2013届数学中考模拟试题(10)

合集下载

中考数学模拟试卷(十)(有答案)

中考数学模拟试卷(十)(有答案)

中考数学模拟试卷(十)一、选择题(每小题3分,共30分)1.3x2可以表示为()A.x2+x2+x2B.x2•x2•x2C.3x•3x D.9x2.200粒大米重约4克,如果每人每天浪费1粒米,那么约458万人口的漳州市每天浪费大米用科学记数法表示约为()A.9.16×103克B.9.16×104克C.9,16×105克 D.0.916×105克3.计算:()﹣1﹣(π﹣1)0,结果正确的是()A.2 B.1 C.﹣ D.﹣4.不能判定四边形ABCD为平行四边形的题设是()A.AB=CD,AB∥CD B.∠A=∠C,∠B=∠D C.AB=AD,BC=CD D.AB=CD,AD=BC5.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E6.P1(x1,y1),P2(x2,y2)是函数y=x图象上的两点,则下列判断中正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y27.我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A.B.C.D.8.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.B.C.D.9.小美将某服饰店的促销活动内容告诉小明后,小明假设某一商品的定价为x元,并列出关系式为0.3(2x ﹣100)<1000,则下列何者可能是小美告诉小明的内容?()A.买两件等值的商品可减100元,再打3折,最后不到1000元B.买两件等值的商品可减100元,再打7折,最后不到1000元C.买两件等值的商品可打3折,再减100元,最后不到1000元D.买两件等值的商品可打7折,再减100元,最后不到1000元10.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A. B. C. D.二、填空题(每小题4分,共24分)11.若两个相似三角形的相似比是1:2,则它们的面积比是.12.已知直线l与⊙O相切,若圆心O到直线l的距离是5,则⊙O的半径是.13.一组数:2,1,3,x,7,﹣9,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a ﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中x表示的数为.14.如图,等腰直角三角形ABC的直角边长为1.如果将斜边BC绕着点B顺时针旋转45°后得BC′,则tan ∠BAC′=.15.计算下列各式的值:;;;.观察所得结果,总结存在的规律,应用得到的规律可得=.16.定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1,l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数共有个.三、解答题(共46分)17.根据图中提供的信息,列方程或方程组求杯子和热水瓶的单价.18.某市对教师试卷讲评课中学生参与的深度和广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中生的参与情况,绘制了如下两幅不完整的统计图.请根据图中所给的信息解答下列问题:(1)这次评价中,一共抽查了名学生;(2)请将条形统计图补充完整;(3)如果全市有16万初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少万人?19.一个足球被从地面向上踢出,它距地面高度y(m)可以用二次函数y=﹣4.9x2+19.6x刻画,其中x(s)表示足球被踢出后经过的时间.(1)解方程﹣4.9x2+19.6x=0,并说明其根的实际意义;(2)求经过多长时间,足球到达它的最高点?最高点的高度是多少?20.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP 于点F.(1)①依题意补全图1;②若∠PAB=20°,求∠ADF的度数;(2)若设∠PAB=a,且0°<a<90°,求∠ADF的度数(直接写出结果,结果可用含a的代数式表示)(3)如图2,若45°<∠PAB<90°,用等式表示线段AB、FE、FD之间的数量关系,并证明.中考数学模拟试卷(十)参考答案与试题解析一、选择题(每小题3分,共30分)1.3x2可以表示为()A.x2+x2+x2B.x2•x2•x2C.3x•3x D.9x【考点】单项式乘单项式;同底数幂的乘法.【分析】分别利用合并同类项法则以及同底数幂的乘法运算法则、单项式乘以单项式运算法则化简求出答案.【解答】解:A、x2+x2+x2=3x2,故此选项正确;B、x2•x2•x2=x6,故此选项错误;C、3x•3x=9x2,故此选项错误;D、9x≠3x2,故此选项错误;故选:A.2.200粒大米重约4克,如果每人每天浪费1粒米,那么约458万人口的漳州市每天浪费大米用科学记数法表示约为()A.9.16×103克B.9.16×104克C.9,16×105克 D.0.916×105克【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:∵200粒大米重约4克,每人每天浪费1粒米,∴458万人口的漳州市每天浪费大米用科学记数法表示约为:4÷200×458万=9.16×104(克).故选:B.3.计算:()﹣1﹣(π﹣1)0,结果正确的是()A.2 B.1 C.﹣ D.﹣【考点】负整数指数幂;零指数幂.【分析】首先计算负整数指数幂和零次幂,然后再计算减法即可.【解答】解:原式=2﹣1=1,故选:B.4.不能判定四边形ABCD为平行四边形的题设是()A.AB=CD,AB∥CD B.∠A=∠C,∠B=∠D C.AB=AD,BC=CD D.AB=CD,AD=BC【考点】平行四边形的判定.【分析】根据平行四边形的判定定理(一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形)求解即可求得答案.【解答】解:A、∵AB=CD,AB∥CD,∴四边形ABCD为平行四边形(一组对边平行且相等的四边形是平行四边形);股本选项能判定四边形ABCD 为平行四边形;B、∵∠A=∠C,∠B=∠D,∴四边形ABCD为平行四边形(两组对角分别相等的四边形是平行四边形);股本选项能判定四边形ABCD 为平行四边形;C、由AB=AD,BC=CD,不能判定四边形ABCD为平行四边形;D、∵AB=CD,AD=BC,∴四边形ABCD为平行四边形(两组对边分别相等的四边形是平行四边形);股本选项能判定四边形ABCD 为平行四边形.故选C.5.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E【考点】全等三角形的性质.【分析】因为AB∥ED,所以∠B=∠D,又因为CD=BF,则添加AB=DE后可根据SAS判定△ABC≌△DEF.【解答】解:∵AB∥ED,∵∠B=∠D,∵CD=BF,CF=FC,∴BC=DF.在△ABC和△DEF中BC=DF,∠B=∠D,AB=DE,∴△ABC≌△DEF.故选C.6.P1(x1,y1),P2(x2,y2)是函数y=x图象上的两点,则下列判断中正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y2【考点】一次函数图象上点的坐标特征.【分析】根据正比例函数的性质进行判断正确选项即可.【解答】解:∵>0,∴对于函数y=x,y随x的增大而增大,∴当x1<x2时,y1<y2,故选D.7.我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据主视图的定义,得出圆柱以及立方体的摆放即可得出主视图为3个正方形组合体,进而得出答案即可.【解答】解:利用圆柱直径等于立方体边长,得出此时摆放,圆柱主视图是正方形,得出圆柱以及立方体的摆放的主视图为两列,左边一个正方形,右边两个正方形,故选:B.8.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:=.故答案为:C.9.小美将某服饰店的促销活动内容告诉小明后,小明假设某一商品的定价为x元,并列出关系式为0.3(2x ﹣100)<1000,则下列何者可能是小美告诉小明的内容?()A.买两件等值的商品可减100元,再打3折,最后不到1000元B.买两件等值的商品可减100元,再打7折,最后不到1000元C.买两件等值的商品可打3折,再减100元,最后不到1000元D.买两件等值的商品可打7折,再减100元,最后不到1000元【考点】一元一次不等式的应用.【分析】根据0.3(2x﹣100)<1000,可以理解为买两件减100元,再打3折得出总价小于1000元.【解答】解:由关系式可知:0.3(2x﹣100)<1000,由2x﹣100,得出两件商品减100元,以及由0.3(2x﹣100)得出买两件打3折,故可以理解为:买两件等值的商品可减100元,再打3折,最后不到1000元.故选:A.10.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A. B. C. D.【考点】动点问题的函数图象.【分析】①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.【解答】解:①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠APB=∠PAD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴=,即=,∴y=,纵观各选项,只有B选项图形符合.故选:B.二、填空题(每小题4分,共24分)11.若两个相似三角形的相似比是1:2,则它们的面积比是1:4.【考点】相似三角形的性质.【分析】利用似三角形的面积的比等于相似比的平方求解.【解答】解:因为两个相似三角形的相似比是1:2,所以它们的面积比是1:4.故答案为1:4.12.已知直线l与⊙O相切,若圆心O到直线l的距离是5,则⊙O的半径是5.【考点】切线的性质.【分析】根据圆切线的性质即可求出⊙O的半径.【解答】解:若直线l与⊙O相切,则圆心O到直线l的距离等于⊙O的半径长,即⊙O的半径为5.13.一组数:2,1,3,x,7,﹣9,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中x表示的数为﹣1.【考点】规律型:数字的变化类.【分析】根据给定该组数列满足的规律,代入数据即可得出结论.【解答】解:∵该组数列满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,∴x=2×1﹣3=﹣1.故答案为:﹣1.14.如图,等腰直角三角形ABC的直角边长为1.如果将斜边BC绕着点B顺时针旋转45°后得BC′,则tan ∠BAC′=.【考点】旋转的性质;等腰直角三角形;锐角三角函数的定义.【分析】首先利用勾股定理可求出BC的长,由旋转的性质可知:BC=BC',∠CBC'=45°,结合等腰直角三角形的性质可推出∠ABC'=90°,进而可求出tan∠BAC′的值.【解答】解:∵等腰直角三角形ABC的直角边长为1,∴BC==,∠ABC=45°∵将斜边BC绕着点B顺时针旋转45°后得BC′,∴BC=BC'=,∠CBC'=45°,∴∠ABC′=45°+45°=90°,∴tan∠BAC′==,故答案为:.15.计算下列各式的值:;;;.观察所得结果,总结存在的规律,应用得到的规律可得=102016.【考点】二次根式的性质与化简.【分析】直接利用已知数据计算得出结果的变化规律进而得出答案.【解答】解:=10;=100=102;=1000=103;=10000=104,可得=102016.故答案为:102016.16.定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1,l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数共有4个.【考点】点的坐标.【分析】根据“距离坐标”分别写出各点即可得解.【解答】解:“距离坐标”是(1,2)的点有(1,2),(﹣1,2),(﹣1,﹣2),(1,﹣2)共4个.故答案为:4.三、解答题(共46分)17.根据图中提供的信息,列方程或方程组求杯子和热水瓶的单价.【考点】二元一次方程组的应用.【分析】根据图知道,一个保温瓶和一个杯子的价钱是43元,2个保温瓶和3个杯子的价钱是94元;先用43×2求出2个保温瓶和2个杯子的价钱,再用2个保温瓶和3个杯子的价钱减去2个保温瓶和2个杯子的价钱就是一个杯子的价钱,进而求出一个保温瓶的价钱.【解答】解:设杯子的单价为x元,则热水瓶单价为y元,则解得,答:杯子的单价为8元,则热水瓶单价为35元.18.某市对教师试卷讲评课中学生参与的深度和广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中生的参与情况,绘制了如下两幅不完整的统计图.请根据图中所给的信息解答下列问题:(1)这次评价中,一共抽查了560名学生;(2)请将条形统计图补充完整;(3)如果全市有16万初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少万人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用专注听讲的人数224除以专注听讲所占的百分比即可得到所抽查的学生总人数;(2)用16万乘以“独立思考”的学生所占的百分比即可.【解答】解:(1)抽查的学生总人数==560(名);(2)讲解题目的人数=560﹣84﹣168﹣224=84(名),画条形统计图为:(3)∵16×=4.8(万),∴全市在试卷讲评课中,“独立思考”的学生约有4.8万人.故答案为560.19.一个足球被从地面向上踢出,它距地面高度y(m)可以用二次函数y=﹣4.9x2+19.6x刻画,其中x(s)表示足球被踢出后经过的时间.(1)解方程﹣4.9x2+19.6x=0,并说明其根的实际意义;(2)求经过多长时间,足球到达它的最高点?最高点的高度是多少?【考点】二次函数的应用.【分析】(1)因式分解法求解可得,由此时y=0即足球的高度为0可知方程的根表示的实际意义;(2)配方成二次函数的顶点式可知其最值情况.【解答】解:(1)﹣4.9x2+19.6x=0,x(﹣4.9x+19.6)=0,∴x1=0,x2=4,其中x1=0表示足球离开地面的时间,x2=4表示足球落地的时间;(2)∵y=﹣4.9x2+19.6x=﹣4.9(x﹣2)2+19.6,∴当x=2时,y取得最大值,最大值为19.6m,答:经过2s,足球到达它的最高点,最高点的高度是19.6m.20.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP 于点F.(1)①依题意补全图1;②若∠PAB=20°,求∠ADF的度数;(2)若设∠PAB=a,且0°<a<90°,求∠ADF的度数(直接写出结果,结果可用含a的代数式表示)(3)如图2,若45°<∠PAB<90°,用等式表示线段AB、FE、FD之间的数量关系,并证明.【考点】四边形综合题.【分析】(1)①根据题意直接画出图形得出即可;②利用对称的性质以及等角对等边的性质,进而得出答案;(2)利用对称的性质以及等角对等边进而得出答案;(3)由轴对称的性质可得:,进而利用勾股定理得出答案.【解答】解:(1)①如图1所示:②如图2,连接AE,由对称得,∠PAB=∠PAE=20°,AE=AB=AD,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAP=∠BAP=20°,∴∠EAD=130°,∴∠ADF==25°;(2)如图2,连接AE,由对称得∠PAB=∠PAE=α,AE=AB=AD,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAP=∠BAP=α,∴∠EAD=90°+2α,∴∠ADF==45°﹣α.(3)如图3,连接AE、BF、BD,由对称可知,EF=BF,AE=AB=AD,∠ABF=∠AEF=∠ADF,∴∠BFD=∠BAD=90°,在Rt△BDF中,BF2+FD2=BD2,在Rt△ABC中,BD=AB,∴EF2+FD2=2AB2.2016年8月11日。

2013年中考数学模拟题(含答案)

2013年中考数学模拟题(含答案)

2013年中考数学模拟题一、选择题(每小题3分,共15分)1.下列运算正确的是 ( )A. x 2·x 3=x 6B. –2x -2=- 14x 2 C.(-x 2)3=x 5 D.-x 2-2x 2=-3x 2 2.在平面直角坐标系中,点P (-1,-1)关于x 轴的对称点在( ) A.第一象限 B. 第二象限C.第三象限D. 第四象限3.某班5位同学的身高(单位:厘米)分别155,160,160,161,169,这组数据中,下列说法错误的是 ( )A.众数是160B.中位数是160C.平均数是161D.方差是24.如图,PA 切⊙O 于A ,∠P=30°,OP =2,则⊙O 的半径的是 ( )A.21B.1C. 2D.45.已知圆锥的母线长为5cm ,底面半径为3cm ,则此圆锥的侧面积为 ( )A. 12πcm 2B. 15πcm 2C. 20πcm 2D. 30πcm 2二、填空题(每小题4分,共20分)6.已知代数式2x 2-x+1的值等于2,则代数式 4x 2-2x+5的值为___________.7.若反比例函数y=- x8的图象经过点(m ,-2m ),则m 的值为___________.8、十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率是________.9.如图,CD⊥AB,BE⊥AC,请你再添加一个条件:________使ΔABE≌ΔACD。

10.如图,在 RtΔABC中,∠C=90°,AB=4cm,AC=23cm,以B为圆心,以BC为半径作弧交AB于D,则阴影部分的面积是 _____cm2。

三、解答题(每小题6分,共30分)11.有这样一道题:“计算x2-2x+1x2-1÷x-1x2+x-x 的值,其中x=2007”。

甲同学把“x=2007”错抄成“x=2070”,但他的计算结果也是正确的,你说这是怎么回事?12. ,并把解集在数轴上表示出来。

2013中考数学模拟测试卷

2013中考数学模拟测试卷

2013中考数学模拟测试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在题.前括号内.....【】1. -2的绝对值是A.2 B.-2 C.12- D.2±【】2. 下列计算正确的是A.3x2·4x2=12x2 B.x3·x5=x15 C.x4÷x=x3 D.(x5)2=x7【】3. 某同学在“百度”搜索引擎中输入“魅力南通”,能搜索到与之相关的结果个数约为3930000,这个数用科学记数法表示为A.0.393×107 B.393×104C.39.3×105 D.3.93×106【】4. 若一个多边形的内角和是900°,则这个多边形的边数是A.5 B.6 C.7 D.8【】5. 如图所示,△ABC的顶点是正方形网格的格点,则sin A的值为A.12B.5C.10D.25【】6. 如图,点A、C、B、D分别是⊙O上四点,OA⊥BC,∠AOB=50°则∠ADC的度数为A.20° B.25° C.40° D.50°【】7. 如图所示的工件的主视图是【】8. 某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:则这11双鞋的尺码组成的一组数据中,众数和中位数分别是A.24.5,24.5 B.24.5,25 C.25,24.5 D.25,25尺码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 1A.B.C.D.(第5题)【 】9. 下列轴对称图形中,只用一把无刻度的直尺不能..画出对称轴的是 A .菱形B .矩形C .等腰梯形D .正五边形【 】10. 如图,已知在Rt△ABC 中,AB =AC =2,在△ABC 内作第一个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ;再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形……依次进行下去,则第n 个内接正方形的边长为A .21()32n ⋅B .221()2n ⋅C .121()32n -⋅ D . 1221()2n -⋅二、填空题:本大题共8小题,每小题3分,共24分.请把最后结果填在题中横线上. 11. 计算:327-= .12. 将一直角三角板与两边平行的纸条如图所示放置,若∠1=53°,则∠2= °. 13. 已知分式21x x -+的值为0,那么x 的值为 . 14. 一个圆锥的母线长为4,侧面积为12π,则这个圆锥的底面圆的半径是 . 15. 如图,函数2y x =和5y ax =+的图象相交于A (m ,3),则不等式25x ax <+的解集 为 .16. 设m ,n 是方程220120x x --=的两个实数根,则2m n +的值为 . 17. 如图,已知正方形ABCD 的边长为2,对角线AC 、BD 相交于点O ,AE 平分∠BAC 交 BD 于点E , 则BE 的长为 . 18. 如图,点A 是双曲线4y x=在第一象限上的一动点,连接AO 并延长交另一分支于点B , 以AB 为斜边作等腰Rt △ABC ,点C 在第二象限,随着点A 的运动,点C 的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为 .A BCD EFGH I K J PQ (第10题)(第6题)OD C B12(第12题)三、解答题:本大题共10小题,共计96分.解答时应写出文字说明、证明过程或演算步骤.19.(本题满分10分) (1)计算:0(3)-+12cos30°-11()5- (2)解方程组:38 53 4 x y x y +=⎧⎨-=⎩①②20.(本题满分8分)化简分式222421444a aa a a -÷--++,并选取一个你认为合适的整数a 代入求值.y AOx(第15题)xBAC(第18题)O y(第17题)OE小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数; (3)请估计该市这一年(365天)达到优和良的总天数.22.(本题满分8分)如图,AB 与⊙O 相切于点C ,OA =OB .(1)如图①,若⊙O 的直径为8cm ,AB =10cm ,求OA 的长(结果保留根号); (2)如图②,OA 、OB 与⊙O 分别交于点D 、E ,连接CD 、CE ,若四边形ODCE 为菱形,求ODOA的值.OA B C 图 ①ADCBOE图 ②本市若干天空气质量情况扇形统计图优良 64%轻微污染轻度污染 中度污染 重度污染轻微 污染 轻度 污染 天数(天)20 15105832311中度 污染 重度污染空气质如图,在边长为1的正方形组成的网格中,△ABC的顶点和O点均在格点上.(1)以点O为位似中心,在网格中将△ABC放大为原来的2倍,得到△A′B′C′;(2)△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.24.(本题满分8分)如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.DF甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为-7,-1,3,乙袋中的三张卡片所标的数值为-2,1,6,先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y 表示取出卡片上的数值.把x、y分别作为点A的横坐标和纵坐标.(1)用列表或画树形图的方法写出点A(x,y)的所有情况;(2)求点A落在直线2上的概率.y x26.(本题满分10分)甲、乙两组同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)直接写出甲组加工零件的数量y与时间x之间的函数关系式▲;(2)求乙组加工零件总量a的值;(3)甲、乙两组加工出的零件合在一起装箱,每满300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t >0)秒.(1)当点Q从B点向A点运动时(未到达A点),若△APQ∽△ABC,求t的值;(2)伴随着P,Q两点的运动,线段PQ的垂直平分线为直线l.①当直线l经过点A时,射线QP交AD边于点E,求AE的长;②是否存在t的值,使得直线l经过点B?若存在,请求出所有t的值;若不存在,请说明理由.如图,二次函数212y x mx n =-++的图象与y 轴交于点N ,其顶点M 在直线32y x =-上运动,O 为坐标原点. (1)当m =-2时,求点N 的坐标;(2)当△MON 为直角三角形时,求m 、n 的值;(3)已知△ABC 的三个顶点的坐标分别为A (-4,2),B (-4,-3),C (-2,2),当抛物线212y x mx n =-++在对称轴左侧的部分与△ABC 的三边有公共点时,求m的取值范围.(第2问图)。

2013年数学中考模拟试题及答案

2013年数学中考模拟试题及答案

2013年中考数学模拟试题一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.- 13的倒数是A .-3B .3C .- 13D .132.下列各式运算中,正确的是A .222()a b a b +=+ B3=C .3412a a a ⋅=D .)0(6)3(22≠=a a a3.下列几何体中,主视图、左视图、俯视图完全相同的是 A. 圆柱 B. 圆锥 C. 球 D. 棱锥 4.下列说法正确的是A .买一张福利彩票一定中奖,是必然事件.B .买一张福利彩票一定中奖,是不可能事件.C .抛掷一个正方体骰子,点数为奇数的概率是13. D .一组数据:1,7,3,5,3的众数是3. 5.函数y =中自变量的取值范围在数轴上表示为6.在□ABCD 中,点E 为AD 的中点,连接BE ,交AC 于点F ,则=CFAFA .1:2B .1:3C .2:3D .2:5第7题图7.如图,在△ABC 中,AB = AC ,AB = 8,BC = 12以AB 、AC 为直径作半圆,则图中阴影部分的面积是A.64π-B .1632π-C.16π-.16π-8.如图,点P 按A →B →C →M 的顺序在边长为1的正方形边上运动,M 是CD 边上的中点。

设点P 经过的路程x 为自变量,△APM 的面积为y ,则函数y 的大致图像是二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分. 9.我国公安部交管局公布的数据显示,截至2012年初,全国机动私家车保有量达0.195亿辆,将0.195亿辆用科学记数法表示应是 辆(结果保留2个有效数字) 10.分解因式:=+-y xy y x 22 。

11.= . 12.如果圆锥的底面周长为20πcm ,侧面展开后所得的扇形的圆心角是120º,则该圆锥的侧面积是___________.(结果保留π) 13.如图,直线a ∥b ,l 与a 、b 交于E 、F 点,PF 平分∠EFD 交a 于P 点,若∠1 = 70︒,则∠2 = . 14.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,21F E DblPa2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________;15.如图,在等边△ABC 中,9=AC ,点O 在AC 上,且3=AO ,点P 是AB 上一动点,连接OP ,以O 为圆心,OP 长为半径画弧交BC 于点D , 连接PD ,如果PD PO =,那么AP 的长是 .16.如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆的面积为1S ,322B D C ∆的面积为2S ,……,1n n n B D C +∆的面积为n S ,则n S = (用含n 的式子表示).三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.17.化简求值 (本题满分6分) 。

2013年数学中考模拟考试试卷

2013年数学中考模拟考试试卷

2013年数学中考模拟考试试卷※考试时间120分钟 试卷满分150分※一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号填入下面的表格内,每小题3分,共24分) 1. 4的算术平方根是( )A .-2B .2C .±2D .42. 下列计算错误的是 ( )A .2m + 3n =5mnB .426a a a =÷C .632)(x x =D .32a a a =⋅3.如图,不等式组⎩⎨⎧x +1>0,x -1≤0的解集在数轴上表示正确的是( ).4. 下列说法正确的是( )A .某市“明天降雨的概率是75%”表示明天有75%的时间会降雨. B.随机抛掷一枚均匀的硬币,落地后正面一定朝上.C .在一次抽奖活动中,“中奖的概率是1100”表示抽奖l00次就一定会中奖.D .在平面内,平行四边形的两条对角线一定相交.5.某市为了治理雾霾天气计划今年用于绿化的投资为20千万元,2015年为25千万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为x ,根据题意所列方程为 () A .22025x=B .20(1)25x +=C .220(1)25x +=D .220(1)20(1)25x x +++=6.已知△ABC 和△A′B′C′相似,△A′B′C′的面积6cm 2,△A′B′C′的 周长是△ABC 的周长一半.AB=8cm ,则AB 边上的高等于( )A.3cmB.6cmC.9cmD.12cm7.如图,圆锥形冰淇淋的母线长是13cm ,高是12cm ,则它的侧面积是( ) (第7题)A 、10πcm 2B 、25πcm 2C 、60πcm 2D 、65πcm 28.如图,在平面直角坐标系xOy 中,等腰梯形ABCD 的顶点坐标分别为A (1,1),B (2,-1),C (-2,-1),D (-1,1).以A 为对称中心作点P (0,2)的对称点P 1,以B 为对称中心作点P 1的对称点P 2,以C 为对称中心作点P 2的对称点P 3,以D 为对称中心作点P 3的对称点P 4,…,重复操作依次得到点P 1,P 2,…,则点P 7的坐标是( )A 、(7,6)B 、(-2,0)C 、(4, 2)D 、(-10,0)-10 1 A . -1 0 1 B . -1 0 1C .-1 0 1 D .(第8题)二、填空题(每题3分,共24分)9.已知2a b+=,则224a b b-+的值.10.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为.11.如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O 在格点上,则∠AED的正弦值等于.(第11题)12.某中学的铅球场如图所示,已知扇形AOB的面积是36平方米,弧AB的长度为9米,那么半径OA=(第12题)13.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sinB的值是.14.如图,在Rt ABC△中,90ACB∠=°,30A∠=°,2BC=.(第13题)将ABC△绕点C按顺时针方向旋转n度后得到EDC△,此时点D在AB边上,斜边DE交AC边于点F,则图中阴影部分的面积为15.已知平面直角坐标系中两点A(-2,3),B(-3,1),连接AB,平移线段AB得到线段A1B1,若点A的对应点A1的坐标为(3,4),则点B1的坐标为____.16. 如图,在平面直角坐标系中,边长为1的正方形OA1B1C的对角线A1C和OB1交于点M1;以M1A1为对角线作第二个正方形A2A1B2 M1,对角线A1 M1和A2B2 交于点M2;以M2A1为对角线作第三个正方形A3A1B3 M2,对角线A1 M2和A3B3 交于点M3;……,依次类推,这样作的第6个正方形对角线交点的坐标为M6_______________.三、(每小题8分,共16分)17. 先化简:144)113(2++-÷+-+aaaaa,并从0,1-,2中选一个合适的数作为a的值代入求值.18.用尺规三等分任意角是数学中的一大难题,但我们可以用“折纸法”把一个直角三等分.如图所示,具体做法:(1)将一矩形纸片ABCD对折,EF为折痕;(2)继续沿过点C的直线CO对折,使点B落在EF上得到点G,则CO、CG就把∠BCD三等分了.请你写出它的推理过程.四、(每小题10分,共60分)19.某手机卖场按图1给出的比例从甲、乙、丙三个公司共购买了150部手机,公司技术人员对购买的这批手机全部进行了检验,绘制了如图2所示的统计图.请你根据图中提供的信息,解答以下问题:AB CDAFCBD(第14题)(第16题)COM2M3M1B3B2B1A3A2A1xy(1)该手机卖场从丙公司购买手机的台数;(2)该手机卖场购买的150台手机中优等品的台数;(3)如果购买的这批手机质量能代表各公司的手机质量,那么 从优等品的角度考虑,哪个公司的手机质量较好些?为什么?20. 如图,在Rt ABC △中,斜边1230BC C =∠=,°,D 为BC 的中点, ABD △的外接圆O ⊙与AC 交于F 点,过A 作O ⊙的切线AE 交DF 的延长线 于E 点.(1)求O ⊙的半径;(2)求线段EF 的长.21. 第十二届全运会将于2013年8月31日在沈阳举行,珊儿和哥哥两人都很想去观看,但是爸爸只有一张门票。

2013中考数学模拟试卷

2013中考数学模拟试卷

2013年中考数学模拟试卷四一、选择题(本大题共10小题,每小题4分,共40分) 1.—3的绝对值的倒数是( )A .3B .—3C .13D .— 132.计算422()a a ÷的结果是( )A .2aB .5aC .6aD .7a3.若)(n m +∶n =5∶2,则m ∶n 的值是( )A .5∶2B .2∶3C . 2∶5D .3∶24.如图所示,下列选项中,正六棱柱的左视图是( )第3题图 A . B . C . D .5.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获得20%,则这种电子产品的标价为( )A .26元B .27元C .28元D .29元 6.分式方程131x x x x +=--的解为( ) A .1x = B .1x =- C .3x = D .3x =-7.如图,BD 是⊙O 的直径,∠CBD =30°,则∠A 的度数为( ) A .30° B .45° C .60° D .75° 8.估计2103112÷+⨯的运算结果应在( ) 第7题图 A .2到3之间 B .3到4之间 C .4到5之间 D .5到6之间 9.某游泳池的横截面如图所示,用一水管向池内持续注水,若单位时间内注入的水量保持不变,则在注水过程中,下列图象能反映深水区水深h 与注水时间t 关系的是( )A .B .C .D .10.已知二次函数2y ax bx c =++中,其函数y 与自变量x 之间的部分对应值如下表所示: … 0 1 2 3 … …5212…点A (1x ,1y )、B (2x ,2y )在函数的图象上,则当101x <<,223x <<时,1y 与2y 的大小关系正确的是A .1y ≥2yB .12y y >C .12y y <D .1y ≤2y 二、填空题(本大题共4小题,每小题5分,共20分) 11.因式分解:a a 823-= .12.有一组数据如下:2,3,a ,5,6,它们的平均数是4,则这组数据的方差是 . 13.已知直线y =2x +k 和双曲线y =xk的一个交点的纵坐标为-4,则k 的值为 . 14.如图,菱形ABCD 中,AB =2 ,∠C =60°,菱形ABCD 在直线l 上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过36次这样的操作菱形中心O 所经过的路径总长为(结果保留π) .t h Ot h Ot h O h t O 第9题图 深 水区浅水区A CB60º 30º三、(本大题共2小题,每小题8分,满分16分)15.解不等式组:331213(1)8x x x x-⎧+>+⎪⎨⎪---⎩,≤并在数轴上把解集表示出来.16.已知一等腰三角形的两边长x ,y 满足方程组⎩⎨⎧=+=-,823,32y x y x 求这个等腰三角形的周长.四、(本大题共2小题,每小题8分,满分16分)17.某地震救援队探测出某建筑物废墟下方点C 处有生命迹象,已知废墟一侧地面上探测点 A 、B 相距4m ,探测线与地面的夹角分别是30º和60º,试确定生命所在点C 的深度(结果精确到0.1m ,参考数据:2≈1.414,3≈1.732).18.如图,在网格中、建立了平面直角坐标系,每个小正方形的边长均为1个单位长度,将四边形ABCD 绕坐标原点O 按顺时针方向旋转180°后得到四边形A 1B 1C 1D 1. (1)写出点D 1的坐标_________,点D 旋转到点D 1所经过的路线长__________; (2)请你在△ACD 的三个内角中任选二个锐角,若你所选的锐角..是________,则它所对应的正弦函数值是_________;(3)将四边形A 1B 1C 1D 1平移,得到四边形A 2B 2C 2D 2,若点D 2(4,5),画出平移后的图形.(友情提示:画图时请不要涂错阴影的位置哦!)五、(本大题共2小题,每小题10分,满分20分)19.A 市与B 市之间的城际铁路正在紧张有序地建设中.在建成通车前,进行了社会需求调查,得到一列火车一天往返次数m 与该列车每次拖挂车厢节数n 的部分数据如下:车厢节数n 4 7 10 往返次数m 16 10 4(1)请你根据上表数据,在三个函数模型:①y =kx +b (k 、b 为常数,k ≠0);②y = kx (k为常数,k ≠0);③y =ax 2+bx +c (a 、b 、c 为常数,a ≠0)中,选取一个适合的函数模型, 求出的m 关于n 的函数关系式是m = (不写n 的取值范围);(2)结合你求出的函数,探究一列火车每次挂多少节车厢,一天往返多少次时,一天的设计运营人数Q 最多(每节车厢载客量设定为常数p ).20.已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.(1)从口袋中随机取出一个球(不放回),接着再取出一个球.请用树形图或列表的方法求取出的两个都是黄色球的概率;(2)小明往该口袋中又放入红色球和黄色球若干个,一段时间后他记不清具体放入红色球和黄色球的个数,只记得一种球的个数比另一种球的个数多l ,且从口袋中取出一个黄色球的概率为23,请问小明又放人该口袋中红色球和黄色球各多少个?六、(本题满分12分)第14题图DC BA 21O O DCB A E P DCB A21.已知:正方形ABCD 的边长为1,点P 为对角线BD 上一点,连接CP . (1)如图1,当BP =BC 时,作PE ⊥PC ,交AB 边于E ,求BE 的长; (2)如图2,当DP =DC 时,作PE ⊥PC ,交BC 边于E ,求BE 的长.七、(本题满分12分)22.如图,一面利用墙,用篱笆围成的矩形花圃ABCD 的面积为S m 2,平行于墙的BC 边长为x m .(1)若墙可利用的最大长度为10m ,篱笆长为24m ,花圃中间用一道篱笆隔成两个小矩形,求S 与x 之间的函数关系式.(2)在(1)的条件下,围成的花圃的面积为45m 2时,求AB 的长.能否围成面积比45m 2更大的花圃?如果能,应该怎样围?如果不能,请说明理由.(3)若墙可利用最大长度为40m ,篱笆长77m ,中间用n 道篱笆隔成小矩形,且当这些小矩形为正方形和x 为正整数时,请直接写出一组满足条件的x 、n 的值.八、(本题满分14分)23.我们把既有外接圆又有内切圆的四边形称为双圆四边形,如图1,四边形ABCD 是双圆四边形,其外心为O 1,内心为O 2. 图1 图2 图3(1)在平行四边形、矩形、菱形、正方形、等腰梯形中,双圆四边形有 个; (2)如图2,在四边形ABCD 中,已知:∠B =∠D =90°,AB =AD ,问:这个四边形是否是双圆四边形?如果是,请给出证明;如果不是,请说明理由; (3)如图3,如果双圆四边形ABCD 的外心与内心重合于点O ,试判定这个四边形的形状,并说明理由; 参一、选择题(本大题共10小题,每小题4分,共40分) 1.A 2.C 3.D 4.B 5.C 6.D 7.C 8.C 9.A 10.B 二、填空题(本大题共4小题,每小题5分,共20分) 11.)2)(2(2-+a a a 12.2 13.-8 14.π)438(+ 三、(本大题共2小题,每小题8分,满分16分) 15.解不等式23-x >x +1,得x <1, ……………………………………2分 解不等式)1(31--x ≤x -8,得x ≥-2, …………………………4分 所以,原不等式组的解集是-2≤x <1. …………………………………6分 它的解集在数轴上表示为:………………8分16.解方程组⎩⎨⎧=+=-,823,32y x y x 得⎩⎨⎧==.1,2y x所以,等腰三角形的两边长为2,1. ……………………………………4分A D BCx A BD C …图1图2x x 3 2 10 0-1 -3 -2若腰长为1,底边长为2,由1+1=2知,这样的三角形不存在. …………6分 若腰长为2,底边长为1,则三角形的周长为5.所以,这个等腰三角形的周长为5. ……………………………………8分 四、(本大题共2小题,每小题8分,满分16分)17.过点C 作CD ⊥AB ,垂足为D . …………………………1分∵∠CAB =30°,∠CBD =60°,∴∠BCA =30°=∠CAB , ………………………………………………3分 ∴CB =AB =4. ……………………………………………4分 在Rt △CBD 中,CD =BCsin60°=45.33223≈=⨯(米). ………………………………7分 答:生命所在点C 的深度约为3.5米. ……………………………………8分 18.解:(1)(3,-l ),10π; ………………………………………………3分(2)∠ACD ,22 (或∠DAC ,55) ………………………………………6分 (3)画出正确图形 …………………………………………………………8分 五、(本大题共2小题,每小题10分,满分20分)19.(1)242+-=n m ; …………………………………………………………4分 (2)根据题意,一列火车载客人数为np ,则Q 与n 的函数关系式为Q =mnp =pn pn np n 242)242(2+-=⨯+-, ………………………6分 配方,得Q =p n p 72)6(22+--. ∵ -2p <0,∴ 当n =6时,Q 的值最大, ……………………………………8分 此时m =-2×6+24=12.答:一列火车每次挂6节车厢,一天往返12次时,一天设计运营人数Q最多.……………………………………10分 20.(1)画图略,……………………………………………………………………2分P (两个都是黄色球)=12; …………………………………………4分 (2)∵一种球的个数比另一种球的个数多l 。

2013中考数学模拟试卷(含参考答案)

2013中考数学模拟试卷(含参考答案)

2013中考数学模拟试卷(含参考答案)2013年湖州市中考数学模拟卷4考试时间120分钟,满分120分。

姓名一、选择题(共10小题,每小题3分,满分30分)1.的倒数是()A.B.C.D.32.要调查某校九年级550名学生周日的睡眠时间,下列调查对象选取最合适的是()A.选取该校一个班级的学生B.选取该校50名男生C.选取该校50名女生D.随机选取该校50名九年级学生3.一个几何体的三视图如图所示,这个几何体是()A.圆柱B.球C.圆锥D.正方体4.下列运算正确的是()A.B.C.D.5.三角形在方格纸中的位置如图所示,则的值是()A.B.C.D.6.据统计,2009年漳州市报名参加中考总人数(含八年级)约为102000人,则102000用科学记数法表示为()A.B.C.D.7.矩形面积为4,它的长与宽之间的函数关系用图象大致可表示为()A.B.C.D.8.如图,要使成为矩形,需添加的条件是()A.B.C.D.9.分式方程的解是()A.1B.C.D.10.如图,绕点逆时针旋转得到,若,,则的度数是()A.30°B.40°C.50°D.60°二、填空题(共6小题,每小题4分,满分24分)11.若分式无意义,则实数的值是____________.12.如图,直线,,则=_______________度.13.若,则的值是_______________.14.已知一次函数,则随的增大而_______________(填“增大”或“减小”).15.如图是第29届北京奥运会上获得金牌总数前六名国家的统计图,则这组金牌数的中位数是____________枚.16.如图,在菱形中,,、分别是、的中点,若,则菱形的边长是_____________.三、解答题(8大题共66分)17.(满分4分)计算:.18.(满分4分)给出三个多项式:,,.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.19.(满分6分)如图,在等腰梯形中,为底的中点,连结、.求证:.20.(满分6分)小红与小刚姐弟俩做掷硬币游戏,他们两人同时各掷一枚壹元硬币.(1)若游戏规则为:当两枚硬币落地后正面朝上时,小红赢,否则小刚赢.请用画树状图或列表的方法,求小刚赢的概率;(2)小红认为上面的游戏规则不公平,于是把规则改为:当两枚硬币正面都朝上时,小红得8分,否则小刚得4分.那么,修改后的游戏规则公平吗?请说明理由;若不公平,请你帮他们再修改游戏规则,使游戏规则公平(不必说明理由).21.(满分8分)如图,点在的直径的延长线上,点在上,,,(1)求证:是的切线;(2)若的半径为3,求的长.(结果保留)22.(满分8分)阅读材料,解答问题.例用图象法解一元二次不等式:.解:设,则是的二次函数.抛物线开口向上.又当时,,解得.由此得抛物线的大致图象如图所示.观察函数图象可知:当或时,.的解集是:或.(1)观察图象,直接写出一元二次不等式:的解集是____________;(2)仿照上例,用图象法解一元二次不等式:.(画大致图象)23.(满分8分)为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶?(2)该校准备再次购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于1200元(不包括780元),求甲种消毒液最多能再购买多少瓶?24.(满分10分)几何模型:条件:如下左图,、是直线同旁的两个定点.问题:在直线上确定一点,使的值最小.方法:作点关于直线的对称点,连结交于点,则的值最小(不必证明).模型应用:(1)如图1,正方形的边长为2,为的中点,是上一动点.连结,由正方形对称性可知,与关于直线对称.连结交于,则的最小值是___________;(2)如图2,的半径为2,点在上,,,是上一动点,求的最小值;(3)如图3,,是内一点,,分别是上的动点,求周长的最小值.25.(满分12分)如图1,已知:抛物线与轴交于两点,与轴交于点,经过两点的直线是,连结.(1)两点坐标分别为(_____,_____)、(_____,_____),抛物线的函数关系式为______________;(2)判断的形状,并说明理由;(3)若内部能否截出面积最大的矩形(顶点在各边上)?若能,求出在边上的矩形顶点的坐标;若不能,请说明理由.数学参考答案及评分标准一、选择题(共10题,每题3分,满分30分)题号12345678910答案BDADABBCAC二、填空题(共6小题,每题4分,满分24分)11.212.12013.200914.增大15.2116.4三、解答题(10大题,满分共96分)17.解:原式=6分=0.8分18.解:情况一:2分=5分=.8分情况二:2分=5分=.8分情况三:2分=5分=.8分19.证明:四边形是等腰梯形,.4分为的中点,.6分.8分20.(1)吉.(符合要求就给分)3分(2)有多种画法,只要符合要求就给分.8分21.(1)证明:连结,1分,2分,,3分,.4分是的切线.5分(2),的长=.7分答:的长为.8分22.(1).2分(2)解:设,则是的二次函数.抛物线开口向上.3分又当时,,解得.4分由此得抛物线的大致图象如图所示.6分观察函数图象可知:当或时,.7分的解集是:或.8分23.(1)解法一:设甲种消毒液购买瓶,则乙种消毒液购买瓶.1分依题意,得.解得:.3分(瓶).4分答:甲种消毒液购买40瓶,乙种消毒液购买60瓶.5分解法二:设甲种消毒液购买瓶,乙种消毒液购买瓶.1分依题意,得3分解得:4分答:甲种消毒液购买40瓶,乙种消毒液购买60瓶.5分(2)设再次购买甲种消毒液瓶,刚购买乙种消毒液瓶.6分依题意,得.8分解得:.9分答:甲种消毒液最多再购买50瓶.10分26.(1)(4,0),.2分.4分(2)是直角三角形.5分证明:令,则...6分解法一:.7分.是直角三角形.8分解法二:,.7分.,.即.是直角三角形.8分(3)能.当矩形两个顶点在上时,如图1,交于.,..9分解法一:设,则,,.=.10分当时,最大..,.,.11分解法二:设,则..10分当时,最大..,.,.11分当矩形一个顶点在上时,与重合,如图2,,..解法一:设,,.=.12分当时,最大.,.13分解法二:设,,,,..=12分当时,最大,..13分综上所述:当矩形两个顶点在上时,坐标分别为,(2,0);当矩形一个顶点在上时,坐标为14分。

2013年中考模拟数学试卷数学答案

2013年中考模拟数学试卷数学答案
(2)由全等及三线合一得AO⊥BC,(5分)
∴∠DBC=∠BAO,∵BD是直径,∴∠BCD=∠ABO=90°,
∴△BDC∽△AOB,(6分)∴ , (7分)
22.(1)设A组的频数是x,那么B组的频数为5x,那么x+5x=12,x=2,(2分)
12÷(1-40%-28%-8%)=50(4分)
(2) (7分)(3)(28%+8%)×500=180(户)(9分)
(2)S1=4m-4(m-4)=16,(5分)
S2=S梯形AECD-S△CEEF= =16,∴S1=S2(8分)
(求S2时也可以将两个三角形的面积一一求出,再求差)
.(3)∵△AEG与△FDG面积和为24,差为16,∴△AEG的面积=20(10分)
∴ ,∴AG=10,∵△FDG∽△FCE,∴ ,
m1=12,m2=6(舍去),∴tan∠BAE= (12分)
∴ ,即
∴ 或 .(14分)
19.解:原式= (4分)= (6分)
20. → (2分)→
→ (5分)→经检验,原方程的解是 (7分)
21.解:(1)证明:连结OC,
∵OB=OC,AB=AC,OA=OA,∴△ABO≌△ACO,(2分)
∴∠ABO=∠ACO,∵AC是切线,∴∠ACO=90°,
∴∠ABO=90°,∴AB是⊙O的切线.(4分)
26.(1)第一条抛物线的解析式是 (3分)
(2)第n个三角形的面积是 ,当n=1,2,5时为整数(6分)
(3)设第n条抛物线的解析式为 ,(7分)
又∵过点 ∴ ,设 ,∴
= ,∴
,n=2.(10分)
(4)作第m个三角形和第n个三角形底边上的高AmC和AnD,
∵顶角互补,∴底角互余.即△AmCBm-1∽△AnDBn-1.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12354AB CDEF(第2题图)2012届湘潭市中考模拟试题(1)数 学考生须知:1.全卷满分120分,考试时间120分钟.试题卷共4页,有三大题,共24小题. 2.全卷答案必须做在答题纸卷Ⅰ、卷Ⅱ的相应位置上,做在试题卷上无效. 参考公式:二次函数2y ax bx c =++(0)a ≠图象的顶点坐标是24(,)24b ac b aa--.温馨提示:请仔细审题,细心答题,答题前仔细阅读答题纸上的“注意事项”.卷Ⅰ(选择题)一、选择题(本题有10小题,每小题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分) 1.-3的绝对值是( ▲ )A .3B . -3C .31 D .31-2.如图,直线AB 、CD 被直线EF 所截,则∠3的同旁内角是 ( ▲ )A .∠1B .∠2C .∠4D .∠53. 小明的讲义夹里放了大小相同的试卷共10页,其中语文4页、数学3页、英语5页,他随 机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为( ▲ )A.21B.103C.52D.1014.抛物线2(2)3y x =-+的对称轴是( ▲ )A.直线x = -2 B .直线 x =2 C .直线x = -3 D .直线x =3 5.下列运算中,结果正确的是 ( ▲ )A .a a a 34=-B .5210a a a =÷C .532a a a =+D .1243a a a =⋅6. 如图所示的物体由两个紧靠在一起的圆柱组成,小刚准备画出它的三视图, 那么他所画的三视图中的俯视图应该是( ▲ ) A .两个相交的圆 B .两个内切的圆C .两个外切的圆D .两个外离的圆7.一把大遮阳伞,伞面撑开时可近似地看成是圆锥形,如图,它的母线长(第7题图)2.5米 2米(第6题图)主视方向ABCDE F O (第10题图)是2. 5米,底面半径为2米,则做这把遮阳伞需用布料的面积是( ▲ ) 平方米(接缝不计)A . π3B .π4C .π5D .π4258.已知C B A ,,是⊙O 上不同的三个点,︒=∠50AOB ,则=∠ACB ( ▲ ) A .︒50 B .︒25 C .︒50或︒130 D .︒25或︒1559.将抛物线122--=x y 向上平移若干个单位,使抛物线与坐标轴有三个交点,如果这些交点能构成直角三角形,那么平移的距离为( ▲ ) A .23个单位 B .1个单位 C .21个单位 D .2个单位10. 如图,在Rt △ABC 中,AB =CB ,BO ⊥AC 于点O ,把△ABC 折叠,使AB落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AD 交BO 于点F , 连结DE 、EF .下列结论:①tan ∠ADB =2;②图中有4对全等三角形; ③若将△DEF 沿EF 折叠,则点D 不一定落在AC 上;④BD =BF ; ⑤S 四边形DFOE = S △AOF ,上述结论中错误的个数是( ▲ )A .1个B .2个C .3个D .4个卷Ⅱ(非选择题)二、填空题(本题有6小题,每小题4分,共24分) 11.直线x y 2=经过点(-1,b ),则b = ▲ . 12.一元二次方程0)32(=+x x 的解为 ▲ .13.如图,平行四边形ABCD 中,AE 平分BAD ∠.若∠D =︒110,则∠DAE 的度数为 ▲ . 14.已知双曲线2y x=,k y x=的部分图象如图所示,P 是y 轴正半轴上一点,过点P 作A B∥x 轴,分别交两个图象于点,A B .若2PB PA =,则=k ▲ . 15. 已知a ≠0,12S a =,212S S =,322S S =,…,201220112S S =,则2012S = ▲ (用含a 的代数式表示).16. 如图,在边长为3的正方形ABCD 中,E ,F ,O 分别是AB ,CD ,AD 的中点,以O 为圆心,以OE 为半径画弧EF .P是上的一个动点,连结OP ,并延长OP 交线段BC 于点K ,过点P 作⊙O 的切线,分别 P AB xyO(第14题图)(第16题图)MAODBFKE GCKP交射线AB 于点M ,交直线BC 于点G . 若4=BMBG ,则BK ﹦ ▲ .三、解答题 (本题有8小题,共66分,各小题都必须写出解答过程) 17.(本题6分) 计算:345tan )21(2--︒+-18.(本题6分)已知:如图,菱形A B C D 中,E F ,分别是C B C D ,上的点,且CE=CF .求证:AE AF =.19.(本题8分)如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45º降为30º,已知原滑滑板AB 的长为5米,点D 、B 、C 在同一水平地面上. (1)改善后滑滑板会加长多少?(精确到0.01)(2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行? 说明理由。

ABCDEF AB C D30° 45°(参考数据:2 1.414,3 1.732,6 2.449=== )20.(本题8分)某市教育局为了解九年级学生每天体育锻炼是否超过1小时及未超过1小时的原因(分“不喜欢”、“没时间”及“其它”三类),随机抽查了部分九年级学生,绘制成如下的二份统计图.请根据图中信息,回答下列问题: (1) 该教育局共抽查了多少名学生? (2) 2011年这个地区初中毕业生约为2. 8万 人,按此调查,请估计2011年该地区初中 毕业生中每天锻炼超过1小时的学生人数.21.(本题8分)已知:如图,中,,以AB 为直径的⊙O 交BC 于点D ,过点D 作AC DF ⊥于点F ,交BA 的延长线于点E .求证:(1)BD =CD ; (2)DE 是⊙O 的切线.锻炼是否超过1小时人数扇形统计图未超过1小时超过1小50 100 150 250 300 0人数 原因不喜欢 没时间其锻炼未超过...1小时原因的频数分布直方图15050200 ︒90250(第20题图)ABC ∆AC AB =BACDEF O∙(第21题22.(本小题满分10分)为了更好治理和净化运河,保护环境,运河综合治理指挥部决定购买10台污水处理设备.现有A 、B 两种型号的设备,其中每台的价格、月处理污水量如下表.经调查:购买一台A 型设备比购买一台B 型设备多2万元,购买2台A 型设备比购买3台B 型设备少6万元.(1)求b a ,的值;(2)由于受资金限制,运河综合治理指挥部决定购买污水处理设备的资金不超过110万元,问每月最多能处理污水多少吨?23.(本小题满分10分)矩形纸片ABCD 中,12A D cm =,现将这张纸片按下列图示方式折叠,AE 是折痕.(1)如图1,P ,Q 分别为AD ,BC 的中点,点D 的对应点F 在PQ 上,求PF 和AE 的长;(2)如图2,BC CQ AD DP 31,31==,点D 的对应点F 在PQ 上,求AE 的长;(3)如图3,BC nCQ AD nDP 1,1==,点D 的对应点F 在PQ 上. ①直接写出AE 的长(用含n 的代数式表示); ②当n 越来越大时,AE 的长越来越接近于 ▲ .A 型B 型价格(万元/台) a b 处理污水量(吨/月) 220 180ABCDP Q EF(第23题图1)AB C D PQ EF(第23题图2)A BCD PQEF(第23题图3)24.(本小题满分12分)如图,在平面直角坐标系xOy 中,△ABC 的A 、B 两个顶点在x 轴上,顶点C 在y 轴的负半轴上.已知OA:OB=1:5,OB=OC ,△ABC 的面积15ABC S ∆=,抛物线2(0)y ax bx c a =++≠经过A 、B 、C 三点. (1)求此抛物线的函数表达式;(2)点P(2,-3)是抛物线对称轴上的一点,在线段OC 上有一动点M ,以每秒2个单位的速度从O 向C 运动,(不与点O,C 重合),过点M 作MH ∥BC ,交X 轴于点H ,设点M 的运动时间为t 秒,试把⊿PMH 的面积S 表示成t 的函数,当t 为何值时,S 有最大值,并求出最大值;(3)设点E 是抛物线上异于点A ,B 的一个动点,过点E 作x 轴的平行线交抛物线于另一点F . 以EF 为直径画⊙Q ,则在点E 的运动过程中,是否存在与x 轴相切的⊙Q ?若存在,求出此时点E 的坐标;若不存在,请说明理由。

yxABCOABCDEF参考答案一、选择题(本题有10小题,每题3分,共30分) ACBBC CCDAB二、填空题(本题有6小题,每4题分,共24分) 11.-2 12. 23,021-==x x 13. ︒35 14. 4- 15.1a16.43,49三、(本题有8小题,共66分,各小题都必须写出解答过程) 17. 345tan )21(2--︒+-=314-+ (3分)=2 (6分)18.证明:(1)∵ABCD 是菱形∴AB =AD ,BC=CD,∠B =∠D (2分) 又 CE =CF∴BC —CE=CD —CF即BE=DF (4分)∴△ABE ≌△ADF∴AE =AF (6分)19. (1)在中,5sin 452(m )2A C AB ==5cos 452(m )2B C A B ==(1分)中52(m )sin 30A C A D ==56(m )tan 302A C C D == (2分)2.07(m )AD AB ∴-≈改善后的滑滑板会加长2.07m . (4分) (2)这样改造能行.因为 2.59(m )CD BC -≈,而63 2.59-> (6分)20. (1)600人 (4分)(2)=⨯28000417000人 (4分)21.(1) 连结AD ,AB 是直径 ︒=∠∴90ADB (1分) AC AB = CD BD =∴ (3分) (2) 连结OD ,OD OB = ODB B ∠=∠∴ (1分)AC AB = C B ∠=∠∴ C ODB ∠=∠∴ OD ∴∥AC (3分) AC DF ⊥ DF OD ⊥∴ DE ∴是⊙O 的切线 (5分) 22.(1)根据题意,得⎩⎨⎧=-=-6232a b b a ,解得⎩⎨⎧==1012b a (3分)(2)设购买A 型设备x 台,则B 型设备)10(x -台,能处理污水y 吨 110)10(1012≤-+x x 50≤≤∴x (2分)180040)10(180220+=-+=x x x y ,y ∴而x 的增大而增大 (5分)BACDEFO∙R t ABC△R t A D C△当20001800540,5=+⨯==y x 时(吨) 所以最多能处理污水2000吨 (7分) 23.(1)PQ 是矩形ABCD 中BC AD ,的中点,︒=∠==∴90,2121APF AF AD AP ,︒=∠∴30AFP , 363=⨯=∴AP PF ︒=∠∴60FAD ,︒=∠=∠∴3021FAD DAE ,cm AD AE 3830cos =︒=∴ (3分)(2)431==AD DP ,832==∴AD AP5481222=-=∴FP作CD FG ⊥于点G ,︒=∠90AFE , EFG AFP ∠=∠∴, AFP ∆∴∽EFG ∆EFGF AFPF =∴, 4==DP GF5512==∴EF DE ,5301222=+=∴DEADAE (3分)(3)nAD nDP 121== ,nn AP )1(12-=∴nn PF AFFP 121222-=-=∴ 同理AFP ∆∽EFG ∆ EFGF AFPF =∴1212-==∴n EF DE 1221222-=+=∴n n DE AD AE当n 越来越大时,AE 越来越接近于12. (4分)24. (1)542--=x x y (4分)(2).由题意可求得直线BC:y=x-5 ∵M(0,-2t) 直线MH 平行于直线BC ∴直线MH 为y=x-2t设直线MH 与对称轴交与点D ,点D 的坐标为(2,2-2t ) ∴DP=5-2t ∴ S △pmh =21×2t(5-2t)=—2t 2+5t (0<t <25当t=45时,S 有最大值是825 (8分)(3)当点E 在x 轴下方且对称轴右侧时坐标为(2373+, 2371-) 当点E 在x 轴下方且对称轴左侧时坐标为(2375-,2371-)当点E 在x 轴上方且对称轴右侧时坐标为(2375+,2371+)ABCDP Q EFA BCD PQE FGABCD PQE FG当点E在x轴上方且对称轴左侧时坐标为(2373-,2371+)(12分)。

相关文档
最新文档