2016_2017学年高中数学第三章推理与证明3.2数学证明学业分层测评含解析

合集下载

高中数学复习讲义

高中数学复习讲义

高中数学复习讲义一、代数1.1 一元一次方程1.2 一元二次方程1.3 平面直角坐标系1.4 解析几何与向量1.5 指数与对数1.6 三角函数与三角恒等变换1.7 数列与数学归纳法二、几何2.1 平面与立体几何基本概念2.2 直线与角2.3 三角形与三角形的性质2.4 四边形与四边形的性质2.5 圆与圆的性质2.6 空间几何与立体几何三、概率与统计3.1 随机事件与概率的计算3.2 组合与排列3.3 抽样与统计四、数学思想方法4.1 推理与证明4.2 逻辑与谬误4.3 数学建模与解题策略五、应用题本讲义将针对高中数学涵盖的主要内容进行复习总结,旨在帮助大家全面复习数学知识,掌握解题方法和技巧,为高考做好充分准备。

一、代数1.1 一元一次方程一元一次方程是数学中最基础的方程形式之一,解一元一次方程需要掌握方程的基本性质和求解方法。

我们将重点讲解常见的一元一次方程类型,并提供解题思路和方法。

掌握一元一次方程的求解技巧对于解决实际问题具有重要意义。

1.2 一元二次方程一元二次方程在高中数学中起着重要的作用,解一元二次方程需要掌握配方法、因式分解法以及求根公式等知识点。

我们将介绍一元二次方程的基本概念和解法,并通过大量例题帮助大家提高解题能力。

1.3 平面直角坐标系平面直角坐标系是研究平面几何和解析几何的基础,了解坐标系的性质和坐标变换的规律对于解决几何问题至关重要。

我们将详细介绍直角坐标系的相关概念和性质,并结合实例进行讲解,帮助大家掌握平面直角坐标系的应用。

1.4 解析几何与向量解析几何是将代数与几何相结合的重要数学分支,研究空间中点、直线、平面等几何对象的解析表达和性质。

向量是解析几何中的重要工具,学习向量的表示方法和运算规律有助于解决几何问题。

我们将讲解解析几何基本概念和向量的数学性质,并通过练习题提高大家的解题能力。

1.5 指数与对数指数和对数是高中数学中重要的数学工具和运算方法,涉及到数学表达式的简化、方程的求解等。

18学年高中数学第三章直线与方程3.2.2直线的两点式方程3.2.3直线的一般式方程学业分层测评含解析2170711121

18学年高中数学第三章直线与方程3.2.2直线的两点式方程3.2.3直线的一般式方程学业分层测评含解析2170711121

3.2.2 直线的两点式方程3.2.3 直线的一般式方程(建议用时:45分钟)[学业达标]一、选择题1.下列说法正确的是( )A .经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示B .经过任意两个不同点P (x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示C .不经过原点的直线都可以用方程x a +y b =1表示D .经过定点A (0,b )的直线都可以用方程y =kx +b 表示【解析】 当直线与y 轴重合时,斜率不存在,选项A 、D 不正确;当直线垂直于x 轴或y 轴时,直线方程不能用截距式表示,选项C 不正确;当x 1≠x 2,y 1≠y 2时由直线方程的两点式知选项B 正确,当x 1=x 2,y 1≠y 2时直线方程为x -x 1=0,即(x -x 1)(y 2-y 1)=(y -y 1)(x 2-x 1),同理x 1≠x 2,y 1=y 2时也可用此方程表示.故选B.【答案】 B2.以A (1,3),B (-5,1)为端点的线段的垂直平分线方程是( )A .3x -y -8=0B .3x +y +4=0C .3x -y +6=0D .3x +y +2=0【解析】 k AB =1-3-5-1=13,AB 的中点坐标为(-2,2),所以所求方程为:y -2=-3(x +2),化简为3x +y +4=0.【答案】 B3.若直线ax +by +c =0经过第一、二、三象限,则( )A .ab >0,bc >0B .ab >0,bc >0C .ab <0,bc >0D .ab <0,bc <0【解析】 直线经过第一、二、三象限,则由y =-a b x -c b可知, ⎩⎪⎨⎪⎧ -a b >0,-c b >0⇒⎩⎪⎨⎪⎧ ab <0,bc <0,选D.【答案】 D4.已知直线l 1:(k -3)x +(3-k )y +1=0与直线l 2:2(k -3)x -2y +3=0垂直,则k 的值是( )A .2B .3C .2或3D .2或-3 【解析】 ∵l 1⊥l 2,∴2(k -3)2-2(3-k )=0,即k 2-5k +6=0,得k =2或k =3.【答案】 C5.两条直线l 1:x a -y b =1和l 2:x b -y a=1在同一直角坐标系中的图象可以是( )【解析】 化为截距式x a +y -b =1,x b +y -a=1. 假定l 1,判断a ,b ,确定l 2的位置,知A 项符合.【答案】 A二、填空题6.过点P (1,2)且在两坐标轴上截距和为0的直线方程为________.【解析】 当直线过原点时,在两坐标轴上的截距均为0,满足题意.此时直线方程为y =2x ,当直线不过原点时,可知直线在两坐标轴上的截距互为相反数,且不为0.可设直线方程为x a +y -a=1,即x -y =a ,因为直线过P (1,2),所以1-2=a ,所以a =-1,直线方程为x -y +1=0【答案】 y =2x 或x -y +1=07.直线l 过点P (-1,2),分别与x ,y 轴交于A ,B 两点,若P 为线段AB 的中点,则直线l 的方程为__________.【解析】 设A (x,0),B (0,y ).由P (-1,2)为AB 的中点,∴⎩⎪⎨⎪⎧ x +02=-1,0+y 2=2,∴⎩⎪⎨⎪⎧ x =-2,y =4.由截距式得l 的方程为x -2+y 4=1,即2x -y +4=0. 【答案】 2x -y +4=0三、解答题8.若方程(m 2-3m +2)x +(m -2)y -2m +5=0表示直线.(1)求实数m 的范围;(2)若该直线的斜率k =1,求实数m 的值.【解】 (1)由⎩⎪⎨⎪⎧ m 2-3m +2=0,m -2=0,解得m =2, 若方程表示直线,则m 2-3m +2与m -2不能同时为0,故m ≠2.(2)由-m 2-3m +m -2=1,解得m =0.9.已知三角形的三个顶点A (0,4),B (-2,6),C (-8,0).(1)求三角形三边所在直线的方程;(2)求AC 边上的垂直平分线的方程.【解】 (1)直线AB 的方程为y -46-4=x -0-2-0, 整理得x +y -4=0;直线BC 的方程为y -06-0=x +8-2+8,整理得x -y +8=0; 由截距式可知,直线AC 的方程为x -8+y 4=1,整理得x -2y +8=0. (2)线段AC 的中点为D (-4,2),直线AC 的斜率为12,则AC 边上的垂直平分线的斜率为-2,所以AC 边的垂直平分线的方程为y -2=-2(x +4),整理得2x +y +6=0.[能力提升]10.设A ,B 是x 轴上的两点,点P 的横坐标为2,且|PA |=|PB |,若直线PA 的方程为x -y +1=0,则直线PB 的方程是( )A .2y -x -4=0B .2x -y -1=0C .x +y -5=0D .2x +y -7=0【解析】 由x -y +1=0得A (-1,0),又P 的横坐标为2,且|PA |=|PB |,∴P 为线段AB 中垂线上的点,且B (5,0).PB 的倾斜角与PA 的倾斜角互补,则斜率互为相反数,故PB 的斜率k PB =-1,则方程为y =-(x -5),即x +y -5=0.【答案】 C11.直线过点P ⎝ ⎛⎭⎪⎫43,2且与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,是否存在这样的直线同时满足下列条件:(1)△AOB 的周长为12;(2)△AOB 的面积为6.若存在,求出直线的方程;若不存在,请说明理由.【解】 设直线方程为x a +y b =1(a >0,b >0),若满足条件(1),则a +b +a 2+b 2=12. ①又∵直线过点P ⎝ ⎛⎭⎪⎫43,2,∴43a +2b =1. ②由①②可得5a 2-32a +48=0,解得⎩⎪⎨⎪⎧ a =4,b =3或⎩⎪⎨⎪⎧a =125,b =92,∴所求直线的方程为x 4+y 3=1或5x 12+2y 9=1,即3x +4y -12=0或15x +8y -36=0.若满足条件(2),则ab =12,③ 由题意得:43a +2b =1,④ 由③④整理得a 2-6a +8=0,解得⎩⎪⎨⎪⎧ a =4,b =3或⎩⎪⎨⎪⎧ a =2,b =6,∴所求直线的方程为x 4+y 3=1或x 2+y 6=1,即3x +4y -12=0或3x +y -6=0.综上所述:存在同时满足(1)(2)两个条件的直线方程,为3x +4y -12=0.。

2016-2017学年高中数学 第三章 推理与证明 3.1 归纳与类比(2)学业分层测评(含解析)北师大版选修1-2

2016-2017学年高中数学 第三章 推理与证明 3.1 归纳与类比(2)学业分层测评(含解析)北师大版选修1-2

3.1 归纳与类比(2)学业分层测评 (建议用时:45分钟)[学业达标]一、选择题1.对命题“正三角形的内切圆切于三边中点”可类比猜想:正四面体的内切球切于四面体各正三角形的( )A .一条中线上的点,但不是中心B .一条垂线上的点,但不是垂心C .一条角平分线上的点,但不是内心D .中心【解析】 由正四面体的内切球可知,内切球切于四个面的中心. 【答案】 D2.下列推理正确的是( )A .把a (b +c )与log a (x +y )类比,则有log a (x +y )=log a x +log a yB .把a (b +c )与sin(x +y )类比,则有sin(x +y )=sin x +sin yC .把(ab )n与(a +b )n类比,则有(x +y )n=x n+y nD .把(a +b )+c 与(xy )z 类比,则有(xy )z =x (yz )【解析】 乘法的结合律与加法结合律相类比得(xy )z =x (yz ).故选D. 【答案】 D3.设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c,类比这个结论可知:四面体S ­ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球半径为R ,四面体S ­ABC 的体积为V ,则R =( )A.VS 1+S 2+S 3+S 4B .2VS 1+S 2+S 3+S 4C.3VS 1+S 2+S 3+S 4D .4VS 1+S 2+S 3+S 4【解析】 设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R ,所以四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为V 四面体S ­ABC =13(S 1+S 2+S 3+S 4)R ,∴R =3V S 1+S 2+S 3+S 4.【答案】 C4.在等差数列{a n }中,若a n >0,公差d ≠0,则有a 4a 6>a 3a 7.类比上述性质,在等比数列{b n }中,若b n >0,公比q ≠1,则关于b 5,b 7,b 4,b 8的一个不等关系正确的是( )A .b 5b 7>b 4b 8B .b 7b 8>b 4b 5C .b 5+b 7<b 4+b 8D .b 7+b 8<b 4+b 5【解析】 b 5+b 7-b 4-b 8=b 1(q 4+q 6-q 3-q 7) =b 1[q 3(q -1)+q 6(1-q )] =b 1[-q 3(q -1)2(1+q +q 2)]<0, ∴b 5+b 7<b 4+b 8. 【答案】 C5.已知结论:“在正三角形ABC 中,若D 是边BC 的中点,G 是三角形ABC 的重心,则AGGD=2”.若把该结论推广到空间,则有结论:“在棱长都相等的四面体A ­BCD 中,若△BCD 的中心为M ,四面体内部一点O 到四面体各面的距离都相等”,则AO OM=( )A .1B .2C .3D .4【解析】 如图,设正四面体的棱长为1,即易知其高AM =63,此时易知点O 即为正四面体内切球的球心,设其半径为r ,利用等体积法有4×13×34r =13×34×63⇒r =612,故AO =AM -MO =63-612=64,故AO ∶OM =64∶612=3∶1.【答案】 C 二、填空题6.(2016·日照高二检测)二维空间中圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2,观察发现S ′=l ;三维空间中球的二维测度(表面积)S =4πr 2,三维测度(体积)V=43πr 3,观察发现V ′=S .已知四维空间中“超球”的三维测度V =8πr 3,猜想其四维测度W =________.【解析】 因为V =8πr 3,所以W =2πr 4,满足W ′=V . 【答案】 2πr 47.在Rt △ABC 中,若C =90°,AC =b ,BC =a ,则△ABC 的外接圆半径为r =a 2+b 22,将此结论类比到空间有______________________________.【解析】 Rt △ABC 类比到空间为三棱锥A ­BCD ,且AB ⊥AC ,AB ⊥AD ,AC ⊥AD ;△ABC 的外接圆类比到空间为三棱锥A ­BCD 的外接球.【答案】 在三棱锥A ­BCD 中,若AB ⊥AC ,AB ⊥AD ,AC ⊥AD ,AB =a ,AC =b ,AD =c ,则三棱锥A ­BCD 的外接球半径R =a 2+b 2+c 228.等差数列有如下性质:若数列{a n }是等差数列,则当b n =a 1+a 2+…+a nn时,数列{b n }也是等差数列;类比上述性质,相应地,若数列{c n }是正项等比数列,则当d n =________时,数列{d n }也是等比数列.【解析】 类比等差数列与等比数列的性质,可猜测d n =nc 1c 2…c n 时,{d n }为等比数列. 【答案】nc 1c 2…c n三、解答题9.如图3­1­13①,在平面内有面积关系S △PA ′B ′S △PAB =PA ′·PB ′PA ·PB,写出图3­1­13②中类似的体积关系,并证明你的结论.① ②图3­1­13【解】 类比S △PA ′B ′S △PAB =PA ′·PB ′PA ·PB ,有V P ­A ′B ′C ′V P ­ABC=PA ′·PB ′·PC ′PA ·PB ·PC.证明:如图,设C ′,C 到平面PAB 的距离分别为h ′,h . 则h ′h =PC ′PC, 故V P ­A ′B ′C ′V P ­ABC =13S △PA ′B ′·h ′13S △PAB ·h=PA ′·PB ′·h ′PA ·PB ·h =PA ′·PB ′·PC ′PA ·PB ·PC.10.在等差数列{a n }中,若a 10=0,则有等式a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N +)成立.类比上述性质,相应地,在等比数列{b n }中,若b 9=1,则有什么样的等式成立?【解】 在等差数列{a n }中,由a 10=0,则有a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N +)成立,相应地,在等比数列{b n }中,若b 9=1,则可得b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N +).[能力提升]1.已知正三角形内切圆的半径是其高的13,把这个结论推广到空间正四面体,类似的结论是( )A .正四面体的内切球的半径是其高的12B .正四面体的内切球的半径是其高的13C .正四面体的内切球的半径是其高的14D .正四面体的内切球的半径是其高的15【解析】 原问题的解法为等面积法,即S =12ah =3×12ar ⇒r =13h ,类比问题的解法应为等体积法,V =13Sh =4×13Sr ⇒r =14h ,即正四面体的内切球的半径是其高的14.【答案】 C2.(2016·广东一模)以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角形”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为( )A .2 017×22 015B .2 017×22 014C .2 016×22 015D .2 016×22 014【解析】 由题意知数表的每一行都是等差数列,且第一行数的公差为1,第二行数的公差为2,第三行数的公差为4,…,第2 015行数的公差为22 014,第1行的第一个数为2×2-1, 第2行的第一个数为3×20, 第3行的第一个数为4×21, …第n 行的第一个数为(n +1)×2n -2,第2 016行只有一个数M , 则M =(1+2 016)×22 014=2 017×22 014,故选B.【答案】 B3.类比“等差数列”的定义,写出“等和数列”的定义,并解答下列问题: 已知数列{a n }是等和数列,且a 1=2,公和为5,那么a 18=__________,这个数列的前n 项和S n 的计算公式为__________.【解析】 定义“等和数列”:在一个数列中,从第二项起每一项与它前一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.由上述定义,得a n =⎩⎪⎨⎪⎧2,n 为奇数,3,n 为偶数,故a 18=3.从而S n=⎩⎪⎨⎪⎧52n -12,n 为奇数,52n ,n 为偶数.【答案】 3 S n=⎩⎪⎨⎪⎧52n -12,n 为奇数,52n ,n 为偶数4.(1)椭圆C :x 2a 2+y 2b2=1(a >b >0)与x 轴交于A ,B 两点,点P 是椭圆C 上异于A ,B 的任意一点,直线PA ,PB 分别与y 轴交于点M ,N ,求证:AN →·BM →为定值b 2-a 2;(2)类比(1)可得如下真命题:双曲线x 2a 2-y 2b2=1(a >0,b >0)与x 轴交于A ,B 两点,点P是双曲线C 上异于A ,B 的任意一点,直线PA ,PB 分别与y 轴交于点M ,N ,求证AN →·BM →为定值,并写出这个定值(不要求写出解题过程).【解】 (1)证明如下: 设点P (x 0,y 0)(x 0≠±a ), 依题意,得A (-a,0),B (a,0), 所以直线PA 的方程为y =y 0x 0+a(x +a ).令x =0,得y M =ay 0x 0+a ,同理得y N =-ay 0x 0-a ,所以y M y N =a 2y 20a 2-x 20.又因为点P (x 0,y 0)在椭圆上,所以x 20a 2+y 20b 2=1,因此y 20=b 2a2(a 2-x 20),所以y M y N =a 2y 20a 2-x 20=b 2.因为AN →=(a ,y N ),BM →=(-a ,y M ), 所以AN →·BM →=-a 2+y M y N =b 2-a 2. (2)-(a 2+b 2).。

配套K12高中数学第三章指数函数与对数函数学业分层测评18换底公式北师大版必修1

配套K12高中数学第三章指数函数与对数函数学业分层测评18换底公式北师大版必修1

【课堂新坐标】2016-2017学年高中数学 第三章 指数函数与对数函数 学业分层测评(18)换底公式 北师大版必修1(建议用时:45分钟)[学业达标]一、选择题 1.log 2716log 34的值为( ) A .2 B.32 C .1D.23【解析】 原式=lg 16lg 27×lg 3lg 4=2lg 4·lg 33lg 3·lg 4=23.【答案】 D2.设a =log 32,则log 38-2log 36用a 表示的形式是( ) A .a -2 B .3a -(1+a )2C .5a -2D .1+3a -a 2【解析】 ∵a =log 32,∴log 38-2log 36=3log 32-2(log 32+1)=3a -2(a +1)=a -2. 【答案】 A3. (2016·石景山高一检测)若x =60,则1log 3x +1log 4x +1log 5x 的值为( )A .1 B.12C .2D .以上都不对 【解析】 原式=log x 3+log x 4+log x 5=log x 60=log x x =1. 【答案】 A4.设log 34·log 48·log 8m =log 416,则m 的值为( ) A.12 B .9 C .18D .27【解析】 由题意得lg 4lg 3·lg 8lg 4·lg m lg 8=lg mlg 3=log 416=log 442=2, ∴lg mlg 3=2,即lg m =2lg 3=lg 9, ∴m =9. 【答案】 B5.设a ,b ,c 均为不等于1的正实数,则下列等式中恒成立的是( ) A .log a b ·log c b =log c a B .log a b ·log c a =log c b C .log a (bc )=log a b ·log a c D .log a (b +c )=log a b +log a c【解析】 B 中log a b ·log c a =lg b lg a ·lg a lg c =lg blg c =log c b ,A 、C 、D 中由对数的运算法则知不成立.【答案】 B 二、填空题6.计算:log 43·log 3432=________. 【解析】 原式=lg 3lg 4·lg 432lg 3=54lg 22lg 2=58.【答案】 587.若m log 35=1,n =5m+5-m,则n 的值为________. 【解析】 ∵m log 35=1, ∴m =1log 35=log 53,∴n =5m +5-m=5log 53+5-log 53=3+5log 513=3+13=103.【答案】1038.已知log 62=p ,log 65=q ,则lg 5=________. 【解析】 因为⎩⎪⎨⎪⎧p =lg 2lg 6,q =lg 5lg 6,故lg 2lg 5=pq, 故1-lg 5lg 5=p q ,则lg 5=qp +q. 【答案】qp +q三、解答题9.求下列各式的值:(1)(2016·西城高一检测)log 427·log 258·log 95; (2)(2016·济南高一检测)log 225·log 3116·log 519.【解】 (1)原式=lg 27lg 4·lg 8lg 25·lg 5lg 9=3 lg 32lg 2·3lg 22lg 5·lg 52 lg 3=98. (2)原式=log 252·log 32-4·log 53-2=2lg 5lg 2·-lg 3·-lg 5=16.10.已知x ,y ,z 为正数,且3x=4y=6z. (1)求使2x =py 的p 的值;(2)求证:12y =1z -1x . 【导学号:04100059】【解】 (1)设3x =4y =6z=k (显然k ≠1), 则x =log 3k ,y =log 4k ,z =log 6k , 由2x =py ,得2log 3k =p log 4k =p ·log 3klog 34,∵log 3k ≠0, ∴p =2log 34.(2)证明:1z -1x =1log 6k -1log 3k=log k 6-log k 3 =log k 2=12log k 4=12log 4k =12y. [能力提升]1.设方程(lg x )2-lg x 2-3=0的两实根是a 和b ,则log a b +log b a 等于( ) A .1 B .-2 C .-103D .-4【解析】 由(lg x )2-lg x 2-3=0,即(lg x )2-2lg x -3=0, 解得lg x =3或lg x =-1,故x =103或x =10-1=110.不妨令a =103,b =110,故log a b +log b a =log 103110+log 110103=-13-3=-103.【答案】 C2.计算:1+lg 2·lg 5-lg 2·lg 50-log 35·log 259·lg 5=________. 【解析】 原式=1+lg 2·lg 5-lg 2(1+lg 5)-lg 5lg 3·lg 9lg 25·lg 5=1+lg 2lg 5-lg 2-lg 2lg 5-lg 5lg 3·2lg 32lg 5·lg 5=1-lg 2-lg 5=1-1=0. 【答案】 03.某城市为加快现代化都市的建设,决定从2007年起逐年增加城市化面积.若每年的新增绿地亩数比上一年递增10%,则该市实现绿地面积翻两番大约是在哪一年?(参考数据:lg2=0.301 0,lg1.1=0.041 4)【解】 若设该市2006年年底有绿地面积a ,则经过1年,即2007年的绿地面积是a +a ·10%=a (1+10%);再经过一年,即2008年的绿地面积是a (1+10%)2;经过3年,即2009年的绿地面积是a (1+10%)3,…,经过x 年的绿地面积是a (1+10%)x,依题意,a (1+10%)x =4a ,即(1+10%)x=4,∴x =log 1.14=2lg2lg1.1≈15.∴大约经过15年,也就是到2022年该市的绿地面积将翻两倍.。

高中数学第三章推理与证明2数学证明教案(含解析)北师大版选修1_2

高中数学第三章推理与证明2数学证明教案(含解析)北师大版选修1_2

2数学证明数学证明看下面两个命题:(1)三角函数都是周期函数,y =tan x 是三角函数,所以y =tan x 是周期函数;(2)循环小数是有理数,0.332·是循环小数,所以0.332·是有理数. 问题1:这两个问题中的第一句都说明什么? 提示:一般性道理. 问题2:第二句又说什么?提示:特殊示例. 问题3:第三句呢?提示:由一般性道理对特殊示例作出判断.1.演绎推理的一般模式三段论是最常见的一种演绎推理形式,包括 大前提:一般性道理; 小前提:研究对象的特殊情况; 结论:由大前提和小前提作出的判断. 2.合情推理与演绎推理的关系合情推理是认识世界、发现问题的基础,演绎推理是证明命题、建立理论体系的基础.1.数学问题的解决和证明都蕴含着演绎推理,即一连串的三段论,解决问题的关键是找到每一步推理的依据——大前提、小前提.2.三段论中的大前提提供了一个一般性原理,小前提指出了一种特殊情况,两个命题结合起来,揭示了一般性原理与特殊情况的内在联系,从而得到了第三个命题——结论.3.三段论推理的结论正确与否,取决于两个前提是否正确,推理形式是否正确.把演绎推理写成三段论[例1](1)等腰三角形的两底角相等,∠A,∠B是等腰三角形的两底角,则∠A=∠B.(2)以a n=2n+3为通项公式的数列{a n}为等差数列.[思路点拨] 首先分析出每个题的大前提、小前提及结论,再利用三段论形式写出来.[精解详析] (1)等腰三角形两底角相等,大前提∠A,∠B是等腰三角形的两底角,小前提∠A=∠B.结论(2)数列{a n}中,如果当n≥2时,a n-a n-1为常数,则{a n}为等差数列,大前提通项公式a n=2n+3时,若n≥2,则a n-a n-1=2n+3-[2(n-1)+3]=2(常数),小前提以a n=2n+3为通项公式的数列为等差数列.结论[一点通] 三段论由大前提、小前提和结论组成.大前提提供一般性原理,小前提提供特殊情况,两者结合起来,体现一般性原理与特殊情况的内在联系,在用三段论写推理过程时,关键是明确命题的大、小前提,而大、小前提在书写过程中是可以省略的.1.推理“①矩形是平行四边形;②正方形是矩形;③正方形是平行四边形”中的小前提是( )A.①B.②C.③ D.①和②解析:选B ①是大前提,②是小前提,③是结论.2.“因为四边形ABCD是矩形,所以四边形ABCD的对角线相等.”此推理的大前提为( )A.正方形的对角线相等B.矩形的对角线相等C.等腰梯形的对角线相等D.矩形的对边平行且相等答案:B3.用三段论的形式写出下列演绎推理.(1)能被2整除的数都是偶数,34能被2整除,所以34是偶数.(2)奇函数f(x)若在x=0处有定义,则必有f(0)=0.现有f(x)=x,x∈R是奇函数,则有f(0)=0.解:(1)能被2整除的数都是偶数, (大前提)34能被2整除, (小前提)所以34是偶数. (结论)(2)奇函数f(x)若在x=0处有定义,则必有f(0)=0,(大前提)f(x)=x,x∈R是奇函数,且在x=0处有定义, (小前提)则有f(0)=0.(结论)演绎推理的判断[例2](1)自然数是整数,大前提-6是整数,小前提所以,-6是自然数.结论(2)中国的大学分布在中国各地,大前提北京大学是中国的大学,小前提所以,北京大学分布在中国各地.结论(3)三角函数是周期函数,大前提y=sin x(0<x<π)是三角函数,小前提y=sin x(0<x<π)是周期函数.结论[思路点拨] 判断三段论推理是否正确,必须严格按其推理规则进行考察,其推理规则为:所有M都是P,S是M,则S是P.既要看大前提、小前提是否有误,也要看推理形式是否合乎规范.[精解详析] (1)推理形式错误,自然数是整数为大前提,小前提应是判断某数为自然数,而不是某数为整数.(2)推理形式错误,大前提中M是“中国的大学”,它的含义是中国的每一所大学,而小前提中的“中国的大学”仅表示中国的一所大学,二者是两个不同的概念,犯了偷换概念错误.(3)推理形式错误,大前提中的“三角函数”和小前提中的“三角函数”概念不同.[一点通] 判断演绎推理是否正确的方法(1)看推理形式是否为由一般到特殊的推理,只有由一般到特殊的推理才是演绎推理,这是最易出错的地方;(2)看大前提是否正确,大前提往往是定义、定理、性质等,注意其中有无前提条件;(3)看小前提是否正确,注意小前提必须在大前提范围之内;(4)看推理过程是否正确,即看由大前提、小前提得到的结论是否正确.4.某人进行了如下的“三段论”:如果f′(x0)=0,则x=x0是函数f(x)的极值点,因为函数f(x)=x3在x=0处的导数值f′(0)=0,所以x=0是函数f(x)=x3的极值点.你认为以上推理的( )A.大前提错误B.小前提错误C.推理形式错误D.结论正确解析:选A 若f′(x0)=0,则x=x0不一定是函数f(x)的极值点,如f(x)=x3,f′(0)=0,但x=0不是极值点,故大前提错误.5.观察下面的演绎推理过程,判断正确的是( )大前提:若直线a⊥直线l,且直线b⊥直线l,则a∥b.小前提:正方体ABCD­A1B1C1D1中,A1B1⊥AA1,且AD⊥AA1.结论:A1B1∥AD.A.推理正确B.大前提出错导致推理错误C.小前提出错导致推理错误D.仅结论错误解析:选B 由l⊥a,l⊥b得出a∥b只在平面内成立,在空间中不成立,故大前提错误.用三段论证明几何问题[例3] DE∥BA,求证:ED =AF,写出三段论形式的演绎推理.[思路点拨] 证明ED=AF,可证明四边形AEDF为平行四边形.[精解详析] 因为同位角相等,两条直线平行,大前提∠BFD与∠A是同位角,且∠BFD=∠A,小前提所以FD∥AE.结论因为两组对边分别平行的四边形是平行四边形,大前提DE∥BA,且FD∥AE,小前提所以四边形AFDE为平行四边形.结论因为平行四边形的对边相等,大前提ED和AF为平行四边形AFDE的对边,小前提所以ED=AF.结论[一点通](1)三段论推理的根据,从集合的观点来讲,就是:若集合M的所有元素都具有性质P,S是M的子集,那么S中所有元素都具有性质P.(2)在几何证明题中,每一步实际上都暗含着一般性原理,都可以分析出大前提和小前提,把一般性原理用于特殊情况,从而得到结论.6.已知△ABC中,A=30°,B=45°,求证:a<b.证明:∵A=30°,B=45°,∴A<B.∴a<b.此问题的证明过程中蕴含的“三段论”中的大前提是________________.解析:大前提是三角形中“大边对大角,小边对小角”的一个结论.答案:在△ABC中,若A<B,则a<b7.如图,已知在梯形ABCD中,AB=DC=DA,AC和BD是梯形的对角线.求证:AC平分∠BCD.证明:∵等腰三角形两底角相等,大前提△ADC是等腰三角形,∠1和∠2是两个底角,小前提∴∠1=∠2.结论∵两条平行线被第三条直线截得的内错角相等,大前提∠1和∠3是平行线AD,BC被AC截得的内错角,小前提∴∠1=∠3.结论∵等于同一个角的两个角相等,大前提∠2=∠1,∠3=∠1,小前提∴∠2=∠3,即AC平分∠BCD.结论用三段论证明代数问题[例4] 已知n124成等差数列,又b n 1(n=1,2,3,…).证明:{b n}为等比数列.=a2n[证明] ∵lg a1,lg a2,lg a4成等差数列,∴2lg a2=lg a1+lg a4,即a22=a1a4.设{a n}的公差为d,即(a1+d)2=a1(a1+3d),a1d=d2,从而d(d-a1)=0.①若d =0,{a n }为常数列,相应{b n }也是常数列,此时{b n }是首项为正数,公比为1的等比数列.②若d =a 1≠0,则a 2n =a 1+(2n-1)d =2nd ,b n =1a 2n =12n d. 这时{b n }是首项b 1=12d ,公比为12的等比数列.综上可知,{b n }为等比数列. [一点通](1)在证明或推理过程中,对于大前提,有一些是我们早已熟悉的公理、定理、定义、性质、公式,这些内容很多时候在证明或推理的过程中可以直接利用,不需再重新指出.因此,就会出现隐性三段论.(2)本题在推理过程中,好似未用到演绎推理的三段论,其实不然.只是大前提“等比数列的判定方法”在证明过程中省略,并不影响结论的正确性.8.“因为y =sin x 是区间⎣⎢⎡⎦⎥⎤0,π2上的增函数,所以sin 3π7>sin 2π5”,上述推理中,大前提为________________,小前提为________________,结论为________________.答案:y =sin x 是区间⎣⎢⎡⎦⎥⎤0,π2上的增函数 3π7∈⎣⎢⎡⎦⎥⎤0,π2,2π5∈⎣⎢⎡⎦⎥⎤0,π2,且3π7>2π5 sin 3π7>sin 2π59.已知函数f (x )=ax+bx ,其中a >0,b >0,x ∈(0,+∞),确定f (x )的单调区间,并证明在每个单调区间上的增减性.解:设0<x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫a x 1+bx 1-⎝ ⎛⎭⎪⎫a x 2+bx 2 =(x 2-x 1)⎝ ⎛⎭⎪⎫a x 1x 2-b .当0<x 1<x 2≤ab时,则 x 2-x 1>0,0<x 1x 2<a b ,ax 1x 2>b ,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), ∴f (x )在⎝ ⎛⎦⎥⎤0,a b 上是减少的.当x 2>x 1≥ab时,则 x 2-x 1>0,x 1x 2>a b ,ax 1x 2<b ,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), ∴f (x )在⎣⎢⎡⎭⎪⎫a b ,+∞上是增加的.1.应用三段论解决问题时,首先应该明确什么是大前提和小前提.但为了叙述简洁,如果大前提是人们熟知的,则可以省略不写.2.合情推理与演绎推理是常见的两种推理方式,二者的主要区别与联系是: 推理方式 意义主要形式 结论的真假 合情推理 认识世界、发现问题的基础 归纳推理、 类比推理 不确定 演绎推理证明命题、建立理论体系的基础三段论真1.下列四个推导过程符合演绎推理三段论形式且推理正确的是( )A .大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B .大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C .大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D .大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数解析:选B 对于A ,小前提与结论互换,错误;对于B ,符合演绎推理过程且结论正确;对于C 和D ,均为大小前提及结论颠倒,不符合演绎推理三段论形式.故选B.2.“9的倍数都是3的倍数,某奇数是9的倍数,故此奇数是3的倍数”,上述推理是( )A .小前提错B .结论错C .正确的D .大前提错解析:选C ∵大前提,小前提,推理形式都正确,∴结论正确.3.在不等边三角形中,a 为最大边,要想得到∠A 为钝角的结论,三边a ,b ,c 应满足的条件是( )A .a 2<b 2+c 2B .a 2=b 2+c 2C .a 2>b 2+c 2D .a 2≤b 2+c 2解析:选C 由cos A =b 2+c 2-a 22bc<0,∴b 2+c 2-a 2<0,∴a 2>b 2+c 2.4.在证明f (x )=2x +1为增函数的过程中,有下列四个命题:①增函数的定义是大前提;②增函数的定义是小前提;③函数f (x )=2x +1满足增函数的定义是大前提;④函数f (x )=2x +1满足增函数的定义是小前提.其中正确的命题是( )A .①④B .②④C .①③D .②③解析:选A 根据三段论特点,过程应为:大前提是增函数的定义;小前提是f (x )=2x +1满足增函数的定义;结论是f (x )=2x +1为增函数,故①④正确.5.如图,α⊥β,α∩β=l ,P ∈α,PO ⊥l 交l 于O ,则可以得到的结论是________.解析:由面面垂直的性质定理知PO ⊥β. 答案:PO ⊥β6.函数y =2x +5的图像是一条直线,用三段论表示为: 大前提:_____________________________________________; 小前提:_____________________________________________; 结 论:_____________________________________________. 答案:一次函数的图像是一条直线 函数y =2x +5是一次函数 函数y =2x +5的图像是一条直线7.已知a ,b ,m 均为正实数,b <a ,用三段论形式证明b a <b +ma +m. 证明:因为不等式(两边)同乘以一个正数,不等号不改变方向,(大前提)b <a ,m >0, (小前提)所以,mb <ma . (结论) 因为不等式两边同加上一个数,不等号不改变方向, (大前提)mb <ma , (小前提)所以,mb +ab <ma +ab ,即b (a +m )<a (b +m ), (结论) 因为不等式两边同除以一个正数,不等号不改变方向, (大前提)b (a +m )<a (b +m ),a (a +m )>0, (小前提)所以,b a +m a a +m <a b +m a a +m ,即b a <b +ma +m. (结论)8.如图,正三棱柱ABC ­A 1B 1C 1的棱长均为a ,D ,E 分别为C 1C ,AB 的中点,A 1B 交AB 1于点G .(1)求证:A 1B ⊥AD ; (2)求证:CE ∥平面AB 1D .证明:(1)如图,连接A 1D ,DG ,BD ,∵三棱柱ABC ­A 1B 1C 1是棱长均为a 的正三棱柱, ∴四边形A 1ABB 1为正方形,∴A 1B ⊥AB 1. ∵D 是C 1C 的中点, ∴△A 1C 1D ≌△BCD ,∴A 1D =BD .∵G 为A 1B 的中点, ∴A 1B ⊥DG . 又∵DG ∩AB 1=G , ∴A 1B ⊥平面AB 1D ,又∵AD 平面AB 1D ,∴A 1B ⊥AD . (2)连接GE ,∵EG ∥A 1A ,DC ∥AA 1, ∴GE ∥DC .∵GE =12AA 1=12a ,DC =12CC 1=12a ,∴GE =DC .∴四边形GECD 为平行四边形,∴EC ∥GD .又∵E C ⃘平面AB 1D ,DG 平面AB 1D , ∴EC ∥平面AB 1D .9.求证:函数f (x )=2x-12x +1是奇函数且在定义域上是增函数.证明:f (x )=2x+1-22x+1=1-22x +1, 所以f (x )的定义域为R.f (-x )+f (x )=⎝⎛⎭⎪⎫1-22-x+1+⎝ ⎛⎭⎪⎫1-22x +1 =2-⎝ ⎛⎭⎪⎫21+2x +22-x +1=2-⎝ ⎛⎭⎪⎫21+2x +2·2x1+2x=2-21+2x1+2x=2-2=0,即f (-x )=-f (x ),所以f (x )为奇函数. 任取x 1,x 2∈R ,且x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎪⎫1-21+2x 1-⎝ ⎛⎭⎪⎫1-21+2x 2 =22x 1-2x 21+2x 21+2x 1,由于x 1<x 2,从而2x 1<2x 2,2x 1-2x 2<0. 所以f (x 1)<f (x 2),故f (x )为增函数.。

2016-2017学年高中数学人教B版选修2-2学业分层测评 第

2016-2017学年高中数学人教B版选修2-2学业分层测评 第

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.实数a,b,c不全为0等价于()A.a,b,c均不为0B.a,b,c中至多有一个为0C.a,b,c中至少有一个为0D.a,b,c中至少有一个不为0【解析】“不全为0”的对立面为“全为0”,故“不全为0”的含义为“至少有一个不为0”.【答案】 D2.(2014·山东高考)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根【解析】依据反证法的要求,即至少有一个的反面是一个也没有,直接写出命题的否定.方程x3+ax+b=0至少有一个实根的反面是方程x3+ax+b=0没有实根,故应选A.【答案】 A3.已知a,b是异面直线,直线c平行于直线a,那么c与b的位置关系为() A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线【解析】假设c∥b,而由c∥a,可得a∥b,这与a,b异面矛盾,故c与b 不可能是平行直线,故应选C.【答案】 C4.设a ,b ,c 大于0,则3个数:a +1b ,b +1c ,c +1a 的值( )【导学号:05410049】A .都大于2B .至少有一个不大于2C .都小于2D .至少有一个不小于2【解析】 假设a +1b ,b +1c ,c +1a 三个数都小于2,则必有a +1b +b +1c +c +1a <6,而⎝ ⎛⎭⎪⎫a +1b +⎝ ⎛⎭⎪⎫b +1c +⎝ ⎛⎭⎪⎫c +1a =⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b +⎝ ⎛⎭⎪⎫c +1c ≥2a ·1a +2b ·1b +2c ·1c =6,故二者相矛盾.所以假设不成立. 【答案】 D5.用反证法证明“三角形中最多只有一个内角为钝角”,下列假设中正确的是( )A .有两个内角是钝角B .有三个内角是钝角C .至少有两个内角是钝角D .没有一个内角是钝角【解析】 “最多只有一个”的否定是“至少有两个”,故选C. 【答案】 C 二、填空题6.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是____________________________________________________________.【解析】 “至少有一个”的否定是“一个也没有”,故结论的否定是:没有一个面是三角形或四边形或五边形.【答案】 没有一个面是三角形或四边形或五边形7.设a ,b 是两个实数,给出下列条件:①a +b =1;②a +b =2;③a +b >2;④a 2+b 2>2.其中能推出“a ,b 中至少有一个大于1”的条件是________(填序号). 【解析】 假设a ,b 均不大于1,即a ≤1,b ≤1.则①②④均有可能成立,故①②④不能推出“a ,b 中至少有一个大于1”,故选③.【答案】 ③8.完成反证法证题的全过程.题目:设a 1,a 2,…,a 7是由数字1,2,…,7任意排成的一个数列,求证:乘积p =(a 1-1)(a 2-2)…(a 7-7)为偶数.证明:假设p 为奇数,则__________均为奇数.① 因7个奇数之和为奇数,故有(a 1-1)+(a 2-2)+…+(a 7-7)为__________.② 而(a 1-1)+(a 2-2)+…+(a 7-7)=(a 1+a 2+…+a 7)-(1+2+…+7)=__________.③ ②与③矛盾,故p 为偶数.【解析】 由假设p 为奇数可知(a 1-1),(a 2-2),…,(a 7-7)均为奇数, 故(a 1-1)+(a 2-2)+…+(a 7-7)=(a 1+a 2+…+a 7)-(1+2+…+7)=0为奇数, 这与0为偶数矛盾.【答案】 ①a 1-1,a 2-2,…,a 7-7 ②奇数 ③0 三、解答题9.已知f (x )=a x +x -2x +1(a >1),证明:方程f (x )=0没有负数根.【证明】 假设x 0是f (x )=0的负数根, 则x 0<0且x 0≠-1且ax 0=-x 0-2x 0+1,由0<ax 0<1⇒0<-x 0-2x 0+1<1, 解得12<x 0<2,这与x 0<0矛盾,所以假设不成立, 故方程f (x )=0没有负数根.10.已知a ,b ,c ∈R ,a +b +c =0,abc =1,求证:a ,b ,c 中至少有一个大于32.【证明】 假设a ,b ,c 都小于等于32,即a ≤32,b ≤32,c ≤32.∵abc =1,∴a ,b ,c 三数同为正或一正两负. 又a +b +c =0,∴a ,b ,c 只能是一正两负, 不妨设a >0,b <0,c <0. 则b +c =-a ,bc =1a ,∴b ,c 为方程x 2+ax +1a =0的两根, ∴Δ=a 2-4a ≥0,即a 3≥4.∴a ≥34>3278=32,这与a ≤32矛盾,∴a ,b ,c 中至少有一个大于32.[能力提升]1.下列命题运用“反证法”证明正确的是( )A .命题:若a >b >0,则a >b .用反证法证明:假设a >b 不成立,则a <b .若a <b ,则a <b ,与已知a >b 矛盾.故假设不成立,结论a >b 成立B .命题:已知二次方程ax 2+bx +c =0(a ,b ,c ∈R ,且a ≠0)有实根,求证:Δ=b 2-4ac ≥0.用反证法证明:假设Δ=b 2-4ac <0,则ax 2+bx +c =0无实根,与已知方程有实根矛盾,∴Δ≥0C .命题:已知实数p 满足不等式(2p +1)(p +2)<0,证明:关于x 的方程x 2-2x +5-p 2=0无实数根.用反证法证明:假设方程x 2-2x +5-p 2=0有实数根,由已知实数p 满足不等式(2p +1)(p +2)<0,解得-2<p <-12,而关于x 的方程x 2-2x +5-p 2=0的根的判别式Δ=4(p 2-4),∵-2<p <-12,∴14<p 2<4,∴Δ<0,即关于x 的方程x 2-2x +5-p 2=0无实数根D .命题:已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R .“若f (a )+f (b )≥f (-a)+f(-b),则a+b≥0”.用反证法证明:假设a+b<0,则a<-b,b<-a.∵f(x)是(-∞,+∞)上的增函数,则f(a)<f(-b),f(b)<f(-a),∴f(a)+f(b)<f(-a)+f(-b).这与已知相矛盾.∴原命题成立【解析】A.反证法中的反证不全面,“a>b”的否定应为“a≤b”.B.本题犯了“循环论证”的错误,实质上没有求出该题.C.在解题的过程中并没有用到假设的结论,故不是反证法.【答案】 D2.设a,b,c均为正实数,P=a+b-c,Q=b+c-a,R=c+a-b,则“PQR>0”是“P,Q,R同时大于0”的() 【导学号:05410050】A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】首先,若P,Q,R同时大于0,则必有PQR>0成立.其次,若PQR>0,且P,Q,R不都大于0,则必有两个为负,不妨设P<0,Q<0,即a+b -c<0,b+c-a<0,所以b<0,与b>0矛盾.故P,Q,R都大于0.【答案】 C3.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°矛盾,故假设错误;②所以一个三角形不能有两个直角;③假设△ABC中有两个直角,不妨设∠A=90°,∠B=90°.上述步骤的正确顺序为__________.【解析】由反证法证明数学命题的步骤可知,上述步骤的顺序应为③①②.【答案】③①②4.已知函数f(x)=x22x-2,如果数列{a n}满足a1=4,a n+1=f(a n),求证:当n≥2时,恒有a n<3成立.【证明】假设a n≥3(n≥2),则由已知得a n+1=f(a n)=a2n2a n-2,所以当n≥2时,a n+1a n=a n2a n-2=12·⎝⎛⎭⎪⎫1+1a n-1≤12⎝⎛⎭⎪⎫1+12=34<1(因为a n-1≥3-1),又易证a n>0,所以当n≥2时,a n+1<a n,所以当n>2时,a n<a n-1<…<a2;而当n=2时,a2=a212a1-2=168-2=83<3,所以当n≥2时,a n<3;这与假设矛盾,故假设不成立,所以当n≥2时,恒有a n<3成立.。

2016-2017学年高中数学必修三学业分层测评7 含答案 精

2016-2017学年高中数学必修三学业分层测评7 含答案 精

学业分层测评(七)(建议用时:45分钟)[学业达标]一、填空题1.下列问题可以设计成循环语句计算的有________.(填序号)①求1+3+32+…+39的和;②比较a,b两个数的大小;③对于分段函数,要求输入自变量,输出函数值;④求平方值小于100的最大整数.【解析】①和④用到循环语句;②③用不到.故填①④.【答案】①④2.将下面计算1+2+3+…+20的算法的For语句补全.【解析】由于步长为1,故“Step 1”可省略,因此可以填“1 To 20”.【答案】 1 To 203.根据以下伪代码,可知输出的结果b为________.【解析】第一步:c=2,a=1,b=2;第二步:c=3,a=2,b=3;第三步:c=5,a=3,b=5.输出b.【答案】 54.下列程序:该程序的功能是________.【解析】第一次循环:B=1×2,A=3;第二次循环:B=1×2×3,A=4;第三次循环:B=1×2×3×4,A=5;第四次循环:B=1×2×3×4×5,A=6.此时退出循环.故输出结果为1×2×3×4×5.【答案】计算1×2×3×4×5的值5.(2015·南京高一检测)根据下列伪代码,可知输出的结果I为________.【解析】第一次循环:S=1×21=2,I=2;第二次循环:S=2×32=3;I=3;第三次循环:S=3×43=4,I=4;第四次循环:S=4×54=5,I=5,此时不满足条件“S<5”,故退出循环,输出5.【答案】 56.观察下列程序,该循环变量I共循环________次. 【导学号:90200024】【解析】由题意知该程序的作用是计算S=1+2+3+…+n≥60的最小整数n.∵1+2+3+…+10=55<60,1+2+3+…+11=66>60.故可知该程序循环了11次.【答案】117.(2015·镇江高二检测)阅读下列程序:输出的结果是________.【解析】第一次循环:S=1+1=2,输出2;第二次循环:S=2+3=5,输出5;第三次循环:S=5+5=10,输出10.【答案】2,5,108.下面的伪代码执行后第3次输出的数是________.【解析】 该伪代码中关键是循环语句, 第一次输出的数是1,第二次输出的数是x ←1+12=32, 第三次输出的数是x ←1+12+12=2. 【答案】 2 二、解答题9.给出30个数:1,2,4,7,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,以此类推,要计算第30个数的大小.现在已给出了该问题算法的流程图.(1)请在图1-3-4中判断框①处和执行框②处填上合适的语句,使之能完成该题算法功能;(2)根据流程图写出伪代码.图1-3-4.【解】 (1)①中填“i ≤30”;②中应填“P ←i ”.(2)伪代码如下:10.(2015·南通高一月考)将下列问题的算法用伪代码中的“For”语句表示(写在下面的框中),并画出“For”语句的流程图(画在右边)..【解】伪代码如下:流程图如图:1.下面的伪代码执行后输出的s的值是________.【解析】当i=3时,s=7,当i=5时,s=11,此时仍满足条件“i<6”,因此再循环一次,即i=7时,s=15,此时不满足“i<6”,所以执行“Print s”,即s =15.【答案】152.下面的伪代码执行的结果是________.【解析】第一次循环:x=100+10=110,i=2;第二次循环:x=110+10=120,i=3;第三次循环:x=120+10=130,i=4;第四次循环:x=130+10=140,i=5;第五次循环:x=140+10=150,i=6;第六次循环:x=150+10=160,i=7;第七次循环:x=160+10=170,i=8;第八次循环:x=170+10=180,i=9;第九次循环:x=180+10=190,i=10;第十次循环:x=190+10=200,i=11.满足条件,退出循环.故输出200,11.【答案】200,113.下面伪代码的功能是________.【解析】输入x后,若x<0,则n值增加1,直到输入10次后,输出n值,故其功能为统计10个数据中负数的个数.【答案】统计10个数据中负数的个数4.(2015·连云港高二检测)某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答下列问题:(1)写出该城市人口数y(万人)与年份x(年)的函数关系式;(2)用伪代码表示计算10年以后该城市人口总数的算法;(3)用流程图表示计算大约多少年以后该城市人口将达到120万人的算法..【解】(1)y=100×1.012x.(2)伪代码如下:。

(好题)高中数学选修1-2第三章《推理与证明》检测(含答案解析)

(好题)高中数学选修1-2第三章《推理与证明》检测(含答案解析)

一、选择题1.学校艺术节对同一类的A 、B 、C 、D 四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下: 甲说:“是C 或D 作品获得一等奖” 乙说:“B 作品获得一等奖” 丙说:“A 、D 两项作品未获得一等奖” 丁说:“是C 作品获得一等奖” 若这四位同学中只有两位说的话是对的,则获得一等奖的作品为( ) A .C 作品 B .D 作品C .B 作品D .A 作品2.将正整数1,2,3,4,按如图所示的方式排成三角形数组,则第20行从左往右数第1个数是( )A .381B .361C .362D .4003.我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣,”其体现的是一种无限与有限的转化过程,比如在222+++⋅⋅⋅“…”.即代表无限次重复,但原式却是个定值x ,这可以通过方程2x x +=确定出来2x =,类似地不难得到12122+=++⋅⋅⋅( )A .122 B .122C 21D .21-4.某校甲、乙、丙、丁四位同学参加了第34届全国青少年科技创新大赛,老师告知只有一位同学获奖,四人据此做出猜测:甲说:“丙获奖”;乙说:“我没获奖”;丙说:“我没获奖”;丁说:“我获奖了”,若四人中只有一人判断正确,则判断正确的是( ) A .甲B .乙C .丙D .丁5.将正整数1,2,3,4,,,n 按第k 组含1k +个数分组:()()()1,2,3,4,5,6,7,8,9,,那么2019所在的组数为( ) A .62B .63C .64D .656.0x y =,则0x y ==,假设为( )A .,x y 都不为0B .,x y 不都为0C .,x y 都不为0,且x y ≠D .,x y 至少有一个为07.已知平面直角坐标系内曲线()1:,0C F x y =,曲线()200:(,),0C F x y F x y -=,若点()00,P x y 不在曲线1C 上,则下列说法正确的是( )A .曲线1C 与2C 无公共点B .曲线1C 与2C 至少有一个公共点C .曲线1C 与2C 至多有一个公共点D .曲线1C 与2C 的公共点的个数无法确定8.明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有大吕大吕太簇{}n a 中,k a =( )A .n -B .n -C .D .9.===⋅⋅⋅=(m 、n 均为正实数),根据以上等式,可推测m 、n 的值,则m n +等于( )A .40B .41C .42D .4310.下列说法中不正确的是()A .命题:“∈,x y R ,若110x y -+-=,则1x y ==”,用反证法证明时应假设x ≠1或y ≠1.B .若2a b +>,则a ,b 中至少有一个大于1.C .若14-,,,,-x y z 成等比数列,则2y =±. D .命题:“[0,1]∃∈m ,使得12+<m x x”的否定形式是:“[0,1]∀∈m ,总有12m x x+≥”. 11.在《九章算术)方田章圆田术(刘徽注)中指出:“割之弥细,所失弥少.割之又割,以至不能割,则与圆周合体而无所失矣.”注述中所用的割圆术是一种无限与有限的转化过“…”即代表无限次重复,但原式却是个定值x ,这可以通过x =确定出来2x =,类似地,可得112122...+++的值为( )A 1B 1CD12.2018年科学家在研究皮肤细胞时发现了一种特殊的凸多面体, 称之为“扭曲棱柱”. 对于空间中的凸多面体, 数学家欧拉发现了它的顶点数, 棱数与面数存在一定的数量关系.五棱锥 6 10 6 六棱锥712712个顶点,8个面的扭曲棱柱的棱数是( ) A .14B .16C .18D .20二、填空题13.本学期我们学习了一种求抛物线2yx 与x 轴和直线1x =所围“曲边三角形”面积的方法,即将区间[0,1]分割成n 个小区间,求每个小区间上矩形的面积,再求和的极限.类比上述方法,试求222222222(1)2(21)2lim 2sin 2sin 2sin 2sin cos cos cos cos 844448888n n n n n n n n n n n nn n πππππππππ→∞⎡⎤--⎛⎫+++++++++= ⎪⎢⎥⎝⎭⎣⎦________.14.已知等差数列{}()*n a n N∈中,若10100a=,则等式()121220192019,*n n a a a a a a n n N -+++=+++<∈恒成立;运用类比思想方法,可知在等比数列{}()*n b n N ∈中,若1001b=,则与此相应的等式_________________恒成立.15.观察下列等式:11=,3211=123+=,332123+=1236++=,33321236++=……可以推测3333123n +++⋅⋅⋅+=____(*n N ∈,用含有n 的代数式表示).16.我国南北朝时期数学家祖瞘,提出了著名的祖暅原理:“幂势既同, 则积不容异”,其中“幂”是截面积,“势” 是几何体的高,该原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图,在空间直角坐标系中的xoy 平面内,若函数1,[1,0]()1,(0,1]x x f x x x ⎧+∈-⎪=⎨-∈⎪⎩的图象与轴x 围城一个封闭的区域A ,将区域A 沿z 轴的正方向平移2个单位长度,得到几何体(图一),现有一个与之等高的圆柱(图二),其底面积与区域A 的面积相等,则此圆柱的体积为 _______.图一 图二17.观察下列等式:11234934567254567891049=++=++++=++++++=照此规律,则第五个等式应为________________.18.集合{,,}{1,2,3}a b c =,现有甲、乙、丙三人分别对a ,b ,c 的值给出了预测,甲说3a ≠,乙说3b =,丙说1c ≠.已知三人中有且只有一个人预测正确,那么10100a b c __________.19.观察如图中各多边形图案,每个图案均由若干个全等的正六边形组成,记第n 个图案中正六边形的个数是()f n .由(1)1f =,(2)7f =,(3)19f ,…,可推出(10)f =__________.20.对于问题“已知关于x 的不等式20ax bx c ++>的解集为(2,3)-,解关于x 的不等式20ax bx c -+>的”,给出一种解法:由20ax bx c ++>的解集为(2,3)-,得2()()0a x b x c -+-+>的解集为(3,2)-.即关于x 的不等式20ax bx c -+>的解集为(3,2)-.类比上述解法,若关于x 的不等式20ax bx c ++>的解集为(1,4),则关于x 的不等式20a bc x x++>的解集为_____. 三、解答题21.(1)已知0a >,0b >,求证:22a b aba b+≥+; (2)已知0a b c ++>,0ab bc ca ++>,0abc >,求证:0a >,0b >,0c >.22.23523.若函数()f x 满足:对于其定义域D 内的任何一个自变量0x ,都有函数值()0f x D ∈,则称函数()f x 在D 上封闭.(1)若下列函数:()121f x x =-,()221xf x =-的定义域为()0,1D =,试判断其中哪些在D 上封闭,并说明理由. (2)若函数()52x ag x x -=+的定义域为()1,2,是否存在实数a ,使得()g x 在其定义域()1,2上封闭?若存在,求出所有a 的值,并给出证明;若不存在,请说明理由.(3)已知函数()f x 在其定义域D 上封闭,且单调递增,若0x D ∈且()()0f f x x =,求证:()00f x x =.24.已知i 为虚数单位,观察下列各等式:()()cos1sin1cos2sin 2cos3sin3i i i ++=+; ()()cos3sin3cos4sin 4cos7sin7i i i ++=+; ()()cos5sin5cos6sin6cos11sin11i i i ++=+; ()()cos7sin7cos8sin8cos15sin15i i i ++=+. 记()cos sin ,f i R αααα=+∈.(1)根据以上规律,试猜想()()(),,f f f αβαβ+成立的等式,并加以证明;(2)计算612i ⎫+⎪⎪⎝⎭.25.已知函数3()3xf x x =+,数列{}n a 对于*n ∈N ,总有1()n n a f a +=,112a =. (1)求2a ,3a ,4a 的值,并猜想数列{}n a 的通项公式; (2)用数学归纳法证明你的猜想. 26.已知()f x =,分别求()()01f f +,()()12f f -+,()()23f f -+的值,然后归纳猜想一般性结论,并证明你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:根据学校艺术节对同一类的A ,B ,C ,D 四项参赛作品,只评一项一等奖,故假设A ,B ,C ,D 分别为一等奖,判断甲、乙、丙、丁的说法的正确性,即可判断. 详解:若A 为一等奖,则甲,丙,丁的说法均错误,故不满足题意, 若B 为一等奖,则乙,丙说法正确,甲,丁的说法错误,故满足题意, 若C 为一等奖,则甲,丙,丁的说法均正确,故不满足题意, 若D 为一等奖,则只有甲的说法正确,故不合题意,故若这四位同学中只有两位说的话是对的,则获得一等奖的作品是B 故答案为C.点睛:本题考查推理的应用,意在考查学生的分析、推理能力.这类题的特点是:通过几组命题来创设问题情景,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.对于逻辑推理问题,应耐心读题,找准突破点,一般可以通过假设前提依次验证即可.2.C解析:C 【分析】本题可根据图中数字的排列规律来思考,先观察每行数字的个数的规律,然后找到每行第一个数之间的规律,然后根据规律得出第20行的第1项的数字. 【详解】解:由图中数字排列规律可知:∵第1行有1个数,第2行有3个数,第3行有5个数,第4行有7个数,… ∴第i 行有(21)i -个数.可设第i 行第j 个数字为.i j a ,其中121j i ≤≤-.观察每行的第1项,可得: 1.11a =, 2.12a =, 3.15a =, 4.110a =,… ∴ 1.11a =,2.1 1.11a a -=,3.1 2.13a a -=,4.1 3.15a a -=,….1 1.123i i a a i ---=.以上各项相加,可得:.1113523i a i =++++⋅⋅⋅+-()(1)(123)12i i -+-=+2(1)1i =-+.∴220.1(201)1362a =-+=. 故选:C . 【点睛】本题主要考查数列排列规律,等差数列的特点及求通项和求和.属于中档题.3.C解析:C 【分析】本题依照题干中的例子进行类比推理进行计算即可得到结果. 【详解】由题意,令12(0)122x x +=>++⋯,即12x x+=, 即2210x x --=,解得1x =或1x =(舍去)121122∴+=++⋅⋅⋅,故选:C 【点睛】 本题主要考查类比推理方法的应用,以及一元二次方程的解法,属于中档题.4.C解析:C 【分析】根据题意知甲和丙的说法矛盾,因此两人中有一人判断正确,据此推断得到答案. 【详解】由题意知,甲和丙的说法矛盾,因此两人中有一人判断正确,故乙和丁都判断错误,乙获奖,丙判断正确. 故选:C. 【点睛】本题考查了逻辑推理,意在考查学生的逻辑推理能力.5.B解析:B 【分析】观察规律,看每一组的最后一个数与组数的关系,可知第n 组最后一个数是2+3+4+…..+n +1=()32n n +,然后再验证求解. 【详解】观察规律,第一组最后一个数是2=2, 第二组最后一个数是5=2+3, 第三组最后一个数是9=2+3+4,……, 依此,第n 组最后一个数是2+3+4+…..+n +1=()32n n +. 当62n =时,()320152n n +=,所以2019所在的组数为63. 故选:B 【点睛】本题主要考查了数列的递推,还考查了推理论证的能力,属于中档题.6.B解析:B 【分析】根据反证法,假设要否定结论,根据且的否定为或,判断结果. 【详解】0x y ==的否定为00x y ≠≠或,即x ,y 不都为0,选B.【点睛】本题考查反证法以及命题的否定,考查基本应用能力.属基本题.7.A解析:A 【分析】利用反证法,假设曲线1C 与2C 有公共点()11,Q x y ,推出矛盾,即可得到结论. 【详解】假设曲线1C 与2C 有公共点()11,Q x y ,则()11,0F x y =和()1100(,),0F x y F x y -=同时成立,()00,0F x y ∴=,∴点()00,P x y 在曲线1C 上,这与已知条件点()00,P x y 不在曲线1C 上矛盾. ∴假设不成立,所以曲线1C 与2C 无公共点. 故选:A . 【点睛】本题考查反证法,关键是理解掌握反证法的定义.8.C解析:C 【分析】根据题意可得三项等比数列的中项可由首项和末项表示,四项等比数列的第2、第3项均可由首项和末项表示,从而类比出正项等比数列{}n a 中的k a 可由首项1a 和末项n a 表示. 【详解】因为三项等比数列的中项可由首项和末项表示, 四项等比数列的第2、第3项均可由首项和末项表示, 所以正项等比数列{}n a 中的k a 可由首项1a 和末项n a 表示,因为11n n a a q -=,所以=q所以11=k k a a -⎛ ⎝1111=k n n a a a --⎛⎫ ⎪⎝⎭1111=n k k n n na a ----⋅=【点睛】本题以数学文化为背景,考查类比推理能力和逻辑推理能力,求解时要先读懂题目的文化背景,再利用等比数列的通项公式进行等价变形求解.9.B解析:B 【分析】根据前面几个等式归纳出一个关于k 的等式,再令6k =可得出m 和n 的值,由此可计算出m n +的值. 【详解】==,====)2,k k N *=≥∈,当6k ==26135m ∴=-=,6n =,因此,41m n +=,故选B. 【点睛】本题考查归纳推理,解题时要根据前几个等式或不等式的结构进行归纳,考查推理能力,属于中等题.10.C解析:C 【分析】根据反证法的知识判断A,B 两个选项说法正确,根据等比数列的知识判断C 选项错误.根据特称命题的否定是全称命题的知识判断D 选线说法正确. 【详解】对于A 选项,反证法假设时,假设“1x ≠或1y ≠”,说法正确.对于B 选项,假设,a b 两个都不大于1,即1,1a b ≤≤,则2a b +≤与已知矛盾,故假设不成立,原来说法正确.对于C ,假设等比数列公比为()0q q ≠,则()210y q =-⋅<,所以C 选项说法错误.对于D 选项,根据特称命题的否定是全称命题的知识可知D 选项说法正确.综上所述,本小题选C. 【点睛】本小题主要考查反证法的知识,考查等比数列基本量以及项的正负关系,考查全称命题与特称命题互为否定等知识,属于基础题.11.B【解析】 【分析】设()1012122...t t =>+++,可得12t t=+,求解即可. 【详解】设()1012122...t t =>+++,则12t t=+,即2210t t +-=,解得1t =,取1t =. 故选B. 【点睛】本题考查了类比推理,考查了计算能力,属于基础题.12.C解析:C 【分析】分析顶点数, 棱数与面数的规律,根据规律求解. 【详解】易知同一凸多面体顶点数, 棱数与面数的规律为: 棱数=顶点数+面数-2,所以,12个顶点,8个面的扭曲棱柱的棱数=12+8-2=18. 故选C. 【点睛】本题考查逻辑推理,从特殊到一般总结出规律.二、填空题13.【分析】先画出的图象再根据和式的几何意义可得所求的极限【详解】关于中心对称其在上的图象如图所示:将区间分为段每段矩形面积为将区间分为段每段矩形面积为其中原式即求在上与轴和所围图形面积利用割补法易知面解析:4π【分析】先画出2sin y x =的图象,再根据和式的几何意义可得所求的极限. 【详解】211sin cos222y x x ==-+,关于1,42π⎛⎫⎪⎝⎭中心对称,其在0,2π⎡⎤⎢⎥⎣⎦上的图象如图所示:将区间0,4⎡⎤⎢⎥⎣⎦π分为n 段,每段矩形面积为211111cos 2sin 424244k k n n n n ππππ⎡⎤⎛⎫⋅-⨯+=⎪⎢⎥⎝⎭⎣⎦,11k =,2,...,n ,将区间,42ππ⎡⎤⎢⎥⎣⎦分为2n 段,每段矩形面积为 22222111cos2sin cos 42228282888k k k n n n n n n ππππππππ⎡⎤⎛⎫⎛⎫⋅--+=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 其中21k =,...,2n , 原式即求11cos222y x =-+在0,2π⎡⎤⎢⎥⎣⎦上与x 轴和2x π=所围图形面积,利用割补法易知面积为1224ππ⨯=. 故答案为:4π. 14.【分析】根据等差数列的性质有等比数列的性质有类比即可得到结论【详解】已知等差数列中由等差数列的性质得等比数列且有等比数列的性质得所以类比等式可得故答案为:【点睛】本题考查等差数列和等比数列的性质结合 解析:()*12112199199,N n n n b b b b b b b n n --=<∈【分析】根据等差数列的性质有12019101020n n a a a +-+==,等比数列的性质有21199100=1n n b b b +-=,类比即可得到结论. 【详解】已知等差数列{}()*n a n N∈中,12122019n n a a a a a a -+++=+++ 1122019n n n a a a a a +-++=++++,12201820190n n n a a a a ++-∴++++=.10100a =,由等差数列的性质得, 1201922018101020n n n n a a a a a +-+-+=+===.等比数列{}()*n b n N∈,且1001b=,有等比数列的性质得,211992198100===1n n n n b b b b b +-+-=.所以类比等式()*121220192019,n n a n a a a a a n N -+++=+++<∈,可得()*12112199199,N n n n b b b b b b b n n --=<∈.故答案为:()*12112199199,N n n n b b b b b b b n n --=<∈.【点睛】本题考查等差数列和等比数列的性质,结合类比的规则,和类比积,加类比乘,得出结论,属于中档题.15.或或【解析】【分析】观察找到规律由等差数列求和可得【详解】由观察找到规律可得:故可得解【点睛】本题考查观察能力和等差数列求和属于中档题解析:()212n n +⎡⎤⎢⎥⎣⎦或()2214n n +或()2123n +++⋅⋅⋅+ 【解析】 【分析】观察找到规律由等差数列求和可得. 【详解】由观察找到规律可得:()223333(1)123123,2n n n n +⎡⎤+++⋅⋅⋅+=+++⋅⋅⋅+=⎢⎥⎣⎦故可得解. 【点睛】本题考查观察能力和等差数列求和,属于中档题.16.【分析】先利用定积分计算底面面积再用体积公式得到答案【详解】的图象与轴围城一个封闭的区域故答案为【点睛】本题考查了体积的计算意在考查学生解决问题的能力解析:73【分析】先利用定积分计算底面面积,再用体积公式得到答案. 【详解】[1,0]()1,(0,1]x f x x x ∈-=-∈⎪⎩的图象与轴x 围城一个封闭的区域A1322101217(1)(1)(1)10326A S x dx x x -=+-=+--=-⎰77263A V S h ==⨯=故答案为73【点睛】本题考查了体积的计算,意在考查学生解决问题的能力.17.【解析】【分析】左边根据首数字和数字个数找规律右边为平方数得到答案【详解】等式左边:第排首字母为数字个数为等式右边:第五个等式应为:故答案为:【点睛】本题考查了找规律意在考查学生的应用能力 解析:567891011121381++++++++=【解析】 【分析】左边根据首数字和数字个数找规律,右边为平方数,得到答案. 【详解】等式左边:第n 排首字母为n ,数字个数为21n - 等式右边:2(21)n -第五个等式应为:567891011121381++++++++= 故答案为:567891011121381++++++++= 【点睛】本题考查了找规律,意在考查学生的应用能力.18.【解析】【分析】由题意利用推理的方法确定abc 的值进一步可得的值【详解】若甲自己的预测正确则:据此可知丙的说法也正确矛盾;若乙自己的预测正确则:矛盾;据此可知只能是丙自己的预测正确即:;故:则故答案解析:【解析】 【分析】由题意利用推理的方法确定a ,b ,c 的值,进一步可得10100a b c 的值.【详解】若甲自己的预测正确,则:3,3a b ≠≠,据此可知3c =,丙的说法也正确,矛盾; 若乙自己的预测正确,则:3,3a b ==,矛盾;据此可知只能是丙自己的预测正确,即:3,3,1a b c =≠≠;故:3,1,2a b c ===,则10100213a b c ++=. 故答案为213. 【点睛】本题主要考查推理案例及其应用,属于中等题.19.【解析】【分析】根据递推关系利用叠加法求结果【详解】因为所以【点睛】由前几项归纳数列通项的常用方法:观察(观察规律)比较(比较已知数列)归纳转化(转化为特殊数列)联想(联想常见的数列)等方法 解析:271【解析】 【分析】根据递推关系16(1)n n a a n +-=-,利用叠加法求结果 【详解】因为16(1)n n a a n +-=-, 所以1010998211=()()()6[981]1271.a a a a a a a a -+-++-+=++++=【点睛】由前几项归纳数列通项的常用方法:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.20.【分析】关于的不等式可看成不等式中的用代入得来进而可根据不等式ax2+bx+c >0的解集进行求解【详解】若关于的不等式的解集为则关于的不等式看成不等式中的用代入得来则可得解得故答案为:【点睛】本题主解析:114⎛⎫ ⎪⎝⎭,. 【分析】关于x 的不等式20a b c x x ++>可看成不等式20ax bx c ++>中的x 用1x代入得来,进而可根据不等式ax2+bx+c >0的解集进行求解. 【详解】若关于x 的不等式20ax bx c ++>的解集为14(,),则关于x 的不等式20a bc x x++>看成不等式20ax bx c ++>中的x 用1x代入得来, 则可得,114x<< 解得,114x <<. 故答案为:1,14⎛⎫⎪⎝⎭.【点睛】本题主要考查类比推理,同时也考查了不等式的基本性质,属于中档题.三、解答题21.(1)证明见解析;(2)证明见解析. 【解析】试题分析:(1)利用分析法,0,0a b >>,要证22a b aba b+≥+,只要证()24a b ab +≥,只要证()240a b ab +-≥,只需证明()20a b -≥即可,该式显然成立,从而可得结论;(2)本题是一个全部性问题,要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰,于是考虑采用反证法,假设,,a b c ,不全是正数,这时需要逐个讨论,,a b c 不是正数的情形,但注意到条件的特点(任意交换,,a b c 的位置不改变命题的条件),我们只要讨论其中一个数〔例如a ,其他两个数〔例如,b c 〕与这种情形类似. 试题 (1)证明:0,0a b >>,要证22a b ab a b+≥+,只要证()24a b ab +≥,只要证()240a b ab +-≥,即证2220a ab b -+≥,而()22220a ab b a b -+=-≥恒成立,故22a b aba b+≥+成立. (2)假设,,a b c 不全是正数,即其至少有一个不是正数,不妨先设0a ≤,下面分0a =和0a <两种情况讨论,如果0a =,则0abc =与0abc >矛盾,0a ∴=不可能,如果0a <,那么由0abc >可得,0bc <,又0,0a b c b c a ++>∴+>->,于是()0ab bc ca a b c bc ++=++<,这和已知0ab bc ca ++>相矛盾,因此,0a <也不可能,综上所述,0a >,同理可证0,0b c >>,所以原命题成立.【方法点睛】本题主要考查反证法的应用以及利用分析法证明不等式,属于难题.分析法证明不等式的主要事项:用分析法证明不等式时,不要把“逆求”错误的作为“逆推”,分析法的过程仅需寻求充分条件即可,而不是充要条件,也就是说,分析法的思维是逆向思维,因此在证题时,应正确使用“要证”、“只需证”这样的连接关键词. 22.详见解析 【分析】,=边平方整理,推出矛盾即可. 【详解】则由等差数列的性质可得=∴1225=++∴5=∴25=40(矛盾),故假设不成立, ∴【点睛】本题主要考查反证法的应用,还考查了运算求解的能力,属于中档题.23.(1)()2f x 在D 上封闭,理由见解析;(2)存在,2a =,证明见解析;(3)证明见解析 【分析】(1)根据定义域,求得函数的值域,利用新定义,即可得到结论;(2)根据函数封闭定义转化为不等式恒成立问题,再利用变量分离法求解,可求a 的值. (3)函数f (x )在其定义域D 上封闭,且单调递增,假设()00f x x ≠,根据单调函数性质可证假设不成立,由此能证明f (x 0)=x 0. 【详解】(1)当()0,1x ∈时,()()1211,1f x x =-∈-, ∴()1f x 在D 上不封闭;()()2210,1x f x =-∈,∴()2f x 在D 上封闭.(2)设存在实数a ,使得()52x ag x x -=+在()1,2上封闭, 即对一切()1,2x ∈,5122x ax -<<+恒成立, ∵20x +>,∴2524x x a x +<-<+, 即3442x a x -<<-恒成立, ∵()341,2x -∈-∴2a ≥; ∵()422,6x -∈∴2a ≤. 综上,满足条件的2a =. (3)假设()00f x x ≠,①若()00f x x >,∵()00f x x D ∈,,()f x 在D 上单调递增, ∴()()()0ff x f x >,即()00x f x >,矛盾;②若()00f x x <,∵()0f x ,0x D ∈,()f x 在D 上单调递增, ∴()()()0ff x f x <,即()00xf x <,矛盾.∴假设不成立,()00f x x =. 【点睛】本题考查函数的综合运用,根据函数封闭的定义与函数定义域、值域、单调性等知识点进行综合的考查,考查转化能力与函数基础知识的应用,属于中等题. 24.(1) 猜想()()()f f f αβαβ=+,证明见解析;(2)-1【分析】 (1)将()(),f f αβ和()f αβ+之间的关系进行验证,总结出规律,即为猜想,作出证明即可;(2)利用(1)推出的结论,代入求解,即可得到答案. 【详解】(1)猜想()()()ff f αβαβ=+,证明:()()()()cos sin cos sin f f i i αβααββ=++ ()()cos cos sin sin sin cos cos sin i αβαβαβαβ=-++()()()cos sin i f αβαβαβ=+++=+;(2)因为()()()f f f αβαβ=+,所以()()()()()cosn isinn nff f f f n ααααααα===+,∴661cos sin 266i i ππ⎫⎛⎫+=+⎪ ⎪⎪⎝⎭⎝⎭cos sin 1i ππ=+=-. 【点睛】本题主要考查了归纳推理的应用,其中根据题设中各式子的结构,合理归纳是解答的关键,着重考查了推理与计算能力,属于基础题. 25.(1)237a =,338a =,439a =,*3()5n a n n =∈+N (2)见证明 【解析】 【分析】(1) 计算得到237a =,338a =,439a =,猜想*3()5n a n n =∈+N . (2)利用数学归纳法验证,假设,推导的顺序证明猜想. 【详解】(1)解:由3()3xf x x =+,得13()3n n n na a f a a +==+,因为11326a ==,所以237a =,338a =,439a =,猜想*3()5n a n n =∈+N . (2)证明:用数学归纳法证明如下: ①当1n =时,131152a ==+,猜想成立;②假设当*()n k k =∈N 时猜想成立,即35k a k =+, 则当1n k =+时,133335331535k k k a k a a k k +⋅+===+++++,所以当1n k =+时猜想也成立.由①②知,对*n ∈N ,35n a n =+都成立. 【点睛】本题考查了数列的计算,归纳猜想,数学归纳法,意在考查学生对于数学归纳法的掌握情况.26.详见解析. 【详解】试题分析:将0,1,1,2,2,3x =--代入()f x =()()()()()()01,12,23f f f f f f +-+-+的值;观察()()()()()()01,12,23f f f f f f +-+-+,根据上一步的结果可以归纳出一般的结论:自变量的和为1,则函数值的和为3,根据结论的形式将()f x =可完成证明. 试题 由()f x =,得()()01f f +==,()()12f f -+== ()()23f f -+==. 归纳猜想一般性结论为 ()()1f x f x -++= 证明如下:()()1f x f x -++==x ===【方法点睛】本题通过观察几组等式,归纳出一般规律来考查函数的解析式及归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2 数学证明学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.给出下面一段演绎推理:有理数是真分数,(大前提)整数是有理数,(小前提)整数是真分数.(结论)结论显然是错误的,是因为( )A.大前提错误B.小前提错误C.推理形式错误D.非以上错误【解析】举反例,如2是有理数,但不是真分数,故大前提错误.【答案】 A2.已知在△ABC中,∠A=30°,∠B=60°,求证:BC<AC.因为∠A=30°,∠B=60°,所以∠A<∠B.方框部分的证明是演绎推理的( )A.大前提B.小前提C.结论D.三段论【解析】因为本题的大前提是“在同一个三角形中,大角对大边,小角对小边”,证明过程省略了大前提,方框部分的证明是小前提,结论是“BC<AC”.故选B.【答案】 B3.在证明f(x)=2x+1为增函数的过程中,有下列四个命题:①增函数的定义是大前提;②增函数的定义是小前提;③函数f(x)=2x+1满足增函数的定义是大前提;④函数f(x)=2x+1满足增函数的定义是小前提.其中正确的命题是( )A.①④B.②④C.①③D.②③【解析】根据三段论特点,过程应为:大前提是增函数的定义;小前提是f(x)=2x +1满足增函数的定义;结论是f(x)=2x+1为增函数,故①④正确.【答案】 A4.(2016·郑州高二检测)在R上定义运算⊗:x⊗y=x(1-y).若不等式(x-a)⊗(x+a)<1对任意实数x都成立,则( )A.-1<a<1 B.0<a<2C .-12<a <32D .-32<a <12【解析】 ∵x ⊗y =x (1-y ),∴(x -a )⊗(x +a )=(x -a )(1-x -a )=-x 2+x +a 2-a <1.∴x 2-x -a 2+a +1>0,∵不等式(x -a )⊗(x +a )<1对任意实数x 都成立,∴Δ=1-4×(-a 2+a +1)<0, 解得-12<a <32.故选C.【答案】 C5.“四边形ABCD 是矩形,所以四边形ABCD 的对角线相等”,补充该推理的大前提是( )A .正方形的对角线相等B .矩形的对角线相等C .等腰梯形的对角线相等D .矩形的对边平行且相等【解析】 得出“四边形ABCD 的对角线相等”的大前提是“矩形的对角线相等”. 【答案】 B 二、填空题6.在三段论“因为a =(1,0),b =(0,-1),所以a ·b =(1,0)·(0,-1)=1×0+0×(-1)=0,所以a ⊥b ”中,大前提:________________________________________________________, 小前提:________________________________________________________, 结论:___________________________________________________________. 【解析】 本题省略了大前提,即“a ,b 均为非零向量,若a ·b =0,则a ⊥b ”. 【答案】 若a ,b 均为非零向量,a ·b =0,则a ⊥ba =(1,0),b =(0,-1),且a ·b =(1,0)·(0,-1)=1×0+0×(-1)=0 a ⊥b7.(2016·苏州高二检测)一切奇数都不能被2整除,2100+1是奇数,所以2100+1不能被2整除.其演绎推理的“三段论”的形式为____________________________________________________________________.【答案】 一切奇数都不能被2整除,(大前提) 2100+1是奇数,(小前提)所以2100+1不能被2整除.(结论)8.若f (a +b )=f (a )f (b )(a ,b ∈N *),且f (1)=2,则f 2 f 1 +f 4 f 3 +…+f 2 016f 2 015+f 2 018f 2 017=________.【解析】 利用三段论.∵f (a +b )=f (a )f (b )(a ,b ∈N *).(大前提) 令b =1,则f a +1f a=f (1)=2.(小前提)∴f 2 f 1 =f 4 f 3 =…=f 2 016 f 2 017 =f 2 018f 2 017=2, (结论)∴原式=2+2+…+21 009个=2 018. 【答案】 2 018 三、解答题9.用三段论的形式写出下列演绎推理. (1)自然数是整数,所以6是整数; (2)y =cos x (x ∈R )是周期函数. 【解】 (1)自然数是整数,(大前提) 6是自然数,(小前提) 所以6是整数.(结论)(2)三角函数是周期函数,(大前提)y =cos x (x ∈R )是三角函数,(小前提)所以y =cos x (x ∈R )是周期函数.(结论)10.已知y =f (x )在(0,+∞)上单调递增且满足f (2)=1,f (xy )=f (x )+f (y ). (1)求证:f (x 2)=2f (x ); (2)求f (1)的值;(3)若f (x )+f (x +3)≤2,求x 的取值范围. 【解】 (1)∵f (xy )=f (x )+f (y ),(大前提) ∴f (x 2)=f (x ·x )=f (x )+f (x )=2f (x ).(结论) (2)∵f (1)=f (12)=2f (1),(小前提) ∴f (1)=0.(结论)(3)∵f (x )+f (x +3)=f (x (x +3))≤2 =2f (2)=f (4),(小前提)且函数f (x )在(0,+∞)上单调递增,(大前提)∴⎩⎪⎨⎪⎧x >0,x +3>0,x x +3 ≤4,解得0<x ≤1.(结论)[能力提升]1.有一段演绎推理是这样的:直线平行于平面,则直线平行于平面内所有直线;已知直线b ⊄平面α,直线a ⊂平面α,直线b ∥平面α,则直线b ∥直线a .结论显然是错误的,这是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误【解析】 大前提是错误的,直线平行于平面,但不一定平行于平面内所有直线,还有异面直线的情况.【答案】 A2.“1<a <2”是“对任意的正数x ,都有2x +ax≥1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【解析】 当“对任意的正数x ,都有2x +a x≥1”成立时,a ≥x -2x 2对x ∈R +恒成立,而x -2x 2=-2⎝ ⎛⎭⎪⎫x -142+18≤18,∴a ≥18.∵(1,2) ⎣⎢⎡⎭⎪⎫18,+∞, ∴“1<a <2”是“对任意的正数x ,都有2x +ax≥1”的充分不必要条件. 【答案】 A3.已知f (1,1)=1,f (m ,n )∈N *(m ,n ∈N *),且对任意m ,n ∈N *都有: ①f (m ,n +1)=f (m ,n )+2, ②f (m +1,1)=2f (m,1). 给出以下三个结论:(1)f (1,5)=9,(2)f (5,1)=16,(3)f (5,6)=26. 其中正确结论为__________. 【解析】 由题设条件可知:(1)f (1,5)=f (1,4)+2=f (1,3)+4=f (1,2)+6 =f (1,1)+8=1+8=9.(2)f (5,1)=2f (4,1)=4f (3,1)=8f (2,1)=16f (1,1)=16.(3)f (5,6)=f (5,5)+2=f (5,4)+4=…=f (5,1)+10=2f (4,1)+10=4f (3,1)+10=…=16f (1,1)+10=16+10=26.【答案】 (1)(2)(3)4.在数列{a n }中,a 1=2,a n +1=4a n -3n +1,n ∈N *. (1)证明:数列{a n -n }是等比数列; (2)求数列{a n }的前n 项和S n ;(3)证明:不等式S n +1≤4S n ,对任意n ∈N *都成立. 【解】 (1)因为a n +1=4a n -3n +1, 所以a n +1-(n +1)=4(a n -n ),n ∈N *.又a 1-1=1,所以数列{a n -n }是首项为1,且公比为4的等比数列. (2)由(1)可知a n -n =4n -1,于是数列{a n }的通项公式为a n =4n -1+n .所以数列{a n }的前n 项和S n =4n-13+n n +12.(3)对任意的n ∈N *, S n +1-4S n =4n +1-13+ n +1 n +2 2- 4⎣⎢⎡⎦⎥⎤4n-13+n n +1 2=-12(3n 2+n -4)≤0.所以不等式S n +1≤4S n 对任意n ∈N *都成立.。

相关文档
最新文档