人教版八年级数学课件一次函数 ppt
合集下载
人教版八年级数学下册教学课件(RJ) 第十九章 一次函数 第2课时 一次函数的图象和性质

由此得到一次函数性质:
在一次函数y=kx+b中, 当k>0时,y的值随着x值的增大而增大; 当k<0时,y的值随着x值的增大而减小.
例4 P1(x1,y1),P2(x2,y2)是一次函数y=-0.5x+3图象 上的两点,下列判断中,正确的是( D )
A.y1>y2 B. y1<y2
C.当x1<x2时,y1<y2 D.当x1<x2时,y1>y2
思考:仿照正比例函数的做法,你能看出当 k 的符号 变化时,函数的增减性怎样变化吗?
k>0时,直线左低右高, y 随x 的增大而增大; k<0时,直线左高右低, y 随x 的增大而减小.
y y =-3x+1 y =-x+1 6
4
2 A
-5
O
-2
y =3x+1 y =x+1 C B
D 5x E
要点归纳
性质
当k>0时,y的值随x值的增大而增大; 当k<0时,y的值随x值的增大而减小.
6.若直线y=kx+2与y=3x-1平行,则k= 3 .
7.点A(-1,y1),B(3,y2)是直线y=kx+b(k<0)上的两点, 则y1-y2 > 0(填“>”或“<”).
8.已知一次函数y=(3m-8)x+1-m的图象与 y轴交
点在x轴下方,且y随x的增大而减小,其中m为整
数,求m的值 .
解: 由题意得
解:函数y=-6x与y=-6x+5中,自变量x可以是任意
实数.列表表示几组对应值(计算并填写表中空格).
x
-2 -1 0 1 2
y=-6x
0 -6
y=-6x+5
5 -1
在一次函数y=kx+b中, 当k>0时,y的值随着x值的增大而增大; 当k<0时,y的值随着x值的增大而减小.
例4 P1(x1,y1),P2(x2,y2)是一次函数y=-0.5x+3图象 上的两点,下列判断中,正确的是( D )
A.y1>y2 B. y1<y2
C.当x1<x2时,y1<y2 D.当x1<x2时,y1>y2
思考:仿照正比例函数的做法,你能看出当 k 的符号 变化时,函数的增减性怎样变化吗?
k>0时,直线左低右高, y 随x 的增大而增大; k<0时,直线左高右低, y 随x 的增大而减小.
y y =-3x+1 y =-x+1 6
4
2 A
-5
O
-2
y =3x+1 y =x+1 C B
D 5x E
要点归纳
性质
当k>0时,y的值随x值的增大而增大; 当k<0时,y的值随x值的增大而减小.
6.若直线y=kx+2与y=3x-1平行,则k= 3 .
7.点A(-1,y1),B(3,y2)是直线y=kx+b(k<0)上的两点, 则y1-y2 > 0(填“>”或“<”).
8.已知一次函数y=(3m-8)x+1-m的图象与 y轴交
点在x轴下方,且y随x的增大而减小,其中m为整
数,求m的值 .
解: 由题意得
解:函数y=-6x与y=-6x+5中,自变量x可以是任意
实数.列表表示几组对应值(计算并填写表中空格).
x
-2 -1 0 1 2
y=-6x
0 -6
y=-6x+5
5 -1
【初二课件】人教版八年级数学下册第十九章一次函数函数课件

x 1
2
即当x= 1 时,y=0.
2
二 确定自变量的取值范围
问题:请用含自变量的式子表示下列问题中的函 数关系:
(1)汽车以60 km/h 的速度匀速行驶,行驶的时 间为 t(单位:h),行驶的路程为 s(单位:km);
(2)多边形的边数为 n,内角和的度数为 y.
问题(1)中,t 取-2 有实际意义吗? 问题(2)中,n 取2 有意义吗?
练一练
填表并回答问题:
x
1
y=+2x 2和-2
4
9
16
8和-8 18和-18 32和-32
(1)对于x的每一个值,y都有唯一的值与之对应吗? 答: 不是 .
(2)y是x的函数吗?为什么? 关键词:两个变量,
答:不是,因为y的值不是唯一的.
给一个x,得一个y. 易错点:顺序不要反.
典例精析
例1 下列关于变量x ,y 的关系式:y =2x+3; y =x2+3;y =2|x|;④ y x ;⑤y2-3x=10, 其中表示y 是x 的函数关系的是 .
(1)y 3x 1
(2)y 1 x2
x取全体实数
x 2x0-2
使函数解析式有意 义的自变量的全体.
(3)y x 5
x 5x05
(4) y x 2 x 1
x 2且x 1
x 1 0
x20
即 xx
1 2
... -2 -1 0
当堂练习
1.下列说法中,不正确的是( C ) A.函数不是数,而是一种关系 B.多边形的内角和是边数的函数 C.一天中时间是温度的函数 D.一天中温度是时间的函数
2.下列各表达式不是表示y是x的函数的是( C )
八年级函数ppt课件ppt课件

感谢各位观看
递减。
周期性是指函数值按照一定 的周期重复出现。
04
05
对称性是指函数图象是否关 于某条直线对称。
02
一次函数
一次函数的定义
01
一次函数是形如y=kx+b的函数, 其中k和b是常数,k≠0。
02
一次函数表示的是一条直线,当 k>0时,函数图像为上升直线; 当k<0时,函数图像为下降直线 。
一次函数的图像
商家经常使用函数来计算商品打折后 的价格,例如,购买金额超过一定阈 值后,可以享受一定的折扣率。
在物理和体育领域中,物体的运动轨 迹可以用函数来表示,例如抛物线、 直线等。
工资计算
工资计算中,员工的工资往往与工作 时间、职位等级等因素有关,这些因 素之间的关系可以用函数来表示。
函数在数学中的应用
01
一次函数的图像是一 条直线,其斜率为k ,截距为b。
图像上的点满足函数 表达式,即当x取某 值时,y的值等于该 点的纵坐标。
通过给定的函数表达 式,可以在坐标系中 画出该函数的图像。
一次函数的性质
一次函数的图像是直线,且斜率 为k。
当k>0时,函数为增函数,即随 着x的增大,y的值也增大;当 k<0时,函数为减函数,即随着
物理现象
物理现象中的许多关系可 以用函数来表示,例如重 力加速度与高度之间的关 系。
化学反应
化学反应中的反应速率和 反应进程可以用函数来表 示,例如反应速率与反应 物浓度的关系。
生物进化
生物进化中的基因频率和 种群数量的变化可以用函 数来表示,例如种群增长 曲线和自然选择的影响。
THANK YOU
正比例函数的定义与图像
正比例函数的定义
递减。
周期性是指函数值按照一定 的周期重复出现。
04
05
对称性是指函数图象是否关 于某条直线对称。
02
一次函数
一次函数的定义
01
一次函数是形如y=kx+b的函数, 其中k和b是常数,k≠0。
02
一次函数表示的是一条直线,当 k>0时,函数图像为上升直线; 当k<0时,函数图像为下降直线 。
一次函数的图像
商家经常使用函数来计算商品打折后 的价格,例如,购买金额超过一定阈 值后,可以享受一定的折扣率。
在物理和体育领域中,物体的运动轨 迹可以用函数来表示,例如抛物线、 直线等。
工资计算
工资计算中,员工的工资往往与工作 时间、职位等级等因素有关,这些因 素之间的关系可以用函数来表示。
函数在数学中的应用
01
一次函数的图像是一 条直线,其斜率为k ,截距为b。
图像上的点满足函数 表达式,即当x取某 值时,y的值等于该 点的纵坐标。
通过给定的函数表达 式,可以在坐标系中 画出该函数的图像。
一次函数的性质
一次函数的图像是直线,且斜率 为k。
当k>0时,函数为增函数,即随 着x的增大,y的值也增大;当 k<0时,函数为减函数,即随着
物理现象
物理现象中的许多关系可 以用函数来表示,例如重 力加速度与高度之间的关 系。
化学反应
化学反应中的反应速率和 反应进程可以用函数来表 示,例如反应速率与反应 物浓度的关系。
生物进化
生物进化中的基因频率和 种群数量的变化可以用函 数来表示,例如种群增长 曲线和自然选择的影响。
THANK YOU
正比例函数的定义与图像
正比例函数的定义
最新人教版初二数学下册第十九章 一次函数 全单元ppt课件

海拔高度 的变 ____________ 化而变化.
讲授新课
一 常量与变量 问题一 汽车以60千米/时的速度匀速行驶,行驶里程 为 s 千米,行驶时间为 t 小时,填下面的表: 60 120 180 240 300
请说明你的道理: 速度×时间 路程 =____________
1.在以上这个过程中,变化的量是_______ 时间t、 速度60千米/时 . 路程s .不变化的量是_____________ _________ 2.试用含t的式子表示s.s=_______ 60 t 这个问题反映了匀速行驶的汽车所行驶的路程 ____ s 随行驶时间___ t 的变化过程.
问题二 每张电影票的售价为10元,如果早场售出票 150张,日场售出205张,晚场售出310张,三场 电影票的票房收入各多少元?若设一场电影售出 票 x 张,票房收入为 y 元,怎样用含 x 的式子表 示y? 1.早场票房收入 = 10×150 = 1500(元) 日场票房收入 = 10×205 = 2050 (元) 晚场票房收入 = 10×310 = 3100 (元) 请说明道理: 票房收入 = 售价×售票张数
第十九章
第1课时
一次函数
常量与变量
情境引入
19.1.1 变量与函数
高 处 不 胜 苏寒
轼
山 寺 桃 花 始 白 盛 居 开 易 。
人 间 四 月 芳 菲 尽 ,
早穿皮袄午穿纱,围着火炉吃西瓜,
天气温度 随______ 时间 的变化而变化. 说明__________
高处不胜寒,说明 高山气温 随 ____________
常量
知识要点
S = 60t
y = 10x
S=πr2
y=5–x
八年级-人教版-数学-下册-[课件]第4课时 一次函数的图象与性质
![八年级-人教版-数学-下册-[课件]第4课时 一次函数的图象与性质](https://img.taocdn.com/s3/m/6a790cc86aec0975f46527d3240c844769eaa0c8.png)
当 k>0 时,y 随 x 的增大而增大; 当 k<0 时,y 随 x 的增大而减小.
直线 y=kx+b 的变化趋势和倾斜程度,都只由 k 决定.
思考
直线 y=2x+3 与直线 y=-x+3 有什
y
么共同点?一般地,你能从函数 y=kx+b
5
的图象上直接看出 b 的数值吗? y=-x+3 4
两条直线与 y 轴相交于同一
y=2x-1
(1,1) (1,0.5)
1
x
先画直线 y=2x 与 y=-0.5x,再分别平移它们,也能得到直
线 y=2x-1与 y=-0.5x+1.
y y=2x
y=-0.5x+1
y=2x-1
y=-0.5x
1
O1
x
-1
一次函数图象的两种画法
(1)两点法:当b≠0时,一般先选取(0,b)和
b k
,
y=kx+b (k≠0) b>0
k>0 b=0
b<0
b>0
k<0 b=0
b<0
图象
y Ox
y Ox
y Ox
y Ox
y Ox
y Ox
经过象限
第一、 二、三 象限
第一、 三象限
第一、 三、四 象限
第一、 第二、
二、四 四象限
象限
第二、 三、四 象限
例1 下列函数中,y 的值随 x 值的增大而增大的函数是( C ).
3
点(0,3).
y=-x
2
直线 y=kx+b与 y 轴交点的坐
1
标就是(0,b),一般能从函数
y=
-4-3-2-1O -1
kx+b的图象上直接看出 b 的数值.
-2
直线 y=kx+b 的变化趋势和倾斜程度,都只由 k 决定.
思考
直线 y=2x+3 与直线 y=-x+3 有什
y
么共同点?一般地,你能从函数 y=kx+b
5
的图象上直接看出 b 的数值吗? y=-x+3 4
两条直线与 y 轴相交于同一
y=2x-1
(1,1) (1,0.5)
1
x
先画直线 y=2x 与 y=-0.5x,再分别平移它们,也能得到直
线 y=2x-1与 y=-0.5x+1.
y y=2x
y=-0.5x+1
y=2x-1
y=-0.5x
1
O1
x
-1
一次函数图象的两种画法
(1)两点法:当b≠0时,一般先选取(0,b)和
b k
,
y=kx+b (k≠0) b>0
k>0 b=0
b<0
b>0
k<0 b=0
b<0
图象
y Ox
y Ox
y Ox
y Ox
y Ox
y Ox
经过象限
第一、 二、三 象限
第一、 三象限
第一、 三、四 象限
第一、 第二、
二、四 四象限
象限
第二、 三、四 象限
例1 下列函数中,y 的值随 x 值的增大而增大的函数是( C ).
3
点(0,3).
y=-x
2
直线 y=kx+b与 y 轴交点的坐
1
标就是(0,b),一般能从函数
y=
-4-3-2-1O -1
kx+b的图象上直接看出 b 的数值.
-2
人教版八年级下册数学《函数的图象》一次函数PPT教学课件(第1课时)

新知探究
例1:一个水库的水位在最近 5h 内持续上涨 . 表中记录了这 5h 内6个时间点的水位高度 , 其中t表示时间 , y表示水位高度 . (1)在平面直角坐标系中描出表中数据对应的点 , 这些点 是否在一条直线上 ? 由此你能发现水位变化有什么规律吗 ?
t/h 0 1 2 3 4
5
y/m 3 3.3 3.6 3.9 4.2 4.5
x … 0.5 1 1.5 2 2.5 3 3.5 4 5
y … 12 6 4 3 2.4 2
1.5
6… 1…
新知探究
例3:下图反映的过程是小明从家去食堂吃早餐 , 接着去图书馆读报 , 然后回家 . 其中x 表示时间 , y 表示小明离家的距离 , 小明家、 食堂、图书馆在同一直线上 .
y/km
500 x/分
O 10 20 30 40 50
500 x/分
O 10 20 30 40 50
A
B
C
D
课堂小测
4.1~6个月的婴儿生长发育得非常快 , 他们的体重y(克)和月龄x(月) 之间的关系可以用y=a+700x表示 , 其中a是婴儿出生时的体重 . 若 一个婴儿出生时的体重是4000克 , 请用表格表示在1~6个月内 , 这 个婴儿的体重y与x之间的关系 :
离家500米的地方吃早餐 , 吃早餐用了20分 ; 再用10分赶到
离家1000米的学校参加考试 . 下列图象中 , 能反映这一过
程的是
(D)
y/米
y/米
y/米
y/米
1500
1500
1500
1500
1000
1000
1000
1000
500
500
19.2.2 一次函数的概念 课件(共23张PPT)

4.一个小球由静止开始沿一个斜坡向下滚动,其速度每秒 增加2 m/s.
(1)求小球速度v(单位:m/s) 关于时间t(单位:s)的函数解析式. 它是一次函数吗?
(2)求第2.5 s 时小球的速度; (3)时间每增加1 s,速度增加多少,速度增加量是否随着 时间的变化而变化?
解:(1)小球速度v关于时间t的函数解析式为v=2t,是一次函数. (2)当t=2.5时,v=2×2.5=5(m/s). (3)时间每增加1 s,速度增加2 m/s,速度增加量不随着 时间的变化而变化.
答:此人本月工资是4140元.
例4 如图,△ABC是边长为x的等边三角形.
(1)求BC边上的高h与x之间的函数解析式.h是x的
一次函数吗?如果是,请指出相应的k与b的值.
解: (1)因为BC边上的高AD也是BC边上的中线,
A
所以,BD=x/2.在Rt△ABD中,由勾股定理,得
h AD AB2 BD2 x2 1 x2 3 x,
度 t(单位:℃)有关,且 c 的值约是 t 的7 倍与35的差;
c=7t -35(20≤t≤25)
(2)一种计算成年人标准体重G(单位:kg)的方法是,
以厘米为单位量出身高值 h ,再减常数105,所得差是G 的
值;
G=h-105
(3)某城市的市内电话的月收费额 y(单位:元)包括月租 费22元和拨打电话 x min 的计时费(按0.1元/min收取);
y = k(常数) x + b(常数)
知识要点
一般地,形如y=kx+b (k, b 是常数,k≠0) 的函数,叫做一次函数. 思考:一次函数与正比例函数有什么关系? (1)当b=0时,y=kx+b 即y=kx(k≠0),此时该一次函数是 正比例函数.
(1)求小球速度v(单位:m/s) 关于时间t(单位:s)的函数解析式. 它是一次函数吗?
(2)求第2.5 s 时小球的速度; (3)时间每增加1 s,速度增加多少,速度增加量是否随着 时间的变化而变化?
解:(1)小球速度v关于时间t的函数解析式为v=2t,是一次函数. (2)当t=2.5时,v=2×2.5=5(m/s). (3)时间每增加1 s,速度增加2 m/s,速度增加量不随着 时间的变化而变化.
答:此人本月工资是4140元.
例4 如图,△ABC是边长为x的等边三角形.
(1)求BC边上的高h与x之间的函数解析式.h是x的
一次函数吗?如果是,请指出相应的k与b的值.
解: (1)因为BC边上的高AD也是BC边上的中线,
A
所以,BD=x/2.在Rt△ABD中,由勾股定理,得
h AD AB2 BD2 x2 1 x2 3 x,
度 t(单位:℃)有关,且 c 的值约是 t 的7 倍与35的差;
c=7t -35(20≤t≤25)
(2)一种计算成年人标准体重G(单位:kg)的方法是,
以厘米为单位量出身高值 h ,再减常数105,所得差是G 的
值;
G=h-105
(3)某城市的市内电话的月收费额 y(单位:元)包括月租 费22元和拨打电话 x min 的计时费(按0.1元/min收取);
y = k(常数) x + b(常数)
知识要点
一般地,形如y=kx+b (k, b 是常数,k≠0) 的函数,叫做一次函数. 思考:一次函数与正比例函数有什么关系? (1)当b=0时,y=kx+b 即y=kx(k≠0),此时该一次函数是 正比例函数.
人教版八年级数学下册一次函数ppt课件

为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
作业布置
1.完成教材第75页练习第2题,习题19.1第1~5题及第10、11题.
2. 下列图形中的曲线不表示y是x的函数的是( )
y
y
y
y
Ox
O
x
O
x
O
x
3.
甲、A乙两辆汽车分别B 从相距200
活动五:运用概念
问
教材例1:
题
汽车油箱有汽油50 L,如果不再加油,那么油箱
探
中的油量y(单位:L)随行驶路程 x(单位:km) 的增加而减少,平均油耗为0.1L/km.
究
(1)写出表示y与x的函数关系的式子;
(2)指出自变量x的取值范围;
(3)汽车行驶200 km时,油箱中还有多少汽油?
解:(1)关系式为:y=50-0.1x; (2) 0≤x≤500; (3)∵当x=200时,y=50-0.1×200=30, ∴汽车行驶200 km时,油箱中还有30L汽油.
2、y 是 x的 倒数的4倍
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
例3 求下列函数中自变量x的取值范围:
(1) y=3x-1; (2) y=2x2+7; (3) y= 1 ; (4) y= x 2.
活动一:创设情境
问 问题1:复习引入的问题(1)~(4)中,用所学知识写出能表 题 示同一个问题中的两个变量之间对应关系的式子分别为.
探 问题(1)~(4)中都存在两个变量,表示两个变量之间的关
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4) y
8 x
它不是一次函数,也不是正比例函数
(5)y=-8x 它是一次函数,也是正比例函数。
y x11.x已;s知=6下0t列;y函=1数00:-y2=52xyx,其+1中;1x表示
2
一次函数的有( ) D
(A )1个 ( B)2个 ( C)3个( D)4个
2.下列说法不正确的是( D)
解: (1) 设 y=k(x-3)
把 x=4,y=3 代入上式,得 3= k(4-3) 解得 k=3 y=3x-9
(2) y是x的一次函数. (3) 当x=2.5时
y=3×2.5 - 9= -1.5.
一般地,形如y=kx+b(k,b是常数,k≠0)的函
数,叫做一次函数.当b=0时, y=kx+b即y=kx,所 以说正比例函数是一种特殊的一次函数.
(2)求第2.5秒时小球的速度.
4.汽车油箱中原有油50升,如果行驶中每小时用油5升,求油箱 中的油量y(单位:升)随行驶时间x(单位:时)变化的函数 关系式,并写出自变量x的取值范围. y是x的一次函数吗?
例1 已知y与x-3成正比例,当x=4时,y=3. (1)写出y与x之间的函数关系式; (2)y与x之间是什么函数关系; (3)求x=2.5时,y的值.
(2)当登山队员由大本营向上登高0.5km时他们所在位置 的气温是多少?
解:当x=0.5时,y=-6×0.5+5=2℃
下列问题中的变量对应关系可用怎样 的函数表示?
(1)有人发现,在20-25 ℃的蟋蟀 每分钟名叫次数c与温度t(单位:℃ ) 有关即c的值约是t的七倍与35的差;
解: c=7t-35
关于x的一次函数,n,m
应满足 ,
.
练习:
1.若y=(m-3)xn-1为一次函数,则m
n
。
2.若y=(m-1)xm-1+3为一次函数,则m=
该函数表达式为
。
, ,
补充练习:
3.一个小球由静止开始在一个斜坡 向下滚动,其速度每秒增加2米.
(1)求小球速度v随时间t变化的 函数关系式,它是一次函数吗?
二、四象限 y随x的增大而减小
图像必经过的点 图像必经过(0,0)和(1,k)这两个点
某登山队大本营所在地的气温为5℃,海拔每 升高1km气温下降6℃ ,登山队员由大本营向上登高xkm 时,他们所在位置的气温是y℃.
(1)试用解析式表示y与x的关系. 解:y与x的函数关系式为 y=5-6x
这个函数关系式也可以写为 y=-6x+5
2π
r
l(2)m=7.8V Nhomakorabea7.8
Vm
(3)h=0.5n
0.5
n
h
(4)T= -2t
-2
tT
一次函数
这些函数有什 么共同点?
这些函数都是常 数和自变量的乘 积与一个常数的 和的形式!
正比例函数
这些函数有什 么共同点?
这些函数都是常 数与自变量的乘 积的形式!
一次函数定义
一般地,形如y=kx+b (k,b为常数,k≠0)的函 数,叫做一次函数
y=2x
y=-0.5x+1
y=2x2+1
y=
x 2
-5
y=
x2 2
-5
πx y= 3
你能举出一些 一次函数的例 子吗?
y=
3 x
+1
例1:下列函数关系式中,哪些是一次 函数,哪些是正比例函数?
(1)y=-x-4 它是一次函数,不是正比例函数。
(2)y=5x2+6它不是一次函数,也不是正比例函数。
(3)y=2πx 它是一次函数,也是正比例函数。
(2)一种计算成年人标准体重G(单位: 千克)的方法是,以厘米为单位量出身高值h 减常数105,所得差是G的值;
解:G=h-105
(3)某城市的市内电话的月收费额y (单位:元)包括:月租费22元,拨打电话 x分钟的计时费按0.01元/分钟收取;
解:y=0.01x+22
(4)把一个长10cm、宽5cm的长方形的 长减少xcm,宽不变,长方形的面积y(单位: cm2)随x的值而变化.
(2)由题意得2-m≠0, m≠2,所以m≠2时, 此函数为一次函数
练习
1.若函数y=(m-1)x|m|+m 是关于x的一次函数,试
求m的值.
2.要使y=(m-2)xn-1+n是
关于x的一次函数,n,m
应满足 ,
.
练习
1.若函数y=(m-1)x|m|+m 是关于x的一次函数,试
求m的值.
2.要使y=(m-2)xn-1+n是
这些函数都是 常数和自变量 的乘积与另一 个常数的和的 形式!
函数解析式 常数 自变量 函数
(1)c=7t-35
7,-35
t
c
(2)G=h-105 1,-105 h
G
(3)y=0.01x+22 0.01,22 x
y
(4)y=-5x+50 -5,50 x
y
函数解析式 常数 自变量 函数
(1)l=2πr
当b=0时,y=kx+b即y=kx,所 以说正比例函数是一种特殊的一
次函数.
这里为什么强调k、b
是常数, k≠0呢?
一般地,形如y=kx+b(k,b是常数,k≠0)的函
数,叫做一次函数.当b=0时, y=kx+b即y=kx,所 以说正比例函数是一种特殊的一次函数.
做一做:判断下列函数是否是一次函数?如果是,k、b分别是多少
(A)一次函数不一定是正比例函数
(B)不是一次函数就一定不是正比例函数 (C)正比例函数是特定的一次函数 (D)不是正比例函数就不是一次函数
应用迁移,巩固提高
例二:已知函数y=(2-m)x+2m-3.求当m为何 值时,
(1)此函数为正比例函数 (2)此函数为一次函数
解:(1)由题意, 得2m-3=0,m23= ,所以当 m23= 时,函数为正比例函数y23 = x
y
一次函数
2
1
-3
01
y=
2 3
x-5
x
复习: 一般地,形如y=kx(k是常数,k≠0)的函数,
叫做正比例函数,其中k叫做比例系数.
正比例函数y=kx(k是常数,k≠0) 的图像和性质
k的正负性
k>0
k<0
y=kx(k是常数, k≠0)的图像
直线y=kx经过 的象限
性质
一、三象限 y随x的增大而增大
解:y=-5x+50
认真观察以上出现的四个函数解析式,分别说出 哪些是常数、自变量和函数.
函数解析式 常数 自变量 函数
(1)c=7t-35
7,-35
t
c
(2)G=h-105 1,-105 h
G
(3)y=0.01x+22 0.01,22 x
y
(4)y=-5x+50 -5,50 x
y
这些函数有什 么共同点?
y是x的一次函数.
小结
1.一次函数的定义
2.正比例函数是特殊的一次函数
3.对于日常生活中的实际问题,解题的 关键是把问题转化成数学问题,即构建 相应的数学模型,建立函数关系式,通过
题中条件做出答案. 4.注意和正比例函数进行对比和类比的
学习方法。
判断题: 所有的正比例函数都是一次函数.
所有的一次函数都是正比例函数.
3.汽车油箱中原有油50升,如果行驶中每 小时用油5升,求油箱的油量y(单位:升)随 行驶时间x(单位:时)变化的函数关系式, 并写出自变量x的取值范围.y是x的一次
函数吗?
解:由题意得,函数关系式为y=50-5t.
自变量x的取值范围是0≤t≤10