2013年初中数学中考模拟题集一合

合集下载

2013年中考数学模拟题(含答案)

2013年中考数学模拟题(含答案)

2013年中考数学模拟题一、选择题(每小题3分,共15分)1.下列运算正确的是 ( )A. x 2·x 3=x 6B. –2x -2=- 14x 2 C.(-x 2)3=x 5 D.-x 2-2x 2=-3x 2 2.在平面直角坐标系中,点P (-1,-1)关于x 轴的对称点在( ) A.第一象限 B. 第二象限C.第三象限D. 第四象限3.某班5位同学的身高(单位:厘米)分别155,160,160,161,169,这组数据中,下列说法错误的是 ( )A.众数是160B.中位数是160C.平均数是161D.方差是24.如图,PA 切⊙O 于A ,∠P=30°,OP =2,则⊙O 的半径的是 ( )A.21B.1C. 2D.45.已知圆锥的母线长为5cm ,底面半径为3cm ,则此圆锥的侧面积为 ( )A. 12πcm 2B. 15πcm 2C. 20πcm 2D. 30πcm 2二、填空题(每小题4分,共20分)6.已知代数式2x 2-x+1的值等于2,则代数式 4x 2-2x+5的值为___________.7.若反比例函数y=- x8的图象经过点(m ,-2m ),则m 的值为___________.8、十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率是________.9.如图,CD⊥AB,BE⊥AC,请你再添加一个条件:________使ΔABE≌ΔACD。

10.如图,在 RtΔABC中,∠C=90°,AB=4cm,AC=23cm,以B为圆心,以BC为半径作弧交AB于D,则阴影部分的面积是 _____cm2。

三、解答题(每小题6分,共30分)11.有这样一道题:“计算x2-2x+1x2-1÷x-1x2+x-x 的值,其中x=2007”。

甲同学把“x=2007”错抄成“x=2070”,但他的计算结果也是正确的,你说这是怎么回事?12. ,并把解集在数轴上表示出来。

2013年中考数学模拟卷(一)(有答案)

2013年中考数学模拟卷(一)(有答案)

2013年中考数学模拟卷(一)(时间:120分 满分:120分)一、选择题(本大题共8小题,每小题3分,共24分) 1.下列实际问题中的数据是近似数的有【 】①我国人口总数为:122389万人,②.某本书共有304页,③.九年级某班学生共有53人,④.圆周率 3.14π≈ ⑤.若干千克苹果平均分给若干个人,每人大约得3.33千克 A .①④⑤ B.②⑤ C.③④ D.① ② 2.下列各式运算正确的是【 】A. 235a a a +=B. 235a a a = C.235()a a = D .1025a a a ÷= 3. 把点1(23)P -,向右平移3个单位长度再向下平移2个单位长度到达点2P 处,则2P 的坐标是 【 】A.(51)-, B.(15)--, C.(55)-, D.(11)--, 4. 已知线段a 、b 、c 并有a>b>c,则组成三角形满足的条件是 【 】A .a+b>c B.a+c>b C.a-b<c D .b-c<a5.如图,为测楼房BC 的高,在距离楼房30米的A 处,测得楼顶的仰角为α,则楼高BC 的高为 【 】 A.30tan α米; B.30tan α米; C.30sin α米; D.30sin α米.6.下图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明从中抽出一张,则抽到偶数的概率是 【 】 A .13 B .12 C .34 D .237.形状相同、大小相等的两个小木块放置于桌面,其俯视图如下图所示,则其主视图是【 】8. 如图,一张矩形纸片,沿折痕CE 分别作两次不同情况的折叠,①顶点B 落在AD 边上(如图1);②顶点B 落在矩形ABCD 的内部(如图2).那么∠1+∠2与∠3+∠4的大小 关系是【 】A .∠1+∠2=∠3+∠4 B.∠1+∠2<∠3+∠4 C .∠1+∠2>∠3+∠4 D.不能确定二、填空题 (本大题共8小题,每小题3分,共24分)9. ( 在下面(Ⅰ)、(Ⅱ)两题中任选一题,若两题都做按第(Ⅰ)题计分)(Ⅰ).2sin60°·tan30°=(Ⅱ).利用计算器计算:2sin42°≈ (保留4个有效数字) 10.不等式x -3<0的最大整数解是11.如图,在△ABC 中,E 、F 分别是AB 、AC 上点,当∠1+∠2+∠B+∠C=300°时,∠A= 度.12.如图.AB 是⊙O 的切线,∠B=30°,则 OA ︰OB= 13. 写一个不等式(组),使它的整数解有且仅有:-1、-2,则这个不等式(组)可以是__________________.14. 观察下列各直角坐标系中的正方形ABCD ,点P(x,y)是四条边上的点,且x ,y 都是整数,由图中所包含的规律,可得第n 个图中满足条件的点P 个数是_____________(用含n 的代数式表示).15.如图:已知直线AB ∥y 轴,且直线AB 分别与函数2y x = (x>0)、ky x= (x>0)的图象交于A 、B 两点,并知△AOB 的面积2.5,则k=16.如图中,∠ABC=60,∠B DE=∠C=45,DF=1, AB=1+3,DE ⊥AB,分别交AB 于F,BC 于E,则下列结论: ①AF =EF ;②△ADF ≌△EBF ;③21=AE BD ; ④△DBE ∽△CEA 中,正确结论的序号.......是 (多填或错填得0分,少填酌情给分) . 三、(本大题共3小题,第17题6分,第18、19均为7分,共20分).17. 求代数式的值:)2422(4222+---÷--x x x x x x ,其中22+=x18.如图,在△ABC 中,AB=5,AD=4,BD=DC=3,且DE AB 于E ,DF ⊥AC 于F.(1)请你写出图中与A 点有关的三个不同类型的正确结论; (2)DE 与DF 在数量上有何关系?并证明之.19.某班同学上学期全部参加了捐款献爱心活动,个人捐款额见 如下统计图,资助对象金额分配情况见如下统计表(1)补填统计表中的空白;(2)求该班学生个人捐款额的中位数和众数;(3)求捐款额多于15元的学生数占全班人数的百分数; (4)根据统计表中的数据画出扇形统计图.四、(本大题共2小题,每小题8分,共16分)20. 在平行四边形ABCD 中,对角线AC ,BD 交于O 点(BD>AC ),E 、F 是BD 上的两点. (1) 当点E 、F 满足条件: 时,四边形AECF 是平行四边形(不必证明); (2)当点E 、F 满足条件: 时,四边形AECF 是矩形,并加以证明.资助对象灾区 民众 重病 学生 孤老 病者 捐助金额 (元)13518921.现有三个数:1、3、5,要添加一数,使得它们的平均数增大,平均数增大多少,只能通过如图所示的自由转盘来决定,你认为添加一个什么数可能性较大?五、(本大题共2小题,第22题8分,第23题9分,共17分)22.在⊙O中,AB是非直径弦,弦CD⊥AB,(1)当CD经过圆心时(如图1)∠AOC+∠DOB= 度;(2)当CD不经过圆心时(如图2), ∠AOC+∠DOB的度数与(1)的情况相同吗?试说明你的理由.23. 在购买课桌椅时,设购买套数为x(套),总费用为y(元).现有两种购买方案:方案一:若学校赞助出售单位10000元,则该校所购课桌椅的价格为每套40元;(总费用=赞助费+课桌椅费)方案二:购买课桌椅方式如图所示.解答下列问题:(1)方案一中,y与x的函数关系式为;方案二中,当0≤x≤200时,y与x的函数关系式为;当x>200时,y与x的函数关系式为;(2)如果购买课桌椅超过200套,你将选择哪一种方案,使总费用最省?请说明理由;(3)甲、乙两校分别采用方案一、方案二购买课桌椅共500套,花去总费用计40000元,求甲、乙两校各购买课桌椅多少套.六、(本大题共2小题,第24题9分,第25题10分,共19分)24.有一张梯形纸片ABCD,DC∥AB,∠DAB=90°,将△ADC沿AC折叠,点D恰好落在BC的中点E上(如图1)(1)求证:∠DAC=∠EAB;(2)当上底DC=10cm时,求梯形两腰AD、BC的长;(3)若过E作EF⊥AB于F,现将这张梯形纸片沿AE、EF剪成三块,然后按如图2所示拼成四边形HDAE(对应部分有相同的编号),那么四边形HDAE是什么特殊四边形(不证明)?并请你在图3中画出两条分割线(虚线),同样将梯形纸分成三块,然后拼成一个正六边形,要求仿图2方法画出拼图.25.在直角坐标系中,△ABC 的顶点坐标为A (4,6),B (2,3),C (5,3).将△ABC 绕点C 顺时针旋转180°后得到△11CB A .(1)求A 1,B 1的坐标;(2)已知坐标系中有抛物线y=ax 2-10ax+24a (a ≠0) ①求该抛物线与x 轴的交点坐标,并说明这两交点分别与A 点有何位置关系(从对称角度来说明)?②当抛物线经过点B 时,能否确定一定经过点B 1,说说你的理由;③若点P 是该抛物线的顶点,是否存在一个实数a,使△BPB 1与△BAC 相似,若存在,求出P 点坐标,若不存在,说明其理由.2013年中考数学模拟卷(一)参考答案一、选择题(本大题共8小题,每小题3分,共24分)1. A,2. B,3. C4. C,5. A ,6. C7. D ,8. A 二、填空题 (本大题共8小题,每小题3分,共24分)9. (Ⅰ). 1,(Ⅱ) 1.338 10. 2 11. 30 12. 1︰2 13.如:10250x x +≤⎧⎨+>⎩14. 4n , 15. -3 16.①②④三、(本大题共3小题,第17题6分,第18、19均为7分,共20分).17. 解: 原式=2242222+-÷--x xx x x x =错误!不能通过编辑域代码创建对象。

2013中考数学模拟测试卷

2013中考数学模拟测试卷

2013中考数学模拟测试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在题.前括号内.....【】1. -2的绝对值是A.2 B.-2 C.12- D.2±【】2. 下列计算正确的是A.3x2·4x2=12x2 B.x3·x5=x15 C.x4÷x=x3 D.(x5)2=x7【】3. 某同学在“百度”搜索引擎中输入“魅力南通”,能搜索到与之相关的结果个数约为3930000,这个数用科学记数法表示为A.0.393×107 B.393×104C.39.3×105 D.3.93×106【】4. 若一个多边形的内角和是900°,则这个多边形的边数是A.5 B.6 C.7 D.8【】5. 如图所示,△ABC的顶点是正方形网格的格点,则sin A的值为A.12B.5C.10D.25【】6. 如图,点A、C、B、D分别是⊙O上四点,OA⊥BC,∠AOB=50°则∠ADC的度数为A.20° B.25° C.40° D.50°【】7. 如图所示的工件的主视图是【】8. 某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:则这11双鞋的尺码组成的一组数据中,众数和中位数分别是A.24.5,24.5 B.24.5,25 C.25,24.5 D.25,25尺码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 1A.B.C.D.(第5题)【 】9. 下列轴对称图形中,只用一把无刻度的直尺不能..画出对称轴的是 A .菱形B .矩形C .等腰梯形D .正五边形【 】10. 如图,已知在Rt△ABC 中,AB =AC =2,在△ABC 内作第一个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ;再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形……依次进行下去,则第n 个内接正方形的边长为A .21()32n ⋅B .221()2n ⋅C .121()32n -⋅ D . 1221()2n -⋅二、填空题:本大题共8小题,每小题3分,共24分.请把最后结果填在题中横线上. 11. 计算:327-= .12. 将一直角三角板与两边平行的纸条如图所示放置,若∠1=53°,则∠2= °. 13. 已知分式21x x -+的值为0,那么x 的值为 . 14. 一个圆锥的母线长为4,侧面积为12π,则这个圆锥的底面圆的半径是 . 15. 如图,函数2y x =和5y ax =+的图象相交于A (m ,3),则不等式25x ax <+的解集 为 .16. 设m ,n 是方程220120x x --=的两个实数根,则2m n +的值为 . 17. 如图,已知正方形ABCD 的边长为2,对角线AC 、BD 相交于点O ,AE 平分∠BAC 交 BD 于点E , 则BE 的长为 . 18. 如图,点A 是双曲线4y x=在第一象限上的一动点,连接AO 并延长交另一分支于点B , 以AB 为斜边作等腰Rt △ABC ,点C 在第二象限,随着点A 的运动,点C 的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为 .A BCD EFGH I K J PQ (第10题)(第6题)OD C B12(第12题)三、解答题:本大题共10小题,共计96分.解答时应写出文字说明、证明过程或演算步骤.19.(本题满分10分) (1)计算:0(3)-+12cos30°-11()5- (2)解方程组:38 53 4 x y x y +=⎧⎨-=⎩①②20.(本题满分8分)化简分式222421444a aa a a -÷--++,并选取一个你认为合适的整数a 代入求值.y AOx(第15题)xBAC(第18题)O y(第17题)OE小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数; (3)请估计该市这一年(365天)达到优和良的总天数.22.(本题满分8分)如图,AB 与⊙O 相切于点C ,OA =OB .(1)如图①,若⊙O 的直径为8cm ,AB =10cm ,求OA 的长(结果保留根号); (2)如图②,OA 、OB 与⊙O 分别交于点D 、E ,连接CD 、CE ,若四边形ODCE 为菱形,求ODOA的值.OA B C 图 ①ADCBOE图 ②本市若干天空气质量情况扇形统计图优良 64%轻微污染轻度污染 中度污染 重度污染轻微 污染 轻度 污染 天数(天)20 15105832311中度 污染 重度污染空气质如图,在边长为1的正方形组成的网格中,△ABC的顶点和O点均在格点上.(1)以点O为位似中心,在网格中将△ABC放大为原来的2倍,得到△A′B′C′;(2)△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.24.(本题满分8分)如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.DF甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为-7,-1,3,乙袋中的三张卡片所标的数值为-2,1,6,先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y 表示取出卡片上的数值.把x、y分别作为点A的横坐标和纵坐标.(1)用列表或画树形图的方法写出点A(x,y)的所有情况;(2)求点A落在直线2上的概率.y x26.(本题满分10分)甲、乙两组同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)直接写出甲组加工零件的数量y与时间x之间的函数关系式▲;(2)求乙组加工零件总量a的值;(3)甲、乙两组加工出的零件合在一起装箱,每满300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t >0)秒.(1)当点Q从B点向A点运动时(未到达A点),若△APQ∽△ABC,求t的值;(2)伴随着P,Q两点的运动,线段PQ的垂直平分线为直线l.①当直线l经过点A时,射线QP交AD边于点E,求AE的长;②是否存在t的值,使得直线l经过点B?若存在,请求出所有t的值;若不存在,请说明理由.如图,二次函数212y x mx n =-++的图象与y 轴交于点N ,其顶点M 在直线32y x =-上运动,O 为坐标原点. (1)当m =-2时,求点N 的坐标;(2)当△MON 为直角三角形时,求m 、n 的值;(3)已知△ABC 的三个顶点的坐标分别为A (-4,2),B (-4,-3),C (-2,2),当抛物线212y x mx n =-++在对称轴左侧的部分与△ABC 的三边有公共点时,求m的取值范围.(第2问图)。

2013年中考数学模拟试卷

2013年中考数学模拟试卷

2013年中考数学模拟试卷2013年中考数学模拟试卷一一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的。

1、的值是 4A、4B、2C、-2D、?22A B C Dx-1?3 23、不等式组的解集在数轴上表示正确的是x,-1A B C D(第3题图)4、如图,所给图形中是中心对称图形但不是轴对称图形的是A B C D 5、过度包装既浪费资源又污染环境(据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为5657A、 B、 C、 D、 0.312,103.12,103.12,1031.2,106、在共有15人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的A、平均数B、众数C、中位数D、方差7、下列一元二次方程两实数根和为-4的是2222A、x+2x-4=0 B、x-4x+4=0 C、x+4x+10=0 D、x+4x-5=08、如图,在四边形ABCD中,DC?AB,CB?AB,AB=AD,1CD=AB,点E、F分别为AB,AD的中点,则?AEF与多边形2BCDFE的面积之比为1111 A、 B、C、D、7654川眉山,11,3分)圆锥底面圆的半径为1cm,母线长为6cm,则圆锥侧面展9、(2012四开图的圆心角是( )0000A(30 B(60 C(90 D(12010、一个由小菱形组成的装饰链,断去了一部分,剩下部分如图所示,则断去部分的小菱形的个数可能是A、3B、4C、5D、6yDDB C HF O AF Gx EC BAE4y,y,x,311、如图,一次函数的图象与轴,轴交于A,B两点,与反比例函数的yx xy图象相交于C,D两点,分别过C,D两点作轴,轴的垂线,垂足为E,F,连接CF,xDE(有下列四个结论:??CEF与?DEF的面积相等;??AOB??FOE;ACBD,??DCE??CDF;?。

2013年数学中考模拟试题及答案

2013年数学中考模拟试题及答案

2013年中考数学模拟试题一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.- 13的倒数是A .-3B .3C .- 13D .132.下列各式运算中,正确的是A .222()a b a b +=+ B3=C .3412a a a ⋅=D .)0(6)3(22≠=a a a3.下列几何体中,主视图、左视图、俯视图完全相同的是 A. 圆柱 B. 圆锥 C. 球 D. 棱锥 4.下列说法正确的是A .买一张福利彩票一定中奖,是必然事件.B .买一张福利彩票一定中奖,是不可能事件.C .抛掷一个正方体骰子,点数为奇数的概率是13. D .一组数据:1,7,3,5,3的众数是3. 5.函数y =中自变量的取值范围在数轴上表示为6.在□ABCD 中,点E 为AD 的中点,连接BE ,交AC 于点F ,则=CFAFA .1:2B .1:3C .2:3D .2:5第7题图7.如图,在△ABC 中,AB = AC ,AB = 8,BC = 12以AB 、AC 为直径作半圆,则图中阴影部分的面积是A.64π-B .1632π-C.16π-.16π-8.如图,点P 按A →B →C →M 的顺序在边长为1的正方形边上运动,M 是CD 边上的中点。

设点P 经过的路程x 为自变量,△APM 的面积为y ,则函数y 的大致图像是二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分. 9.我国公安部交管局公布的数据显示,截至2012年初,全国机动私家车保有量达0.195亿辆,将0.195亿辆用科学记数法表示应是 辆(结果保留2个有效数字) 10.分解因式:=+-y xy y x 22 。

11.= . 12.如果圆锥的底面周长为20πcm ,侧面展开后所得的扇形的圆心角是120º,则该圆锥的侧面积是___________.(结果保留π) 13.如图,直线a ∥b ,l 与a 、b 交于E 、F 点,PF 平分∠EFD 交a 于P 点,若∠1 = 70︒,则∠2 = . 14.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,21F E DblPa2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________;15.如图,在等边△ABC 中,9=AC ,点O 在AC 上,且3=AO ,点P 是AB 上一动点,连接OP ,以O 为圆心,OP 长为半径画弧交BC 于点D , 连接PD ,如果PD PO =,那么AP 的长是 .16.如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆的面积为1S ,322B D C ∆的面积为2S ,……,1n n n B D C +∆的面积为n S ,则n S = (用含n 的式子表示).三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.17.化简求值 (本题满分6分) 。

2013年中考数学模拟试卷(一、二)(A3版)-----

2013年中考数学模拟试卷(一、二)(A3版)-----

2013年中考数学模拟试卷(一)(满分120分,考试时间100分钟)一、选择题(每小题3分,共24分)1.9的平方根是【】A.3 B.-3 C.±3 D.62.某种微粒子,测得它的质量为0.000 067 46克,这个质量用科学记数法表示(保留三个有效数字)应为【】A.6.75×10-5克B.6.74×10-5克C.6.74×10-6克D.6.75×10-6克3.下列图形中,既是轴对称图形又是中心对称图形的共有【】A.1个B.2个C.3个D.4个4.某市5月上旬前五天的最高气温如下(单位:°C):28,29,31,29,33,对这组数据,下列说法错误的是【】A.平均数是30 B.众数是29 C.中位数是31 D.极差是55.如图,二次函数2y ax bx c=++的图象经过(-1,1),(2,-1)两点,下列关于这个二次函数的叙述正确的是【】A.当x=0时,y的值大于1 B.当x=3时,y的值小于0C.当x=1时,y的值大于1 D.y的最大值小于水平面主视方向第5题图第6题图第7题图6.两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是【】A.两个外离的圆B.两个相交的圆C.两个外切的圆D.两个内切的圆A.30°B.45°C.60°D.90°FEDA第8题图第10题图第13题图二、填空题(每小题3分,共21分)∠AEC=_________.11.圆锥的底面圆直径和母线长均为80cm,则它的侧面展开图的圆心角是_________.12.某市初中毕业男生体育测试项目有四项,其中“立定跳远”、“1 000米跑”、“掷实心球”为必测项目,另一项从“篮球运动”或“一分钟跳绳”中选一项测试.小亮、小明和大刚从“篮球运动”或“一分钟跳绳”中选择同一个测试项目的概率是__________.16.(8分)先化简2111122xx x x⎛⎫-÷⎪-+-⎝⎭,然后从-2≤x≤2的范围内选择一个合适的整数作为x的值代入求值.17.(9分)为了更好地宣传吸烟的危害,某中学九年级一班数学兴趣小组设计了如下调查问卷,调查了部分吸烟人群,并将调查结果绘制成统计图.42%调查结果的扇形统计图调查结果的条形统计图ACBDE根据以上信息,解答下列问题:(1)本次接受调查的总人数是_________人,并把条形统计图补充完整.(2)在扇形统计图中,C选项的人数百分比是________,E选项所在扇形的圆心角的度数是________.(3)若某地区约有烟民14万人,试估计对吸烟有害持“无所谓”态度的约有多少人?M A E F D B C 18.(9分)已知:如图,四边形ABCD 是正方形,BD 是对角线,BE 平分∠DBC 交DC 于E 点,交DF 于M 点,F 是BC 延长线上一点,且CE =CF . (1)求证:BM ⊥DF ;(2)若正方形ABCD 的边长为2,求ME ·MB 的值.19.(9分)甲、乙两地相距300km ,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA 表示货车离甲地的距离y (km )与时间x (h )之间的函数关系,折线BC -CD -DE 表示轿车离甲地的距离y (km )与时间x (h )之间的函数关系.请根据图象,解答下列问题:(1)线段CD 表示轿车在途中停留了________h ;(2)求线段DE 对应的函数解析式;(3)求轿车从甲地出发后经过多长时间追上货车.20.(9分)如图所示,当小华站立在镜子EF 前的A 处时,他看自己的脚在镜中的像的俯角为45°;如果小华向后退0.5米到B 处,这时他看自己的脚在镜中的像的俯角为30°.求小华的眼睛到地面的距离.(结果精确到0.1米,参考数据1.73)21.(10分)某商店为了抓住文化艺术节的商机,决定购进A ,B 两种艺术节纪念品.若购进A 种纪念品8件,B 种纪念品3件,需要950元;若购进 A 种纪念品5件,B 种纪念品6件,需要800元. (1)求购进A ,B 两种纪念品每件各需多少元.(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这 100件纪念品的资金不少于7 500元,但不超过7 650元,那么该商店共有几种进货方案?(3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?22.(10分)在正方形ABCD 中,对角线AC ,BD 交于点O ,点P 在线段BC 上(不与点B 重合),∠BPE =12∠ACB ,PE 交BO 于点E ,过点B 作BF ⊥PE ,垂足为F ,交AC 于点G . (1)当点P 与点C 重合时(如图1),求证:△BOG ≌△POE ; (2)通过观察、测量,猜想:BF PE=________,并结合图2证明你的猜想;(3)把正方形ABCD 改为菱形,其他条件不变(如图3),若∠ACB =α,求BF PE的值.(用含α的式子表示)(1)求过点A ,O ,B 的抛物线解析式.(2)在(1)中抛物线的对称轴上是否存在点M ,使△AOM 的周长最小?若存在,求出点M 的坐标;若不存在,请说明 理由.(3)在x 轴下方的抛物线上是否存在一点P ,过点P 作x 轴 的垂线,交直线AB 于点E ,线段OE 把△AOB 分成两个三角 形,使其中一个三角形的面积与四边形BPOE 的面积之比为 2:3?若存在,求出点P 的坐标;若不存在,请说明理由.y11ACD E FG OAD E F G OOGF ED BCA2013年中考数学模拟试卷(二)(满分120分,考试时间100分钟)一、选择题(每小题3分,共24分)1. 某市1月份某天的最高气温是5℃,最低气温是-3℃,那么这天的温差(最高气温减最低气温)是【 】A .-2℃B .8℃C .-8℃D .2℃2. 下列四个图形中,既是轴对称图形又是中心对称图形的有【 】A .4个B .3个C .2个D .1个3. 某市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵, 则根据题意列出方程正确的是【 】 A .5(211)6(1)x x +-=- B .5(21)6(1)x x +=- C .5(211)6x x +-=D .5(21)6x x +=4. 一次函数|1|y mx m =+-的图象过点(0,2),且y 随x 的增大而增大,则m =【 】A .-1B .3C .1D .-1或35. 如图所示,把一张矩形纸片对折,折痕为AB ,再把以AB 的中点O 为顶点的平角∠AOB 三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O 为顶点的等腰三角形,那么剪出的等腰三角形全部展开铺平后得到的平面图形一定是【 】BOA BAAA .正三角形B .正方形C .正五边形D .正六边形6. 在平面直角坐标系中,对于平面内任意一点(x ,y ),若规定以下两种变换:①f (x ,y ) = (y ,x ),如f (2,3) = (3,2);②g (x ,y ) = (-x ,-y ),如g (2,3) =(-2,-3).按照以上变换有f (g (2,3)) =f (-2,-3) =(-3,-2),那么 g (f (-6,7)) =【 】A .(7,6)B .(7,-6)C .(-7,6)D .(-7,-6)7. 如图,等边△ABC 的周长为6π,半径为1的⊙O 从与AB 相切于点D 的位置出发,在△ABC 外部按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,则⊙O 自转了【 】 A .2周 B .3周 C .4周 D .5周第7题图 第8题图8. 如图,直角梯形AOCD 的边OC 在x 轴上,O 为坐标原点,CD 垂直于x 轴,点D 的坐标为(5,4),AD =2.若动点E ,F 同时从点O 出发,点E 沿折线OA -AD -DC 运动,到达C 点时停止;点F 沿OC 运动,到达C 点时停止,它们运动的速度都是每秒1个单位长度.设点E 运动x 秒时,△EOF 的面积为y (平方单位),则y 关于x 的函数图象大致为【 】二、填空题(每小题3分,共21分)9. x 的取值范围是_________.10. 如图,E ,F 分别是正方形ABCD 的边BC ,CD 上的点,BE =CF ,连接AE ,BF .将△ABE 绕正方形的对角线交点O按顺时针方向旋转到△BCF ,则旋转角的度数为_________.F BN CO 第10题图 第12题图11. 一个盒子里有完全相同的三个小球,球上分别标有数字-1,1,2.随机摸出一个小球(不放回),其数字记为p ,再随机摸出另一个小球,其数字记为q ,则满足关于x 的方程20x px q ++=有实数根的概率是_________.12. 如图,矩形OABC 内接于扇形MON ,当CN =CO 时,∠NMB 的度数是 .13. 如图1,用8个同样大小的小立方体粘成一个大立方体,得到的几何体的三视图如图2所示,若小明从这8个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图仍是图2,则他取走的小立方体最多可以是_____个.14. 如图,□ABCD 的顶点A ,C 在双曲线11y x =-上,B ,D 在双曲线22y x=上,122k k =(k 1>0),AB ∥y 轴,S □ABCD =24,则k 1=_________.15. 已知:在△ABC 中,AC =a ,AB 与BC 所在直线成45°角,AC 与BC cosC=),则A C 边上的中线长是____________.三、解答题(本大题共8小题,满分75分)16. (8分)已知x 是一元二次方程x 2-2x +1=0的根,求代数式2352362x x x x x -⎛⎫÷+- ⎪--⎝⎭的值.17.(9分)九(1)班同学为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理:请解答以下问题:(1)把上面频数分布直方图补充完整,并计算:a=_______,b=________;(2)求该小区用水量不超过15t的家庭占被调查家庭总数的百分比;(3)若该小区有1 000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?18.(9分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与B C相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.A B MODC19.(9分)如图,四边形ABCD是正方形,其中A(1,1),B(3,1),D(1,3).反比例函数myx=(x>0)的图象经过对角线BD的中点M,与BC,CD的边分别交于点P,Q.(1)直接写出点M,C的坐标;(2)求直线BD的解析式;(3)线段PQ与BD是否平行?并说明理由.(10分)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.22.(10分)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm.现有两个动点P,Q分别从点A和点B同时出发,其中点P以1厘米/秒的速度沿AC向终点C运动;点Q以1.25厘米/秒的速度沿BC向终点C运动.过点P作PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0).(1)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行,为什么?(2)连接DP,当t为何值时,四边形EQDP能成为平行四边形?(3)当t为何值时,△EDQ为直角三角形?23.(11分)已知抛物线y=ax2+bx+c(a>0)的图象经过点B(12,0)和C(0,-6),对称轴为直线x=2.(1)求该抛物线的解析式.(2)点D在线段AB上,且AD=AC,若动点P从A出发沿线段AB以每秒1个单位长度的速度匀速运动,同时另一动点Q 以某一速度从C出发沿线段CB匀速运动,是否存在某一时刻,使线段PQ被直线CD垂直平分?若存在,请求出此时两点的运动时间t(秒)和点Q的运动速度;若不存在,请说明理由.(3)在(2)的结论下,直线x=1上是否存在点M,使△MPQ为等腰三角形?若存在,请求出所有点M的坐标;若不存在,请说明理由.。

2013年中考模拟数学试卷数学答案

2013年中考模拟数学试卷数学答案
(2)由全等及三线合一得AO⊥BC,(5分)
∴∠DBC=∠BAO,∵BD是直径,∴∠BCD=∠ABO=90°,
∴△BDC∽△AOB,(6分)∴ , (7分)
22.(1)设A组的频数是x,那么B组的频数为5x,那么x+5x=12,x=2,(2分)
12÷(1-40%-28%-8%)=50(4分)
(2) (7分)(3)(28%+8%)×500=180(户)(9分)
(2)S1=4m-4(m-4)=16,(5分)
S2=S梯形AECD-S△CEEF= =16,∴S1=S2(8分)
(求S2时也可以将两个三角形的面积一一求出,再求差)
.(3)∵△AEG与△FDG面积和为24,差为16,∴△AEG的面积=20(10分)
∴ ,∴AG=10,∵△FDG∽△FCE,∴ ,
m1=12,m2=6(舍去),∴tan∠BAE= (12分)
∴ ,即
∴ 或 .(14分)
19.解:原式= (4分)= (6分)
20. → (2分)→
→ (5分)→经检验,原方程的解是 (7分)
21.解:(1)证明:连结OC,
∵OB=OC,AB=AC,OA=OA,∴△ABO≌△ACO,(2分)
∴∠ABO=∠ACO,∵AC是切线,∴∠ACO=90°,
∴∠ABO=90°,∴AB是⊙O的切线.(4分)
26.(1)第一条抛物线的解析式是 (3分)
(2)第n个三角形的面积是 ,当n=1,2,5时为整数(6分)
(3)设第n条抛物线的解析式为 ,(7分)
又∵过点 ∴ ,设 ,∴
= ,∴
,n=2.(10分)
(4)作第m个三角形和第n个三角形底边上的高AmC和AnD,
∵顶角互补,∴底角互余.即△AmCBm-1∽△AnDBn-1.

2013 年中考数学模拟试卷参考答案

2013 年中考数学模拟试卷参考答案

1 1 1 1 6( x 2) 2 x x(6 x) x 2 x 6 2 2 2 2 当 4 x 6 时,△EPQ 的面积等于梯形 ABPQ 的面积减去△AEQ 和△BEP 的面积 1 1 1 y 4( x 10 x) 2(10 x) 2 x 10 2 2 2 y
1 2
3 2
15. 4 3 3或4 3 3 三、解答题(本大题共 11 小题,共 88 分) 17(本题 6 分) 解:△= 62 4 7 8
16. 2 2 2或2 - 2 2
x1
6 8 6 8 3 2, x2 3 2 2 2
18(本题 9 分)
2013 年中考数学模拟试卷参考答案
一、选择题(每小题 2 分,共 12 分) 题号 答案 1 B 2 D 3 D 4 B 5 D 6 B
二、填空题(每小题 2 分,共 20 分) 7. 4 11.9.0 8.圆柱体(此题答案不唯一) 12.( 1,3 ) 9. 1或 1 13. 10. 6 14. m 1且m
4x 1 x 解不等式 3 4 x 6 x 6
得 3 x 1 满足条件的整数 a 的值为-2、-1、0、1 但由
a2 1 a 2 2a 1 1 知 a 1 a2 a a
a -1、0、1
所以满足条件的整数 a 的值只有-2
a2 1 a 2 2a 1 1 a 1 a2 a a (a 1) 2 1 (a 1)(a 1) a 1 a (a 1) a (a 1) 1 a 1 a (a 1) a 1 1 a 1 a a a 1 = 当a 2时,原式= 1
y1 950 250 x, y2 300( x 0.5)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年初中数学中考模拟题集一合数 学 试 卷*考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分) 1.|65-|=( )A .65+B .65-C .-65-D .56- 2.如果一个四边形ABCD 是中心对称图形,那么这个四边形一定是( ) A .等腰梯形 B .矩形 C .菱形 D .平行四边形 3. 下面四个数中,最大的是( )A .35-B .sin88°C .tan46°D .215- 4.如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是( ) A .4 B .5 C .6 D .10 5.二次函数y=(2x-1)2+2的顶点的坐标是( ) A .(1,2) B .(1,-2) C .(21,2) D .(-21,-2) 6.足球比赛中,胜一场可以积3分,平一场可以积1分,负一场得0分,某足球队最后的积分是17分,他获胜的场次最多是( )A .3场B .4场C .5场D .6场7. 如图,四边形ABCD 的对角线AC 和BD 相交于点E ,如果△CDE 的面积为3,△BCE 的面积为4,△AED 的面积为6,那么△ABE 的面积为( )A .7B .8C .9D .108. 如图,△ABC 内接于⊙O,AD 为⊙O 的直径,交BC 于点E ,若DE =2,OE =3,则tanC·tanB = ( )A .2B .3C .4D .5二、填空题(每小题3分,共24分)9.写出一条经过第一、二、四象限,且过点(1-,3)的直线解析式 .10.一元二次方程x2=5x的解为 .11. 凯恩数据是按照某一规律排列的一组数据,它的前五个数是:269,177,21,53,31,按照这样的规律,这个数列的第8项应该是 .12.一个四边形中,它的最大的内角不能小于 .13.某学习小组中共有12名同学,其中男生有7人.现在要从这12名同学中抽调两名同学去参加数学知识竞赛,抽调的两名同学都是男生的概率是 .14. 如图,△ABC 中,BD 和CE 是两条高,如果∠A =45°,则BC DE= . 15.如图,已知A 、B 、C 、D 、E 均在⊙O 上,且AC 为⊙O 的直径,则∠A +∠B +∠C =__________度.16.如图,矩形ABCD 的长AB =6cm ,宽AD =3cm.O 是AB 的中点,OP ⊥AB ,两半圆的直径分别为AO 与OB .抛物线y=ax2经过C 、D 两点,则图中阴影部分 的面积是 cm 2.三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分) 17.计算:01)32009(221245cos 4)21(8--⨯÷-︒-+-18.计算:22111211x x x x ⎛⎫-+÷ ⎪-+-⎝⎭CA19.已知:如图,梯形ABCD 中,A B ∥CD ,E 是BC 的中点,直线AE 交DC 的延长线于点F .(1)求证:△ABE ≌△FCE ; (2)若BC ⊥AB ,且BC =16,AB =17,求AF 的长.20.观察下面方程的解法 x4-13x2+36=0解:原方程可化为(x2-4)(x2-9)=0 ∴(x+2)(x-2)(x+3)(x-3)=0 ∴x+2=0或x-2=0或x+3=0或x-3=0 ∴x1=2,x2=-2,x3=3,x4=-3 你能否求出方程x2-3|x|+2=0的解?四、(每小题10分,共20分)21.(1)顺次连接菱形的四条边的中点,得到的四边形是.(2)顺次连接矩形的四条边的中点,得到的四边形是.(3)顺次连接正方形的四条边的中点,得到的四边形是.(4)小青说:顺次连接一个四边形的各边的中点,得到的一个四边形如果是正方形,那么原来的四边形一定是正方形,这句话对吗?请说明理由.22.下面的表格是李刚同学一学期数学成绩的记录,根据表格提供的信息回答下面的问题(1)李刚同学6次成绩的极差是.(2)李刚同学6次成绩的中位数是.(3)李刚同学平时成绩的平均数是.(4)如果用右图的权重给李刚打分,他应该得多少分?(满分100分,写出解题过程)23.小明,小亮和小强都积极报名参加校运动会的1500米比赛,由于受到参赛名额的限制,三人中只有一人可以报名,体委权衡再三,决定用抽签的方式决定让谁参加。

他做了3张外表完全相同的签,里面分别写了字母A ,B ,C ,规则是谁抽到“A ”,谁就去参赛,小亮认为,第一个抽签不合算,因为3个签中只有一个“A ”,别人抽完自己再抽概率会变大。

小强认为,最后抽不合算,因为如果前面有人把“A ”抽走了,自己就没有机会了。

小明认为,无论第几个抽签,抽到A 的概率都是31。

你认为三人谁说的有道理?请说明理由.24.甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正北方向行进,1小时后,甲船接到命令要与乙船会和,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离(2)甲轮船后来的速度.25.王老师给出了一个二次函数的若干特点,要求甲、乙、丙三名同学按照这些特点求出它的解析式并画出它的图像,然后根据图像再说出一些特征.甲同学首先求出解析式、画完图像并回答,他说:①抛物线的顶点为(1,-8);②抛物线与y轴的交点在x轴的下方;③抛物线开口向上;乙同学第二个求出解析式并画出图像,他回答:①抛物线的对称轴为直线x=1;②抛物线经过四个象限;③抛物线与x轴的两个交点间的距离为6;丙同学最后一个完成任务,他说了他的看法:①甲、乙的各种说法都不对;②抛物线过(-1,5)和(5,5);③抛物线不过(-1,0).王老师听了他们的意见,作出了评价,他说:“与正确的函数的图像比较,你们三个人中,有一个人三句话都回答正确了,还有一个同学有两句话是对的,另外一个同学很遗憾,回答得都不对”请你根据王老师的评价,分析一下,哪一位同学的说法都是正确的,并根据正确的说法,求出这条抛物线的解析式.26.【探究】如图,四边形ABCD中,AB∥CD,E为AD的中点,若EF∥AB 求证:BF=CF【知识应用】如图,坐标平面内有两个点A和B其中点A的坐标为(x1,y1),点B的坐标为(x2,y2),求AB的中点C的坐标【知识拓展】在上图中,点A的坐标为(4,5),点B的坐标为(-6,-1),分别在x轴和y轴上找一点C和D,使得以A、B、C、D为顶点的四边形是平行四边形,求出点C和点D的坐标.2009年中考模拟题 数学试题参考答案及评分标准一、选择题(每小题3分,共24分)1.D; 2.D ; 3.C ;4.C;5.C; 6.C ;7.B;8.C . 二、填空题(每小题3分,共24分)9.y=-x+2等; 10.x1=0,x2=5; 11.133; 12.90°; 13.227; 14.2115.90;16.π49三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分) 17.解:原式=222224222⨯⨯-⨯-+ -1 ...............4分 =822222--+ -1=-7 .............................6分18.计算:22111211x x x x ⎛⎫-+÷ ⎪-+-⎝⎭ 解:原式=)1(])1()1)(1(1[2-⨯--++x x x x ).............................4分 xx x x x x 211)1(]111[=++-=-⨯-++................................8分19.(1)证明: ∵E 为BC 的中点 ∴BE =CE ∵AB ∥CD∴∠BAE =∠F ∠B =∠FCE∴△ABE ≌△FCE .............................4分 (2)解:由(1)可得:△ABE≌△FCE∴CE=AB=15,CE=BE=8,AE=EF∵∠B=∠BCF=90°根据勾股定理得AE=17∴AF=34.............................8分20.解:原方程可化为|x|2-3|x|+2=0.............................3分∴(|x|-1)(|x|-2)=0∴|x|=1或|x|=2∴x=1,x=-1,x=2,x=-2 .............................10分四.(每小题10分,共20分)21.解:(1)矩形;(2)菱形,(3)正方形.............................6分(4)小青说的不正确如图,四边形ABCD中AC⊥BD,AC=BD,BO≠DO,E、F、G、H分别为AD、AB、BC、CD的中点显然四边形ABCD不是正方形但我们可以证明四边形ABCD是正方形(证明略)所以,小青的说法是错误的..............................10分22.解:(1)10分.............................2分(2)90分.............................4分(3)89分.............................6分(4)89×10%+90×30%+96×60%=93.5李刚的总评分应该是93.5分..............................10分23.小强和小亮的说法是错误的,小明的说法是正确的....................2分不妨设小明首先抽签,画树状图由树状图可知,共出现6种等可能的结果,其中小明、小亮、小强抽到A 签的情况都有两种,概率为31,同样,无论谁先抽签,他们三人抽到A 签的概率都是31.所以,小明的说法是正确的..............................12分24.解:(1)作BD ⊥AC 于点D由题意可知:AB =30×1=30,∠BAC =30°,∠BCA =45°在Rt △ABD 中∵AB =30,∠BAC =30°∴BD =15,AD =ABcos30°=153在Rt △BCD 中,∵BD =15,∠BCD =45°∴CD =15,BC =152∴AC =AD +CD =153+15即A 、C 间的距离为(153+15)海里.............................6分(2)∵AC =153+15轮船乙从A 到C 的时间为1515315 =3+1由B 到C 的时间为3+1-1=3∵BC =152∴轮船甲从B 到C 的速度为3215=56(海里/小时)答:轮船甲从B到C的速度为56海里/小时..............................12分七、25.解:(1)老师说,三个同学中,只有一个同学的三句话都是错的,所以丙的第一句话和老师的话相矛盾,因此丙的第一句话是错的,同时也说明甲、乙两人中有一个人是全对的;............................2分(2)如果丙的第二句话是正确的,那么根据抛物线的对称性可知,此抛物线的对称轴是直线x=2,这样甲的第一句和乙的第一句就都错了,这样又和(1)中的判断相矛盾,所以乙的第二句话也是错的;根据老师的意见,丙的第三句也就是错的.也就是说,这条抛物线一定过点(-1,0);.............................6分(3)由甲乙的第一句话可以断定,抛物线的对称轴是直线x=1,抛物线经过(-1,0),那么抛物线与x轴的两个交点间的距离为4,所以乙的第三句话是错的;由上面的判断可知,此抛物线的顶点为(1,-8),且经过点(-1,0)设抛物线的解析式为:y=a(x-1)2-8∵抛物线过点(-1,0)∴0=a(-1-1)2-8解得:a=2∴抛物线的解析式为y=2(x-1)2-8即:y=2x2-4x-6.............................12分八、(本题14分)26.【探究】证明:过点F作GH∥AD,交AB于H,交DC的延长线于点G∵AH∥EF∥DG,AD∥GH∴四边形AHFE和四边形DEFG都是平行四边形∴FH=AE,FG=DE∵AE=DE∴FG=FH∵AB∥DG∴∠G=∠FHB,∠GCF=∠B∴△CFG≌△BFH∴FC=FB.............................4分【知识应用】过点C作CM⊥x轴于点M,过点A作AN⊥x轴于点N,过点B作BP⊥x轴于点P则点P的坐标为(x2,0),点N的坐标为(x1,0)由探究的结论可知,MN=MP∴点M的坐标为(221xx+,0)∴点C的横坐标为221xx+同理可求点C的纵坐标为221yy+∴点C的坐标为(221xx+,221yy+).............................8分【知识拓展】当AB是平行四边形一条边,且点C在x轴的正半轴时,AD与BC互相平分,设点C的坐标为(a,0),点D的坐标为(0,y)由上面的结论可知:-6+a=4+0,-1+0=5+b∴a=10,b=-6∴此时点C的坐标为(10,0),点D的坐标为(0,-6)同理,当AB是平行四边形一条边,且点C在x轴的负半轴时求得点C的坐标为(-10,0),点D的坐标为(0,6)当AB是对角线时点C的坐标为(-2,0),点D的坐标为(0,4).............................14分。

相关文档
最新文档