13数学期末试卷b
【备战期末】2020-2021学年人教版小学一年级下册期末冲刺数学试卷(B卷)(解析版)

2020-2021学年人教版小学一年级下册期末冲刺数学试卷(B卷)一.选择题(共8小题)1.下列算式中的8和3可以直接相减的是()A.58﹣3 B.58﹣30 C.85﹣32.12个小朋友在玩“老鹰捉小鸡”的游戏,已经捉住了7只“小鸡”,还有几只“小鸡”没有被捉到?()A.5只B.4只C.3只3.比60大9的数是多少?正确的列式是()A.9+6=15 B.60+9=69 C.60+9=964.下面的图形中,最与众不同的图形是()A.B.C.D.5.一份试卷满分是100分,学生的得分不可能是()A.80分B.110分C.59分6.小丽有相同张数的5角和1元零用钱若干,那么她可能有()A.30元B.25元C.20元D.17元7.有5枚硬币,共2元1角,可能是()A.2个1元和1个1角B.1个1元,2个5角和1个1角C.4个5角和1个1角8.联欢会前,王老师按照“3个红气球、2个黄气球、1个绿气球”的顺序把气球挂起来装饰教室,则第17个气球是()A.红气球B.黄气球C.绿气球二.填空题(共8小题)9.找规律。
,△,,△△,,△△△,,。
10.请你根据一年级围棋组、美术组、魔方组的报名情况,合理安排教室.围棋组美术组魔方组男生人数13834女生人数82991号教室能坐40人,2号教室能坐50人,3号教室能坐30人.围棋组在号教室,美术组在号教室,魔方组在号教室.11.投球游戏.小朋友们投球,每次投中的画“⚪”,没投中的画“×”.(1)依依第4次.(填“投中”或“没投中”)(2)四个人都投中的是第次和第次.(3)投中次数最多的是.(4)按投中次数的多少排名.④第一名是,第二名是,第三名是,第四名是.12.图中有个,个△,个〇,个.13.请选择,把正确答案的序号填在横线里.(1)的反面是,的反面是.①西藏拉萨布达拉宫②长江三峡③北京人民大会堂(2)的反面是,的反面是.①杭州西湖三潭映月②山东泰山③广西桂林山水14.按照大小顺序排一排.(1)6元3角4元8角24角9元1角24元>>>>(2)7角2分15分3元2角6角9分20分<<<<15.用3、1和5组成两位数,每个两位数的十位数和个位数不能一样,能组成个两位数。
六年级上册数学试题-期末考试B卷(解析版) 北师大版

2019-2020学年北师大版小学六年级上册期末考试数学试卷B卷一.选择题(共10小题)1.一种复读机先降价,再涨价,现价和原价相比()A.一样多B.原价高C.现价高2.下面说法正确的有()个.①夜晚,人与路灯之间的距离越近,人的影子越短,人与路灯的距离越远,人的影子越长.②一个圆的两条直径的交点是这个圆的圆心.③假分数的倒数比1小.④要反映某种儿童食品中各种营养成分的含量,最好选用扇形统计图.⑤生产110个零件,都合格,那么零件的合格率是110%.A.1B.2C.3D.43.六(1)班期末测试的及格率是98%,六(2)班期末测试的及格率是95%,那么()A.六(1)班及格的人数多B.六(2)班及格的人数多C.无法确定4.甲班人数的调入乙班后,两班人数相等,原来甲、乙两班人数的比是()A.4:5B.5:4C.9:10D.10:95.今年参加比赛的人数比去年减少了,那么今年的参赛人数与去年参赛人数的比是()A.4:5B.5:4C.6:5D.5:66.宏达汽车运输公司去年的营收总额是30万元,按规定要缴纳3%的营业税,这个公司去年应缴纳营业税()万元.A.0.9B.9C.9000D.1.57.一件原价是400元的衣服,打七折出售后比原价便宜了()元.A.280B.260C.1208.A圆的周长是B圆周长的,A圆面积是B圆面积的()A.B.C.D.9.有四杯糖水,甲杯里糖和水的比是1:9;乙杯里用20克糖配成200克糖水;丙杯里糖水的含糖率是11%;丁杯里先倒入200克水,再加入20克糖.这四杯糖水中,最甜的一杯是()A.甲杯B.乙杯C.丙杯D.丁杯10.某村共种蔬菜40公顷,其中种西红柿8公顷若制成扇形统计图,则表示西红柿的扇形占整个圆的()A.8%B.20%C.40%二.填空题(共8小题)11.把0.125:化成最简单的整数比是,比值是.12.王村今年植树节共植活了198棵树,2棵没成活.成活率是%.13.一条公路长12千米,第一天修了,第二天又修了千米,两天一共修了千米.14.永辉超市周年店庆搞活动、一件毛衣标价500元,普通顾客可八折购买,会员凭会员卡可七五折购买.买一件这样的毛衣,普通顾客要花元,会员要花元,会员比普通顾客节省了元.15.东风小学六年级三个班学生达到国家体育锻炼标准的情况如表.六(1)班学生的达标率是,达标率最高的班级是.16.观察如图所示的立体图形从正面和看到的图形是一样的.17.一个圆的半径扩大到原来的3倍,它的周长扩大到原来的倍,面积扩大到原来的倍.18.一个花场种植花卉1200盆,各种花卉所占百分比如图,请根据统计图完成下面各题.(1)玫瑰花的盆数占花卉总数的%.(2)兰花的盆数占花卉总数的%.(3)百合花种了盆.(4)兰花比百合花少盆.(5)百合花的盆数比玫瑰花多%.三.判断题(共5小题)19.一箱汽油,已经用去了35%,还剩65%.(判断对错)20.条形统计图用宽度相等的条形的长短表示数量的多少.(判断对错)21.7:8可以写成,比值是.(判断对错)22.若圆的半径增加2cm,则圆的面积增加22×3.14=12.56(cm2).(判断对错)23.百分数化成分数后都是真分数.(判断对错)四.计算题(共2小题)24.直接写出得数.×15=×4.8=2﹣= 1.4+20%=÷=5÷=×75%=×4×=+×=×99+99×=25.求比值.24:48=:0.7=0.6:0.16=五.应用题(共7小题)26.栽200棵树苗,结果有8棵没有成活.(1)这批树苗的成活率是多少?(2)照这样,为了保证成活480棵,至少要栽多少棵?27.一个圆形花坛的周长是62.8米,若把它的直径增加2米,面积会增加多少平方米?28.如图是高山蔬菜种植基地里蔬菜种植面积的扇形统计图.已知西红柿的种植面积是5公顷.(1)萝卜的种植面积是多少公顷?(2)其他的种植面积比茄子的种植面积少多少公顷?29.用来消毒的碘酒是把碘和酒按1:50的比混合配制而成的.现在有45g碘,可以配制这种碘酒多少千克?30.电视机的原价是多少元?31.新华书店运来一批儿童读物,第一天卖出1800本,第二天比第一天多买,剩下的是总数的,这批儿童读物一共有多少本?32.它们分别看到什么?参考答案与试题解析一.选择题(共10小题)1.【分析】这件商品的原价看成单位“1”,降价后的价格是原价的(1﹣),再把降价后的价格看成单位“1”,现价是降价后的(1+),用乘法求出现价是原价的几分之几,即可求解.【解答】解:(1﹣)×(1+)=×=现价是原价的,现价和原价相比,原价高.故选:B.【点评】本题注意区分两个单位“1”的不同,然后根据分数乘法的意义求出现价是原价的几分之几进行求解.2.【分析】①物体距光源越近,影子越短,反之越长,因此,夜晚,人与路灯之间的距离越近,人的影子越短,人与路灯的距离越远,人的影子越长.②根据圆的特征,圆的直径经过圆心,因此,一个圆的两条直径的交点是这个圆的圆心.③假分数是分子大于或分等分母的分数,分子大于分母的假分数的倒数比1小,分子、分母相等的假分数的倒数等于1.④根据扇形统计图的特点:扇形比较清楚地反映出部分与部分、部分与整体之间的数量关系,因此,扇形统计图能要反映某种儿童食品中各种营养成分的含量,最好选用扇形统计图.⑤无论是合格率、出勤率、出油率等,最多是100%.生产110个零件,都合格,那么零件的合格率是100%.【解答】解:①夜晚,人与路灯之间的距离越近,人的影子越短,人与路灯的距离越远,人的影子越长.正确;②一个圆的两条直径的交点是这个圆的圆心.正确;③假分数的倒数比1小.错误;④要反映某种儿童食品中各种营养成分的含量,最好选用扇形统计图.正确;⑤生产110个零件,都合格,那么零件的合格率是110%.错误.故选:C.【点评】此题考查的知识点较多,每个小题是一个知识点.有:从不同方向观察物体和几何体;倒数的认识;圆的认识;百分率的应用;统计图的特征等.3.【分析】因及格人数=总人数×及格率,由于六(1)班和六(2)班的总人数不确定,所以无法进行比较,然后再进行选择即可.【解答】解:因格人数=总人数×及格率,由于六(1)班和六(2)班的总人数不确定,所以求出的各班的及格人数不知是多少,故无法比较.故选:C.【点评】本题主要考查了学生对格人数=总人数×及格率这一数量关系的掌握.4.【分析】根据题意.设甲班原来有x人,乙班原来有y人,甲班人数的调入乙班后,两班人数相等,即x﹣x=y+,化简求出x:y即可完成选择.【解答】解:设甲班原来有x人,乙班原来有y人,x﹣x=y+,x=y8x=10yx:y=5:4答:原来甲、乙两班人数的比是5:4.故选:B.【点评】解决此题的关键是设甲班原来有x人,乙班原来有y人,求出x:y即可.5.【分析】今年参加比赛的人数比去年减少了,是把去年参赛人数看作单位“1”,今年参加比赛的人数就是去年的(1﹣),是,那么今年的参赛人数与去年参赛人数的比是:1=4:5,解答即可.【解答】解:1﹣=:1=4:5故选:A.【点评】此题考查了比的意义.6.【分析】把营业额看成单位“1”,用营业额乘税率就是应交纳的税款.【解答】解:30×3%=0.9(万元)答:这个公司去年应缴纳营业税0.9万元.故选:A.【点评】本题关键是找出单位“1”,然后根据已知单位“1”的量求它的百分之几是多少用乘法来求解.7.【分析】七折是指现价占原价的70%,把原价看成单位“1”,也就是现价比原价降低了(1﹣70%),已知原价为400元,用乘法即可求出便宜了多少元.【解答】解:400×(1﹣70%)=400×30%=400×0.3=120(元)答:打七折出售后比原价便宜了120元.故选:C.【点评】本题关键是理解打折的含义:打几折,现价就是原价的百分之几十;打几几折,现价就是原价的百分之几十几.8.【分析】因为圆周率一定,圆的周长和半径乘正比例,所以A圆的周长是B圆周长的,A圆的半径是B圆半径的,根据圆的面积公式:S=πr2,所以A圆的面积是B圆面积的,据此解答即可.【解答】解:=答:A圆面积是B圆面积的.故选:C.【点评】此题考查的目的是理解掌握圆的周长、圆的面积公式的灵活运用,关键是熟记公式.9.【分析】糖水含糖率越高,糖水就越甜,所以只要求出每杯糖水的含糖率是多少,就能知道哪杯的糖水最甜.【解答】解:甲杯:1÷(1+9)×100%=10%乙杯:20÷200×100%=10%丙杯:含糖率是11%丁杯:20÷(20+200)×100%≈9%11%>10%>9%答:这四杯糖水中,最甜的一杯是丙杯.故选:C.【点评】完成本题要认真审题弄清每个选项中的数据是关于糖、水、还是糖水的.10.【分析】求西红柿的扇形占整个圆的百分之几,就相当于求8是40的百分之几,用8除以40即可.【解答】解:8÷40=20%答:西红柿的扇形占整个圆的20%.答:表示西红柿的扇形占整个圆的20%.故选:B.【点评】利用扇形统计图解决问题,就是解决有关不同类型的百分数应用题,按照百分数应用题的解题思路和解题方法进行解答.二.填空题(共8小题)11.【分析】(1)根据比的基本性质,即比的前项和后项同时乘或除以一个相同的数(0除外)比值不变,进而把比化成最简比;(2)根据求比值的方法,就用最简比的前项除以后项即得比值.【解答】解:0.125:=(0.125×8):(×8)=1:70.125:=0.125÷=故答案为:1:7,.【点评】此题考查化简比和求比值的方法,要注意区分:化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个数,可以是整数、小数或分数.12.【分析】成活率是指成活的树的棵数占总数的百分之几,计算方法为:×100%=成活率,由此列式解答即可.【解答】解:×100%=99%答:成活率是99%.故答案为:99.【点评】此题属于百分率问题,解答时都是用一部分数量(或全部数量)除以全部数量乘百分之百即可.13.【分析】把条公路的全长看作单位“1”,先依据分数乘法意义,求出第一天修的长度,再加上第二天又修的千米即可解答.【解答】解:12×+=3+=3(千米)答:两天一共修了3千米.故答案为:3.【点评】依据分数乘法意义,求出第一次用去长度,是解答本题的关键.注意两个分数表示的意义不同.14.【分析】根据题意可知,把标价看作单位“1”,则:普通顾客所需钱数=标价×80%,会员所需钱数=标价×75%.把数代入计算:500×80%=400(元),500×75%=375(元),然后求其差:400﹣375=25(元).即可求解.【解答】解:八折=80%七五折=75%500×80%=400(元)500×75%=375(元)400﹣375=25(元)答:买一件这样的毛衣,普通顾客要花400元,会员要花375元,会员比普通顾客节省了25元.故答案为:400;375;25.【点评】本题主要考查百分数的应用,关键找到单位“1”,利用关系式做题.15.【分析】达标率是指考试达标的学生数占全部参加测试学生数的百分之几,计算方法为:达标率=×100%,由此列式解答即可求出六(1)班的达标率;根据达标率=×100%计算出各班的达标率进行比较即可.【解答】解:六(1)班的达标率:×100%=85%六(2)班的达标率:×100%=80%六(3)班的达标率:×100%=90%因为90%>85%>80%,所以六(3)的达标率最高;答:六(1)班学生的达标率是85%,达标率最高的班级是六(3)班.故答案为:85%,六(3)班.【点评】此题属于百分率问题,计算的结果最大值为100%,都是用一部分数量(或全部数量)除以全部数量乘百分之百.16.【分析】这个立体图形由4个相同的小正方体构成.从正面能看到3个正方形,分两层,上层1个,下层2个,左齐;从左面能看到3个正方形,分两层,上层1个,下层2个,左齐;从右面能看到3个正方形,分两层,上层1个,下层2个,右齐;从上面能看到3个正方形,分上、下两层,上层2个,下层1个,左齐;从后面能看到3个正方形,分上、下两层,上层1个,下层2个,右齐.【解答】解:如图立体图形从正面和左面看到的图形是一样的.故答案为:左.【点评】本题是考查作简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.17.【分析】根据圆的:C=2πr,S=πr2以及积的变化规律可得:一个圆的半径扩大到原来的n倍,这个圆的周长就扩大到原来的n倍,面积就扩大到原来的n2倍;据此解答.【解答】解:一个圆的半径扩大到原来的3倍,这个圆的周长就扩大到原来的3倍,面积就扩大到原来的32=9倍.故答案为:3,9.【点评】本题考查了积的变化规律在圆的C=2πr,S=πr2中灵活应用,可以把它当作结论记住.18.【分析】(1)通过观察扇形统计图可知,玫瑰花的盆数占花卉总数的25%.(2)把花卉总数看作单位“1”,根据减法的意义,用减法求出兰花的盆数占花卉总数的百分之几.(3)把花卉总数看作单位“1”,其中百合花占总数的30%,根据一个数乘百分数的意义,用乘法解答.(4)把花卉总数看作单位“1”,先求出兰花比百合花少总数的百分之几,然后根据一个数乘百分数的意义,用乘法解答.(5)把玫瑰花的数量看作单位“1”,根据求一个数多另一个数多百分之几,用除法解答.【解答】解:(1)玫瑰花的盆数占花卉总数的25%.(2)1﹣25%﹣30%﹣25%=20%;答:兰花的盆数占花卉总数的20%.(3)1200×30%=1200×0.3=360(盆);答:百合花种360盆.(4)1200×(30%﹣20%)=1200×10%=1200×0.1=120(盆);答:兰花比百合花少120盆.(5)(30%﹣25%)÷25%=0.05÷0.25=0.2=20%;答:百合花的盆数比玫瑰花多20%.故答案为:25;20;360;120;20.【点评】此题考查的目的是理解掌握扇形统计图的特点及作用,并且能够根据统计图提供的信息,解决有关的实际问题.三.判断题(共5小题)19.【分析】把这一箱汽油的容积看成单位“1”,用1减去已经用去的百分数就是剩下了百分之几,再与65%比较即可判断.【解答】解:1﹣35%=65%所以原题说法正确;故答案为:√.【点评】本题数量关系简单,一步即可解决问题.20.【分析】条形统计图上的每个小格表示就是一个长度单位,每个长度单位表示的数量是相同的,条形宽度相等,由于数据不同,所以画出直条的长短也不同.【解答】解:根据分析可得,条形统计图用宽度相等的条形的长短表示数量的多少,所以原题说法正确.故答案为:√.【点评】条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,所以从条形统计图中很容易看出各种数量的多少.21.【分析】比写成分数形式,比的前项相当于分子,比号相当于分数线,比的后项相当于分母;用比的前项除以后项,所得的商即为比值.【解答】解:7:8可以写成,比值是:7:8=7÷8=;所以原题说法正确;故答案为:√.【点评】此题主要考查了把一个比写成一个分数的形式,以及求比值的方法,另外还要注意化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个商,可以是整数、小数或分数.22.【分析】设圆的半径为1cm,根据圆的面积公式可以得到原来的圆的面积,又半径增加2cm后半径变为(1+2)cm,再利用圆的面积公式得到现在圆的面积,然后相减即可求解.【解答】解:设圆的半径为1cm,所以这个圆的面积是π×12=π(平方厘米),半径增加2厘米后,半径是1+2=3(厘米),此时圆的面积是:π×32=9π9π﹣π=8π(平方厘米)答:圆的面积会增加8π平方厘米,原题说法错误.故答案为:×.【点评】在数学的学习中,要学会应用“假设法”,也叫举例子,找出反例即可判断.23.【分析】百分数化成分数后,有的是真分数,有的是假分数.当百分号前面的数小于100时,可化成真分数,当百分号前面的数大于或等于100时,可化成假分数(或整数).【解答】解:百分数化成分数后,可能是真分数也可能是假分数.故答案为:×.【点评】本题是考查百分数并分数,百分数化成分数后可能是真分数,也可能是假分数(或整数),关键是看百分号前面的数.四.计算题(共2小题)24.【分析】1.根据分数乘整数的乘法进行约分计算;2.分数与小数的乘法先把小数转化为分数进行约分计算;3.整数与分数的减法先把整数转化成分数进行减法计算;4.把百分数转化成小数进行加法计算;5.把分数的除法转化成乘法约分计算;6.整数除以分数先转化成乘法进行计算;7.把百分数转化成分数约分计算;8.根据乘法交换律把分数提前,然后进行约分计算;9.先约分计算分数乘法,后计算分数加法;10.根据乘法分配律进行计算.【解答】解:×15=9×4.8=2﹣=1 1.4+20%=1.6÷=15÷=7×75%=1×4×=4+×=×99+99×=99【点评】本题考查分数的乘法、分数的除法、分数的四则混合运算,解答本题的关键是明确它们各自的计算方法,注意最后的结果假分数要化为带分数.25.【分析】求比值是根据比的意义(两个数相除又叫两个数的比),用比的前项除以比的后项.【解答】解:(1)24:48=24÷48=0.5;(2):0.7=÷0.7=;(3)0.6:0.16=0.6÷0.16=3.75.【点评】求比值是用比的前项除以后项,小数化成分数进行计算,结果最好用分数表示.五.应用题(共7小题)26.【分析】(1)成活率是指成活的棵数占总棵数的百分之几,计算方法是:×100%.(2)用成活的棵数除以成活率就是需要栽的总棵数.【解答】解:(1)×100%=96%答:这批树苗的成活率是96%;(2)480÷96%=500(棵)答:至少要栽500棵.【点评】此题属于百分率问题,解答时都是用一部分数量(或全部数量)除以全部数量乘百分之百即可.27.【分析】如图所示,阴影部分即为增加的面积,求加宽后的面积,实际上是求圆环的面积,为此,需要先求出小圆的半径,进而可以求出大圆的半径,再根据圆环的面积公式S=π×(R2﹣r2)即可求解.【解答】解:62.8÷3.14÷2=10(米)2÷2=1(米)10+1=11(米)3.14×(112﹣102)=3.14×21=65.94(平方米)答:面积会增加65.94平方米.【点评】此题主要考查圆环的面积的计算方法S=π×(R2﹣r2)的灵活应用.28.【分析】(1)把蔬菜种植总面积看作单位“1”,已知西红柿的种植面积是5公顷,占总面积的50%,根据已知一个数的百分之几是多少,求这个数,用除法求出总面积,萝卜的种植面积占总面积的30%,根据一个数乘百分数的意义,用乘法解答.(2)把蔬菜种植总面积看作单位“1”,先求出其他的种植面积比茄子的种植面积少总面积的百分之几,然后根据一个数乘百分数的意义,用乘法解答.【解答】解:(1)5÷50%×30%=5÷0.5×0.3=10×0.3=3(公顷)答:萝卜的种植面积是3公顷.(2)5÷50%×(14%﹣6%)=5÷0.5×8%=10×0.08=0.8(公顷)答:其他的种植面积比茄子的种植面积少0.8公顷【点评】此题考查的目的是理解掌握扇形统计图的特点及作用,并且能够根据统计图提供的信息,解决有关的实际问题.29.【分析】根据碘和酒精的比1:50,可得出碘占碘酒的,也就是45克,根据已知一个数的几分之几是多少,求这个数用除法,即可列式解决问.【解答】解:45÷=45÷=45×51=2295(克)答:可以配制这种碘酒2295克.【点评】本题主要考查了根据比与分数的关系,求出碘占碘酒的几分之几,再根据除法的意义进行解答.30.【分析】把原价看成单位“1”,现价比原价便宜了10%,那么现价就是原价的(1﹣10%),它对应的数量是5400元,用现价除以(1﹣10%),即可求出原价.【解答】解:5400÷(1﹣10%)=5400÷90%=6000(元)答:电视机的原价是6000元.【点评】本题的关键是找出单位“1”,并找出数量对应了单位“1”的百分之几,用除法就可以求出单位“1”的量.31.【分析】根据题意,把第一天卖出的本数看作单位“1”,则第二天卖出的本数=第一天卖出本数×(1+),把数代入计算得:1800×(1+)=2000(本);然后把整批书的本数看作单位“1”,利用“已知一个数的几分之几是多少,求这个数,用除法计算”,把数代入计算:(1800+2000)=6650(本),据此解答即可.【解答】解:[1800+1800×]=[1800+2000]=3800=6650(本)答:这批儿童读物一共有6650本.【点评】本题主要考查分数四则运算的应用,关键找到单位“1”,利用关系式做题.32.【分析】小鸟从上面看到房子的屋顶,蚂蚁从正面看到房子的门和前面,蜗牛看到房子的侧面,由此连线得出答案即可.【解答】解:答案如下,【点评】此题考查从不同方向看同一个物体,注意看的方向和看到物体的部位.。
2022-2023学年北京市西城区高二(下)期末数学试卷【答案版】

2022-2023学年北京市西城区高二(下)期末数学试卷一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.等差数列﹣2,1,4,…的第10项为( ) A .22B .23C .24D .252.设函数f (x )=sin x ,则f '(π)=( ) A .1B .﹣1C .0D .π3.某一批种子的发芽率为23.从中随机选择3颗种子进行播种,那么恰有2颗种子发芽的概率为( ) A .29B .827C .49D .234.记函数f(x)=1x 的导函数为g (x ),则g (x )( ) A .是奇函数B .是偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数5.在等差数列{a n }中,若a 1=9,a 8=﹣5,则当{a n }的前n 项和最大时,n 的值为( ) A .5B .6C .7D .86.某钢厂的年产量由2010年的40万吨增加到2020年的60万吨,假设该钢厂的年产量从2010年起年平均增长率相同,那么该钢厂2030年的年产量将达( ) A .80万吨B .90万吨C .100万吨D .120万吨7.如果函数f (x )=xlnx ﹣ax 在区间(1,e )上单调递增,那么实数a 的取值范围为( ) A .[1,2]B .(﹣∞,2]C .[1,+∞)D .(﹣∞,1]8.在等比数列{a n }中,a 1=2,公比q =23,记其前n 项的和为S n ,则对于n ∈N *,使得S n <m 都成立的最小整数m 等于( ) A .6B .3C .4D .29.设随机变量ξ的分布列如下:则下列说法中不正确的是( ) A .P (ξ≤2)=1﹣P (ξ≥3)B .当a n =12n (n =1,2,3,4)时,a 5=124 C .若{a n }为等差数列,则a 3=15D .{a n }的通项公式可能为a n =1n(n+1)10.若函数f(x)={xe x +a ,x <1,a −x ,x ≥1有且仅有两个零点,则实数a 的取值范围为( )A .(0,e )B .(﹣∞,e )C .(0,1e )D .(−∞,1e )二、填空题共5小题,每小题5分,共25分。
2021-2022学年广东省东莞市七年级(上)期末数学(B卷)试题及答案解析

2021-2022学年广东省东莞市七年级(上)期末数学试卷(B卷)一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1.−2021的相反数是( )A. 2021B. −2021C. 12021D. −120212.嫦娥五号奔走38万千米外的月球带着“月球标本”飞回地球,数据380000用科学记数法表示为( )A. 380×103B. 3.80×105C. 38.0×104D. 0.380×1063.下列说法正确的是( )A. −3x2的系数是3B. 5πxy2的系数是5C. x2y3的次数是5D. 12πxy的次数是34.若−3x2y n与5x m y3是同类项,则m−n的值是( )A. 0B. 1C. −1D. 55.某班数学老师结合中国共产党建党一百周年,在班级内组织了一堂“正方体展开图猜猜看”活动课,下图是该正方体展开图的一种,那么原正方体中,与“建”字所在面对面上的汉字是( )A. 礼B. 年C. 百D. 赞6.下列方程的变形,正确的是( )A. 由3+x=5,得x=5+3B. 由7x=−4,得x=−74C. 由12y=0,得y=2 D. 由x+3=−2,得x=−2−37.下列叙述正确的是( )A. 画直线AB=10厘米B. 若两数的和为负数,则这两个数一定负数C. 河道改直可以缩短航程是因为“经过两点有一条直线并且只有一条直线”D. 由四舍五入得到的近似数6.8×103,精确到百位8.如图,甲从A点出发向北偏东60°方向走到点B,乙从点A出发向南偏西20°方向走到点C,则∠BAC的度数是( )A. 80°B. 100°C. 120°D. 140°9.已知有理数a,b,c在数轴上的位置如图所示,则下列结论不正确的是( )A. c<a<bB. abc>0C. a+b>0D. |c−b|>|a−b|10.某书中有一方程2+■x3=−1,其中一个数字被污渍盖住了,书后该方程的答案为x=−1,那么■处的数字应是( )A. 5B. −5C. 12D. −12二、填空题(本大题共7小题,共28.0分)11.冰箱冷藏室的温度是+5℃,保鲜室的温度是−7℃,则冷藏室比保鲜室的温度高______℃.12.比较大小:−3______−π.13.若∠α的余角是23°20′,则∠α=______.14.代数式3x−8与2互为相反数,则x=______。
高中数学 期末检测试卷(B)精品练习(含解析)新人教A版必修第一册-新人教A版高一第一册数学试题

期末检测试卷(B)C .充要条件D .既不充分又不必要条件8.设f (x )为偶函数,且x ∈(0,1)时,f (x )=-x +2,则下列说法正确的是( )A .f (0.5)<f ⎝ ⎛⎭⎪⎫π6B .f ⎝⎛⎭⎪⎫sin π6>f (sin 0.5)C .f (sin 1)<f (cos 1)D .f (sin 2)>f (cos 2)二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.下面各式中,正确的是( )A .sin ⎝ ⎛⎭⎪⎫π4+π3=sin π4cos π3+32cos π4B .cos 5π12=22sin π3-cos π4cos π3C .cos ⎝ ⎛⎭⎪⎫-π12=cos π4cos π3+64D .cos π12=cos π3-cos π4 10.函数f (x )=log a |x -1|在(0,1)上是减函数,那么( ) A .f (x )在(1,+∞)上递增且无最大值 B .f (x )在(1,+∞)上递减且无最小值 C .f (x )在定义域内是偶函数 D .f (x )的图象关于直线x =1对称 11.下面选项正确的有( ) A .存在实数x ,使sin x +cos x =π3B .α,β是锐角△ABC 的内角,是sin α>cos β的充分不必要条件C .函数y =sin ⎝ ⎛⎭⎪⎫23x -7π2是偶函数D .函数y =sin 2x 的图象向右平移π4个单位,得到y =sin ⎝⎛⎭⎪⎫2x +π4的图象12.若函数f (x )=a x-a -x(a >0且a ≠1)在R 上为减函数,则函数y =log a (|x |-1)的图象不可以是( )三、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.若扇形的面积为3π8、半径为1,则扇形的圆心角为________.14.设x >0,y >0,x +y =4,则1x +4y的最小值为________.15.定义在R 上的函数f (x )满足f (x )=3x -1(-3<x ≤0),f (x )=f (x +3),则f (2 019)=________.16.函数f (x )=⎩⎪⎨⎪⎧2x,x ≥0-x 2-2x +1,x <0,函数f (x )有________个零点,若函数y =f (x )-m 有三个不同的零点,则实数m 的取值X 围是________.(本题第一空2分,第二空3分)四、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)设函数f (x )=6+x +ln(2-x )的定义域为A ,集合B ={x |2x>1}. (1)求A ∪B ;(2)若集合{x |a <x <a +1}是A ∩B 的子集,求a 的取值X 围.18.(12分)已知sin ⎝ ⎛⎭⎪⎫β-π4=15,cos (α+β)=-13,其中0<α<π2,0<β<π2. (1)求sin 2β的值; (2)求cos ⎝ ⎛⎭⎪⎫α+π4的值.19.(12分)已知f (x )=⎩⎪⎨⎪⎧2x+1,x ≤0,log 2x +1,x >0.(1)作出函数f (x )的图象,并写出单调区间;(2)若函数y =f (x )-m 有两个零点,某某数m 的取值X 围.期末检测试卷(B)1.解析:因为A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2xx -2>1=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x +2x -2>0={x |x <-2或x >2},B ={x |1<2x <8}={x |0<x <3},因此A ∩B ={x |2<x <3}.故选A.答案:A2.解析:要使f (x )有意义,则⎩⎪⎨⎪⎧x +3≥0,x +1≠0,解得x ≥-3,且x ≠-1,∴f (x )的定义域为{x |x ≥-3,且x ≠-1}. 答案:A3.解析:sin 140°cos 10°+cos 40°sin 350° =sin 40°cos 10°-cos 40°sin 10° =sin (40°-10°)=sin 30°=12.答案:C4.解析:∵f (2)=log 32-1<0,f (3)=log 33+27-9=19>0,∴f (2)·f (3)<0,∴函数在区间(2,3)上存在零点. 答案:C5.解析:若命题p 是假命题,则“不存在x 0∈R ,使得x 20+2ax 0+a +2≤0”成立, 即“∀x ∈R ,使得x 2+2ax +a +2>0”成立,所以Δ=(2a )2-4(a +2)=4(a 2-a -2)=4(a +1)(a -2)<0,解得-1<a <2, 所以实数a 的取值X 围是(-1,2),故选B. 答案:B6.解析:x =ln π>ln e=1,y =log 52<log 55=12,z =1e >14=12,且z <1,故y <z <x . 答案:C7.解析:因为函数f (x )的图象向左平移π6个单位长度后得到函数g (x )的图象,所以g (x )=sin ⎝ ⎛⎭⎪⎫2x +φ+π3, 因为g (x )为偶函数,所以φ+π3=π2+k π(k ∈Z ),即φ=π6+k π(k ∈Z ),因为φ=π6可以推导出函数g (x )为偶函数,而函数g (x )为偶函数不能推导出φ=π6,所以“φ=π6”是“g (x )为偶函数”的充分不必要条件.答案:A8.解析:x ∈(0,1)时,f (x )=-x +2,则f (x )在(0,1)上单调递减,A :0.5<π6,所以f (0.5)>f ⎝ ⎛⎭⎪⎫π6,A 错误;B :0.5<π6,∴0<sin 0.5<sin π6<1,∴f ⎝ ⎛⎭⎪⎫sin π6<f (sin 0.5),B 错误;C :∵0<cos 1<sin 1<1,∴f (sin 1)<f (cos 1),C 正确;D :-1<cos2<0,f (cos 2)=f (-cos 2),sin 2-(-cos 2)=sin 2+cos 2=2sin ⎝⎛⎭⎪⎫2+π4>0,所以1>sin2>(-cos 2)>0,所以f (sin 2)<f (-cos 2)=f (cos 2),D 错误.故选C.答案:C9.解析:∵sin ⎝ ⎛⎭⎪⎫π4+π3=sin π4cos π3+cos π4sin π3=sin π4cos π3+32cos π4,∴A 正确;∵cos 5π12=-cos 7π12=-cos ⎝ ⎛⎭⎪⎫π3+π4=22sin π3-cos π4cos π3,∴B 正确;∵cos ⎝ ⎛⎭⎪⎫-π12=cos ⎝ ⎛⎭⎪⎫π4-π3=cos π4cos π3+64,∴C 正确;∵cos π12=cos ⎝ ⎛⎭⎪⎫π3-π4≠cos π3-cos π4,∴D 不正确.故选ABC.答案:ABC10.解析:由|x -1|>0得,函数y =log a |x -1|的定义域为{x |x ≠1}.设g (x )=|x -1|=⎩⎪⎨⎪⎧x -1,x >1-x +1,x <1,则g (x )在(-∞,1)上为减函数,在(1,+∞)上为增函数,且g (x )的图象关于直线x =1对称,所以f (x )的图象关于直线x =1对称,D 正确;因为f (x )=log a |x -1|在(0,1)上是减函数,所以a >1,所以f (x )=log a |x -1|在(1,+∞)上递增且无最大值,A 正确,B 错误; 又f (-x )=log a |-x -1|=log a |x +1|≠f (x ),所以C 错误.故选AD. 答案:AD11.解析:A 选项:sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4,则sin x +cos x ∈[-2, 2 ].又-2<π3<2,∴存在x ,使得sin x +cos x =π3,可知A 正确; B 选项:∵△ABC 为锐角三角形,∴α+β>π2,即α>π2-β∵β∈⎝ ⎛⎭⎪⎫0,π2,∴π2-β∈⎝ ⎛⎭⎪⎫0,π2,又α∈⎝ ⎛⎭⎪⎫0,π2且y =sin x 在⎝ ⎛⎭⎪⎫0,π2上单调递增∴sin α>sin ⎝ ⎛⎭⎪⎫π2-β=cos β,可知B 正确;C 选项:y =sin ⎝ ⎛⎭⎪⎫23x -7π2=cos 2x 3,则cos2-x 3=cos 2x 3,则y =sin ⎝ ⎛⎭⎪⎫23x -7π2为偶函数,可知C 正确;D 选项:y =sin 2x 向右平移π4个单位得:y =sin 2⎝ ⎛⎭⎪⎫x -π4=sin ⎝ ⎛⎭⎪⎫2x -π2=-cos 2x ,可知D 错误.本题正确选项ABC.答案:ABC12.解析:函数y =log a (|x |-1)是偶函数,定义域为(-∞,-1)∪(1,+∞), 由函数f (x )=a x-a -x(a >0且a ≠1)在R 上为减函数, 得0<a <1.当x >1时,函数y =log a (|x |-1)的图象可以通过函数y =log a x 的图象向右平移1个单位得到,结合各选项可知只有D 选项符合题意.故选ABC.答案:ABC13.解析:设扇形的圆心角为α,则∵扇形的面积为3π8,半径为1,∴3π8=12·α·12,∴α=3π4. 答案:3π414.解析:∵x +y =4,∴1x +4y =14⎝ ⎛⎭⎪⎫1x +4y (x +y )=14⎝ ⎛⎭⎪⎫5+y x +4x y ,又x >0,y >0,则y x+4xy≥2y x ·4x y =4⎝ ⎛⎭⎪⎫当且仅当y x =4x y ,即x =43,y =83时取等号, 则1x +4y ≥14×(5+4)=94. 答案:9415.解析:∵f (x )=f (x +3), ∴y =f (x )表示周期为3的函数, ∴f (2 019)=f (0)=3-1=13.答案:1316.解析:作出函数f (x )的图象如下图所示,由图象可知,函数f (x )有且仅有一个零点,要使函数y =f (x )-m 有三个不同的零点,则需函数y =f (x )与函数y =m 的图象有且仅有三个交点,则1<m <2.答案:1 (1,2)17.解析:(1)由⎩⎪⎨⎪⎧6+x ≥02-x >0得,-6≤x <2;由2x>1得,x >0;∴A =[-6,2),B =(0,+∞);∴A ∪B =[-6,+∞); (2)A ∩B =(0,2);∵集合{x |a <x <a +1}是A ∩B 的子集; ∴⎩⎪⎨⎪⎧a ≥0a +1≤2;解得0≤a ≤1;∴a 的取值X 围是[0,1].18.解析:(1)因为sin ⎝ ⎛⎭⎪⎫β-π4=22(sin β-cos β)=15,所以sin β-cos β=25, 所以(sin β-cos β)2=sin 2β+cos 2β-2sin βcos β=1-sin 2β=225,所以sin 2β=2325.(2)因为sin ⎝ ⎛⎭⎪⎫β-π4=15,cos(α+β)=-13, 其中0<α<π2,0<β<π2,所以cos ⎝ ⎛⎭⎪⎫β-π4=265,sin(α+β)=223, 所以cos ⎝ ⎛⎭⎪⎫α+π4=cos ⎣⎢⎡⎦⎥⎤α+β-⎝⎛⎭⎪⎫β-π4=cos(α+β)cos ⎝⎛⎭⎪⎫β-π4+sin(α+β)sin ⎝⎛⎭⎪⎫β-π4=⎝ ⎛⎭⎪⎫-13×265+223×15=22-615.19.解析:(1)画出函数f (x )的图象,如图所示:由图象得f (x )在(-∞,0],(0,+∞)上单调递增. (2)若函数y =f (x )-m 有两个零点, 则f (x )和y =m 有2个交点,结合图象得1<m ≤2. 20.解析:(1)f (x )=32sin 2x -12cos 2x +cos 2x =32sin 2x +12cos 2x =sin ⎝⎛⎭⎪⎫2x +π6.所以f (x )的最小正周期为T =2π2=π.(2)因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6.当2x +π6=π2,即x =π6时,f (x )取得最大值1;当2x +π6=7π6,即x =π2时,f (x )取得最小值-12.21.解析:(1)由题意可得处理污染项目投放资金为(100-x )百万元, 所以N (x )=0.2(100-x ),所以y =50x10+x +0.2(100-x ),x ∈[0,100].(2)由(1)可得,y =50x 10+x +0.2(100-x )=70-⎝ ⎛⎭⎪⎫50010+x +x 5=72-⎝⎛⎭⎪⎫50010+x +10+x 5≤72-20=52,当且仅当50010+x =10+x5,即x =40时等号成立.此时100-x =100-40=60.∴y 的最大值为52百万元,分别投资给植绿护绿项目、污染处理项目的资金为40百万元,60百万元.22.解析:(1)若y =f k (x )是偶函数,则f k (-x )=f k (x ),即2-x+(k -1)·2x =2x+(k -1)·2-x即2-x -2x =(k -1)·2-x -(k -1)·2x =(k -1)(2-x -2x),则k -1=1,即k =2; (2)∵f 0(x )+mf 1(x )≤4,即2x -2-x +m ·2x ≤4,即m 2x ≤4-2x +2-x, 则m ≤4-2x+2-x2x=4·2-x +(2-x )2-1,设t =2-x, ∵1≤x ≤2,∴14≤t ≤12.word- 11 - / 11 设4·2-x +(2-x )2-1=t 2+4t -1,则y =t 2+4t -1=(t +2)2-5, 则函数y =t 2+4t -1在区间⎣⎢⎡⎦⎥⎤14,12上为增函数, ∴当t =12时,函数取得最大值y max =14+2-1=54,∴m ≤54. 因此,实数m 的取值X 围是⎝⎛⎦⎥⎤-∞,54; (3)f 0(x )=2x -2-x ,f 2(x )=2x +2-x ,则f 2(2x )=22x +2-2x =(2x -2-x )2+2, 则g (x )=λf 0(x )-f 2(2x )+4=λ(2x -2-x )-(2x -2-x )2+2,设t =2x -2-x ,当x ≥1时,函数t =2x -2-x 为增函数,则t ≥2-12=32, 若y =g (x )在[1,+∞)有零点,即g (x )=λ(2x -2-x )-(2x -2-x )2+2=λt -t 2+2=0在t ≥32上有解,即λt =t 2-2,即λ=t -2t, ∵函数y =t -2t 在⎣⎢⎡⎭⎪⎫32,+∞上单调递增,则y min =32-2×23=16,即y ≥16.∴λ≥16,因此,实数λ的取值X 围是⎣⎢⎡⎭⎪⎫16,+∞.。
人教部编版七年级数学上册期末测试题 (13)

河南省淅川县大石桥乡2017-2018学年七年级上期末模拟数学试卷一.单选题(共10题;共30分)1.化简的结果是()A. 3B. ﹣3 C. ﹣4 D. 242.“情系玉树,大爱无疆——抗震救灾大型募捐活动”4月20日晚在中央电视台1号演播大厅举行。
据统计,这台募捐晚会共募得善款21.75亿元人民币,约合每秒钟筹集善款16万元。
21.75亿元用科学记数法可以表示为A. 21.75×108B. 2.175×108C. 21.75×109D. 2.175×1093.如图所示的立方体,如果把它展开,可以是下列图形中的()A. B.C. D.4.定义一种运算☆,其规则为a☆b=,根据这个规则,计算2☆3的值是()A. B.C.5 D. 65.规定一种新的运算x⊗y=x﹣y2,则﹣2⊗3等于()A. -11B. -7C. -8D. 256.下列计算正确的是()A. a2•a3=a6B. (x3)2=x6C. 3m+2n=5mnD. y3•y3=y7.计算(-2)×3的结果是()A. -6B.-1 C. 1D. 68.某市一天的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高()A. ﹣10℃B. ﹣6℃ C. 10℃ D. 6℃9.减去﹣3x得x2﹣3x+6的式子为()A. x2+6B. x2+3x+6C. x2﹣6xD. x2﹣6x+610.一组按规律排列的多项式:,,,,…,其中第10个式子是( )A. B. C.D.二.填空题(共8题;共24分)11.观察下面一列数,按其规律在横线上写上适当的数:﹣,,﹣,,﹣,________.12.如图,把14个棱长为1cm的正方体木块,在地面上堆成如图所示的立体图形,然后向露出的表面部分喷漆,若1cm2需用漆2g,那么共需用漆________ g.13.观察下列算式:71=7,72=49,73=343,74=2401,75=16807,76=117649,…通过观察,用你发现的规律,写出72004的末位数字是________.14.多项式x4﹣x2﹣x﹣1的次数、项数、常数项分别为________.15.猜谜语(打书本中两个几何名称).剩下十分钱________ ;两牛相斗________ .16.小明不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是________17.﹣1 的相反数是________,倒数是________.18.计算:①1+2﹣3﹣4+5+6﹣7﹣8+9+…﹣2012+2013+2014﹣2015﹣2016+2017=________ ;②1﹣22+32﹣42+52﹣…﹣962+972﹣982+992=________三.解答题(共6题;共36分)19.如图,已知A、O、B三点在同一条直线上,OD平分∠AOC,OE平分∠BOC.(1)若∠BOC=62°,求∠DOE的度数(2)若∠BOC=a°,求∠DOE的度数(3)图中是否有互余的角?若有请写出所有互余的角20.若“”是一种新的运算符号,并且规定.例如:,求的值.21.如图,M是线段AC中点,B在线段AC上,且AB=2cm、BC=2AB,求BM长度.22.已知a,b是实数,且有 |a-|+(b+)2,求a,b的值.23.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.24.计算(1)25°34′48″﹣15°26′37″(2)105°18′48″+35.285°.四.综合题(共10分)25.如图,点O是直线AB上一点,射线OA1, OA2均从OA的位置开始绕点O顺时针旋转,OA1旋转的速度为每秒30°,OA2旋转的速度为每秒10°.当OA2旋转6秒后,OA1也开始旋转,当其中一条射线与OB重合时,另一条也停止.设OA1旋转的时间为t秒.(1)用含有t的式子表示∠A1OA=________°,∠A2OA=________°;(2)当t =________,OA1是∠A2OA的角平分线;(3)若∠A1OA2=30°时,求t的值.河南省淅川县大石桥乡2017-2018学年七年级上期末模拟数学试卷参考答案与试题解析一.单选题1.【答案】A【考点】有理数的除法【解析】【解答】解:=(﹣36)÷(﹣12), =36÷12,=3.故选A.【分析】根据有理数的除法运算法则进行计算即可得解.2.【答案】D【考点】科学记数法—表示绝对值较大的数【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】将21.75亿=2175000000用科学记数法表示为2.175×109.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【考点】几何体的展开图【解析】【解答】解:选项A、C、D中折叠后带图案的三个面不能相交于同一个点,与原立方体不符;选项B中折叠后与原立方体符合,所以正确的是B.故选:B.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.同时注意图示中的阴影的位置关系.4.【答案】A【考点】定义新运算【解析】【分析】由a☆b=,可得2☆3=,则可求得答案.【解答】∵a☆b=∴2☆3=故选A.【点评】此题考查了新定义题型.解题的关键是理解题意,根据题意解题.5.【答案】A【考点】有理数的混合运算【解析】【解答】解:∵x⊗y=x﹣y2,∴﹣2⊗ 3=﹣2﹣32=﹣2﹣9=﹣11.故选A.【分析】根据运算“⊗”的规定列出算式即可求出结果.6.【答案】B【考点】同类项、合并同类项,同底数幂的乘法,幂的乘方与积的乘方【解析】【解答】A、a2•a3=a5,故本选项错误;B、(x3)2=x6,故本选项正确;C、3m+2n≠5mn,故本选项错误;D、y3•y3=y6,故本选项错误.故选B.【分析】利用同底数幂的乘法,幂的乘方与合并同类项的知识求解,即可求得答案.注意排除法在解选择题中的应用.7.【答案】A【考点】有理数的乘法【解析】【分析】根据有理数的乘法法则,异号得负可得。
初三数学期末试卷

初三数学期末试卷篇一:初三数学期末测试题及答案全卷分A卷和B卷,A卷满分86分,B卷满分34分;考试时间l20分钟。
A卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题。
一、选择题(本题共有个小题,每小题4分,共32分)在每小题给出的四个选项中,只有一项是正确的,把正确的序号填在题后的括号内。
1.下列实数中是无理数的是()(A)0.38(B)(C)4(D)2272.在平面直角坐标系中,点A(1,-3)在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限3.下列四组数据中,不能作为直角三角形的三边长是()..(A)3,4,6(B)7,24,25(C)6,8,10(D)9,12,154.下列各组数值是二元一次方程某3y4的解的是()某1某2某1某4(A)(B)(C)(D)y1y1y1y25.已知一个多边形的内角各为720°,则这个多边形为()(A)三角形(B)四边形(C)五边形(D)六边形6.如果(某y4)3某y0,那么2某y的值为()(A)-3(B)3(C)-1(D)17.在平面直角坐标系中,已知一次函数yk某b2c下列结论正的是()(A)k>0,b>0(B)k>0,b<0(C)k<0,b>0(D)k8.下列说法正确的是()(A)矩形的对角线互相垂直(B)等腰梯形的对角线相等(C)有两个角为直角的四边形是矩形(D)对角线互相垂直的四边形是菱形二、填空题:(每小题4分,共16分)9.如图,在Rt△ABC中,已知a、b、c分别是∠A、∠B、∠C的对第1页共6页边,如果b=2a,那么a=。
c10.在平面直角坐标系中,已知点M(-2,3),如果将OM绕原点O 逆时针旋转180°得到OM,那么点M的坐标为。
11.已知四边形ABCD中,∠A=∠B=∠C=90°,现有四个条件:①AC⊥BD;②AC=BD;③BC=CD;④AD=BC。
2022-2023学年黑龙江省哈尔滨市四年级下册数学期末检测试卷(B卷)含解析

2022-2023学年黑龙江省哈尔滨市四年级下册数学期末检测试卷(B卷)一、填空题。
(每空1分,共17分)1.(4分)计算360÷40+20×3时,应先算法和法,最后算法,结果是。
2.(2分)一个数的十位和百分位上都是5,其余各位上都是0,这个数是位小数,写作。
3.(1分)在一个直角三角形中,有一个锐角是36°,则另一个锐角是°。
4.(4分)认真阅读下面这段话,并从中选择恰当的数学信息完成后面的填空。
宜万铁路是我国“八纵八横”铁路网主骨架之一,是沪、汉、蓉快速通道重要组成部分,也是贯通中国东、中,西部的重要交通纽带。
线路全长37千米,东起湖北省宜昌市,西至重庆市万州区,其中湖北省境内324.424千米,重庆市境内52.704千米,估算工程总投资22570000000元。
(1)把宜万铁路的工程总投资改写成用“亿“作单位的数是亿元,保留整数后约是亿元。
(2)宜万铁路湖北省境内线路长度合米,重庆市境内线路长度读作千米。
5.(1分)将一根16厘米长的小棒截成三根整厘米长的小棒来围成三角形,最长的一根小棒要小于厘米。
6.(1分)如图,每个小方格的边长是1cm,涂色部分图形的面积是cm2。
7.(2分)浩浩把一个三位小数四舍五入并保留两位小数后得到9.00,我猜原来的小数最大可能是,最小可能是。
8.(1分)丽丽的哥哥马上就要进行驾照科目一的考试了,下面是考试前的三次模拟成绩,丽丽算出哥哥第二次模拟考试的成绩是分。
9.(1分)某商场举办促销活动,所有毛巾买5条送一条,一款毛巾的单价是9.98元,李阿姨需要12条,她买毛巾一共花了元。
二、判断题。
(对的画“√”,错的画“×”)(5分)10.(1分)用竖式计算小数加减法时,小数的末位要对齐..11.(1分)8.008和7.969保留一位小数都是8.0。
12.(1分)把0.5改写成以千分之一为单位的数是0.005。
13.(1分)小明所在班级的数学平均成绩是85分,小刚所在班级的数学平均成绩是87分,小刚的数学成绩一定比小明好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中等专业学校教考分离考试试卷
2014-2015 学年 第 一 学期 数学 学科 期末(B ) 卷
适合班级 13电信、13电子、13数控、13职高数控、13计算机、13职高计算机
一. 填空题:(20分,每空1分)
1. 十进制的基数是 ,进位规则是 .
2. 二进制的基数是 ,每个数位上的数码的个数是 ,数码分别是 ,进位规则是 .
3. 如果两个复数实部 ,而虚部 ,则称这个两个复数互为共轭复数.
4. =+A 0 ,=∙A 1 ,=+A 1 ,A A -
∙= . 5. 复数39z i =-+的实部是 ,虚部是 ,共轭复数是 .
6. 算法是指用来解决问题的一系列 而 的步骤,是解决问题的清晰指令.
7. 复数1z i =-+的模为 ,辐角主值为 ,三角形式为 .
选择题:(15分,每题3分)
8.31i
z i
-=
-对应的点位于 ( ) A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限
9.下列命题是真命题的是 ( )
A. 22≥
B.73<
C. 5是偶数,或5不是质数
D.若两个三角形相似,则它们全等
10. 下列复数中为复数三角形式的是 ( )
A. 3cos sin 44
i ππ⎛⎫-- ⎪⎝
⎭
B. 3sin cos 44i π
π⎛⎫+ ⎪⎝
⎭
C. 3cos sin 44i ππ⎛⎫+ ⎪⎝
⎭
D. 33cos sin 44
i ππ⎛
⎫+ ⎪⎝
⎭
11. 将十进制7化为二进制数是 ( )
A.7
B.101
C.111
D.110
12.程序框图中表示处理框的是 ( )
A.矩形框
B.菱形框
C.圆形框
D.椭圆形框
三.解答题(计65分):
13.将下列二进制数和十进制数相互转换:(12分) (1)(9)10 (2)(17)10
(3)(1001)2 (4)(10101)2
14.计算下列各式:(12分)
(1)1011++∙ (2)110101∙+∙+∙
(3)0001++∙ (4)323i
i
-+
15.化简:(12分)
(1)AB A BC A B C -
-
-
++
(2) A B C A B C A B C AB C ---
-
-
--
-
+++
16.请用真值表验证下列等式是否成立:(8分)
A A
B A +=
17. 将下列复数转化为三角形式。
(8分)
(1)1z i =+ (2
)z i =
18. 你知道1斤等于多少克吗?请你设计一个算法,输入斤数,输出克数,并
画出程序框图。
(13分)。