7 H ⋅ m−1 亨⋅ 米-1
4
( ) d W = V H ⋅ d B = μ0V H ⋅ d
H +m
=
Vd
⎛ ⎜⎜⎝
μ0 H 2
2
⎞ ⎟⎟⎠
+
μ0V
H

d
m
=
Vd
⎛ ⎜⎜⎝
μ0 H 2
2
⎞ ⎟⎟⎠
+
μ0
H

d
M
外界所作的功分为两部分,一部分用于在磁性介质内激发磁场,为第一项,第二部分为使磁
用电动力学(Landau:《连续介质电动力学》)可证明,上式对于任意形状的电介质均成立。 电容器板介质的普物证明学生可自行看懂。
D = ε0 E + P , P 为极化强度——单位体积内的电偶极矩。
ε0 (真空介电常数) = 8.8542 ×10−12 F ⋅ m−1(法 ⋅ 米−1)
( ) ( ) dW = V E ⋅d
性介质磁化的功,为第二项。第一项与磁性介质性质无关,是磁性介质内的磁场能量,对任
何磁性介质均一样,所以,一般说磁场对磁性介质作功是指第二项。
四、电介质
设电介质处于外电场 E 中,体积为V ,压强不变,体积变化可忽略,当介质中的电位移矢量

热力学统计物理第1章总复习

热力学统计物理第1章总复习
dV dT T dp V 沿一任意路径积分
ln V ( dT T dp ) ln V0
(T , p)
(T0 , p0 )
T
如果由实验测得α、κT作为T、p的函数,由上 式可得物质的物态方程。
对理想气体
1 T
1 T p
选择该积分路径由一个等压过程和一个等压过程组成,
p 常数 T
1
TV
1
常数
V V dV ( ) p dT ( )T dp T p
并利用 1 ( V ) P V T
同除V得到
KT
1 V ( )T V p
得到:
dV dT K T dp V
dV V (dT KT dp)
对固体和液体,α、KT很小,并假定为常数,积分得:
作级数展开,取近似, V (T , P) V0 (T0 ,0)1 (T T0 ) KT p 并取p0=0有
T
1.4 简单固体和液体的体胀系数 和等温压缩系数 T 数值都很小,在一定温度范围内可以把 和 T 看作 常量. 试证明简单固体和液体的物态方程可近似为
V (T , p) V0 T0 , 0 1 T T0 T p .
1.4解:令 V=V(T,P)进行全微分:
2 1 p R RV ( )V p T p(V b) RTV 2 a(V b)
1 1 1 V T ( ) T 2a RT V V p 3 V
V 2 (V b) 2 3 V RT 2a(V b) 2
(V b) 2
1.2 证明任何一种具有两个独立参量 T , p 的物质,其 物态方程可由实验测得的体胀系数 及等温压缩系 数 ,根据下述积分求得:

大学物理热力学与统计物理

大学物理热力学与统计物理

大学物理热力学与统计物理热力学与统计物理是大学物理中重要的分支,它研究了物质的热学性质以及微观粒子的统计规律。

本文将简要介绍热力学与统计物理的基本概念、原理和应用。

一、热力学基本概念热力学研究的是能量的转化与守恒,包括传热、传能和能量转换等方面的内容。

热力学基本定律包括能量守恒定律、熵增加原理等。

能量守恒定律指出能量在封闭系统中不会凭空产生或消失,只能通过各种形式的转化转移到其他物体或形式。

熵增加原理则是指随着时间的推移,封闭系统中的熵(系统无序程度)总是增加的。

二、热力学基本原理热力学基本原理包括热平衡、热力学第一定律和热力学第二定律。

热平衡是指系统内各部分之间的温度是相等的状态,这是热力学的基础概念。

热力学第一定律是能量守恒的表示,它表明系统的内能变化等于吸收的热量与对外做功的代数和。

热力学第二定律则是热力学的核心内容,它描述了自然界的不可逆性和熵增加的趋势。

三、统计物理基本原理统计物理是热力学的基础,它从微观角度研究了物质中微观粒子的统计规律。

统计物理主要利用统计学方法描述了大量微观粒子的行为,并推导出宏观热力学定律。

基于统计物理,我们可以计算系统的平均能量、熵以及其他宏观状态量。

四、热力学与统计物理的应用热力学和统计物理在各个领域具有广泛的应用,包括能源开发、材料科学、天体物理等。

在工程领域,热力学可以用来设计高效的能源转换系统,提高能源利用效率。

在材料科学领域,热力学对材料的相变、热膨胀等性质有着重要的解释和研究价值。

而在天体物理学中,热力学与统计物理的应用可以帮助我们理解星际物质的形成和演化过程。

总结:本文简要介绍了大学物理中的热力学与统计物理。

热力学是研究能量转化与守恒的学科,其基本定律包括能量守恒定律和熵增加原理。

统计物理是基于热力学的微观解释,通过统计学方法研究大量微观粒子的行为,推导出宏观热力学规律。

热力学与统计物理在能源、材料和天体等领域有着广泛的应用。

通过深入研究热力学与统计物理,我们能够更好地理解和解释自然界中的物质与能量转化过程。

热力学与统计物理第一章

热力学与统计物理第一章

三.功的计算 1.简单系统(PVT系统)无摩擦准静态过程体积功 当系统的体积由VA变到VB时,外界对系统所做的功为:
W pdV
VA
VB
式中P,V均为系统平衡态时的状态参量。系统膨胀, 外界对系统做负功,反之外界对系统做正功。 元功记做: dW pdV 2.液体表面膜面积变化功 3.电介质的极化功
温度计与温标: 1)经验温标:以某物质的某一属性随冷热程度 的变化为依据而确定的温标称为经验温标。 经验温标除标准点外,其他温度并不完全一致。 如:水 冰点 沸点
摄氏温标: 0 0C 1000C
华氏温标:
32F
212F
2)理想气体温标:以理想气体作测温物质 3)热力学温标:不依赖任何具体物质特性的温标 在理想气体可以使用的范围内,理想气体温 标与热力学温标是一致的。
是状态量.
热力学第一定律指出:热力学过程中,如果外界 与系统之间不仅作功,而且传递热量,则有
U B U A W Q
即:系统内能的变化等于外界对系统所做的功和 系统从外界吸收的热量之和。
对无限小的状态变化过程:
dU dQ dW
另一表述:第一类永动机不可能造成。 说明: 适用于任何系统的任何过程。
热力学·统计物理
(Thermodynamics and statistical Physics)
导言
一.热力学与统计物理学的研究对象与任务 对象:由大量微观粒子组成的宏观物质系统 任务:研究热运动的规律、与热运动有关的物性 及宏观物质系统的演化。。 二.热力学与统计物理学的研究方法 热力学是讨论热运动的宏观理论.其研究特点是: 不考虑物质的微观结构,从实验和实践总结出的基 本定律出发,经严密的逻辑推理得到物体宏观热性质 间的联系,从而揭示热现象的有关规律。 热力学的基本经验定律有:

热力学复习知识点汇总

热力学复习知识点汇总

概 念 部 分 汇 总 复 习第一章 热力学的基本规律1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统其中所要研究的系统可分为三类孤立系:与其他物体既没有物质交换也没有能量交换的系统; 闭系:与外界有能量交换但没有物质交换的系统; 开系:与外界既有能量交换又有物质交换的系统。

2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。

3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。

4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此也处在热平衡.5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。

6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状态方程作了修正之后的实际气体的物态方程。

7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。

8、准静态过程外界对气体所作的功:,外界对气体所作的功是个过程量。

9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。

绝热过程中内能U是一个态函数:A B UU W -= 10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造,只能从一种形式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式:Q W U U A B +=-;微分形式:W Q Ud d d +=11、态函数焓H :pV U H +=,等压过程:Vp U H ∆+∆=∆,与热力学第一定律的公式一比较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。

12、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(T U U =。

13.定压热容比:ppT H C ⎪⎭⎫⎝⎛∂∂=;定容热容比:V V T U C ⎪⎭⎫⎝⎛∂∂= 公式:nR C C V p=-14、绝热过程的状态方程:const =γpV ;const =γTV ;const 1=-γγT p 。

热力学与统计物理:第一章 热力学基本定律

热力学与统计物理:第一章  热力学基本定律
热力学过程的进行方向,不可逆过程.
不可逆过程间的关联;
热力学第二定律指出一切与热现象 有关的实际过程都有自发进行的方 向,是不可逆的.
不可逆过程发生后,无法在不引起其它变 化的情况下,使系统由终态回到初态,一个 过程是否可逆实际是由初态和终态的相 互关系决定的,可以引入一个态函数.
§1.11卡诺定理
因此有可以定义
Q2 Q1
f (1,2)
热源的某种温标
定义另一热机
Q1 Q3
f (3,1)
函数f可分离变量!
联合两热机 Q3
Q1
Q2
Q2 Q3
f (3,2)
Q2 Q1
f
1,2
f (3,2 ) f (3,1)
因此
Q2 Q1
f f
(2 ) (1)
T2 T1
关于绝对零度
二.两种温标的一致性
1.理想气体的卡诺循环效率:
一.所有工作于两个一定温度之间的热机,以可逆热机的效率最高。
A B
二.两个可逆热机,存在着: A B
对于可逆机,设其从高温及低
温热源的吸热及放热分别为Q1
Q1
Q1
及Q2,对外作功W,如果存在 一个热机,其效率比可逆热机
W
W W Q2 Q'2 的效率高,也就是说它从高温
热源吸收同样的Q1时,对外作
D. 绝热压缩
I ( p4,V4,T2 ) I ( p1,V1,T1)
外界对系统作 功,内能增加
W
Q1
Q2
RT1
ln
V2 V1
RT2
ln
V3 V4
又因为T1V2 1
1
1
T2V3 ,T1V1
1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 简单系统
W
VB VA
p dV
2. 液体表面
dW f dx 2 l dx dA
3. 电介质
0 2 dW V d 2 V dP
0 —真空介电常数
P —电极化强度
—电场强度
激发电 场的功 使电介质 极化的功
4. 磁介质
0 H 2 dW V d 2 0V H d m
0 — 真空磁导率
m — 磁化强度
H—
磁场强度
激发磁 场的功
使磁介质 磁化的功
外界在准静态过程中对系统所做的功一般表示为:
dW Yi dyi
i
yi 是外参量,Yi 相应的广义力。
三. 广延量与强度量
广延量(Extensive Quantity)
热力学与统计物理
—— 关于热现象的理论
热· 统
热力学
研究的对象 与任务相同
统计物理
热现象的宏观理论。 基础是热力学三个定律。
热现象的微观理论。 认为宏观系统由大量的微观粒子所 组成,宏观物理量就是相应微观量 的统计平均值。 能把热力学的基本规律归结于一个 基本的统计原理;可以解释涨落现 象;可以求得物质的具体特性。 统计物理学所得到的理论结论往往 只是近似的结果。
• 不可逆过程是有方向的,这个方向能用物 理量描述吗?
§1.12 热力学温标
• 开尔文发现热机的效率与吸热放热比有关,且与工作的 物质无关。将热量比对应于某种参量比: Q2 2 Q1 1 他将此参量称之为热力学温标:该温标与理想气体的绝对 温度是一致的。
T2 Q2 Q1 T1
由此得到结论:低温热源的温度愈低,传给它的热量就愈 少;在极限时,传给它的热量为零:--“绝对零度”
(因实际热机存在非有效功,使效率降低。)
卡诺定理背后的深层次意义?
• 实际热机与理想热机效率的差异在于工作过程中的损耗 使效率降低。 • 如果没有这种损耗会如何? • 不可逆过程的物理意义是什么,为何能使效率降低? • 如果用另一个过程消除不可逆过程的影响,那么这个过 程一定还是一个不可逆的过程。
• 等温的做功与吸热: WT V PdV V RT dV RT ln V2 QT
V2
1
V2
1
V
V1
含义:吸收的热量转变为功
• 绝热的做功与吸热: QS 0
WS PV1 1


V2
V1
1 RT V1 1 1 dV [1 ( ) ] V 1 V2
ds C p d ln T Rd ln p
S
T
Cp
T0
p ' dT R ln S0 nCp ln T nR ln p S0 T p0
例:求等温过程的熵变(VA到VB)。 (PA到PB) ?
§1.16 热力学系统的普遍表述
• 不可逆过程熵的变化 若有一个过程是不可逆的(设为IR):先 经过不可逆的过程到B,再从B经过可逆 过程到A。 不可逆过程的熵变与可逆过程相同 (始末 状态相同):
UB U A W Q
dU dW dQ
过程量与态函数 过程量: 与系统变化过程有关的物理量。例如:系统对外界所 做的功、系统传给外界的热量 态函数: 与系统所经历的过程无关,仅由系统的平衡态状态参 量单值地确定的物理量。例如:系统的内能、熵等。
二. 功的计算 (弛豫时间和准静态过程)
述过程明显违反了开氏表述。
2)如果开氏表述不成立,则克氏表述也不成立
开氏表述:不可能从单一热源吸热使之完全 变成有用功而不引起其它变化。 开氏表述不成立:可以从单一热源吸热使 之完全变成有用功。
则从单一热源吸热使之完全变成有用功,与逆热机(吸Q2放 Q1+Q2)配合将导致从单一低温热源T2吸热Q2释放到高温热源 T1。 上述过程明显违反了克氏表述。
熵S是广延量,上式中要消除非广延性:
S0 n(s0 R ln n)
理想气体的熵
• 以T、P为变量讨论熵:
dp dv dT 对理想气体方程PV=RT微分: p v T 利用公式 Tds dU PdV CV dT RT dV 消去体积项 : V dV dT dp dp Tds CV dT RT CV dT RT ( ) C p dT RT V T p p
两个容器均浸没在水中。实验的目的是要检测气体自由膨胀导致的
水温变化。其结论是:水 温始终保持不变。
分析:打开活门,气体扩散。在扩散过程中,不受任何阻力,即不
与外界做功W = 0。温度没有变化,说明不存在热交换Q = 0。由热力 学第一定律得到内能U = 0。
焦耳定律:在理想气体的自由扩散过程中,内能与体积无关,
由此证明了两种表述的等价性。
§1.11 卡诺定理
• A是可逆机; B 是不可逆机。
若两者吸热相同, 做功不同,设W’(B)>W(A) 则ηB>ηA, Q2 ’ > Q2 结果:1)功W’-W产生于低温热源的吸热(Q2 ’ - Q2)。
2) ηB≤ηA
结论:不可逆机的效率低于可逆机的效率 ---卡诺定理
• 3. 焦耳定律(1852年): 内能仅仅是温度的函数。
理想气体的卡诺循环
The Carnot’s Cycle
• 循环过程
沿路径 abc, 气体膨胀, 负功. 沿路径 cda,气体被压缩,正功 沿路径 abcda, 做的功是循环的面积.
结论:abcda这样一个循环,外界对系统做了负功。
等温和绝热过程的做功与吸热
• 计算等温条件下吸热与放热可以得到:
T2 1 1 Q1 T1
Q2
Discussion:
• 1. 效率与工作介质无关。 • 2 .效率与冷热物体的温度比有关, T2/T1越小,卡诺循环的效率越高。 • 3 .效率总是小于1,当冷物体的温度趋近于0时, 效率趋近于1。 • 4 .卡诺循环是热机可能的工作循环,它将一个恒 温吸热和一个恒温制冷结合,中间过程为绝热。
dQ 0 其积分表达式为: T
§1.14 熵和热力学基本方程
• 两个可逆过程:
A dQ dQR R' 0 A T B T B dQ r S 定义态函数: B S A A T B
dQ 0 T
考虑任意可逆过程,熵的变化。 任意选择2个可逆过程,一个是正,
另一个是逆。总熵为0. 对于任意可逆过程,熵相同。因此, 熵是一个与过程无关的态函数。
两个表述是等价的 • 1)如果克氏表述不成立,则开氏表述也不成立。 克氏表述:不可能把热量从低温物体传 到高温物体而 不引起其它变化; 如果克氏表述不成立:可以把热量从低 温传到高温而不引起其它变化。 则从低温热源吸收热量Q2释放到高温热源,该效应与热 机(吸Q1放Q2)配合将导致从单一热源吸热(Q1-Q2)做功W。
结论具有高度的可靠性和 普遍性。 不能导出具体物质的具体 特性;也不能解释物质宏 观性质的涨落现象等。
第一章
热力学的基本规律
本章主要介绍热力学的基本规律以及常见的基本
热力学函数。
热平衡定律和温度
一. 热平衡定律 温度
各自与第三个物体达到热平衡的两个物体,彼此也处于 热平衡。而且它们具有共同的宏观性质——相同的温度。 热力学系统(简称为系统) ⑴ 孤立系统:与外界没有任何相互作用的系统。 ⑵ 封闭系统:与外界有能量交换,但无物质交换的系统。 ⑶ 开放系统:与外界既有能量交换,又有物质交换的系统。 平衡状态及状态参量 平衡状态: 孤立系统经过足够长的时间,将会自动趋于一个各 种宏观性质不随时间变化的状态,这种状态称为平 衡状态,简称为平衡态。 状态参量:几何参量、力学参量、电磁参量、化学参量。
以上两种测温物质都是水银。 理想气体温标:用理想气体作测温物质所确定的温标。 热力学温标:不依赖任何具体物质特性的温标。可由卡 诺定理导出。 热力学第零定律:即热平衡定律,证明了处于平衡态下系统态函数— —温度的存在。
热力学第一定律
一. 热力学第一定律 (能量守恒定律)
系统内能的变化等于外界对系统所做的功和系统从外界 所吸收的热量。—— 第一类永动机是不可能造成的。 A状态 → B 状态, 系统内能的变化为:
热力学第一定律微分形式的理解
dU dW dQ
dW pdV , dS dQ T
dU TdS PdV
• 两个接近状态下,三个热力学量U、S、V的变化均与 过程无关,因为都是状态参量。 • 只要两个状态确定,连接两个状态的增量就有确定值, 与连接的过程无关。 • -PdV是力学系统的内能,TdS是热学系统的内能。可 以看出,熵S是广延量:
S S1 S2 ...
§1.15 理想气体的熵
• 以T、V为变量讨论熵:
ds (dU PdV) / T CV d ln T Rd lnV
dV Tds dU PdV CV dT RT V
s CV ln T R ln V s0
S nCV ln T nR lnV S0
含义:将内能转变为功
a cycle consisting of 两个等温与两个绝热
• • • • T1:吸热转变为功 S2:内能转变为功 T2:功转变为放热 S1:功转变为内能
Carnot’s Cycle
卡诺循环的效率
• 卡诺循环的效率为对外做功与吸热之比:
Q2 W Q1 Q2 1 Q1 Q1 Q1
U(T,V) = U(T)。
U V T 1 V T T U U V
0
焦耳系数:
T V U
导致
U V T
0
理想气体的三大定律
• 1. 玻意耳定律(1662年): 等温条件下,PV为常数,PV=nRT。 • 2. 阿伏加德罗定律(1811年): 相同的T、P条件下,相等体积所含的摩尔数相 同。
相关文档
最新文档