正弦定理、余弦定理知识点总结及最全证明
1.1正弦定理和余弦定理知识点

1.1正弦定理和余弦定理基本要求:1. 能证明正弦定理、余弦定理.2. 能理解正弦定理、余弦定理在讨论三角形边角关系时的作用.3. 能用正弦定理、余弦定理解斜三角形.4. 理解用正弦定理、余弦定理讨论三角形解的情形. 重点:正弦定理和余弦定理及其推导.难点:用正弦定理解三角形时解的个数的讨论. 考点结构分析:1. 正弦定理1:在一个三角形中各边和它所对角的正弦的比相等,即:CcB b A a sin sin sin ==. 2. 余弦定理2:三角形中任何一边的平方等于其他两边的平方和减去这两边与它们夹角余弦积的两倍,即:A bc c b a cos 2222-+=.B ca a c b cos 2222-+=.C ab b a c cos 2222-+=.3. 余弦定理推论:bc a c b A 2cos 222-+=.ca c a c B 2cos 222-+=.abc b a C 2cos 222-+=.4. 重要结论:(1) 在ABC ∆中,a 、b 、c 分别为A 、B 、C 的对边,C B A c b a C B A sin sin sin >>⇔>>⇔>>. (2) 在ABC ∆中,给定A 、B 的正弦或余弦值,则C 有解(即存在)的充要条件是0cos cos >+B A . 5. 解斜三角形的类型:(1) 已知两角一边,用正弦定理,有解时,只有一解.(2) 已知两边及其一边的对角,用正弦定理,有解的情况可分为以下情况,在ABC ∆中,已知a 、b 和角A 时,解的情况如下:上表中为锐角时,时,无解;为钝角或直角时,,均无解. (3) 已知三边,用余弦定理有解时,只有一解. (4) 已知两边及夹角,用余弦定理,必有一解.6. 三角形面积:(1) ah S 21=(h 为BC 边上的高); (2) C ab S sin 21=;(3) C B A R S sin sin sin 22=(R 为ABC ∆外接圆半径);(4) RabcS 4=(R 为ABC ∆外接圆半径); (5) ))()((c p b p a p p S ---=,)(21c b a p ++=.疑难点清单:判断三角形形状基本思想是:利用正弦定理进行角边统一.即将条件化为只含角的关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.结论一般为特殊的三角形,如等边三角形,等腰三角形,直角三角形,等腰直角三角形等.另外,在变形过程中要注意A 、B 、C 内角的固定范围对三角函数数值的影响. 附:1. 正弦定理的证明: ① 定义法(教科书中给出)如图1,在ABC Rt ∆中,C ∠是最大的角,所对的斜边c 是最大的边,要考虑边长之间的数量关系,就涉及到了锐角三角函数.根据正弦函数的定义,Ac asin =, B cbsin =.所以c BbA a ==sin sin . 又1sin =C ,所以CcB b A a sin sin sin ==. 那么,对于一般的三角形,以上关系式是否仍然成立呢?如图2,当ABC ∆是锐角三角形时,设边AB 上的高是CD ,根据三角函数的定义,B a CD sin =,A b CD sin =,所以A bB a sin sin =, 得到BbA a sin sin =. 同理,在ABC ∆中, CcB b sin sin =. 所以CcB b A a sin sin sin ==. ② 向量法如图3,ABC ∆为锐角三角形时,过A 作三位向量→j 垂直于→AB ,则→j 与→AB 的夹角为︒90,→j 与→BC 的夹角为B -2π,→j 与→CA 的夹角为A +2π,设c AB =,a BC =,b AC =.因为→→→→=++0CA BC AB ,所以00=⋅=⋅+⋅+⋅→→→→→→→→j CA j BC j AB j . 即0)2cos(||||)2cos(||||2cos||||=++-+→→→→→→A CA jB BC j AB j πππ.所以A b B a sin sin =,即BbA a sin sin =. 同理可得:C cB b sin sin =,即CcB b A a sin sin sin ==.当ABC ∆为钝角三角形或者直角三角形时,利用同样的方法可以证得结论.(可以请学生来给出证明) ③ 几何法如图4,设O 为ABC ∆的外接圆的圆心,连接BO 并延长交 ⊙O 与点A ',连接C A ',则A A ='或A A -='π,∴=A sinR a B A BC A 2sin ='=',即R A a 2sin =,同理可证R B b2sin =, R C c 2sin =,故有CcB b A a sin sin sin ==. 注:在运用时,有时需要对它进行变形,如C B A c b a sin :sin :sin ::=; A R a sin 2=,B R b sin 2=,C R c sin 2=.如图5,当ABC ∆为钝角三角形时,设B 为钝角.过C 作AB 的垂线与AB 的延长线交于D 点,由三角函数的定义得A b CD sin =,B a B a CD sin )180sin(=-︒=,B a A b sin sin =∴,即BbA a sin sin =. 同理可得C c A a sin sin =,CcB b A a sin sin sin ==∴.2. 余弦定理证明:如图6,设→→=a CB ,→→=b CA ,→→=c AB ,那么→→→-=b a c ,→→→→→→→→→→→→→⋅-⋅-⋅=+⋅-=⋅=b a b b a a b a b a c c c 2)()(||2C ab b a cos 222-+=所以C ab b a c cos 2222-+=.同理可以证明:A bc c b a cos 2222-+=.B ca a c b cos 2222-+=.。
(经典)正弦定理、余弦定理知识点总结及最全证明(最新整理)

3.(1)正弦 (2)正弦 一解、两解或无解
π
①一解 ②二解 ③一解 ④一解
所对的边分别为 a,b,c.若 a=2,B= ,c=2 6
(3)余弦 (4)余弦
3,则 b=________.
1
1
1
abc
4. (1) absinC bcsinA acsinB
解:由余弦定理知 b2=a2+c2-2accosB=22
2
2
2
2
22
1 . 3
则解此三角形的结果有( )
A.无解
B.一解
C.两解
D.一解或两解
c·sinB 5
解:由正弦定理知 sinC=
= ,又由
b6
c>b>csinB 知,C 有两解.也可依已知条件,画
【自查自纠】
出△ABC,由图知有两解.故选 C.
abc 1.(1) = = =2R
sinA sinB sinC
时,只有一解.
(4)已知两边及夹角,用____________定理,
必有一解.
4.三角形中的常用公式或变式
(1)三 角 形 面 积 公 式 S△=
=
=
____________=
____________=
____________.其中 R,r 分别为三角形外接圆、
内切圆半径.
(2)A+B+C=π,则 A=__________,
A = __________, 从 而 sinA= 2
____________,
cosA=
____________,
tanA=
____________;
A
A
sin =__________,cos =__________,
高中数学知识点总结正弦定理与余弦定理

高中数学知识点总结正弦定理与余弦定理正弦定理与余弦定理是高中数学中的重要知识点,用于求解不规则三角形的边长和角度。
本文将对这两个定理进行详细总结与讲解。
一、正弦定理1.1 定义正弦定理是指在任意三角形中,三条边与其对应的角的正弦值之间的关系。
设三角形的三边分别为a、b、c,对应的角度为A、B、C,则正弦定理的表达式为:a/sinA = b/sinB = c/sinC1.2 推导我们通过利用三角形的面积公式S=1/2 * a * b * sinC,并将其转换为对角线的形式,可以得到正弦定理的推导过程。
1.3 应用正弦定理可以用于求解不规则三角形的边长和角度。
当我们已知三条边或者两条边和夹角时,可以利用正弦定理求解未知的边长或者角度。
二、余弦定理2.1 定义余弦定理是指在任意三角形中,三条边和它们对应的角之间的关系。
设三角形的三边分别为a、b、c,对应的角度为A、B、C,则余弦定理的表达式为:c^2 = a^2 + b^2 - 2ab * cosC2.2 推导我们可以通过利用向量的几何关系,将余弦定理的表达式推导出来。
这个过程较为繁琐,这里就不做详细讲解。
2.3 应用余弦定理可以用于求解不规则三角形的边长和角度。
当我们已知三条边或者两条边和夹角时,可以利用余弦定理求解未知的边长或者角度。
三、正弦定理与余弦定理的比较3.1 适用范围正弦定理适用于任意三角形,而余弦定理只适用于任意三角形,不能用于直角三角形。
3.2 计算难度正弦定理的计算相对简单,只需要记住一个公式,而余弦定理的计算稍复杂,需要使用开方和乘法等运算。
3.3 精度误差由于余弦定理中涉及到平方运算,可能会带来一定的误差,而正弦定理中没有涉及到平方运算,计算结果更加准确。
3.4 应用场景正弦定理在计算不规则三角形的边长和角度时较为常用,尤其适用于已知两边和夹角的情况。
而余弦定理在计算不规则三角形的边长和角度时同样常用,特别适用于已知三边的情况。
(经典)正弦定理、余弦定理知识点总结及最全证明

正弦定理、余弦定理知识点总结及证明方法1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.主要考查有关定理的应用、三角包等变换的能力、运算能力及转化的数学思想.解三角形常常作为解题工具用丁立体几何中的计算或证明,或与三角函数联系在一起求距离、高度以及角度等问题,且多以应用题的形式出现.1.正弦定理(1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即.其中R是三角形外接圆的半径.(2)正弦定理的其他形式:① a = 2RsinA , b =, csinO;③ a : b : c= _______________________________2.余弦定理(1)余弦定理:三角形中任何一边的平■方等——王彦文宵铜峡一中丁其他两边的平■方的和减去这两边与它们的火角的余弦的积的两倍.即a2=, b2=,c?=.若令C= 90°, WJ c2=,即为勾股定理.(2)余弦定理的变形:cosA =, cosB=, cosC^.若C为锐角,则cosC>0,即a2 + b2 ; 若C为钝角,贝U cosC<0,即a2+ b2.故由a2+ b2与c2值的大小比较,可以判断C为锐角、钝角或直角.(3)正、余弦定理的一个重要作用是实现边角,余弦定理亦可以写成sin2A= sin2B+ sin2C—2sinBsinCcosA,类似地,sin2B= ________________ ; sin2C= _________ _S 意式中隐含条件A+ B+ C= TT .3.解斜三角形的类型(1)已知三角形的任意两个角与一边,用理.只有一解.(2)已知三角形的任意两边与其中一边的对角,用定理,可能有L如在△ ABC中,已知a, b和A时,解的情况如表:②sin A=2R' sinB=A为锐角A为钝角或直角图形关系式a= bsinA bsinA<a< b a为a>b解的个数①②③④(3)已知三边,用理.有解时,只有一解.(4)已知两边及火角,用理, 必有一解.4.三角形中的常用公式或变式⑴三角形面积公式& =:其中R, r分别为三角形外接圆、内切圆半径.(2)A+ B+ C=兀,WJ A=,A5 = , 从而sinA = tanAtanBtanC (3)a+ c sinA+ sinCcosA = , tanA =<(3)互化sin2C+ sin2A—2sinCsinAcosB sin2A+sin2B— 2sinAsinBcosC3. (1)正弦(2)正弦一解、两解或无解①一解②二解③一解④一解⑶余弦⑷余弦1 1 1 abc 14. (1)2absinC 2bcsinA 2acsinB 4R 2 (a+ b+ c)r在△ ABC中,A>B 是sinA>sinB 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:因为在同一三角形中,角大则边大,边大则正弦大,反之也成立,故是充要条件.故选C.兀B+ C (2)代(B+ Q 2— Fsin(B+ C) — cos(B+ C)2 (1)b* 1 2+ c2— 2bccosA c2 + a2— 2cacosB a2 + b2—2abcosC a2 + b2b2+ c2—a2c2+ a2—b2a2+ b2—c2(2)2bc2ca2ab—tan(B+ C) co岩si号«C tan 2在△ ABC中,已知b= 6, c= 10, B= 30°,则解此三角形的结果有()A.无解B. 一解C.两解D. 一解或两解解:由正弦定理知sinC=半=5, 乂由b 6c>b>csinB知,C有两解.也可依已知条件,画出△ ABC,由图知有两解.故选 C.(2012陕西)在^ABC中,角A, B, C所对的边…一…Tt i—一,分力U为a, b, c.右a= 2, B= c= 2寸3,贝U b =.解:由余弦定理知b2= a2 + c2—2accoSB=22 + (2^3)2— 2X 2X^/3X c%= 4, b= 2.故填2.(2013陕西)®AABC的内角A, B, C所对的边分别为a, b, c,若bcosC+ ccosB= asinA,则^ABC 的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定解:由已知和正弦定理可得sinBcosC+ sinCcosB= sinA sinA,即sin(B+ Q= sinAsinA, 亦即sinA= sinAsinA.因为0<A<TT,所以sinA= 1, 所以A=2.所以三角形为直角三角形.故选B.在^ABC中,角A, B, C所对的边分别为a, b, c,若 a =寸2, b=2, sinB+ cosB=寸2,则角 A解:sinB+ cosB= ^2,,•寸2sin B+4 =寸2,即sin B+4 = 1._____ __ _兀兀_兀乂.. B€ (0,冗)... B+; = ;, B=~.4 2 4a b asinBsinA= b根据正弦正理、皿=sinB,可侍12'. a<b, . . Av B... A=g.故填&类型一正弦定理的应用△ ABC的内角A, B, C的对边分别为a, b, c,已知A— C= 90 , a+ c=寸2b,求C.解:由a+ c=寸2b及正弦定理可得sinA+sinO 2sinB乂由丁A— C= 90 , B= 180 — (A+C),故cosC + sinC = sinA + sinC=戒sin(A + Q =戒sin(90 + 2Q =匝sin2(45 + Q.,•哀sin(45 + C) = 2 戒sin(45 + C)cos(45 + C),* 一1即cos(45 + C) = 2.乂 .。
正弦定理和余弦定理考点与提醒归纳

正弦定理和余弦定理考点与提醒归纳一、基础知识1.正弦定理a sin A =b sin B =c sin C=2R (R 为△ABC 外接圆的半径).正弦定理的常见变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c 2R; (3)a ∶b ∶c =sin A ∶sin B ∶sin C ; (4)a +b +c sin A +sin B +sin C =a sin A. 2.余弦定理a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C . 3.三角形的面积公式(1)S △ABC =12ah a (h a 为边a 上的高);(2)S △ABC =12ab sin C =12bc sin A =12ac sin B ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).二、常用结论汇总——规律多一点 1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C2.3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 4.用余弦定理判断三角形的形状在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,当b 2+c 2-a 2>0时,可知A 为锐角;当b 2+c 2-a 2=0时,可知A 为直角;当b 2+c 2-a 2<0时,可知A 为钝角.第一课时 正弦定理和余弦定理(一) 考点一 利用正、余弦定理解三角形考法(一) 正弦定理解三角形[典例] (1)(2019·江西重点中学联考)在△ABC 中,a =3,b =2,A =30°,则cos B =________.(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.[解析] (1)由正弦定理可得sin B =b sin A a =2×sin 30°3=13,∵a =3>b =2,∴B <A ,即B 为锐角,∴cos B =1-sin 2B =223. (2)∵sin B =12且B ∈(0,π),∴B =π6或B =5π6,又∵C =π6,∴B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =bsin B ,即3sin 2π3=b sinπ6,解得b =1. [答案] (1)223 (2)1考法(二) 余弦定理解三角形[典例] (1)(2019·山西五校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b cos A +a cos B =c 2,a =b =2,则△ABC 的周长为( )A .7.5B .7C .6D .5(2)(2018·泰安二模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c -b2c -a=sin Asin B +sin C,则角B =________.[解析] (1)∵b cos A +a cos B =c 2,∴由余弦定理可得b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac =c 2,整理可得2c 2=2c 3,解得c =1,则△ABC 的周长为a +b +c =2+2+1=5.(2)由正弦定理可得c -b2c -a =sin A sin B +sin C =a b +c, ∴c 2-b 2=2ac -a 2,∴c 2+a 2-b 2=2ac , ∴cos B =a 2+c 2-b 22ac =22,∵0<B <π,∴B =π4.[答案] (1)D (2)π4[题组训练]1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( ) A.24B .-24C.34D .-34解析:选B 由题意得,b 2=ac =2a 2,即b =2a ,∴cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12 B.π6C.π4D.π3解析:选B 因为sin B +sin A (sin C -cos C )=0, 所以sin(A +C )+sin A sin C -sin A cos C =0,所以sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,整理得sin C (sin A +cos A )=0.因为sin C ≠0,所以sin A +cos A =0,所以t a n A =-1, 因为A ∈(0,π),所以A =3π4,由正弦定理得sin C =c ·sin Aa =2×222=12, 又0<C <π4,所以C =π6.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值.解:(1)由正弦定理可得b 2+c 2=a 2+bc , 由余弦定理得cos A =b 2+c 2-a 22bc =12,因为A ∈(0,π),所以A =π3.(2)由(1)可知sin A =32, 因为cos B =13,B 为△ABC 的内角,所以sin B =223,故sin C =sin(A +B )=sin A cos B +cos A sin B =32×13+12×223=3+226. 由正弦定理a sin A =c sin C得c =a sin C sin A =3×(3+22)32×6=1+263.考点二 判定三角形的形状[典例] (1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形[解析] (1)法一:因为b cos C +c cos B =a sin A ,由正弦定理知sin B cos C +sin C cos B =sin A sin A , 得sin(B +C )=sin A sin A .又sin(B +C )=sin A ,得sin A =1, 即A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a ,即sin A =1,故A =π2,因此△ABC 是直角三角形.(2)因为sin A sin B =a c ,所以a b =ac,所以b =c .又(b +c +a )(b +c -a )=3bc ,所以b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形.[答案] (1)B (2)C[变透练清]1.(变条件)若本例(1)条件改为“a sin A +b sin B <c sin C ”,那么△ABC 的形状为________. 解析:根据正弦定理可得a 2+b 2<c 2,由余弦定理得cos C =a 2+b 2-c 22ab <0,故C 是钝角,所以△ABC 是钝角三角形. 答案:钝角三角形2.(变条件)若本例(1)条件改为“c -a cos B =(2a -b )cos A ”,那么△ABC 的形状为________.解析:因为c -a cos B =(2a -b )cos A , C =π-(A +B ),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B ·cos A , 所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A , 所以cos A (sin B -sin A )=0,所以cos A =0或sin B =sin A , 所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰或直角三角形. 答案:等腰或直角三角形3.(变条件)若本例(2)条件改为“cos A cos B =ba =2”,那么△ABC 的形状为________.解析:因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin 2A =sin 2B .由ba =2,可知a ≠b ,所以A ≠B .又因为A ,B ∈(0,π),所以2A =π-2B ,即A +B =π2,所以C =π2,于是△ABC 是直角三角形.答案:直角三角形[课时跟踪检测]A 级1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若sin A a =cos Bb ,则B 的大小为( )A .30°B .45°C .60°D .90°解析:选B 由正弦定理知,sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°.2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定解析:选C 由正弦定理得b sin B =c sin C, ∴sin B =b sin Cc=40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.3.(2018·重庆六校联考)在△ABC 中,cos B =ac (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形解析:选A 因为cos B =ac ,由余弦定理得a 2+c 2-b 22ac =a c ,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形.4.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3, cos B =23,则b =( )A .14B .6 C.14D.6解析:选D ∵b sin A =3c sin B ⇒ab =3bc ⇒a =3c ⇒c =1,∴b 2=a 2+c 2-2ac cos B =9+1-2×3×1×23=6,∴b = 6.5.(2019·莆田调研)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π6解析:选A ∵a sin B cos C +c sin B cos A =12b ,∴根据正弦定理可得sin A sin B cos C +sinC sin B cos A =12sin B ,即sin B (sin A cos C +sin C cos A )=12sin B .∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6.6.(2019·山西大同联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( )A.5 B .3 C.10D .4解析:选B 由正弦定理可得2(sin B cos A +sin A cos B )=c sin C , ∵2(sin B cos A +sin A cos B )=2sin(A +B )=2sin C ,∴2sin C =c sin C ,∵sin C >0,∴c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =32+22-2×3×2×13=9,∴a =3.7.在△ABC 中,AB =6,A =75°,B =45°,则AC =________. 解析:C =180°-75°-45°=60°, 由正弦定理得AB sin C =ACsin B ,即6sin 60°=AC sin 45°,解得AC =2. 答案:28.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.解析:∵3sin A =2sin B ,∴3a =2b . 又∵a =2,∴b =3.由余弦定理可知c 2=a 2+b 2-2ab cos C , ∴c 2=22+32-2×2×3×⎝⎛⎭⎫-14=16,∴c =4. 答案:49.(2018·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sin B =________,c =________.解析:由正弦定理a sin A =bsin B ,得sin B =b a ·sin A =27×32=217.由余弦定理a 2=b 2+c 2-2bc cos A , 得7=4+c 2-4c ×cos 60°,即c 2-2c -3=0,解得c =3或c =-1(舍去). 答案:2173 10.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,sin A ,sin B ,sin C 成等差数列,且a =2c ,则cos A =________.解析:因为sin A ,sin B ,sin C 成等差数列,所以2sin B =sin A +sin C .由正弦定理得a +c =2b ,又因为a =2c ,可得b =32c ,所以cos A =b 2+c 2-a 22bc =94c 2+c 2-4c 22×32c 2=-14.答案:-1411.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A =2B . (1)求证:a =2b cos B ; (2)若b =2,c =4,求B 的值.解:(1)证明:因为A =2B ,所以由正弦定理a sin A =b sin B ,得a sin 2B =bsin B ,所以a =2b cos B .(2)由余弦定理,a 2=b 2+c 2-2bc cos A , 因为b =2,c =4,A =2B ,所以16c os 2B =4+16-16cos 2B ,所以c os 2B =34,因为A +B =2B +B <π,所以B <π3,所以cos B =32,所以B =π6.12.(2019·绵阳模拟)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,结合正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc . 又由余弦定理,得a 2=b 2+c 2-2bc cos A , 所以bc =-2bc cos A ,即cos A =-12.由于A 为△ABC 的内角,所以A =2π3.(2)由已知2a sin A =(2b +c )sin B +(2c +b )sin C ,结合正弦定理,得2sin 2A =(2sin B +sin C )sin B +(2sin C +sin B )sin C , 即sin 2A =sin 2B +sin 2C +sin B sin C =sin 22π3=34.又由sin B +sin C =1,得sin 2B +sin 2C +2sin B sin C =1,所以sin B sin C =14,结合sin B +sin C =1,解得sin B =sin C =12.因为B +C =π-A =π3,所以B =C =π6,所以△ABC 是等腰三角形.B 级1.(2019·郑州质量预测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2c os 2A +B2-cos 2C =1,4sin B =3sin A ,a -b =1,则c 的值为( )A.13B.7C.37D .6解析:选A 由2c os 2A +B2-cos 2C =1,得1+c os(A +B )-(2c os 2C -1)=2-2c os 2C -cos C =1,即2c os 2C +cos C -1=0,解得cos C =12或cos C =-1(舍去).由4sin B =3sin A及正弦定理,得4b =3a ,结合a -b =1,得a =4,b =3.由余弦定理,知c 2=a 2+b 2-2ab cos C =42+32-2×4×3×12=13,所以c =13.2.(2019·长春模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =3,2sin A a =t a n Cc,若sin(A -B )+sin C =2sin 2B ,则a +b =________. 解析:∵2sin A a =t a n C c =sin C c cos C ,且由正弦定理可得a =2R sin A ,c =2R sin C (R 为△ABC的外接圆的半径),∴cos C =12.∵C ∈(0,π),∴C =π3.∵sin(A -B )+sin C =2sin 2B ,sin C =sin(A+B ),∴2sin A cos B =4sin B cos B .当cos B =0时,B =π2,则A =π6,∵c =3, ∴a =1,b =2,则a +b =3.当cos B ≠0时,sin A =2sin B ,即a =2b .∵cos C =a 2+b 2-c 22ab =12,∴b 2=1,即b =1,∴a =2,则a +b =3.综上,a +b =3.答案:33.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b .(1)求角A 的大小;(2)若c =2,角B 的平分线BD =3,求a .解:(1)2a cos C -c =2b ⇒2sin A cos C -sin C =2sin B ⇒2sin A cos C -sin C =2sin(A +C )=2sin A cos C +2cos A sin C ,∴-sin C =2cos A sin C ,∵sin C ≠0,∴cos A =-12, 又A ∈(0,π),∴A =2π3. (2)在△ABD 中,由正弦定理得,AB sin ∠ADB =BD sin A, ∴sin ∠ADB =AB sin A BD =22. 又∠ADB ∈(0,π),A =2π3, ∴∠ADB =π4,∴∠ABC =π6,∠ACB =π6,b =c =2, 由余弦定理,得a 2=c 2+b 2-2c ·b ·cos A =(2)2+(2)2-2×2×2c os 2π3=6,∴a = 6.。
(完整版)解三角形1.1正弦定理和余弦定理知识点总结

第一章 解三角形1.1正弦定理和余弦定理一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
(1)三边之间的关系:a 2+b 2=c 2。
(勾股定理)(2)锐角之间的关系:A +B =90°;(3)边角之间的关系:(锐角三角函数定义)sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba 。
二、正弦定理(一)知识与工具:正弦定理:在△ABC 中, R Cc B b A a 2sin sin sin ===。
(外接圆圆半径) 在这个式子当中,已知两边和一角或已知两角和一边,可以求出其它所有的边和角。
注明:正弦定理的作用是进行三角形中的边角互化,在变形中,注意三角形中其他条件的应用:(1)三内角和为180°(2)两边之和大于第三边,两边之差小于第三边(3)面积公式:S=21absinC=Rabc 4=2R 2sinAsinBsinC 111sin ()222a S ah ab C r a bc ===++(其中r 为三角形内切圆半径) )(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式)(4)三角函数的恒等变形。
(5) sin sin (ABC A B a b A B ∆>⇔>⇔>在中,即大边对大角,大角对大边)sin(A+B)=sinC ,cos(A+B)=-cosC ,sin 2B A +=cos 2C ,cos 2B A +=sin 2C 2sin ,2sin ,2sin a R A b R B c R C ===(6)(边化角公式)sin ,sin ,sin 222a b c A B C R R R===(7)(角化边公式) ::sin :sin :sin a b c A B C =(8)sin sin sin (9),,sin sin sin a A a A b B b B c C c C === (10)sin sin (ABC A B a b A B ∆>⇔>⇔>在中,即大边对大角,大角对大边)(二)题型 使用正弦定理解三角形共有三种题型题型1 利用正弦定理公式原型解三角形题型2 利用正弦定理公式的变形(边角互化)解三角形:关于边或角的齐次式可以直接边角互化。
正弦定理和余弦定理笔记

正弦定理和余弦定理笔记一、正弦定理。
(一)定理内容。
在一个三角形中,各边和它所对角的正弦值的比相等,即(a)/(sin A)=(b)/(sinB)=(c)/(sin C) = 2R(R为三角形外接圆半径)。
(二)证明方法。
1. 外接圆法。
- 设ABC的外接圆半径为R。
- 连接圆心O与三角形的三个顶点A、B、C。
- 对于∠ A,根据同弧所对的圆周角是圆心角的一半,可知∠ A=(1)/(2)∠BOC。
- 由正弦定义,在BOC中,a = 2Rsin A,同理可得b = 2Rsin B,c = 2Rsin C,所以(a)/(sin A)=(b)/(sin B)=(c)/(sin C)=2R。
2. 向量法(略提)- 利用向量的数量积公式→AB·→AC=|→AB||→AC|cos A,通过一系列向量运算也可证明正弦定理,但相对外接圆法较复杂。
(三)应用。
1. 已知两角和一边,求其他边和角。
- 例如,已知A = 30^∘,B = 45^∘,a = 10。
- 根据三角形内角和C=180^∘-A - B = 105^∘。
- 由正弦定理(a)/(sin A)=(b)/(sin B),可得b=(asin B)/(sin A)。
- 先求出sin 45^∘=(√(2))/(2),sin 30^∘=(1)/(2),则b=(10×frac{√(2))/(2)}{(1)/(2)} = 10√(2)。
- 再根据(a)/(sin A)=(c)/(sin C)求出c的值,sin105^∘=sin(60^∘+45^∘)=sin60^∘cos45^∘+cos60^∘sin45^∘=(√(6)+√(2))/(4),c=(asin C)/(sin A)=(10×frac{√(6)+√(2))/(4)}{(1)/(2)} = 5(√(6)+√(2))。
2. 已知两边和其中一边的对角,求其他边和角(可能有一解、两解或无解情况)- 例如,已知a = 10,b = 20,A = 30^∘。
正弦定理余弦定理知识点

正弦定理余弦定理知识点正弦定理和余弦定理是三角学中两个重要的定理。
它们在解决三角形问题时起着重要的作用。
在本文中,我们将详细介绍这两个定理的定义、推导过程以及应用场景。
首先,我们来看正弦定理。
正弦定理描述了三角形中各边与其对应角度之间的关系。
设三角形的三个边长为a、b、c,对应的夹角为A、B、C,则正弦定理可以表述为以下公式:a / sin(A) =b / sin(B) =c / sin(C) = 2R其中R是三角形外接圆的半径。
接下来,我们来推导正弦定理。
设三角形的三个顶点为A、B、C,对应的边长为a、b、c。
以边长a为底边,作角A的高,垂足为D。
则有以下关系:sin(B) = BD / csin(C) = CD / b再设三角形的外接圆半径为R,即OD=R,其中O为三角形外接圆心。
那么,我们可以推导得出以下关系:sin(B) = BD / c = 2R / csin(C) = CD / b = 2R / b。
由于三角形的三个内角之和为180度,所以有角A=180度-B-C。
将以上关系带入得到以下公式:sin(A) = sin(180度 - B - C) = sin(B + C) = sin(B)cos(C) + cos(B)sin(C) =(2R / c)cos(C) + (2R / b)sin(C)。
化简以上公式,得到sin(A) = (2R / c)cos(C) + (2R / b)sin(C) = (2R / bc)(bcos(C) + csin(C))a / sin(A) = 2R / (bc)(bcos(C) + csin(C)) = 2R。
可见,我们得到了正弦定理。
正弦定理可以用来计算三角形中的未知边长或角度,同时也可以用来证明一些三角形的性质。
接下来,我们来看余弦定理。
余弦定理描述了三角形中各边与角度之间的关系。
设三角形的三个边长为a、b、c,对应的夹角为A、B、C,则余弦定理可以表述为以下公式:c² = a² + b² - 2abcos(C)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦定理、余弦定理知识点总结及证明方法——王彦文青铜峡一中1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.主要考查有关定理的应用、三角恒等变换的能力、运算能力及转化的数学思想.解三角形常常作为解题工具用于立体几何中的计算或证明,或与三角函数联系在一起求距离、高度以及角度等问题,且多以应用题的形式出现.1.正弦定理(1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即.其中R是三角形外接圆的半径.(2)正弦定理的其他形式:①a=2R sin A,b=,c=;②sin A=a2R,sin B=,sin C=;③a∶b∶c=______________________. 2.余弦定理(1)余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a2=,b2=,c2=.若令C=90°,则c2=,即为勾股定理.(2)余弦定理的变形:cos A =,cos B=,cos C=.若C为锐角,则cos C>0,即a2+b2______c2;若C为钝角,则cos C<0,即a2+b2______c2.故由a2+b2与c2值的大小比较,可以判断C为锐角、钝角或直角.(3)正、余弦定理的一个重要作用是实现边角____________,余弦定理亦可以写成sin2A=sin2B+sin2C-2sin B sin C cos A,类似地,sin2B=____________;sin2C=__________________.注意式中隐含条件A+B+C=π.3.解斜三角形的类型(1)已知三角形的任意两个角与一边,用____________定理.只有一解.(2)已知三角形的任意两边与其中一边的对角,用____________定理,可能有___________________.如在△ABC中,已知a,时,只有一解.(4)已知两边及夹角,用____________定理,必有一解.4.三角形中的常用公式或变式(1)三角形面积公式S △= = =____________=____________=____________.其中R ,r 分别为三角形外接圆、内切圆半径.(2)A +B +C =π,则A =__________,A2=__________,从而sin A =____________,cos A =____________,tan A =____________;sin A 2=__________,cos A2=__________, tan A2=+tan B +tan C =__________.(3)若三角形三边a ,b ,c 成等差数列,则2b =____________⇔2sin B =____________⇔2sin B 2=cos A -C 2⇔2cos A +C 2=cos A -C 2⇔tan A2tan C 2=13.【自查自纠】1.(1)a sin A =b sin B =csin C =2R(2)①2R sin B 2R sin C ②b 2R c2R ③sin A ∶sin B ∶sin C2.(1)b 2+c 2-2bc cos A c 2+a 2-2ca cos B a 2+b 2-2ab cos C a 2+b 2(2)b 2+c 2-a 22bc c 2+a 2-b 22ca a 2+b 2-c 22ab ><(3)互化 sin 2C +sin 2A -2sin C sin A cos Bsin 2A +sin 2B -2sin A sin B cos C3.(1)正弦 (2)正弦 一解、两解或无解①一解 ②二解 ③一解 ④一解(3)余弦 (4)余弦4.(1)12ab sin C 12bc sin A 12ac sin B abc 4R 12(a +b +c )r (2)π-(B +C ) π2-B +C2 sin(B +C ) -cos(B +C )-tan(B +C ) cos B +C 2 sin B +C 2 1tan B +C 2tan A tan B tan C (3)a +c sin A +sin C在△ABC 中,A >B 是sin A >sin B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 解:因为在同一三角形中,角大则边大,边大则正弦大,反之也成立,故是充要条件.故选C .在△ABC中,已知b=6,c=10,B=30°,则解此三角形的结果有()A.无解B.一解C.两解D.一解或两解解:由正弦定理知sin C=c·sin Bb=56,又由c>b>c sin B知,C有两解.也可依已知条件,画出△ABC,由图知有两解.故选C.(2013·陕西)设△ABC的内角A, B, C所对的边分别为a, b, c, 若b cos C+c cos B=a sin A, 则△ABC 的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定解:由已知和正弦定理可得sin B cos C+sin C cos B=sin A·sin A,即sin(B+C)=sin A sin A,亦即sin A=sin A sin A.因为0<A<π,所以sin A=1,所以A=π2.所以三角形为直角三角形.故选B.(2012·陕西)在△ABC中,角A,B,C所对的边分别为a,b,c.若a=2,B=π6,c=23,则b=________.解:由余弦定理知b2=a2+c2-2ac cos B=22+()232-2×2×23×cosπ6=4,b=2.故填2.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=2,b=2,sin B+cos B=2,则角A的大小为________.解:∵sin B+cos B=2,∴2sin⎝⎛⎭⎪⎫B+π4=2,即sin⎝⎛⎭⎪⎫B+π4=1.又∵B∈(0,π),∴B+π4=π2,B=π4.根据正弦定理asin A=bsin B,可得sin A=a sin Bb=12.∵a<b,∴A<B.∴A=π6.故填π6.类型一正弦定理的应用△ABC的内角A,B,C的对边分别为a,b,c,已知A-C=90°,a+c=2b,求C.解:由a+c=2b及正弦定理可得sin A+sin C=2sin B.又由于A-C=90°,B=180°-(A+C),故cos C+sin C=sin A+sin C=2sin(A+C)=2 sin(90°+2C)=2sin2(45°+C).∴2sin(45°+C)=22sin(45°+C)cos(45°+C),即cos(45°+C)=1 2.又∵0°<C<90°,∴45°+C=60°,C=15°.【评析】利用正弦定理将边边关系转化为角角关系,这是解此题的关键.(2012·江西)在△ABC中,角A,B,C的对边分别为a,b,c.已知A=π4,b sin⎝⎛⎭⎪⎫π4+C-c sin⎝⎛⎭⎪⎫π4+B =a.(1)求证:B-C=π2;(2)若a=2,求△ABC的面积.解:(1)证明:对b sin⎝⎛⎭⎪⎫π4+C-c sin⎝⎛⎭⎪⎫π4+B=a应用正弦定理得sin B sin⎝⎛⎭⎪⎫π4+C-sin C sin⎝⎛⎭⎪⎫π4+B =sin A,即sin B⎝⎛⎭⎪⎫22sin C+22cos C-sin C⎝⎛⎭⎪⎫22sin B+22cos B=22,整理得sin B cos C-sin C cos B=1,即sin()B-C=1.由于B,C∈⎝⎛⎭⎪⎫0,3π4,∴B-C=π2.(2)∵B+C=π-A=3π4,又由(1)知B-C=π2,∴B=5π8,C=π8.∵a=2,A=π4,∴由正弦定理知b=a sin Bsin A=2sin5π8,c=a sin Csin A=2sinπ8.∴S △ABC =12bc sin A =12×2sin 5π8×2sin π8×22 =2sin 5π8sin π8=2cos π8sin π8=22sin π4=12.类型二 余弦定理的应用在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos B cos C =-b2a +c.(1)求B 的大小;(2)若b =13,a +c =4,求△ABC 的面积. 解:(1)由余弦定理知,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab ,将上式代入cos B cos C =-b 2a +c得a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b2a +c , 整理得a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12. ∵B 为三角形的内角,∴B =23π.(2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B ,得13=42-2ac -2ac cos 23π,解得ac =3.∴S △ABC =12ac sin B =334.【评析】①根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.②熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )B .8-4 3C .1解:由余弦定理得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab ,代入(a +b )2-c 2=4中得(a +b )2-(a 2+b 2-ab )=4,即3ab =4,∴ab =43.故选A .类型三 正、余弦定理的综合应用 (2013·全国新课标Ⅱ)△ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B .(1)求B ;(2)若b =2,求△ABC 面积的最大值. 解:(1)由已知及正弦定理得sin A =sin B cos C +sin C sin B .①又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C .② 由①,②和C ∈(0,π)得sin B =cos B .又B ∈(0,π),所以B =π4.(2)△ABC 的面积S =12ac sin B =24ac . 由已知及余弦定理得4=a 2+c 2-2ac cos π4. 又a 2+c 2≥2ac ,故ac ≤42-2,当且仅当a =c 时,等号成立. 因此△ABC 面积的最大值为2+1.【评析】(1)化边为角与和角或差角公式的正向或反向多次联用是常用的技巧;(2)已知边及其对角求三角形面积最值是高考中考过多次的问题,既可用三角函数求最值,也可以用余弦定理化边后用不等式求最值.(2013·山东)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =6,b =2,cos B =79. (1)求a ,c 的值; (2)求sin(A -B )的值.解:(1)由余弦定理b 2=a 2+c 2-2ac cos B , 得b 2=(a +c )2-2ac (1+cos B ),又a +c =6,b =2,cos B =79,所以ac =9,解得a =3,c =3.(2)在△ABC 中,sin B =1-cos 2B =429,由正弦定理得sin A =a sin B b =223. 因为a =c ,所以A 为锐角,所以cos A =1-sin 2A =13.因此sin(A -B )=sin A cos B -cos A sin B =10227.类型四 判断三角形的形状 在三角形ABC 中,若tan A ∶tan B =a 2∶b 2,试判断三角形ABC 的形状.解法一:由正弦定理,得a 2b 2=sin 2Asin 2B ,所以tan A tan B =sin 2A sin 2B ,所以sin A cos B cos A sin B =sin 2Asin 2B ,即sin2A =sin2B . 所以2A =2B ,或2A +2B =π,因此A =B或A +B =π2,从而△ABC 是等腰三角形或直角三角形.解法二:由正弦定理,得a 2b 2=sin 2Asin 2B ,所以tan A tan B =sin 2A sin 2B ,所以cos B cos A =sin Asin B ,再由正、余弦定理,得a 2+c 2-b 22ac b 2+c 2-a 22bc =a b ,化简得(a 2-b 2)(c 2-a 2-b 2)=0,即a 2=b 2或c 2=a 2+b 2.从而△ABC 是等腰三角形或直角三角形. 【评析】由已知条件,可先将切化弦,再结合正弦定理,将该恒等式的边都化为角,然后进行三角函数式的恒等变形,找出角之间的关系;或将角都化成边,然后进行代数恒等变形,可一题多解,多角度思考问题,从而达到对知识的熟练掌握.(2012·上海)在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定解:在△ABC 中,∵sin 2A +sin 2B <sin 2C ,∴由正弦定理知a 2+b 2<c 2.∴cos C =a2+b 2-c 22ab<0,即∠C 为钝角,△ABC 为钝角三角形.故选C .类型五 解三角形应用举例某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20 n mile 的A 处,并以30 n mile/h 的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v n mile/h 的航行速度匀速行驶,经过t h 与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少(2)假设小艇的最高航行速度只能达到30 n mile/h ,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.解法一:(1)设相遇时小艇航行的距离为S n mile ,则S =900t 2+400-2·30t ·20·cos (90°-30°) =900t 2-600t +400=900⎝ ⎛⎭⎪⎫t -132+300,故当t =13时,S min =103,此时v =10313=30 3.即小艇以30 3 n mile/h 的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在B 处相遇,则 v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°),故v 2=900-600t +400t 2.∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.又t =23时,v =30.故v =30时,t取得最小值,且最小值等于23.此时,在△OAB 中,有OA =OB =AB =20,故可设计航行方案如下:航行方向为北偏东30°,航行速度为30 n mile/h ,小艇能以最短时间与轮船相遇.解法二:(1)若相遇时小艇的航行距离最小,又轮船沿正东方向匀速行驶,则小艇航行方向为正北方向.设小艇与轮船在C 处相遇.在Rt △OAC 中,OC =20cos30°=103,AC =20sin30°=10.又AC =30t ,OC =vt ,此时,轮船航行时间t =1030=13,v =10313=30 3.即小艇以30 3 n mile/h 的速度航行,相遇时小艇的航行距离最小.(2)假设v =30时,小艇能以最短时间与轮船在D 处相遇,此时AD =DO =30t .又∠OAD =60°,所以AD =DO =OA =20,解得t =23.据此可设计航行方案如下: 航行方向为北偏东30°,航行速度的大小为30 n mile/h.这样,小艇能以最短时间与轮船相遇.证明如下:如图,由(1)得OC =103,AC =10,故OC >AC ,且对于线段AC 上任意点P ,有OP ≥OC >AC .而小艇的最高航行速度只能达到30 n mile/h ,故小艇与轮船不可能在A ,C 之间(包含C )的任意位置相遇.设∠COD =θ(0°<θ<90°),则在Rt △COD 中,CD =103tan θ,OD =103cos θ.由于从出发到相遇,轮船与小艇所需要的时间分别为t =10+103tan θ30和t =103v cos θ,所以10+103tan θ30=103v cos θ. 由此可得,v =153sin (θ+30°).又v ≤30,故sin(θ+30°)≥32,从而,30°≤θ<90°.由于θ=30°时,tan θ取得最小值,且最小值为33.于是,当θ=30°时,t =10+103tan θ30取得最小值,且最小值为23.【评析】①这是一道有关解三角形的实际应用题,解题的关键是把实际问题抽象成纯数学问题,根据题目提供的信息,找出三角形中的数量关系,然后利用正、余弦定理求解.②解三角形的方法在实际问题中,有广泛的应用.在物理学中,有关向量的计算也要用到解三角形的方法.近年的高考中我们发现以解三角形为背景的应用题开始成为热点问题之一.③不管是什么类型的三角应用问题,解决的关键都是充分理解题意,将问题中的语言叙述弄明白,画出帮助分析问题的草图,再将其归结为属于哪类可解的三角形.④本题用几何方法求解也较简便.(2012·武汉5月模拟)如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sinα的值.解:(1)依题意,∠BAC=120°,AB=12,AC=10×2=20,在△ABC中,由余弦定理知BC2=AB2+AC2-2AB·AC·cos∠BAC=122+202-2×12×20×cos120°=784,BC=28.所以渔船甲的速度为v=282=14(海里/小时).(2)在△ABC中,AB=12,∠BAC=120°,BC=28,∠BCA=α,由正弦定理得ABsinα=BCsin∠BAC,即12sinα=28sin120°,从而sinα=12sin120°28=3314.1.已知两边及其中一边的对角解三角形时,要注意解的情况,谨防漏解.2.在判断三角形的形状时,一般将已知条件中的边角关系利用正弦定理或余弦定理转化为角角关系(注意应用A+B+C=π这个结论)或边边关系,再用三角变换或代数式的恒等变形(如因式分解、配方等)求解,注意等式两边的公因式不要约掉,要移项提取公因式,否则有可能漏掉一种形状.3.要熟记一些常见结论,如三内角成等差数列,则必有一角为60°;若三内角的正弦值成等差数列,则三边也成等差数列;内角和定理与诱导公式结合产生的结论:sin A=sin(B+C),cos A=-cos(B+C),sinA2=cosB+C2,sin2A=-sin2(B+C),cos2A=cos2(B+C)等.4.应用正、余弦定理解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图;(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中到一个三角形中,建立一个解斜三角形的模型;(3)求解:利用正、余弦定理有序地解出三角形,求得数学模型的解;(4)检验:检验上述所求得的解是否符合实际意义,从而得出实际问题的解.5.正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想.。