PCB设计中的阻抗匹配与0欧电阻
PCB设计中阻抗匹配与0欧电阻

谈谈嵌入式系统PCB 设计中的阻抗般配与0 欧电阻1、阻抗般配阻抗般配是指信号源也许传输线跟负载之间的一种合适的搭配方式。
依照接入方式阻抗般配有串行和并行两种方式;依照信号源频率阻抗般配可分为低频和高频两种。
〔1〕高频信号一般使用串行阻抗般配。
串行电阻的阻值为20~75Ω,阻值大小与信号频率成正比,与PCB 走线宽度和长度成反比。
在嵌入式系统中,一般频率大于20M 的信号PCB走线长度大于5cm时都要加串行般配电阻,比方系统中的时钟信号、数据和地址总线信号等。
串行般配电阻的作用有两个:◆ 减少高频噪声以及边沿过冲。
若是一个信号的边沿特别陡峭,那么含有大量的高频成分,将会辐射搅乱,其他,也简单产生过冲。
串通电阻与信号线的分布电容以及负载输入电容等形成一个 RC电路,这样就会降低信号边沿的陡峭程度。
◆ 减少高频反射以及自激振荡。
当信号的频率很高时,那么信号的波长就很短,当波长短得跟传输线长度可以比较时,反射信号叠加在原信号大将会改变原信号的形状。
若是传输线的特色阻抗跟负载阻抗不相等〔即不般配〕时,在负载端就会产生反射,造成自激振荡。
PCB板内走线的低频信号直接连通即可,一般不需要加串行匹配电阻。
〔 2〕并行阻抗般配又叫“终端阻抗般配〞,一般用在输入 / 输出接口端,主要指与传输电缆的阻抗般配。
比方, LVDS与 RS422/485 使用 5 类双绞线的输入端般配电阻为 100~120Ω;视频信号使用同轴电缆的般配电阻为 75Ω或 50Ω、使用篇平电缆为 300Ω。
并行般配电阻的阻值与传输电缆的介质有关,与长度没关,其主要作用也是防范信号反射、减少自激振荡。
值得一提的是,阻抗般配可以提高系统的 EMI 性能。
其他,解决阻抗般配除了使用串 / 并联电阻外,还可使用变压器来做阻抗变换,典型的例子如以太网接口、 CAN总线等。
2、0 欧电阻的作用(1〕最简单的是做跳线用,若是某段线路不用,直接不焊接该电阻即可〔不影响外观〕。
PCB设计的阻抗控制和阻抗匹配

重要性,电路板出故障或问题的概率, 为一个电容( 图 1 - 1) 。
阻抗控制的精度就越低。
电路中信号的完整性,电路的 E M I 和
(4 )容易造成焊锡短路,可能会增
EMC 特性。但是随着产品的可靠性发展
加产品的成本。
和越来越受到重视,在设计时不再是
PCB 的各层分布一般是对称的。不
简单的导线连接,必须考虑电路中信
Key words: Reliability; Characteristic Impedance; Impedance Controlling; Impedance match
CLC number: TN306
Document code:A
Article ID:1003-0107(2005)04-0029-03
430068)
Huang Shuwei, Zhao Danling1
(Hubei University of Technology,
Wuhan 430068,China)
摘 要: 阻抗设计是 PCB 可靠性设计的一个重要环节。本文从多层 PCB 板叠层的设计原理、特性阻抗的
计算方法、严格的阻抗控制,来保证阻抗匹配,实现 P C B 的可靠性,使产品稳定的工作。
号完全相等。这就是说, 应将信号对称 别是在高频电路中,特性阻抗主要取 特性阻抗是否一致,是否匹配。因此,
地布线在内部地线层的两侧。这样做 决于连线的单位分布电容和单位分布 在 P C B 设计的可靠性设计中有两个概
的优点是容易控制阻抗和环流;缺点 电感带来的分布阻抗。理想传输线的 念是我们必须注意的。
印制电路板上导线的特性阻抗是
传输线的特性阻抗只与信号连线 电路板设计的一个重要指标,特别是
0欧姆电阻的作用

0欧电阻的作用(2008-07-08 20:06:53)标签:杂谈0欧电阻的作用大概有以下几个功能:①做为跳线使用。
这样既美观,安装也方便。
②在数字和模拟等混合电路中,往往要求两个地分开,并且单点连接。
我们可以用一个0欧的电阻来连接这两个地,而不是直接连在一起。
这样做的好处就是,地线被分成了两个网络,在大面积铺铜等处理时,就会方便得多。
附带提示一下,这样的场合,有时也会用电感或者磁珠等来连接。
③做保险丝用。
由于PCB上走线的熔断电流较大,如果发生短路过流等故障时,很难熔断,可能会带来更大的事故。
由于0欧电阻电流承受能力比较弱(其实0欧电阻也是有一定的电阻的,只是很小而已),过流时就先将0欧电阻熔断了,从而将电路断开,防止了更大事故的发生。
有时也会用一些阻值为零点几或者几欧的小电阻来做保险丝。
不过不太推荐这样来用,但有些厂商为了节约成本,就用此将就了。
④为调试预留的位置。
可以根据需要,决定是否安装,或者其它的值。
有时也会用*来标注,表示由调试时决定。
⑤作为配置电路使用。
这个作用跟跳线或者拨码开关类似,但是通过焊接固定上去的,这样就避免了普通用户随意修改配置。
通过安装不同位置的电阻,就可以更改电路的功能或者设置地址。
0欧的电阻不但有卖,而且还有不同的规格呢,一般是按功率来分,如1/8瓦,1/4瓦等等。
上下拉电阻:1.当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2.OC门电路必须加上拉电阻,以提高输出的搞电平值。
3.为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4.在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
5.芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6.提高总线的抗电磁干扰能力。
PCB布板阻抗匹配概念

阻抗匹配概念阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。
对于不同特性的电路,匹配条件是不一样的。
在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。
当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。
这种匹配条件称为共扼匹配。
阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。
大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。
要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。
改变阻抗力把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。
如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。
重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。
调整传输线由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。
最大功率传输定理,如果是高频的话,就是无反射波。
对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。
阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了.反之则在传输中有能量损失。
pcb阻抗设计要求

PCB(Printed Circuit Board)阻抗设计是在设计PCB时考虑电路中信号传输的特性,以确保信号完整性和性能稳定。
阻抗匹配是为了避免信号在传输过程中发生反射、衰减或串扰。
以下是在进行PCB 阻抗设计时的一些建议和要求:1. 信号完整性:阻抗设计的主要目标是确保信号在传输过程中保持完整性,避免信号失真、反射和干扰。
良好的阻抗匹配有助于维持信号的稳定性。
2. 标准阻抗值:使用标准的阻抗值,如50欧姆或75欧姆,以便与常见的信号传输线和接口标准匹配。
这有助于简化设计,并使PCB与其他设备更好地兼容。
3. 差分对阻抗匹配:对于差分信号传输线,确保差分对之间的阻抗匹配。
这对于高速差分信号的传输非常重要,以防止串扰和失真。
4. 信号层阻抗控制:在PCB的不同信号层之间和信号层内,保持一致的阻抗。
这有助于避免信号通过不同层时引起的阻抗变化。
5. 匹配传输线阻抗:选择和匹配PCB上的传输线阻抗,例如微带线、同轴电缆等。
确保这些线的阻抗与设计要求一致。
6. 差分对距离:对于高速差分信号,控制差分对之间的距离,以减小串扰和确保信号匹配。
7. 避免尖峰信号:尽量避免出现尖峰信号,因为这可能导致信号反射。
采用合适的电源和信号滤波可以减小尖峰信号的产生。
8. 考虑环境因素:在阻抗设计中考虑环境因素,例如温度变化、湿度等,以确保PCB 在不同条件下仍能维持稳定的阻抗特性。
9. 使用仿真工具:使用PCB设计仿真工具,如HFSS、SIwave等,进行阻抗匹配仿真,以优化设计并确保其满足要求。
10. 测试和验证:进行PCB生产后的阻抗测试,以验证实际制造的PCB是否符合设计要求。
综合考虑以上因素,可以确保PCB阻抗设计满足性能需求,有助于提高信号传输的质量和可靠性。
EMC-阻抗匹配与零欧姆电阻的作用

谈谈嵌入式系统PCB设计中的阻抗匹配与0欧电阻1、阻抗匹配阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。
根据接入方式阻抗匹配有串行和并行两种方式;根据信号源频率阻抗匹配可分为低频和高频两种。
(1)高频信号一般使用串行阻抗匹配。
串行电阻的阻值为20~75Ω,阻值大小与信号频率成正比,与PCB走线宽度和长度成反比。
在嵌入式系统中,一般频率大于20M的信号PCB走线长度大于5cm时都要加串行匹配电阻,例如系统中的时钟信号、数据和地址总线信号等。
串行匹配电阻的作用有两个:◆减少高频噪声以及边沿过冲。
如果一个信号的边沿非常陡峭,则含有大量的高频成分,将会辐射干扰,另外,也容易产生过冲。
串联电阻与信号线的分布电容以及负载输入电容等形成一个RC电路,这样就会降低信号边沿的陡峭程度。
◆减少高频反射以及自激振荡。
当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。
如果传输线的特征阻抗跟负载阻抗不相等(即不匹配)时,在负载端就会产生反射,造成自激振荡。
PCB板内走线的低频信号直接连通即可,一般不需要加串行匹配电阻。
(2)并行阻抗匹配又叫“终端阻抗匹配”,一般用在输入/输出接口端,主要指与传输电缆的阻抗匹配。
例如,LVDS与RS422/485使用5类双绞线的输入端匹配电阻为100~120Ω;视频信号使用同轴电缆的匹配电阻为75Ω或50Ω、使用篇平电缆为300Ω。
并行匹配电阻的阻值与传输电缆的介质有关,与长度无关,其主要作用也是防止信号反射、减少自激振荡。
值得一提的是,阻抗匹配可以提高系统的EMI性能。
此外,解决阻抗匹配除了使用串/并联电阻外,还可使用变压器来做阻抗变换,典型的例子如以太网接口、CAN总线等。
2、0欧电阻的作用(1)最简单的是做跳线用,如果某段线路不用,直接不焊接该电阻即可(不影响外观)。
(2)在匹配电路参数不确定的时候,以0欧姆代替,实际调试的时候,确定参数,再以具体数值的元件代替。
电子设计中的PCB走线与阻抗匹配

在高频信号传输中,走线长度对阻抗 的影响较大。随着走线长度的增加, 信号的传输时间延长,导致阻抗减小 。
长度越短,阻抗越大
在低频信号传输中,走线长度对阻抗 的影响较小。较短的走线意味着信号 传输时间较短,因此阻抗较大。
走线材料对阻抗的影响
电导率高的材料具有较低的阻抗
材料的电导率决定了其导电性能,电导率越高,导电性能越好,阻抗越低。常 见的具有高电导率的材料包括铜、银等。
间距
间距决定了走线之间的隔离。适当的间距可以减少串扰 和电磁干扰,确保信号的完整性。
走线的方向与弯曲
方向
尽量保持走线的一致性,避免突然的转向和交叉 。垂直和水平方向的走线在传输高频信号时具有 不同的特性阻抗,需谨慎处理。
弯曲
避免90度直角弯曲,因为这可能导致信号反射和 失真。使用圆弧或更小的角度进行弯曲,以减少 信号损失和反射。
射频信号的阻抗匹配
总结词
射频信号的阻抗匹配对于信号的传输效率和质量至关重要,它能够减少信号的反射和能量损失。
详细描述
在射频信号传输中,阻抗不匹配会导致信号能量反射回源端,不仅降低了信号传输效率,还可能对其他电路产生 干扰。因此,在PCB设计中,需要对射频信号的走线进行精确计算和控制,以确保阻抗匹配。
减小信号衰减和延迟。
集成化与小型化
随着电子设备向集成化和小型化方 向发展,PCB走线和阻抗匹配技术 需要适应更紧凑的设计要求,提高 空间利用率。
智能优化算法
采用智能优化算法对PCB走线和阻 抗匹配进行自动优化,减少人工干 预和设计周期,提高设计效率。
THANKS
感谢观看
04 信号完整性分析
对PCB布局布线结果进行
信号完整性分析,确保信
0Ω电阻阻值大小与过电流能力+巧用0Ω电阻设计PCB板

0Ω电阻阻值大小与过电流能力+巧用0Ω电阻设计PCB板一、讨论0Ω电阻到底能过多大电流?这个问题想必每位硬件工程师都查过。
而与之相关的还有一个问题,那就是0Ω电阻的阻值到底有多大?这两个问题本来是很简单的,答案应该也是很明确的,但网上网友却给出了不尽相同的答案。
有的人说0Ω电阻是50mΩ,还有的人说其实只有20mΩ;有的人说只能过1A电流,还有的人说可以过1.5A……。
那么,到底是多大呢?二、0Ω电阻阻值大小针对这两个问题,我专门查了一下电阻的标准。
根据电阻标准文件记载,0Ω电阻的阻值是0Ω,但也会有偏差。
0Ω最大电阻偏差有三种可以选择,分别为10mΩ、20mΩ和50mΩ。
也就是说,0Ω电阻偏差可以允许有多种偏差,这主要看电阻厂商做的是哪种了。
在几大品牌的普通0Ω电阻规格书查看了一下,发现它们标注的0Ω电阻,最大阻值都是50mΩ。
由此可以得出结论:常用的普通0Ω电阻的阻值最大不超过50mΩ。
三、0Ω电阻的过流能力网上还有一种观点,认为0Ω电阻的电流是根据功率算出来的,电阻按照50mΩ来算。
这样的话,0805的电阻功率一般为1/8W,算出额定电流应该是1.58A。
但是,在几大品牌的规格书发现,都是2A,与计算出来的有些出入。
额定电流综合之后的表格如下:常规的电阻的电流都不大,按照综合后的最小值来选的话,最大的也就2A。
如果设计电路时发现,我要用3A或4A的0Ω电阻,那该怎么办呢?其实很简单,可以用2个0Ω电阻并联起来就行了。
怎么有的封装变大了,但过流并没有增加呢?例如,0805和1206都是2A,在这里应该是额定电流虽然没有增加,但瞬间电流应该是能过更大了。
如果你打开的电阻规格书,就会发现写了两个参数,一个是额定电流,另一个是最大电流。
额定电流都是2A,但最大电流0805是5A,1206是10A。
注:Jumper就是0Ω电阻(标准文件就是这么写的,如下图所示)。
四、特殊大额定电流的0Ω电阻如果是更大的电流,也是电阻可选的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PCB设计中的阻抗匹配与0欧电阻
1、阻抗匹配阻抗匹配是指信号源或者传输线跟负载之间的一种合适
的搭配方式。
根据接入方式阻抗匹配有串行和并行两种方式;根据信号源频率
阻抗匹配可分为低频和高频两种。
(1)高频信号一般使用串行阻抗匹配。
串行电阻的阻值为20~75Ω,阻值
大小与信号频率成正比,与PCB走线宽度成反比。
在嵌入式系统中,一般频率大于20M的信号且PCB走线长度大于5cm时都要加串行匹配电阻,例如系统中的时钟信号、数据和地址总线信号等。
串行匹配电阻的作用有两个:
◆减少高频噪声以及边沿过冲。
如果一个信号的边沿非常陡峭,则含有
大量的高频成分,将会辐射干扰,另外,也容易产生过冲。
串联电阻与信号线
的分布电容以及负载输入电容等形成一个RC电路,这样就会降低信号边沿的
陡峭程度。
◆减少高频反射以及自激振荡。
当信号的频率很高时,则信号的波长就
很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改
变原信号的形状。
如果传输线的特征阻抗跟负载阻抗不相等(即不匹配)时,在
负载端就会产生反射,造成自激振荡。
PCB板内走线的低频信号直接连通即可,一般不需要加串行匹配电阻。
(2)并行阻抗匹配又叫“终端阻抗匹配”,一般用在输入/输出接口端,主要
指与传输电缆的阻抗匹配。
例如,LVDS与RS422/485使用5类双绞线的输入端匹配电阻为100~120Ω;视频信号使用同轴电缆的匹配电阻为75Ω或50Ω、使用篇平电缆为300Ω。
并行匹配电阻的阻值与传输电缆的介质有关,与长度
无关,其主要作用也是防止信号反射、减少自激振荡。
值得一提的是,阻抗匹配可以提高系统的EMI性能。
此外,解决阻抗匹。