pcb设计逻辑芯片功能测试
pcb板ict测试点设置方法[精华]
![pcb板ict测试点设置方法[精华]](https://img.taocdn.com/s3/m/df52b31abb1aa8114431b90d6c85ec3a87c28bcf.png)
PCB 板ICT 测试点设置方法PCB 板ICT 测试点设置方法ICT类似如万用表,只是把表笔换成了测试针。
那么问题就简单了,一颗普通的RLC元件,都必须有两个测试点才能够测试,当然同一个网络共用的节点用一个测试点就可以了。
一般Coverage一般要求在85%以上才建议加入ICT测试。
ICT是在产品不通电的状况下,机器对产品上的每个元件进行阻值、容量、感量、通断等参数的测试。
FCT是在整合了ICT和功能测试,即完成ICT测试步骤后,转到产品通电状态,测试产品的各项正常工作时的参数。
这样的好处是不要再去拿放一次产品。
测试点的设计要求:1.定位孔采用非金属化的定位孔,误差小于0.05mm。
定位孔周围3mm 不能有元件。
2.测试点直径不小于0.8mm,测试点之间的间距不小于1.27mm,测试点离元件不小于1.27mm,否则锡会流入到测试点上。
3.如果在测试面放置高度超过4mm的元器件,旁边的测试点应避开,距离4mm以上,否则测试治具不能植针。
4.每个电气节点都必须有一个测试点,每个IC必须有POWER及GROUND 的测试点,且尽可能接近此元器件,最好在距离IC 2.5mm范围内。
5.测试点不可被阻焊或文字油墨覆盖,否则将会缩小测试点的接触面积,降低测试的可靠性。
6.测试点不能被插件或大元件所覆盖、挡住。
7.不可使用过孔或DIP元件焊点做测试点。
ICT植针率需要达到100%,元件可测试率要达到85%以上。
ICT在线测试原理摘要:本文介绍在线测试的基本知识和基本原理。
1 慨述1.1 定义在线测试,ICT,In-Circuit Test,是通过对在线元器件的电性能及电气连接进行测试来检查生产制造缺陷及元器件不良的一种标准测试手段。
它主要检查在线的单个元器件以及各电路网络的开、短路情况,具有操作简单、快捷迅速、故障定位准确等特点。
飞针ICT基本只进行静态的测试,优点是不需制作夹具,程序开发时间短。
针床式ICT可进行模拟器件功能和数字器件逻辑功能测试,故障覆盖率高,但对每种单板需制作专用的针床夹具,夹具制作和程序开发周期长。
pcb课程设计实验报告

pcb课程设计实验报告本次课程设计实验的内容是设计一块包含多个功能的PCB电路板,该电路板包含电源管理、信号放大、滤波和控制逻辑等多个模块。
本文将从电路板的设计思路、实验步骤、成果展示和问题与改进等方面进行阐述。
一、设计思路该电路板的设计需要考虑电源管理、信号放大、滤波和控制逻辑等多个方面,并且需要将这些模块有机地结合在一起,保证整个电路板的性能和可靠性。
在设计中,我们选用了TI的TINA软件进行仿真,并根据仿真的结果对电路进行了优化设计,最终得到了符合要求的电路原理图和PCB电路板布局图。
二、实验步骤1、电源管理模块设计:该模块主要包括两个先后级别的稳压电路和一个电压监测芯片。
先后级别的稳压电路用于将电源电压从12V降压到5V和3.3V,保证整个电路板的稳定工作。
电压监测芯片用于监测电池电压,在电压低于预设值时发出警报信号。
2、信号放大和滤波模块设计:该模块主要用于放大和滤波采集到的传感器信号。
我们选用了一款高精度可编程运放作为信号放大电路的核心部件,并在其前后分别添加了高通和低通滤波器,以保证信号的稳定性和精度。
3、控制逻辑模块设计:该模块主要用于控制整个电路板的工作,并且需要能够根据用户的输入产生相应的控制信号。
我们选用了一款基于STM32F0的微控制器,并在其周围添加了相应的外设电路,比如USB接口、LCD显示屏和按键输入等。
4、PCB电路板设计:在得到以上模块的原理图和电路板布局图后,我们对整个电路板进行了逐层布线和优化设计,并且通过3D模拟软件进行了可视化仿真。
最终,我们得到了一块符合要求的PCB电路板。
三、成果展示最终实验成果如下图所示:(此处插入图片)可以看到,整个电路板具有紧凑、结构合理、线路清晰等特点,并且每个模块都可以独立集成或拆卸。
在实际测试中,该电路板的各模块均能正常工作,达到了预期的效果和性能。
四、问题与改进在设计中,我们也遇到了一些问题,比如信号放大的误差问题、电源管理的功耗问题等。
芯片设计与制造专业的技能要求

芯片设计与制造专业的技能要求以芯片设计与制造专业的技能要求为标题,本文将从芯片设计与制造的基础知识、软件与硬件技能、工艺和测试技能等方面进行介绍。
一、基础知识1. 电子学基础:掌握电路分析、电子元器件的特性与应用等基本知识,了解模拟电路和数字电路的原理。
2. 数学基础:具备高等数学、线性代数、概率论等数学基础,能够应用数学方法解决芯片设计中的问题。
3. 物理基础:了解半导体物理学、量子力学等基本知识,理解芯片内部的物理原理。
二、软件与硬件技能1. 芯片设计软件:熟练掌握常用的芯片设计软件,如Cadence、Mentor Graphics等,能够进行芯片的逻辑设计、物理设计和布局布线等工作。
2. 编程语言:掌握至少一种编程语言,如Verilog、VHDL等,能够用于芯片设计与验证。
3. 数字信号处理:具备数字信号处理的基本知识,能够对芯片进行数字信号处理算法的设计与实现。
4. PCB设计:了解PCB设计的基本流程和方法,能够进行芯片封装和PCB板级设计。
5. 硬件描述语言:熟悉硬件描述语言,如VHDL、Verilog等,能够进行芯片的逻辑设计与验证。
三、工艺技能1. 半导体工艺:了解半导体的制备工艺,包括晶体生长、刻蚀、离子注入、光刻、薄膜沉积等,能够根据设计要求选择适当的工艺。
2. 工艺制程:熟悉芯片的制造流程,包括前段工艺和后段工艺,能够进行工艺参数的调整和优化。
3. 芯片封装与测试:了解芯片封装和测试的基本原理和方法,能够进行芯片的封装设计和测试方案的制定。
四、测试技能1. 芯片测试方法:了解芯片的测试方法和技术,包括功能测试、性能测试、可靠性测试等,能够制定合理的测试方案。
2. 测试设备与工具:熟悉常用的芯片测试设备和工具,如测试仪器、探针卡等,能够进行芯片的测试和故障分析。
3. 故障排除与修复:具备芯片故障排除和修复的能力,能够分析芯片测试结果,找出故障点并进行修复。
芯片设计与制造专业的技能要求包括基础知识、软件与硬件技能、工艺和测试技能等多个方面。
《电子技术基础》逻辑测试笔实验报告

《电子技术基础》逻辑测试笔实验报告一、实验目的1、掌握半导体器件二极管、三极管的工作原理,学会集成逻辑芯片的使用。
2、掌握逻辑与非门的输入输出逻辑关系。
3、掌握电路设计的基本方法、培养电路的综合设计与调试能力。
4、培养实践技能,提高分析问题和解决问题的能力。
二、实验仪器1、焊接工具:电烙铁、焊锡、斜口钳。
2、调试仪器:直流稳压电源,万用表。
3、元器件:三、实验原理1、电路原理图:2、工作原理:当被测点为高电平时,D1导通,Q1发射极输出高电平,经U2B反相后,输出低电平,红色发光二极管导通而发光。
此时,D2截止,U1A输出低电平,U3C 输出高电平。
使绿色发光二极管截止而不发光。
当被测点为低电平时,D2导通,从而使U1A输出高电平。
U3C输出低电平。
绿色发光二极管导通发光,此时,D1截止,Q1发射极输出低电平,经U2B反相后,输出高电平,红色发光二极管截止而不发光。
四、实验内容及步骤1、实验内容:1)熟悉有关电子元器件的使用及焊接技术;2)学习逻辑测试笔电路原理图的分析方法;3)完成逻辑测试笔电路的制作。
2、实验步骤:1)识别器件,测试器件性能的好坏;2)对PCB板进行合理布局;3)焊接制作电路板;4)调试电路板;5)测试相关参数。
五、实验原始数据记录与数据处理1、当测试点为高电平时,分别测试U1A、U2B、U3C输出端的电压值?U1A:0VU2B:0VU3C:5V2、当测试点为低电平时,分别测试U1A、U2B、U3C输出端的电压值?U1A:5VU2B:5VU3C:0V六、实验结果与分析讨论实验结果:当被测点为高电平时,红色发光二极管导通发光。
绿色发光二极管截止而不发光。
当被测点为低电平时,绿色发光二极管导通发光,红色发光二极管截止而不发光。
七、结论数字电路是最基本的逻辑关系有3种,即与逻辑或逻辑和非逻辑,它们可由相应的与门,或门和非门来实现与或非三种基本逻辑门电路是数字电路的基本单元。
八、实验心得体会。
pcb的实验报告

pcb的实验报告PCB的实验报告引言:在现代电子技术中,印刷电路板(Printed Circuit Board,简称PCB)扮演着至关重要的角色。
作为电子设备中电子元件的载体,PCB的设计和制造直接影响着电子设备的性能和可靠性。
本实验旨在通过设计和制作一个简单的PCB电路板,探究PCB的基本原理和工艺流程。
一、PCB的基本原理PCB是一种通过在导电板上印刷导电线路和安装电子元件来实现电路功能的技术。
其基本原理是在绝缘基板上通过印刷或化学腐蚀等方式形成导电线路,然后将电子元件焊接到导线上,从而实现电路的连接和功能。
二、实验设计本次实验选择了一个简单的LED闪烁电路作为设计对象。
该电路包含一个555定时器芯片和几个电阻、电容和LED等元件。
实验的目标是设计并制作一个能够正常工作的PCB电路板。
三、PCB设计软件的使用为了进行PCB设计,我们使用了常见的PCB设计软件,如Altium Designer或Eagle等。
通过软件,我们可以在电路板上布局元件、绘制导线、设置焊盘等。
在设计过程中,需要注意元件之间的间距、导线的走向、焊盘的大小等因素,以确保电路的可靠性和稳定性。
四、PCB制造工艺流程1. 设计电路图:首先,根据电路的功能需求,我们使用电路设计软件绘制电路图。
电路图包含了元件连接的逻辑关系和电气特性等信息。
2. PCB布局:根据电路图,我们在PCB设计软件中进行元件的布局。
在布局过程中,需要考虑元件之间的距离、信号线的长度等因素,以降低电磁干扰和信号损耗。
3. 连接导线:在布局完成后,我们使用PCB设计软件绘制导线连接元件。
导线的走向应尽量简洁,避免交叉和重叠,以提高电路的可靠性。
4. 设置焊盘:在导线的交叉点和元件的引脚位置,我们设置焊盘。
焊盘用于焊接电子元件,需要根据元件的尺寸和引脚间距进行合理的布置。
5. 输出制造文件:当PCB设计完成后,我们需要将设计文件输出为制造所需的文件格式,如Gerber文件。
基于数字IC测试机架构详细讲解测试理论

目录集成电路测试机发展史简介 ......... 错误!未定义书签。
测试的专业术语简介............................................................ 错误!未定义书签。
芯片测试中的一些专业术语........................................ 错误!未定义书签。
测试中硬件的一些专业术语 (3)测试系统中的一些专业术语........................................ 错误!未定义书签。
测试参数中的一些专业术语........................................ 错误!未定义书签。
测试设备的一般结构............................................................ 错误!未定义书签。
FUNCTIONAL测试原理..................................................... 错误!未定义书签。
功能测试简介................................................................ 错误!未定义书签。
Test Vector ...................................................................... 错误!未定义书签。
Input Signal Format ....................................................... 错误!未定义书签。
Input Signal Creation ..................................................... 错误!未定义书签。
EDA 技术与 VHDL 程序设计基础教程习题答案

2.Altera的第四代EDA集成开发环境为(C)
A Modelsim
B MUX+Plus II
C Quartus II
D ISE
3.下列EDA工具中,支持状态图输入方式的是(B)
A Quartus II
B ISE
C ispDesignEXPERT
D Syplify Pro
D Cyclone
7.下列配置方式不属于FPGA配置模式的是(D)
A主动串行配置模式
B被动串行配置模式
C主动并行配置模式
D被动从属配置模式
8.下列因素中通常不属于CPLD/FPGA选型条件的是(D)
A逻辑资源
B功耗和封装
C价格和速度
D产地
2.8.3
1.结合本章学习的知识,简述CPLD的基本结构?
答:虽然CPLD种类繁多、特点各异,共同之处总结起来可以概括为三个部分:
配置与绕线(Place and Routing)
绕线后的电路功能验证(Post Layout Verification)
8.为什么要进行硬件电路的后仿真验证和测试?
答:后仿真考虑了实际器件的模型参数,能够更好的模拟实际电路工作状态。测试是检验设计合格的最直接的方式。
第2章EDA习题答案
2.8.1
1.可编程逻辑器件的英文全称是Programmable Logic Device
4.目前比较流行的主流厂家的EDA软件有Quartus II、ISE、ModelSim、ispLEVER
5.常用的设计输入方式有原理图输入、文本输入、状态机输入
6.常用的硬件描述语言有VHDL、Verilog
7.逻辑综合后生成的网表文件为EDIF
IC芯片封装测试工艺流程

IC芯片封装测试工艺流程一、芯片封装工艺流程芯片封装是将设计好的芯片加工到具有引脚、引线、外壳等外部连接结构的封装盒中,以便与其他电子设备连接和使用。
常见的封装类型包括裸片封装、孔型封装和面型封装。
1.裸片封装裸片封装是指将芯片直接粘贴在PCB板上,并通过线缆焊接进行连接。
裸片封装工艺流程主要包括以下几个步骤:a.准备芯片:将已经制作好的芯片切割成适当的尺寸,并进行清洁。
b.芯片粘贴:在PCB板上涂覆导电胶粘剂,然后将芯片放置在适当的位置上。
c.焊接线缆:将芯片的引脚与PCB板上的焊盘进行连接,并焊接线缆。
d.封装测试:对封装后的芯片进行测试,以验证其功能和性能是否正常。
2.孔型封装孔型封装是指将芯片封装在具有引脚的插座中,插座可以通过引脚与其他电子设备连接。
孔型封装工艺流程主要包括以下几个步骤:a.准备插座:选择合适的插座,并进行清洁。
b.芯片焊接:将芯片的引脚与插座的引脚相匹配,并进行焊接。
c.封装测试:对封装后的芯片进行测试,以验证其功能和性能是否正常。
3.面型封装面型封装是指将芯片封装在具有引线的封装盒中,通过引线与其他电子设备连接。
面型封装工艺流程主要包括以下几个步骤:a.准备封装盒:选择合适的封装盒,并进行清洁。
b.芯片粘贴:将芯片粘贴在封装盒的适当位置上,并与引线连接。
c.引线焊接:将引线与封装盒进行焊接。
d.封装测试:对封装后的芯片进行测试,以验证其功能和性能是否正常。
芯片测试是指对封装后的芯片进行功能和性能的测试,以确保芯片的质量和可靠性。
芯片测试工艺流程主要包括以下几个步骤:1.安装测试设备:搭建测试设备并连接到芯片封装盒,以进行信号接收和传输。
2.引脚测试:通过测试设备对芯片的引脚进行测试,以验证其连接状态和电性能。
3.功能测试:通过测试设备对芯片的功能进行测试,以验证其逻辑和计算能力。
4.器件测试:通过测试设备对芯片中的器件进行测试,以验证其工作状态和参数。
5.温度测试:通过测试设备对芯片进行温度测试,以验证其在不同温度环境下的性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
pcb设计逻辑芯片功能测试
pcb 设计逻辑芯片功能测试用于保证被测器件能够正确完成其预期的功能。
为了达到这个目的,必须先创建测试向量或者真值表,才能进检测代测器件的错误。
一个真值表检测错误的能力有一个统一的标准,被称作故障覆盖率。
测试向量与测试时序结合在一起组成了逻辑功能测试的核心。
pcb 设计培训功能测试会占用测试系统的大部分资源。
功能测试主要由两大块组成,一是测试向量文件,另外一块是包含测试指令的主测试程序。
测试向量代表了测试待测器件所需的输入输出逻辑状态。
主测试程序包含了保证测试仪硬件能产生必要的电压,波形和时序等所必需的信息。
(如图一所示)
当功能测试执行的时候,测试系统把输入波形施加给待测器件,并一个周期一个周期,一个管脚一个管脚地监控输出数据。
如果有任何的输出数据不符合预期的逻辑状态,电压或者时序,该测试结果被记录为错误。
到现在我们讨论了相对简单的存储器和数字芯片测试的基本测试技术。
在此文接下来的两章里,我们将讨论测试更为复杂的混合信号和射频/无线芯片的独特要求。
测试向量
测试向量也称作测试图形或者真值表由输入和输出状态组成,代表被测器件的逻辑功能。
输入和输出状态是由字符来表示的,通常1/0 用来表示输入状态,L/H/Z 用来表示输出状态,X 用来表示没有输入也不比较输出的状态。
事实上可以用任何一套字符来表示真值表,只要测试系统能够正确解释和执行每个字符相应的功能。
VDD Min/Max (待测器件电源电压)
VIL/VIH (输入电压)。