高二数学第九章 直线、平面、简单几何体复习教案

合集下载

高考数学复习 第73课时第九章 直线平面简单几何体直线和平面平行及平面与平面平行名师精品教案

高考数学复习 第73课时第九章 直线平面简单几何体直线和平面平行及平面与平面平行名师精品教案

第73课时:第九章 直线、平面、简单几何体——直线和平面平行及平面与平面平行课题:直线和平面平行及平面与平面平行 一.复习目标:1.了解直线和平面的位置关系;掌握直线和平面平行的判定定理和性质定理. 2.了解平面和平面的位置关系;掌握平面和平面平行的判定定理和性质定理. 二.课前预习:1.已知直线a 、b 和平面α,那么b a //的一个必要不充分的条件是( D )()A α//a ,α//b ()B α⊥a ,α⊥b ()C α⊂b 且α//a ()D a 、b 与α成等角2.α、β表示平面,a 、b 表示直线,则α//a 的一个充分条件是 ( D )()A βα⊥,且β⊥a ()B b =βα ,且b a // )(C b a //,且α//b ()D βα//,且β⊂a3.已知平面//α平面β,P 是βα,外一点,过点P 的直线m 与βα,分别交于点C A ,,过点P 的直线n 与βα,分别交于点D B ,,且6=PA ,9=AC ,8=PD ,则BD 的长为( B )()A 16 ()B 24或524()C 14 ()D 20 4.空间四边形ABCD 的两条对角线4=AC ,6=BD ,则平行于两对角线的截面四边形的周长的取值范围是 .答案:(8,12) 三.例题分析:例1.正方体ABCD —A 1B 1C 1D 1中. (1)求证:平面A 1BD ∥平面B 1D 1C ;(2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD . 证明:(1)由B 1B ∥DD 1,得四边形BB 1D 1D 是平行四边形, ∴B 1D 1∥BD ,又BD ⊄平面B 1D 1C ,B 1D 1⊂平面B 1D 1C , ∴BD ∥平面B 1D 1C . 同理A 1D ∥平面B 1D 1C . 而A 1D ∩BD =D ,∴平面A 1BD ∥平面B 1CD .(2)由BD ∥B 1D 1,得BD ∥平面EB 1D 1.AB1取BB 1中点G ,∴AE ∥B 1G .从而得B 1E ∥AG ,同理GF ∥AD . ∴AG ∥DF . ∴B 1E ∥DF .∴DF ∥平面EB 1D 1.∴平面EB 1D 1∥平面FBD .说明 要证“面面平面”只要证“线面平面”,要证“线面平行”,只要证“线线平面”,故问题最终转化为证线与线的平行.例2.如图,已知M 、N 、P 、Q 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点. 求证:(1)线段MP 和NQ 相交且互相平分;(2)AC ∥平面MNP ,BD ∥平面MNP . 证明:(1) ∵M 、N 是AB 、BC 的中点,∴MN ∥AC ,MN =21AC . ∵P 、Q 是CD 、DA 的中点,∴PQ ∥CA ,PQ =21CA . ∴MN ∥QP ,MN =QP ,MNPQ 是平行四边形. ∴□MNPQ 的对角线MP 、NQ 相交且互相平分.(2)由(1),AC ∥MN .记平面MNP (即平面MNPQ )为α.显然AC ⊄α. 否则,若AC ⊂α, 由A ∈α,M ∈α,得B ∈α; 由A ∈α,Q ∈α,得D ∈α,则A 、B 、C 、D ∈α,与已知四边形ABCD 是空间四边形矛盾.又∵MN ⊂α,∴AC ∥α, 又AC ⊄α,∴AC ∥α,即AC ∥平面MNP .同理可证BD ∥平面MNP .小结:例3.已知正四棱锥ABCD S -的底面边长为a ,侧棱长为a 2,点Q P ,分别在BD 和SC 上,并且2:1:=PD BP ,//PQ 平面SAD ,求线段PQ 的长.解:延长CP 交DA 延长线于点R ,连SR ,可证得PQ ∥SR ,由PBC ∆与PDR ∆相似及已知求得2DR a =。

数学高考复习名师精品教案:第74课时:第九章 直线、平面、简单几何体-直线与平面垂直(1)

数学高考复习名师精品教案:第74课时:第九章  直线、平面、简单几何体-直线与平面垂直(1)

数学高考复习名师精品教案第74课时:第九章 直线、平面、简单几何体——直线与平面垂直课题:直线与平面垂直 一.复习目标:1.掌握直线与平面垂直的定义、判定定理和性质定理,并能运用它们进行论证和解决有关的问题;2.会用三垂线定理及其逆定理证明线线垂直,并会规范地写出解题过程。

二.知识要点:1.直线与平面垂直的判定定理是 ;性质定理是 ; 2.三垂线定理是 ;三垂线定理的逆定理是 ; 3.证明直线和平面垂直的常用方法有:三.课前预习:1.若,,a b c 表示直线,α表示平面,下列条件中,能使a α⊥的是 ( D )()A ,,,a b a c b c αα⊥⊥⊂⊂ ()B ,//a b b α⊥ ()C ,,a b A b a b α=⊂⊥ ()D //,a b b α⊥2.已知l 与m 是两条不同的直线,若直线l ⊥平面α,①若直线m l ⊥,则//m α;②若mα⊥,则//m l ;③若m α⊂,则m l ⊥;④//m l ,则mα⊥。

上述判断正确的是 ( B )()A ①②③ ()B ②③④ ()C ①③④ ()D ②④3.在直四棱柱1111ABC D A B C D -中,当底面四边形A B C D 满足条件A CB D⊥时,有111A C B D ⊥(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况) 4.设三棱锥P A B C -的顶点P 在平面ABC 上的射影是H ,给出以下命题: ①若P A B C⊥,P B A C⊥,则H 是A B C ∆的垂心②若,,PA PB PC 两两互相垂直,则H 是A B C ∆的垂心 ③若90ABC∠=,H 是A C 的中点,则PA PB PC ==④若PA PB PC ==,则H 是A B C ∆的外心其中正确命题的命题是 ①②③④ 四.例题分析:例1.四面体A B C D 中,,,ACBD E F=分别为,AD BC 的中点,且2EFAC=,90BDC ∠=,求证:B D ⊥平面A C D证明:取C D 的中点G ,连结,EG FG ,∵,E F 分别为,AD BC 的中点, ∴E G12//A C=12//F G B D=,又,AC BD =∴12F G A C=,∴在E F G ∆中,222212E GF G A CE F+==∴E GF G⊥,∴B DA C⊥,又90BDC ∠=,即BDC D⊥,AC CD C =∴B D ⊥平面A C D例2.如图P 是A B C ∆所在平面外一点,,PA PB CB =⊥平面P A B ,M 是P C 的中点,NMPCBAM DA 1C 1B 1CBAN是AB 上的点,3A NN B=(1)求证:M N A B⊥;(2)当90APB ∠= ,24AB BC ==时,求M N 的长。

高考数学复习 第79课时 第九章 直线、平面、简单几何体-平面所成的角名师精品教案

高考数学复习 第79课时 第九章 直线、平面、简单几何体-平面所成的角名师精品教案

DECBAA BD CP第79课时:第九章直线、平面、简单几何体——平面所成的角课题:平面所成的角一.复习目标:掌握二面角及二面角的平面角的概念;熟练掌握作二面角平面角的一般方法.二.知识要点:1.二面角的概念:.2.二面角的平面角:.3.求二面角平面角大小的一般方法:.三.课前预习:1.二面角lαβ--内有一点P,若P到平面,αβ的距离分别是5,8,且P在平面,αβ的内的射影的距离为7,则二面角lαβ--的度数是(C)2.已知,E F分别是正方体1111ABCD A B C D-的棱1,BC CC的中点,则截面1AEFD与底面ABCD所成二面角的正弦值是(C)()A32()B323.对于平面几何中的命题:“如果两个角的两边分别对应垂直,那么这两个角相等或互补”,在立体几何中,类比上述的命题,可以得到命题:,这个命题的真假性是.4.在四面体ABCD中,,,AB BC BD两两垂直,且2AB BC==,E是AC中点,异面直线,AD BE所成的角为,则二面角D AC B--的大小为.四.例题分析:例1.如图,点P为斜三棱柱111CBAABC-的侧棱1BB上一点,1BBPM⊥交1AA于点M,1BBPN⊥交1CC于点N,(1)求证:MNCC⊥1;(2)在任意DEF∆中有余弦定理:DFEEFDFEFDFDE∠⋅-+=cos2222. 拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.例2.如图,已知四棱锥P ABCD-的底面是直角梯形,90ABC BCD∠=∠=,2AB BC PB PC CD====,侧面PBC⊥底面ABCD.(1)PA与BD是否相互垂直,请证明你的结论;AA1B1BC1CMNPA B ECDFA1 B1D1 C1A BDCPMNEO(2)求二面角P BD C --的大小; (3)求证:平面PAD ⊥平面PAB .解:(1)PA 与BD 相互垂直.证明如下:取BC 的中点O ,连结AO ,交BD 于点E ;连结PO .∵PB PC =,∴PO BC ⊥.又∵平面PBC ⊥平面ABCD , 平面PBC ∩平面ABCD BC =,∴PO ⊥平面ABCD . 在梯形ABCD 中,可得Rt ABO Rt BCD ∆≅∆, ∴90BEO OAB DBA DBC DBA ∠=∠+∠=∠+∠=, 即AO BD ⊥, ∴PA BD ⊥ . (2)连结PE ,由PO ⊥平面ABCD ,AO BD ⊥,可得PE BD ⊥,∴PEO ∠为二面角P BD C --的平面角,设22AB BC PB PC CD a =====,则在Rt PEO ∆中,53,,PO a OE a ==.15tan ==∠EOPOPEO ∴二面角P BD C --为arctan 15 . (3)取PB 的中点N ,连结CN ,由题意知:平面PBC ⊥平面PAB , 则同“(1)”可得CN ⊥平面PAB . 取PA 的中点M ,连结,DM MN ,则由////MN AB CD ,12MN AB CD ==,得四边形MNCD 为平行四边形. ∴//CN DM , ∴DM ⊥平面PAB .∴平面PAD ⊥平面PAB . 解答二:取BC 的中点O ,由侧面PBC ⊥底面ABCD , PBC ∆是等边三角形, 得PO ⊥底面ABCD .以O 为原点,以BC 所在直线为x 轴, 过点O 与AB 平行的直线为y 轴, 建立如图所示的空间直角坐标系O xyz -, 设1CD =,则在直角梯形中,2AB BC ==, 在等边三角形PBC 中,3PO =.∴(1,2,0),(1,0,0),(1,1,0),(0,0,3)A B D P --- (1)PA 与BD 相互垂直.证明如下:∵,0)3(0)2()1(1)2(=-⨯+-⨯-+⨯-=⋅PA BD ∴,PA BD PA BD ⊥⊥.(2)连结AO ,设AO 与BD 相交于点E ;连结PE .由,000)1()2()2(1=⨯+-⨯-+-⨯=⋅BD OA 得,OA BD AO BD ⊥⊥即. 又∵AO 为PA 在平面ABCD 内的射影,∴PE BD ⊥,PEO ∠为二面角P BD C --的平面角.在Rt BEO ∆中,sin 5OE OB OBE =∠=.在Rt PEO ∆中,tan POPEO OE∠==∴二面角P BD C --为arctan(3)取PA 的中点M ,连结DM ,则M 的坐标为1(,2-.又3(,0,)22DM =,(1,0,PB =,∴310(2)(022DM PA ⋅=⨯+⨯-+=3100(022DM PB ⋅=⨯+⨯+=.∴,,,DM PA DM PB DM PA DM PB ⊥⊥⊥⊥即∴DM ⊥平面PAB . ∴平面PAD ⊥平面PAB .小结:三垂线定理是求二面角的平面角的又一常用方法. 五.课后作业:1.过正方形ABCD 的顶点A ,引PA ⊥平面ABCD ,若PA AB =,则平面ABP 和平面CDP 所成的二面角的大小是( )2.已知正三棱锥两个相邻侧面所成二面角为θ,那么θ的取值范围( )()A ︒<<︒18060θ ()B ︒<60θ ()C ︒>90θ ()D ︒>90θ或︒<60θ3.已知正方形ABCD ,BD AC ,交于点O ,若将正方形沿BD 折成60的二面角,并给出四个结论:(1)BD AC ⊥;(2)CO AD ⊥;(3)AOC ∆为正三角形;(4)43cos =∠ADC ,则其中正确命题的序号为 .4.平行六面体1111D C B A ABCD -的底面是矩形,侧棱长为2cm ,点1C 在底面ABCD 上的射影H 是CD 的中点,1CC 与底面ABCD 成60的角,二面角1A CC D --的平面角等于30,求此平行六面体的表面积.5.在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 中点,作EF PB ⊥交PB 于F . (1)证明//PA 平面EDB :(2)证明PB ⊥平面EFD ;(3)求二面角C PB D --的大小. 6.在三棱锥S ABC -中,ABC ∆是边长为4的正三角形,平面SAC ⊥平面ABC ,23SA SC ==,,M N 分别是,AB SB 的中点.(1)证明AC SB ⊥;(2)求二面角N CM B --的大小;(3)求点B 到平面CMN 的距离.。

2022届高考数学复习第72课时第九章直线、平面、简单几何体-空间直线名师精品教案

2022届高考数学复习第72课时第九章直线、平面、简单几何体-空间直线名师精品教案

第 72 课时:第九章直线、平面、简单几何体——空间直线课题:空间直线一.复习目标:1.认识空间两条直线的地点关系.2.掌握两条直线所成的角和距离的观点,会计算给出的异面直线的公垂线段的长.二.课前预习:1.以下四个命题:(1)分别在两个平面内的两条直线是异面直线(2)和两条异面直线都垂直的直线有且只有一条(3)和两条异面直线都订交的两条直线必异面(4)若a与b是异面直线,b与 c 是异面直线,则 a 与 c 也异面此中真命题个数为( D)(A)3(B)2(C)1( D)02.在正方体ABCD A'B'C'D'中, M 、 N分别是棱AA '和 AB 的中点, P 为上底面ABCD 的中心,则直线PB 与 MN 所成的角为( A )000( D )(A)30(B)45(C) 60.在棱长为a 的正四周体中,相对两条棱间的距离为__ _.(答案:2a )324.两条异面直线 a 、b间的距离是1cm,它们所成的角为600,a、b上各有一点 A、 B,距公垂线的垂足都是10cm,则 A、 B 两点间的距离为 _______.答案:101cm或301cm三.例题剖析:a例 1.已知不共面的三条直线 a 、b、 c 订交于点P,BA a ,B a ,C b ,D c ,求证: AD 与 BCc是异面直线.证一:(反证法)假定AD和 BC共面,所确立的平面PDb C A为α,那么点α2cm AB450300l AC l D 1C1F D1A G B13(A) (B) B βBD l C D CD AB CD3 2 1cm-2AC 3 E O3D C(C) (D) (A) (B) (C) (D) (A) (B) (C) (D) ABC A AB2BB1AB1 C1B 900CA1 B1C111C1C1A1C, BD AC= N.∴M, N分别是 B1D1, AC的中点.连接 BM, D1N.∵BB1∥ DD1,且 BB1= DD1,∴四边形 BDD1B1是平行四边形.在平面 BDD1B1中,设 B1D BM= O,B1D D1N= O1,在平行四边形BDD1B1中,∵D1M∥ NB,且 D1M=NB,∴四边形 BND1M是平行四边形.∴BM∥ND1,即 OM∥ O1D1,∴O是 BO1的中点,即O1O= OB1.同理, OO1= O1D.∴O1O= OB1= O1D.综上, OB1∶ OD1=1∶2.D1MA1O1ODAN图 1C1B1CB6.如图,已知平面α、β交于直线l ,AB、CD分别在平面α,β内,且与两点.若∠ ABD=∠ CDB,试问 AB, CD可否平行并说明原因.证明:直线AB, CD不可以平行.不然,若AB∥ CD,则 AB∥ CD共面,记这个平面为γ.l 分别交于B, D∴AB, CD γ.α∴ABα,∈γ.AD由题知, ABα, D∈α,且 D AB,D 依据过一条直线及这条直线外一点,有且仅有一个βBC平面,α与γ重合.同理,β与γ重合.∴α与β重合,这与题设矛盾.∴AB, CD不可以平行.7.平行六面体ABCD-A1B1C1D1中,求证: CD1所在的直线与BC1所在的直线是异面直线.证明:假定CD所在的直线与BC 所在的直线不是异面11A1直线.B1设直线1与 1 共面α.CD BC D1C1∵C, D1∈ CD1,B, C1∈ BC1,∴ C, D1, B,C1∈α.∵CC1∥ BB1,∴ CC1, BB1确立平面 BB1C1C,A∴C, B, C1∈平面 BB1C1C.∵不共线的三点C,B, C1只有一个平面,D C∴平面α与平面BB1C1C重合.∴D1∈平面 BB1C1C,矛盾.所以,假定错误,即CD1所在的直线与BC1所在的直线是异面直线.。

高考数学复习 第71课时 第九章 直线、平面、简单几何体-平面的基本性质名师精品教案

高考数学复习 第71课时 第九章 直线、平面、简单几何体-平面的基本性质名师精品教案

第71课时:第九章 直线、平面、简单几何体——平面的基本性质课题:平面的基本性质一.复习目标:掌握平面的基本性质,会用斜二测画法画水平放置的平面图形的直观图. 二.课前预习:1.A 、B 、C 表示不同的点,a 、l 表示不同的直线,α、β表示不同的平面,下列推理不正确的是 ( C )()A ααα⊂⇒∈∈∈∈l B l B A l A ,,,()B βα∈∈A A ,,AB B B =⇒∈∈βαβα ,直线 ()C αα∉⇒∈⊄A l A l ,()D α∈C B A ,,,β∈C B A ,,且C B A ,,不共线α⇒与β重合2.一个水平放置的平面图形的斜二测直观图是一个底角为45,腰和上底边均为1的等腰梯形,则这个平面图形的面积是 ( D )()A 2221+ ()B 221+ ()C 21+ ()D 22+ 3.对于空间三条直线,有下列四个条件:①三条直线两两相交且不共点;②三条直线两两平行;③三条直线共点;④有两条直线平行,第三条直线和这两条直线都相交. 其中,使三条直线共面的充分条件有 ( B )()A 1个 ()B 2个 ()C 3个 ()D 4个4.空间内五个点中的任意三点都不共线,由这五个点为顶点只构造出四个三棱锥,则这五个点最多可以确定 7个 个平面 . 三.例题分析:例1.如图,在四边形ABCD 中,已知AB ∥CD ,直线AB ,BC ,AD ,DC 分别与平面α相交于点E ,G ,H ,F .求证:E ,F ,G ,H 四点必定共线.解:∵AB ∥CD , ∴AB ,CD 确定一个平面β.又∵AB α=E ,AB ⊂β,∴E ∈α,E ∈β, 即E 为平面α与β的一个公共点. 同理可证F ,G ,H 均为平面α与β的公共点.∵两个平面有公共点,它们有且只有一条通过公共点的公共直线, ∴E ,F ,G ,H 四点必定共线.说明:在立体几何的问题中,证明若干点共线时,常运用公理2,即先证明这些点都是某二α DCBA E FH平面的公共点,而后得出这些点都在二平面的交线上的结论.例2.已知:a ,b ,c ,d 是不共点且两两相交的四条直线,求证:a ,b ,c ,d 共面.证明 1o若当四条直线中有三条相交于一点,不妨设a ,b ,c 相交于一点A , 但A ∉d ,如图1.∴直线d 和A 确定一个平面α. 又设直线d 与a ,b ,c 分别相交于E ,F ,G , 则A ,E ,F ,G ∈α. ∵A ,E ∈α,A ,E ∈a ,∴a ⊂α.同理可证b ⊂α,c ⊂α.∴a ,b ,c ,d 在同一平面α内. 2o当四条直线中任何三条都不共点时,如图2.∵这四条直线两两相交,则设相交直线a ,b 确定一个平面α.设直线c 与a ,b 分别交于点H ,K ,则H ,K ∈α.又 H ,K ∈c ,∴c ⊂α. 同理可证d ⊂α.∴a ,b ,c ,d 四条直线在同一平面α内.说明:证明若干条线(或若干个点)共面的一般步骤是:首先根据公理3或推论,由题给条件中的部分线(或点)确定一个平面,然后再根据公理1证明其余的线(或点)均在这个平面内.本题最容易忽视“三线共点”这一种情况.因此,在分析题意时,应仔细推敲问题中每一句话的含义.例3.如图,点A ,B ,C 确定的平面与点D ,E ,F 确定的平面相交于直线l ,且直线AB 与l 相交于点G ,直线EF 与l 相交于点H ,试作出平面ABD 与平面CEF 的交线. 解:如图3,在平面ABC 内,连结AB ,与l 相交于点G ,则G ∈平面DEF ;在平面DEF 内,连结DG ,与EF 相交于点M ,则M ∈平面ABD ,且M ∈平面CEF .所以,M 在平面ABD 与平面CEF 的交线上.同理,可作出点N ,N 在平面ABD 与平面CEF 的交线上.连结MN ,直线MN 即为所求.例4.如图,已知平面α,β,且α β=l .设梯形ABCD 中,AD ∥BC ,且AB ⊂α,CD ⊂β,求证:AB ,CD ,l 共点(相交于一点). 证明 ∵梯形ABCD 中,AD ∥BC ,E·B A D· F C · · ··E · B Al 例3 G HD· FC M ·· · α D CB Al 例4β α b a dc G F E A图1 a b c d α H K图2∴AB ,CD 是梯形ABCD 的两条腰. ∴ AB ,CD 必定相交于一点, 设AB CD =M .又∵AB ⊂α,CD ⊂β,∴M ∈α,且M ∈β.∴M ∈α β. 又∵α β=l ,∴M ∈l ,即AB ,CD ,l 共点.说明:证明多条直线共点时,一般要应用公理2,这与证明多点共线是一样的. 四.课后作业:1.在空间四边形ABCD 的边AB 、BC 、CD 、DA 上分别取点H G F E ,,,,如果EF 与HG 相交于一点M ,那么 ( A )()A M 一定在直线AC 上 ()B M 一定在直线BD 上 ()C M 可能在直线AC 上,也可能在直线BD 上 ()D M 既不在直线AC 上,也不在直线BD 上2.有下列命题:①空间四点中有三点共线,则这四点必共面;②空间四点中,其中任何三点不共线,则这四点不共面;③用斜二测画法可得梯形的直观图仍为梯形;④垂直于同一直线的两直线平行⑤两组对边相等的四边形是平行四边形. 其中正确的命题是 . 答案:①③3.一个平面把空间分成__2__部分,两个平面把空间最多分成_4___部分,三个平面把空间最多分成__8__部分.4.四边形ABCD 中,1=====BD DA CD BC AB ,则成为空间四面体时,AC 的取值范围是 .答案:)3,0(.5.如图,P 、Q 、R 分别是四面体ABCD 的棱AB ,AC ,AD 上的点,若直线PQ 与直线BC 的交点为M ,直线RQ与直线DC 的交点为N ,直线PR 与直线DB 的交点为L ,试证明M ,N ,L 共线. 证明:易证M ,N ,L ∈平面PQR ,且M ,N ,L ∈平面BCD ,所以M ,N ,L ∈平面PQR 平面BCD ,即M ,N ,L 共线.6.如图,P 、Q 、R 分别是正方体ABCD -A 1B 1C 1D 1的棱AA 1,BB 1,DD 1上的三点,试作出过P ,Q ,R 三点的截面图.作法 ⑴连接PQ ,并延长之交A 1B 1的延长线于T ; ⑵连接PR ,并延长之交A 1D 1的延长线于S ; ⑶连接ST 交C 1D 1、B 1C 1分别于M ,N ,则线段MN为平面PQR 与面A 1B 1C 1D 1的交线.⑷连接RM ,QN ,则线段RM ,QN 分别是平面PQR 与面DCC 1D 1,A 1 ABB 1 DD 1 C C 1 Q P · · ·ABC M N L P Q RA 1B 1 D 1C 1 STN M面BCC1B1的交线.得到的五边形PQNMR即为所求的截面图(如图4).说明求作二平面的交线问题,主要运用公理1.解题关键是直接或间接找出二平面的两个确定的公共点.有时同时还要运用公理2、3及公理的推论等知识.7.如图,在平行六面体ABCD-A1B1C1D1的中,A1C1 B1D1=O1,B1D 平面A1BC1=P.求证:P∈BO1.证明在平行六面体ABCD-A1B1C1D1中,∵B1D 平面A1BC1=P,∴P∈平面A1BC1,P∈B1D.∵B1D⊂平面BB1D1D.∴P∈平面A1BC1,且P∈平面BB1D1D.∴P∈平面A1BC1 平面BB1D1D,∵A1C1 B1D1=O1,A1C1⊂平面A1BC1,B1D1⊂平面BB1D1D,∴O1∈平面A1BC1,且O1∈平面BB1D1D.又B∈平面A1BC1,且B∈平面BB1D1D,∴平面A1BC1 平面BB1D1D=BO1.∴P∈BO1.说明一般地,要证明一个点在某条直线上,只要证明这个点在过这条直线的两个平面上.A1A BB1DD1CC1O1P。

高二年下学期第九章直线平面简单几何体教案

高二年下学期第九章直线平面简单几何体教案

平面(1)教学目的: 1. 使学生了解立体几何研究的对象、内容;2. 培养学生的空间想象能力,初步建立空间概念;3. 理解平面的基本概念,初步掌握平面的基本性质。

教学重点:空间概念的建立与平面的基本性质。

教学难点:空间概念的建立 教学过程 一、引言:1. 思考:是否存在三条直线两两互相垂直?若存在请举出实际中的例子。

2. 立体几何的研究对象、内容平面几何研究的对象是平面图形(点、线以及组合)的形状、大小、位置关系,而立体几何研究的对象是空间图形的形状、大小、位置关系。

两者的区别:平面图形——所研究的对象都在同一平面内; 空间图形——所研究的对象不一定在同一平面内。

两者的关系:前者为后者的特殊情形,许多空间问题可以转化为平面问题来解决,体现了数学的转化思想. 在立体几何学习中,要善于与平面几何作比较,认识其相同点,发现其不同点,这种方法称之为类比思想。

二、新课: (一)平面:1、平面的两个特征:①无限延展 ②平的(没有厚度)2、平面的画法:通常画平行四边形来表示平面 (1)一个平面:水平放置和直立;当平面是水平放置的时候,通常把平行四边形的锐角画成45ο,横边画成邻边的2倍长,如图1(1).(2) 直线与平面相交,如图1(2)、(3),:(3)两个相交平面: 画两个相交平面时,若一个平面的一部分被另一个平面遮住,应把被遮住部分的线段画成虚线或不画(如图2)。

3、平面的表示:(1)用一个小写的希腊字母α、β、γ等表示,如平面α、平面β; (2)用表示平行四边形的两个相对顶点的字母表示,如平面AC(图1(1)). (二) 直线在平面内的依据(公理1)a βαB A βB A αβB A ααβa 图 2A (1)1. 有关概念:所谓直线在平面内,即指直线上的所有点都在平面内;若点A 在直线a 上,记做A ∈a ,若点A 在直线a 外,记做A ∉a ;若点A 在平面α上(外),记作A ∈α(A ∉α);若直线a 在平面α内,记做a ⊂α,若直线a 不在平面α内,记做a ⊄α.这.图形符号语言文字语言(读法) AaA a ∈ 点A 在直线a 上AaA a ∉点A 不在直线a 上AαA α∈点A 在平面α内AαA α∉ 点A 不在平面α内b a Aa b A =I直线a 、b 交于A 点aαa α⊂直线a 在平面α内aαa α=∅I 直线a 与平面α无公共点aAαa A α=I 直线a 与平面α交于点Al αβ=I平面α、β相交于直线l2、公理一:若一条直线上有两个点在一个平面内,则该直线上所有的点都在这个平面内. ⅰ)说明:此时即直线在平面内,或者说平面经过直线.公理一是判定直线在平面内的依据. ⅱ)公理1的含义如图3所示,可用符号表示为 A l ∈,B l ∈,A α∈,B α∈⇒α⊂lⅲ)以“直线在平面内”的意义为依据,常用下面的推理 判定“点在平面内”: A l ∈,α⊂l ⇒α∈A 简言之:点在线上,线在面内,则点在面内.(三) 两个平面相交的依据(在本章中,没有特别说明的“两个平面”,都是指不重合的两个平面):1、一条直线l 既在平面α内,又在平面β内,即α和β有一条公共的直线l ,则称α与β相交,交线是l ,记做α∩β=l .2、公理二:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。

高二数学最新教案-高二立体几何-平面 精品

高二数学最新教案-高二立体几何-平面 精品

第九章直线、平面、简单几何体9.1 平面一、学习目标1、平面的基本性质,会画图表示平面;2、能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系;3、会用图形语言、文字语言、符号语言准确描述三个公理,能用公理及推论解决有关问题;4、通过对公理、推论的理解和应用及三个推论的证明,提高学生的逻辑推理能力;5、通过画图,逐步培养自已的空间想象能力,使自已在已有的平面图形知识的基础上,建立空间观念;6、通过对平面基本性质的三个公理、三个推论的学习,认识我们所处的世界是一个三维空间,由此培养学生的辨证唯物主义世界观;二、内容综述12、平面的概念“平面”是一个只描述而不定义的最基本的原始概念,对这一概念应理解三点:(1)“平面”是平的;(2)“平面”无厚度;(3)“平面可以向四面入方无限延伸(与一条直线可以向两方无限延伸一样),因此,平面是无边界的。

通常我们画出直线的一部分来表示直线.同样地,我们也可以画出平面的一部分来表示平面.当我们从适当的角度和距离观察桌面或黑板面时,感到它们都很像平行四边形.因此,通常画平行四边形来表示平面(图1).当平面是水平放置的时候,通常把平行四边形的锐角画成 ,横边画成邻边的2倍长.当一个平面的一部分被另一个平面遮住时,应把被遮部分的线段画成虚线或不画(图2).有时根据需要也可用其他平面图形(例如三角形等)表示平面.平面通常用一个希腊字母α、β、γ等来表示,如平面α平面β平面γ等,也可以用表示平行四边形的两个相对顶点的字母来表示,如平面AC (如图1)3、平面的基本性质:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内公理1是判定直线在平面内的依据。

相关符号:点P 在直线m 上记为P∈m;点P 不在直线m 上记为m P ∉;直线m 在平面α内记为α⊂m ; 直经m 不在平面α内记为α⊄m(2)公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线公理2是两个平面相交于一条直线的依据以及证明若干点共线的依据;相关符号;若平面α与平面β相交于直线m 记为m =βα(3)公理3:经过不在同一条直线上的三点,有且只有一个平面;推论1:经过一条直线和这条直线外的一点,有且只有一个平面;推论2:经过两条相交直线,有且只有一个平面;推论3:经过两条平行直线,有且只有一个平面;公理3及三个推论是确定平面的依据。

高考数学复习 第74课时 第九章 直线、平面、简单几何体-直线与平面垂直(1)名师精品教案

高考数学复习 第74课时 第九章 直线、平面、简单几何体-直线与平面垂直(1)名师精品教案

第74课时:第九章 直线、平面、简单几何体——直线与平面垂直课题:直线与平面垂直 一.复习目标:1.掌握直线与平面垂直的定义、判定定理和性质定理,并能运用它们进行论证和解决有关的问题; 2.会用三垂线定理及其逆定理证明线线垂直,并会规范地写出解题过程。

二.知识要点:1.直线与平面垂直的判定定理是 ;性质定理是 ; 2.三垂线定理是 ;三垂线定理的逆定理是 ; 3.证明直线和平面垂直的常用方法有:三.课前预习:1.若,,a b c 表示直线,α表示平面,下列条件中,能使a α⊥的是 ( D )()A ,,,a b a c b c αα⊥⊥⊂⊂ ()B ,//a b b α⊥ ()C ,,a b A b a b α=⊂⊥ ()D //,a b b α⊥2.已知l 与m 是两条不同的直线,若直线l ⊥平面α,①若直线m l ⊥,则//m α;②若m α⊥,则//m l ;③若m α⊂,则m l ⊥;④//m l ,则m α⊥。

上述判断正确的是 ( B )()A ①②③ ()B ②③④ ()C ①③④ ()D ②④3.在直四棱柱1111ABCD A B C D -中,当底面四边形ABCD 满足条件AC BD ⊥时,有111AC B D ⊥(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况) 4.设三棱锥P ABC -的顶点P 在平面ABC 上的射影是H ,给出以下命题: ①若PA BC ⊥,PB AC ⊥,则H 是ABC ∆的垂心 ②若,,PA PB PC 两两互相垂直,则H 是ABC ∆的垂心 ③若90ABC ∠=,H 是AC 的中点,则PA PB PC == ④若PA PB PC ==,则H 是ABC ∆的外心 其中正确命题的命题是 ①②③④NMPCBA四.例题分析:例1.四面体ABCD 中,,,AC BD E F =分别为,AD BC的中点,且2EF AC =,90BDC ∠=,求证:BD ⊥平面ACD证明:取CD 的中点G ,连结,EG FG ,∵,E F 分别为,AD BC 的中点, ∴EG12//AC =12//FG BD =,又,AC BD =∴12FG AC =,∴在EFG ∆中,222212EG FG AC EF +== ∴EG FG ⊥,∴BD AC ⊥,又90BDC ∠=,即BD CD ⊥,AC CD C =∴BD ⊥平面ACD例2.如图P 是ABC ∆所在平面外一点,,PA PB CB =⊥平面PAB ,M 是PC 的中点,N 是AB 上的点,3AN NB =(1)求证:MN AB ⊥;(2)当90APB ∠=,24AB BC ==时,求MN 的长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学第九章 直线、平面、简单几何体复习教案一、平面1.平面的概念:平面是没有厚薄的,可以无限延伸,这是平面最基本的属性 2.平面的画法及其表示方法:①常用平行四边形表示平面通常把平行四边形的锐角画成45,横边画成邻边的两倍画两个平面相交时,当一个平面的一部分被另一个平面遮住时,应把被遮住的部分画成虚线或不画②一般用一个希腊字母α、β、γ……来表示,还可用平行四边形的对角顶点的字母来表示如平面AC 等3.空间图形是由点、线、面组成的点、线、面的基本位置关系如下表所示:b A = a αØα=∅ A α=l β= aα=∅或4平面的基本性质公理 1 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内推理模式:A AB B ααα∈⎫⇒⎬∈⎭Ø. 如图示: 应用:是判定直线是否在平面内的依据,也可用于验证一个面是否是平面.公理1说明了平面与曲面的本质区别.通过直线的“直”来刻划平面的“平”,通过直线的“无限延伸”来描述平面的“无限延展性”,它既是判断直线在平面内,又是检验平面的方法.公理2如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线推理模式:A l A ααββ∈⎫⇒=⎬∈⎭且A l ∈且l 唯一如图示:应用:①确定两相交平面的交线位置;②判定点在直线上公理2揭示了两个平面相交的主要特征,是判定两平面相交的依据,提供了确定两个平面交线的方法.公理3 经过不在同一条直线上的三点,有且只有一个平面 推理模式:,, A B C 不共线⇒存在唯一的平面α,使得,,A B C α∈应用:①确定平面;②证明两个平面重合“有且只有一个”的含义分两部分理解,“有”说明图形存在,但不唯一,“只有一个”说明图形如果有顶多只有一个,但不保证符合条件的图形存在,“有且只有一个”既保证了图形的存在性,又保证了图形的唯一性.在数学语言的叙述中,“确定一个”,“可以作且只能作一个”与“有且只有一个”是同义词,因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证.推论1 经过一条直线和直线外的一点有且只有一个平面推理模式:A a ∉⇒存在唯一的平面α,使得A α∈,l αØ推论2 经过两条相交直线有且只有一个平面推理模式:P b a = ⇒存在唯一的平面α,使得,a b αØ推论3 经过两条平行直线有且只有一个平面推理模式://a b ⇒存在唯一的平面α,使得,a b αØ5平面图形与空间图形的概念:如果一个图形的所有点都在同一个平面内,则称这个图形为平面图形,否则称为空间图形 二、空间直线1空间两直线的位置关系(1)相交——有且只有一个公共点;(2)平行——在同一平面内,没有公共点; (3)异面——不在任何..一个平面内,没有公共点; 2公理4 :平行于同一条直线的两条直线互相平行推理模式://,////a b b c a c ⇒.3等角定理如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等 4等角定理的推论:如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等5空间两条异面直线的画法ab1AA6.异面直线定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线推理模式:,,,A B l B lααα∉∈⊂∉⇒AB与l是异面直线7.异面直线所成的角:已知两条异面直线,a b,经过空间任一点O作直线//,//a ab b'',,a b''所成的角的大小与点O的选择无关,把,a b''所成的锐角(或直角)叫异面直线,a b所成的角(或夹角).为了简便,点O通常取在异面直线的一条上异面直线所成的角的范围:]2,0(π8.异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直.两条异面直线,a b垂直,记作a b⊥.9.求异面直线所成的角的方法:几何法:(1)通过平移,在一条直线上找一点,过该点做另一直线的平行线;(2)找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求向量法:用向量的夹角公式10两条异面直线的公垂线、距离和两条异面直线都垂直相交....的直线,我们称之为异面直线的公垂线理解:因为两条异面直线互相垂直时,它们不一定相交,所以公垂线的定义要注意“相交”的含义.两条异面直线的公垂线在这两条异面直线间的线段(公垂线段)的长度,叫做两条异面直线间的距离.两条异面直线的公垂线有且只有一条计算方法:①几何法;②向量法三、直线与平面平行和平面与平面平行1.直线和平面的位置关系(1)直线在平面内(无数个公共点);符号表示为:aαØ,(2)直线和平面相交(有且只有一个公共点);符号表示为: a Aα=,(3)直线和平面平行(没有公共点)——用两分法进行两次分类.符号表示为: //aα.2.线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.推理模式:,,////l m l m lααα⊄⇒Ø.3线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.推理模式://,,//l l m l mαβαβ=⇒Ø.4.平行平面:如果两个平面没有公共点,那么这两个平面互相平行.5.图形表示:画两个平面平行时,通常把表示这两个平面的平行四边形的相邻两边分别画成平行的.6.平行平面的判定定理: 如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面互相平行.推理模式::a β⊂,b β⊂,ab P =,//a α,//b α//βα⇒.7平行平面的判定定理推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面互相平行.推理模式:,,,,,,//,////a b P a b a b P a b a a b b ααββαβ'''''''==⇒刎刎.8.平行平面的性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行. 推理模式://,,//a b a b αβγαγβ==⇒.9面面平行的另一性质:如果两个平面平行,那么其中一个平面内的直线平行于另一个平面.推理模式://,//a a αβαβ⊂⇒.四、直线与平面垂直和平面与平面垂直 1线面垂直定义:如果一条直线和一个平面相交,并且和这个平面内的任意一条直线都垂直,我们就说这条直线和这个平面互相垂直其中直线叫做平面的垂线,平面叫做直线的垂面交点叫做垂足 直线与平面垂直简称线面垂直,记作:a ⊥α 2直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面 3直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那麽这两条直线平行 4三垂线定理在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直 说明:(1)定理的实质是判定平面内的一条直线和平面的一条斜线的垂直关系;(2)推理模式:,,PO O PA A a PA a a OA αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭5.三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那麽它也和这条斜线的射影垂直推理模式: ,,PO O PA A a AO a a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭.注意:⑴三垂线指PA ,PO ,AO 都垂直α内的直线a 其实质是:斜线和平面内一条直线垂直的判定和性质定理⑵要考虑a 的位置,并注意两定理交替使用6两个平面垂直的定义:两个相交成直二面角的两个平面互相垂直;相交成直二面角的两个平面叫做互相垂直的平面 7.两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直 推理模式:a αØ,a β⊥⇒αβ⊥.8.两平面垂直的性质定理:若两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面 推理模式:,,,l a a l αβαβα⊥=⊥Ø a β⇒⊥9向量法证明直线与平面、平面与平面垂直的方法:①证明直线与平面垂直的方法:直线的方向向量与平面的法向量平行; ②证明平面与平面垂直的方法:两平面的法向量垂直 五、空间向量及其运算1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量 注:⑴空间的一个平移就是一个向量⑵向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量 ⑶空间的两个向量可用同一平面内的两条有向线段来表示 2.空间向量的运算空间向量的加法、减法与数乘向量运算:OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(3 平面向量共线定理方向相同或者相反的非零向量叫做平行向量.由于任何一组平行向量都可以平移到同一条直线上,所以平行向量也叫做共线向量.向量b 与非零向量a共线的充要条件是有且只有一个实数λ,使b =λa4共线向量如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.a 平行于b 记作b a //.当我们说向量a 、b 共线(或a //b )时,表示a 、b的有向线段所在的直线可能是同一直线,也可能是平行直线.5. 共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b的充要条件是存在实数λ,使a=λb推论:如果l 为经过已知点A 且平行于已知非零向量a的直线,那么对于任意一点O ,点P 在直线l 上的充要条件是存在实数t 满足等式OP OA t =+a .其中向量a叫做直线l 的方向向量6空间直线的向量参数表示式:OP OA t =+a或()OP OA t OB OA =+-(1)t OA tOB =-+,中点公式.1()2OP OA OB =+ 7.向量与平面平行:已知平面α和向量a ,作O A a =,如果直线OA 平行于α或在α内,那么我们说向量a 平行于平面α,记作://a α.通常我们把平行于同一平面的向量,叫做共面向量说明:空间任意的两向量都是共面的 8.共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的充要条件是存在实数,x y 使p xa yb =+推论:空间一点P 位于平面MAB 内的充分必要条件是存在有序实数对,x y ,使MP xMA y MB=+ ① 或对空间任一点O ,有OP OM xMA yMB =++② 或,(1)OP xOA yOB zOM x y z =++++= ③ 上面①式叫做平面MAB 的向量表达式9空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++10空间向量的夹角及其表示:已知两非零向量,a b ,在空间任取一点O ,作,OA a OB b ==,则AO B ∠叫做向量a 与b 的夹角,记作,a b <>;且规定0,a b π≤<>≤,显然有,,a b b a <>=<>;若,2a b π<>=,则称a 与b 互相垂直,记作:a b ⊥11.向量的模:设OA a =,则有向线段OA 的长度叫做向量a 的长度或模,记作:||a12.向量的数量积:已知向量,a b ,则||||c o s ,a b a b ⋅⋅<>叫做,a b 的数量积,记作a b ⋅,即a b ⋅=||||cos ,a b a b ⋅⋅<>.已知向量AB a =和轴l ,e 是l 上与l 同方向的单位向量,作点A 在l 上的射影A ',作点B 在l 上的射影B ',则A B ''叫做向量AB 在轴l 上或在e 上的正射影 A B ''的长度||||cos ,||A B AB a e a e ''=<>=⋅.13.空间向量数量积的性质:(1)||cos ,a e a a e ⋅=<>.(2)0a b a b ⊥⇔⋅=.(3)2||a a a =⋅. 14.空间向量数量积运算律:(1)()()()a b a b a b λλλ⋅=⋅=⋅.(2)a b b a ⋅=⋅(交换律). (3)()a b c a b a c ⋅+=⋅+⋅(分配律) 六、空间向量的坐标运算 1空间直角坐标系:(1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i jk 表示;(2)在空间选定一点O 和一个单位正交基底{,,}i j k ,以点O 为原点,分别以,,i j k 的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系O xyz -,点O 叫原点,向量 ,,i j k 都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为xOy 平面,yOz 平面,zOx 平面; 2.空间直角坐标系中的坐标:在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使OA xi yj zk =++,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标. 3.空间向量的直角坐标运算律: (1)若123(,,)a a a a =,123(,,)b b b b =, 则112233(,,)a b a b a b a b +=+++,112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈,112233a b a b a b a b ⋅=++, 112233//,,()a b a b a b a b R λλλλ⇔===∈, 1122330a b a b a b a b ⊥⇔++=.(2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标4模长公式:若123(,,)a a a a =,123(,,)b b b b =, 则21||a a a a =⋅=+2||b b b b =⋅=+.5.夹角公式:2cos ||||a ba b a b a ⋅⋅==⋅+6.两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则2||(AB AB ==, 或,A B d =七、空间角1.异面直线所成的角:已知两条异面直线,a b ,经过空间任一点O 作直线//,//a a b b '',,a b ''所成的角的大小与点O 的选择无关,把,a b ''所成的锐角(或直角)叫异面直线,a b 所成的角(或夹角).为了简便,点O 通常取在异面直线的一条上 异面直线所成的角的范围:]2,0(π2.求异面直线所成的角的方法:(1)几何法;(2)向量法 3.直线和平面所成角(1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角一直线垂直于平面,所成的角是直角一直线平行于平面或在平面内,所成角为0︒角直线和平面所成角范围: [0,2π] (2)定理:斜线和平面所成角是这条斜线和平面内经过斜足的直线所成的一切角中最小的角4.公式:平面α的斜线a 与α内一直线b 相交成θ角,且a 与α相交成ϕ1角,a 在α上的射影c 与b 相交成ϕ2角,则有θϕϕcos cos cos 21=5二面角:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面若棱为l ,两个面分别为,αβ的二面角记为l αβ--; 6.二面角的平面角:(1)过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线,OA OB ,则AO B ∠叫做二面角l αβ--的平面角(2)一个平面垂直于二面角l αβ--的棱l ,且与两半平面交线分别为,,OA OB O 为垂足,则AOB ∠也是l αβ--的平面角 说明:①二面角的平面角范围是[0,180];②二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直7.二面角的求法:⑴几何法;⑵向量法8求二面角的射影公式:SS '=θcos , 其中各个符号的含义是:S 是二面角的一个面内图形F 的面积,S '是图形F 在二面角的另一个面内的射影,θ是二面角的大小 9.三种空间角的向量法计算公式:⑴异面直线,a b 所成的角θ:cos cos ,a b θ=<>;⑵直线a 与平面α(法向量n )所成的角θ:sin cos ,a n θ=<>; ⑶锐二面角θ:cos cos ,m n θ=<>,其中,m n 为两个面的法向量八、空间距离1点到平面的距离:已知点P 是平面α外的任意一点,过点P 作PA α⊥,垂足为A ,则PA 唯一,则PA 是点P 到平面α的距离即 一点到它在一个平面内的正射影的距离叫做这一点到这个平面的距离 结论:连结平面α外一点P 与α内一点所得的线段中,垂线段PA 最短2 异面直线的公垂线:和两条异面直线都垂直相交的直线叫做异面直线的公垂线. 3.公垂线唯一:任意两条异面直线有且只有一条公垂线4.两条异面直线的公垂线段:两条异面直线的公垂线夹在异面直线间的部分,叫做两条异面直线的公垂线段;5.公垂线段最短:两条异面直线的公垂线段是分别连结两条异面直线上两点的线段中最短的一条;6.两条异面直线的距离:两条异面直线的公垂线段的长度说明:两条异面直线的距离AB 即为直线a 到平面α的距离即两条异面直线的距离等于其中一条直线到过另一条直线且与这条直线平行的平面的距离7直线到与它平行平面的距离:一条直线上的任一点到与它平行的平面的距离,叫做这条直线到平面的距离(转化为点面距离)8.两个平行平面的公垂线、公垂线段:(1)两个平面的公垂线:和两个平行平面同时垂直的直线,叫做两个平面的公垂线 (2)两个平面的公垂线段:公垂线夹在平行平面间的的部分,叫做两个平面的公垂线段 (3)两个平行平面的公垂线段都相等(4)公垂线段小于或等于任一条夹在这两个平行平面间的线段长9.两个平行平面的距离:两个平行平面的公垂线段的长度叫做两个平行平面的距离10.七种距离:点与点、点到直线、两条平行直线、两条异面直线、点到平面、平行于平面的直线与该平面、两个平行平面之间的距离,其中点与点、点与直线、点到平面的距离是基础,求其它几种距离一般化归为求这三种距离,点到平面的距离有时用“体积法”来求 10用向量法求距离的公式:⑴异面直线,a b 之间的距离:||AB n d n ⋅=,其中,,,n a n b A a B b ⊥⊥∈∈⑵直线a 与平面α之间的距离:||AB n d n ⋅=,其中,A a B ∈∈是平面α的法向量⑶两平行平面,αβ之间的距离:||AB n d n ⋅=,其中,A B αβ∈∈n 是平面α的法向量⑷点A 到平面α的距离:||AB n d n ⋅=,其中B α∈,n 是平面α的法向量另法:点000(,,),A x y z 平面0Ax By CzD +++=则 d =⑸点A 到直线a的距离:|d a =⎪⎭,其中B a ∈,a 是直线a 的方向向量 ⑹两平行直线,ab之间的距离:|d a =⎪⎭,其中,A a B b ∈∈,a 是a 的方向向量九、棱柱1多面体的概念:由若干个多边形围成的空间图形叫多面体;每个多边形叫多面体的面,两个面的公共边叫多面体的棱,棱和棱的公共点叫多面体的顶点,连结不在同一面上的两个顶点的线段叫多面体的对角线2.凸多面体:把多面体的任一个面展成平面,如果其余的面都位于这个平面的同一侧,这样的多面体叫凸多面体.如图的多面体则不是凸多面体3.凸多面体的分类:多面体至少有四个面,按照它的面数分别叫四面体、五面体、六面体等4.棱柱的概念:有两个面互相平行,其余每相邻两个面的交线互相平行,这样的多面体叫棱柱两个互相平行的面叫棱柱的底面(简称底);其余各面叫棱柱的侧面;两侧面的公共边叫棱柱的侧棱;两底面所在平面的公垂线段叫棱柱的高(公垂线段长也简称高)5.棱柱的分类:侧棱不垂直于底面的棱柱叫斜棱柱侧棱垂直于底面的棱柱叫直棱柱底面的是正多边形的直棱柱叫正棱柱棱柱的底面可以是三角形、四边形、五边形……这样的棱柱分别叫三棱柱、四棱柱、五棱柱…… 6.棱柱的性质(1)棱柱的侧棱相等,侧面都是平行四边形;直棱柱侧面都是矩形;正棱柱侧面都是全等的矩形;(2)棱柱的两个底面与平行于底面的截面是对应边互相平行的全等的多边形; (3)过棱柱不相邻的两条侧棱的截面都是平行四边形7平行六面体、长方体、正方体:底面是平行四边形的四棱柱是平行六面体.侧棱与底面垂直的平行六面体叫直平行六面体,底面是矩形的直平行六面体长方体,棱长都相等的长方体叫正方体.8.平行六面体、长方体的性质(1)平行六面体的对角线交于一点且互相平分.(2)长方体的一条对角线长的平方等于一个顶点上的三条棱长的平方和特别地,正方体的一条对角线长等于棱长的3倍。

相关文档
最新文档