四川省眉山市2020届高三第三次诊断性考试 数学(文) Word版含答案

合集下载

长郡中学2020届高三第三次适应性考试文数(三)答案

长郡中学2020届高三第三次适应性考试文数(三)答案

满足Y, —Y; <l条件的 “ 有效数据 “ 有: (2, 86 )、(3, 82)、(4, 78)、(6,
70)共有4个. 从6个销售数据中任意抽取2个的所有可能结果有15 种,
抽取的2组销售数据都是 “ 有效数据 " 的有CJ = 6种,
:.抽取的2组销售数据都是 “ 有效数据 " 的概率为— 6 = — 2 .…………02分) 15 5
x = my+3 联立方程组{— x'+— y' =l ')自去X, 得(3m'+4)y'+18my -21�o,
16 12 Yi+Y2 =-3m182 +m 4 , Y心=-3m22 1+4· ....................................... (3分)
二二 严 ✓ s,.,OAB = ½xlOElxlYi—Y2 l= ½x3xlcYi
:.CB上PB, 则PC=石,
·: PD2 +DC2 =PC2, :.MDC为直角三角形. ......................................................... (8分)
:.
s心vc
=-xlx扛= 2
— 扛....................................................... (9分) 2
1 2-n l
,
(E n N*) . ......................................................... (7分)
兀=—1+ —1 a, a2
+...
+—1 =l a

四川省绵阳市2020届高三第三次诊断性考试数学理试题含

四川省绵阳市2020届高三第三次诊断性考试数学理试题含

绵阳市高中2015级第三次诊断性考试数学(理工类)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数满足(是虚数单位),则=()A. 1B. -1C.D.【答案】A........................详解:由题设有,选A.点睛:本题考查复数的加、减、乘、除等四则运算,属于基础题.2. 已知集合,,集合,则集合的子集个数是()A. 1B. 2C. 3D. 4【答案】B【解析】分析:为一元二次不等式的解集,可先计算出,求得为单元素集合,其子集的个数为2.详解:由题设有,故,所以的子集的个数为,选B. 点睛:本题为集合与集合的交集运算,它们往往和一元二次不等式结合在一起考查,注意如果一个有限集中元素的个数为,那么其子集的个数为.3. 下表是某厂节能降耗技术改造后生产某产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据,用最小二乘法得到关于的线性回归方程,则()A. 0.25B. 0.35C. 0.45D. 0.55【答案】B【解析】分析:题设中给出了关于的线性回归方程中的一个参数,可利用计算 . 详解:由题设有,故,解得,选B.点睛:本题考查线性回归方程中系数的计算,注意线性回归方程表示的直线必过点.4. 已知实数满足,则的最小值是()A. 4B. 5C. 6D. 7【答案】C【解析】分析:题设中给出的是二元一次不等式组,要求的是线性目标函数的最小值,可以先画出不等式组对应的可行域,再把目标函数看成一条动直线即可判断出目标函数的最小值. 详解:不等式组对应的可行域如图所示:由当动直线过时,取最小值为6,选C.点睛:当题设条件给出的是关于的二元一次不等式组时,我们可考虑利用线性规划来求目标函数的最值.5. 执行如图所示的程序框图,若输入,则输出的取值范围是()A. B. C. D.【答案】C【解析】分析:题设中的算法是结合的范围计算分段函数的函数值.详解:由题设有,当时,;当时,,从而当时,,选C.点睛:本题考察算法中的选择结构,属于基本题. 解题时注意判断的条件及其每个分支对应的函数形式.6. 甲、乙、丙三人各买了一辆不同品牌的新汽车,汽车的品牌为奇瑞、传祺、吉利.甲、乙、丙让丁猜他们三人各买的什么品牌的车,丁说:“甲买的是奇瑞,乙买的不是奇瑞,丙买的不是吉利.”若丁的猜测只对了一个,则甲、乙所买汽车的品牌分别是()A. 吉利,奇瑞B. 吉利,传祺C. 奇瑞,吉利D. 奇瑞,传祺【答案】A【解析】分析:因为丁的猜测只对了一个,所以我们从“甲买的是奇瑞,乙买的不是奇瑞”这两个判断着手就可以方便地解决问题.详解:因为丁的猜测只对了一个,所以“甲买的是奇瑞,乙买的不是奇瑞”这两个都是错误的.否则“甲买的不是奇瑞,乙买的不是奇瑞”或“甲买的是奇瑞,乙买的是奇瑞”是正确的,这与三人各买了一辆不同的品牌矛盾,“丙买的不是吉利”是正确的,所以乙买的是奇瑞,甲买的是吉利,选A.点睛:本题为逻辑问题,此类问题在解决时注意结合题设条件寻找关键判断.7. 如图1,四棱锥中,底面,底面是直角梯形,是侧棱上靠近点的四等分点,.该四棱锥的俯视图如图2所示,则的大小是()A. B. C. D.【答案】C【解析】分析:根据俯视图,计算的长度,然后在直角三角形中,计算的大小即可.详解:在俯视图中,因为,所以,而四边形为直角梯形,故为直角三角形斜边上的高且大小为,又,所以在直角三角形中,,从而,,选C.点睛:本题中所要求解的角是直角三角形内角的补角,该直角三角形的一个直角边已知,所以只要求出的长度即可,但该长度隐含在俯视图中,利用勾股定理和等积法可以求出其大小.8. 在区间上随机取一个实数,则事件“”发生的概率是()A. B. C. D.【答案】B【解析】分析:根据给出的三角不等式求出所在的区间,计算出该区间的长度再利用几何概率的计算方法计算概率.详解:,从而.而,所以,也就是,故所求概率为,选B.点睛:几何概型的概率计算关键是基本事件的测度的选取,通常是线段的长度、平面区域的面积或几何体的体积等.9. 双曲线的离心率是,过右焦点作渐近线的垂线,垂足为,若的面积是1,则双曲线的实轴长是()A. B. C. 1 D. 2【答案】D【解析】分析:利用点到直线的距离计算出,从而得到,再根据面积为1得到,最后结合离心率求得.详解:因为,,所以,故即,由,所以即,故,双曲线的实轴长为.点睛:在双曲线中有一个基本事实:“焦点到渐近线的距离为虚半轴长”,利用这个结论可以解决焦点到渐进线的距离问题.10. 已知圆,圆交于不同的,两点,给出下列结论:①;②;③,.其中正确结论的个数是()A. 0B. 1C. 2D. 3【答案】D【解析】分析:根据两个圆的标准方程得到公共弦的方程为,两点均在该直线上,故其坐标满足①②.而的中点为直线与直线的交点,利用直线方程构成的方程组可以得到交点的坐标,从而得到③也是正确的.详解:公共弦的方程为,所以有,②正确;又,所以,①正确;的中点为直线与直线的交点,又,.由得,故有,③正确,综上,选D.点睛:当两圆相交时,公共弦的方程可由两个圆的方程相减得到,而且在解决圆的有关问题时,注意合理利用圆的几何性质简化计算.11. 中,,,,点是内(包括边界)的一动点,且,则的最大值是()A. B. C. D.【答案】B【解析】分析:根据点在三角形内部(含边界)可以得到,再通过的解析式来求的最大值.详解:因为为三角形内(含边界)的动点,所以,从而.又,因为,所以的最大值为,故,选B.点睛:本题中向量的模长、数量积都是已知的,故以其为基底计算,其中的取值范围可以由的位置来确定.12. 对于任意的实数,总存在三个不同的实数,使得成立,则实数的取值范围是()A. B. C. D.【答案】A【解析】分析:题设中给出的二元方程可以化简为,因为对每一个,总有三个不同的使得等式成立,因此我们需要研究的值域和的图像,两者均需以导数为工具来研究它们的单调性.详解:由题设有.令,.,当时,,在为单调增函数,所以的值域为.,当时,,当时,,当时,,所以当时,是减函数,当时,是增函数,当时,是减函数,所以的图像如图所示.因为关于的方程,对任意的总有三个不同的实数根,所以,也就是,选A.点睛:较为复杂函数的零点个数问题,均需以导数为工具研究函数的极值,从而刻画出函数的图像,最后数形结合考虑参数的取值范围.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 的展开式中,的系数是__________.【答案】16【解析】分析:展开式中的系数取决于展开式中的和的系数,后者可以利用二项展开式的通项求得.详解:的展开式中,,故的系数分别为,从而的展开式中的系数为.点睛:本题考虑二项展开式中特定项的系数的计算,这类问题可利用多项式的乘法和二项展开式的通项来处理.14. 奇函数的图象关于点对称,,则__________.【答案】2【解析】分析:因为函数的图像具有两个对称中心,可通过解析式满足的条件推出函数为周期函数且周期为2,从而求出.详解:由题设有,从而有,为周期函数且周期为,所以 .点睛:一般地,定义在上的函数如果满足,(),那么的一个周期为.15. 已知圆锥的高为3,侧面积为,若此圆锥内有一个体积为的球,则的最大值为__________.【答案】详解:设圆锥的母线长,底面的半径为,则即,又,解得.当球的体积最大时,该球为圆锥的内切球,设内切球的半径为,则,故,所以.点睛:对于圆锥中的基本量的计算,可以利用轴截面来考虑,因为它集中了圆锥的高、底面的半径和圆锥的母线长.16. 如图,在中,,,的垂直平分线与分别交于两点,且,则__________.【答案】【解析】分析:连接,因为是中垂线,所以.在中,由正弦定理得到与角的关系.在直角三角形中,,两者结合可得的大小,从而在中利用正弦定理求得,最后在中利用余弦定理求得 ..详解:由题设,有,所以,故.又,所以,而,故,因此为等腰直角三角形,所以.在中,,所以,故,在中,.点睛:解三角形时,如果题设给出的几何量分散在不同的三角形中,我们就需要找出沟通这些不同三角形的几何量,如本题中的和,通过它们得到分散的几何量之间的关系.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列的前项和满足:.(Ⅰ)求数列的通项公式;(Ⅱ)若,数列的前项和为,试问当为何值时,最小?并求出最小值. 【答案】(Ⅰ)或;(Ⅱ)-10.【解析】分析:(Ⅰ)题设给出了与的关系,从该关系可以得到或以及,故可得的两种不同的通项;(Ⅱ)数列为等差数列,其前项和的最值与项的正负相关,故考虑项何时变号即可. 详解:(Ⅰ)由已知,可得当时,,可解得,或,当时,由已知可得,两式相减得.若,则,此时数列的通项公式为.若,则,化简得,即此时数列是以2为首项,2为公比的等比数列,故.∴综上所述,数列的通项公式为或.(Ⅱ)因为,故.设,则,显然是等差数列,由解得,∴当或,最小,最小值为.点睛:(1)一般地,如果知道,那么我们可以利用将前者转化为关于或的递推关系;(2)数列前项和的最值往往和项的正负有关,解题时注意合理使用.18. 十九大提出,加快水污染防治,建设美丽中国.根据环保部门对某河流的每年污水排放量(单位:吨)的历史统计数据,得到如下频率分布表:将污水排放量落入各组的频率作为概率,并假设每年该河流的污水排放量相互独立.(Ⅰ)求在未来3年里,至多1年污水排放量的概率;(Ⅱ)该河流的污水排放对沿河的经济影响如下:当时,没有影响;当时,经济损失为10万元;当时,经济损失为60万元.为减少损失,现有三种应对方案:方案一:防治350吨的污水排放,每年需要防治费3.8万元;方案二:防治310吨的污水排放,每年需要防治费2万元;方案三:不采取措施.试比较上述三种文案,哪种方案好,并请说明理由.【答案】(Ⅰ);(Ⅱ)方案二.【解析】分析:(Ⅰ)根据给出的频率分布表可以得到每年排放量在吨到吨的概率为,而三年中之多有一年排放量满足题设要求的概率可由二项分布来计算.(Ⅱ)考虑不同方案导致的经济损失.方案一的经济损失为万元;方案二中,排列量在吨到吨的概率为,相应的经济损失为万,排放量不在此范围内的概率为,相应的经济损失为防治费万,故经济损失的数学期望为,同理可以计算出方案三的经济损失的数学期望为万,故方案二较好.详解:(Ⅰ)由题得,设在未来3年里,河流的污水排放量的年数为,则.设事件“在未来3年里,至多有一年污水排放量”为事件,则.∴在未来3年里,至多1年污水排放量的概率为.(Ⅱ)方案二好,理由如下:由题得,.用分别表示方案一、方案二、方案三的经济损失.则万元.的分布列为:.的分布列为:.∴三种方案中方案二的平均损失最小,所以采取方案二最好.点睛:本题为统计与离散型随机变量的综合题,往往需要从频率分布表中得到随机事件发生的概率,注意常见的离散型随机变量的概率分布(如二项分布、超几何分布等).另外,这类问题还涉及到不同方案的选择,我们往往通过数学期望或方差来决定方案的优劣.19. 如图,在五面体中,棱底面,.底面是菱形,.(Ⅰ)求证:;(Ⅱ)求二面角的余弦值.【答案】(Ⅰ)见解析;(Ⅱ).【解析】分析:(Ⅰ)要证明,可证明,它可由证得.(Ⅱ)取的中点为,可证,,从而建立空间直角坐标系,分别求出平面和平面的法向量,计算两个法向量夹角的余弦值则可得二面角的相应的余弦值.详解:(Ⅰ)在菱形中,,∵,,∴.又,面,∴.(Ⅱ)作的中点,则由题意知,∵,∴.如图,以点为原点,建立空间直角坐标系,设,则,,,,∴,,.设平面的一个法向量为,则由,,得,令,则,,即,同理,设平面的一个法向量为,由,,得,令,则,,即,∴,即二面角的余弦值为.点睛:立体几何中二面角的余弦值的计算可以用空间向量来计算,注意对建立空间直角坐标系的合理性的证明(即要有两两垂直且交于一点的三条直线).20. 如图,椭圆的左、右焦点分别为,轴,直线交轴于点,,为椭圆上的动点,的面积的最大值为1.(Ⅰ)求椭圆的方程;(Ⅱ)过点作两条直线与椭圆分别交于,且使轴,如图,问四边形的两条对角线的交点是否为定点?若是,求出定点的坐标;若不是,请说明理由.【答案】(Ⅰ);(Ⅱ).【解析】分析:(Ⅰ)意味着通径的一半,最大面积为,所以,故椭圆的方程为.(Ⅱ)根据对称性,猜测定点必定在轴上,故可设,,则,,再设,根据三点共线可以得到,联立直线和椭圆的标准方程后消去,利用韦达定理可以得到,从而过定点,同理直线也过即两条直线交于定点.详解:(Ⅰ)设,由题意可得,即.∵是的中位线,且,∴,即,整理得.①又由题知,当在椭圆的上顶点时,的面积最大,∴,整理得,即,②联立①②可得,变形得,解得,进而.∴椭圆的方程式为.(Ⅱ)设,,则由对称性可知,.设直线与轴交于点,直线的方程为,联立,消去,得,∴,,由三点共线,即,将,代入整理得,即,从而,化简得,解得,于是直线的方程为,故直线过定点.同理可得过定点,∴直线与的交点是定点,定点坐标为.点睛:(1)若椭圆的标准方程为,则通径长为;(2)圆锥曲线中的直线过定点问题,往往需要设出动直线方程,再把定点问题转为动点的横坐标或纵坐标应该满足的关系,然后联立方程用韦达定理把前述关系化简即可得到某些参数的关系或确定的值,也就是动直线过某定点.21. 已知函数的两个极值点满足,且,其中为自然对数的底数.(Ⅰ)求实数的取值范围;(Ⅱ)求的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】分析:(Ⅰ)由题设有,因为有两个极值点且,所以有两个不同解为,故,结合题设有,从而得到.(Ⅱ)由(Ⅰ)可知,所以,又,从而,其中,利用导数可以求出该函数的值域.详解:(Ⅰ),由题意知即为方程的两个根.由韦达定理:,所以且.令,则由可得,解得.(Ⅱ),∵,∴,由(Ⅰ)知,代入得,令,于是可得,故∴在上单调递减,∴.点睛:(1)因为函数在上导数是存在的,所以函数的极值点即为导数的零点,也是对应的一元二次方程的根,利用根分布就可以求出参数的取值范围.(2)复杂的多元函数的最值问题可以先消元处理,再利用导数分析函数的单调性从而求出函数的值域.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程以直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,且在两种坐标系中取相同的长度单位.曲线的极坐标方程是.(Ⅰ)求曲线的直角坐标方程;(Ⅱ)设曲线与轴正半轴及轴正半轴交于点,在第一象限内曲线上任取一点,求四边形面积的最大值.【答案】(Ⅰ);(Ⅱ).【解析】分析:(Ⅰ)把整合成,再利用就可以得到曲线的直角坐标方程;(Ⅱ)因为在椭圆上且在第一象限,故可设,从而所求面积可用的三角函数来表示,求出该函数的最大值即可.详解:(Ⅰ)由题可变形为,∵,,∴,∴.(Ⅱ)由已知有,,设,.于是由,由得,于是,∴四边形最大值.点睛:直角坐标方程转为极坐标方程的关键是利用公式,而极坐标方程转化为直角坐标方程的关键是利用公式,后者也可以把极坐标方程变形尽量产生以便转化.另一方面,当动点在圆锥曲线运动变化时,我们可用一个参数来表示动点坐标,从而利用一元函数求与动点有关的最值问题.23. 选修4-5:设函数.(Ⅰ)若的最小值是4,求的值;(Ⅱ)若对于任意的实数,总存在,使得成立,求实数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】分析:(Ⅰ)由绝对值不等式知,当且仅当异号时等号成立,所以,故;(Ⅱ)原不等式等价于关于的不等式在有解,所以,由此解出的范围即可.详解:(Ⅰ),由已知,知,解得.(Ⅱ)由题知,又是存在的,∴.即,变形得,∴,∴.点睛:(1)利用和可对含绝对值的不等式进行放缩,从而求得最值(注意验证取等号的条件);(2)含参数的不等式的恒成立问题,优先考虑参变分离.。

四川省眉山市2023届高三下学期第二次诊断性考试 数学(理) PDF版含答案

四川省眉山市2023届高三下学期第二次诊断性考试 数学(理) PDF版含答案
眉山市高中届第二次诊断性考试
数!学理工类
注意事项 !*答 卷 前 考 生 务 必 将 自 己 的 姓 名 座 位 号 和 准 考 证 号 填 写 在 答 题 卡 上 #*回答选择题时选出 每 小 题 答 案 后用 铅 笔 把 答 题 卡 上 对 应 题 目 的 答 案 标 号
!!"通过计算判 断#有 没 有 <<> 的 把 握 认 为 客 户 对 该 产 品 的 评 价 结 果 与 性 别 有 关系,
!#"该 商 店 在 春 节 期 间 开 展 促 销 活 动 #该 产 品 共 有 如 下 两 个 销 售 方 案 ! 方 案 一 &按 原 价 的 & 折 销 售 + 方案二&顾客购买该 产 品 时#可 在 一 个 装 有 3 张 )每 满 #$$ 元 少 &$ 元*#" 张 )每 满#$$ 元 少3$ 元 *共!$ 张 优 惠 券 的 不 透 明 箱 子 中 #随 机 抽 取! 张 #购 买 时 按照所抽取的优惠券进行优惠! 已知该产品原价 为 #"$!元-件"!顾 客 甲 若 想 采 用 方 案 二 的 方 式 购 买 一 件 产 品 #估 计 顾 客 甲 需 支 付 的 金 额 +你 认 为 顾 客 甲 选 择 哪 种 购 买 方 案 较 为 合 理 ,
数学!理工类"试题 第!" 页!共"页"
0!%3
1!槡3)
数学理工类试题 第!# 页共"页
2!槡%"
! " <!已知函数,!$"-槡%6,7$/486$!给 出 下 列 结 论&, /% 是 ,!$"的 最 小 值+

2020届高考数学(文)总复习:创新思维课时规范练(含答案)第二章 第十一节 第一课时 函数的导数与单调性

2020届高考数学(文)总复习:创新思维课时规范练(含答案)第二章  第十一节  第一课时  函数的导数与单调性

课时规范练A组基础对点练1.函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()解析:根据题意,已知导函数的图象有三个零点,且每个零点的两边导函数值的符号相反,因此函数f(x)在这些零点处取得极值,排除A,B;记导函数f′(x)的零点从左到右分别为x1,x2,x3,又在(-∞,x1)上f′(x)<0,在(x1,x2)上f′(x)>0,所以函数f(x)在(-∞,x1)上单调递减,排除C,选D.答案:D2.函数f(x)=x2-2ln x的单调减区间是()A.(0,1)B.(1,+∞)C.(-∞,1) D.(-1,1)解析:因为f′(x)=2x-2x=2(x+1)(x-1)x(x>0).所以当x∈(0,1)时,f′(x)<0,f(x)单调递减;当x∈(1,+∞)时,f′(x)>0,f(x)单调递增.答案:A3.若函数f(x)=kx-ln x在区间(1,+∞)单调递增,则k的取值范围是() A.(-∞,-2] B.(-∞,-1]C.[2,+∞) D.[1,+∞)解析:因为f(x)=kx-ln x,所以f′(x)=k-1x.因为f(x)在区间(1,+∞)上单调递增,所以当x>1时,f′(x)=k-1x≥0恒成立,即k≥1x在区间(1,+∞)上恒成立.因为x>1,所以0<1x<1,所以k≥1.故选D.答案:D4.已知函数f(x)=2x3-6ax+1,a≠0,则函数f(x)的单调递减区间为() A.(-∞,+∞)B.(-a,+∞)C.(-∞,-a)∪(a,+∞)D.(-a,a)解析:f′(x)=6x2-6a=6(x2-a),当a<0时,对x∈R,有f′(x)>0;当a>0时,由f′(x)<0解得-a<x<a,所以当a>0时,f(x)的单调递减区间为(-a,a).答案:D5.已知函数f(x)=x2+2cos x,若f′(x)是f(x)的导函数,则函数f′(x)的图象大致是()解析:设g(x)=f′(x)=2x-2sin x,g′(x)=2-2cos x≥0,所以函数f′(x)在R上单调递增.答案:A6.设函数f (x )=13x 3-(1+a )x 2+4ax +24a ,其中常数a >1,则f (x )的单调减区间为________.解析:f ′(x )=x 2-2(1+a )x +4a =(x -2)(x -2a ), 由a >1知,当x <2时,f ′(x )>0, 故f (x )在区间(-∞,2)上单调递增; 当2<x <2a 时,f ′(x )<0, 故f (x )在区间(2,2a )上单调递减; 当x >2a 时,f ′(x )>0,故f (x )在区间(2a ,+∞)上单调递增. 综上,当a >1时,f (x )在区间(-∞,2)和(2a ,+∞)上单调递增, 在区间(2,2a )上单调递减. 答案:(2,2a )7.(2019·荆州质检)设函数f (x )=13x 3-a2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1. (1)求b ,c 的值;(2)若a >0,求函数f (x )的单调区间. 解析:(1)f ′(x )=x 2-ax +b , 由题意得⎩⎪⎨⎪⎧ f (0)=1,f ′(0)=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0), 当x ∈(-∞,0)时,f ′(x )>0; 当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ).8.设函数f (x )=13mx 3+(4+m )x 2,g (x )=a ln(x -1),其中a ≠0.(1)若函数y =g (x )的图象恒过定点P ,且点P 关于直线x =32对称的点在y =f (x )的图象上,求m 的值.(2)当a =8时,设F (x )=f ′(x )+g (x +1),讨论F (x )的单调性. 解析:(1)令ln(x -1)=0,则x =2, 即函数y =g (x )的图象恒过定点P (2,0), 所以点P 关于直线x =32对称的点为(1,0), 又点(1,0)在y =f (x )的图象上, 所以13m +4+m =0,所以m =-3.(2)因为F (x )=mx 2+2(4+m )x +8ln x ,且定义域为(0,+∞). 所以F ′(x )=2mx +(8+2m )+8x =2mx 2+(8+2m )x +8x=(2mx +8)(x +1)x .因为x >0,所以x +1>0.当m ≥0时,F ′(x )>0,此时F (x )在(0,+∞)上为增函数. 当m <0时,由F ′(x )>0得0<x <-4m , 由F ′(x )<0得x >-4m , 所以F (x )在⎝ ⎛⎭⎪⎫0,-4m 上单调递增,在⎝ ⎛⎭⎪⎫-4m ,+∞上单调递减. 综上,当m ≥0时,F (x )在(0,+∞)上为增函数;当m <0时,F (x )在⎝ ⎛⎭⎪⎫0,-4m 上单调递增,在⎝ ⎛⎭⎪⎫-4m ,+∞上单调递减.B 组 能力提升练9.(2019·兰州市高三诊断考试)定义在(0,π2)上的函数f (x ),已知f ′(x )是它的导函数,且恒有cos x ·f ′(x )+sin x ·f (x )<0成立,则有( )A .f (π6)>2f (π4) B.3f (π6)>f (π3)C .f (π6)>3f (π3)D .f (π6)>3f (π4)解析:∵cos x ·f ′(x )+sin x ·f (x )<0,∴在(0,π2)上,[f (x )cos x]′<0,∴函数y=f (x )cos x 在(0,π2)上是减函数,∴f (π6)cos π6>f (π3)cos π3,∴f (π6)>3f (π3),故选C. 答案:C10.已知函数f (x )=ln x -ax 2+1,若存在实数x 1,x 2∈[1,+∞),且x 1-x 2≥1,使得f (x 1)=f (x 2)成立,则实数a 的取值范围为( ) A .(0,ln 23)B .(0,ln 23]C .(-∞,ln 23]D .(-∞,2ln 23]解析:当a =0时,f (x )=ln x +1,若f (x 1)=f (x 2),则x 1=x 2,显然不成立,排除C ,D ;取x 1=2,x 2=1,由f (x 1)=f (x 2)得-a +1=ln 2-4a +1,得a =ln 23,排除A.选B. 答案:B11.函数f (x )=ln x -12x 2+x 的单调增区间为________.解析:因为f (x )=ln x -12x 2+x ,所以f ′(x )=1x -x +1=-x 2+x +1x ,x >0,由f ′(x )>0得x >0且x <1+52, 所以增区间为⎝ ⎛⎭⎪⎫0,1+52. 答案:⎝⎛⎭⎪⎫0,1+52 12.已知函数f (x )=3xa -2x 2+ln x (a >0).若函数f (x )在[1,2]上为单调函数,则a的取值范围是________.解析:f ′(x )=3a -4x +1x ,若函数f (x )在[1,2]上为单调函数, 则f ′(x )=3a -4x +1x ≥0或f ′(x )=3a -4x +1x ≤0在[1,2]上恒成立, 即3a ≥4x -1x 或3a ≤4x -1x 在[1,2]上恒成立.令h (x )=4x -1x ,则h (x )在[1,2]上单调递增,所以3a ≥h (2)或3a ≤h (1),即3a ≥152或3a ≤3,又a >0,所以0<a ≤25或a ≥1.答案:⎝ ⎛⎦⎥⎤0,25∪[1,+∞)13.(2019·兰州模拟)已知函数f (x )=ln x -ax +1-a x -1(a ∈R ).当0<a <12时,讨论f (x )的单调性.解析:因为f (x )=ln x -ax +1-ax-1,所以f ′(x )=1x -a +a -1x 2=-ax 2-x +1-a x 2,x ∈(0,+∞),令f ′(x )=0,可得两根分别为1,1a -1, 因为0<a <12,所以1a -1>1>0,当x ∈(0,1)时,f ′(x )<0,函数f (x )单调递减;当x ∈⎝ ⎛⎭⎪⎫1,1a -1时,f ′(x )>0,函数f (x )单调递增;当x ∈(1a -1,+∞)时,f ′(x )<0,函数f (x )单调递减.14.已知函数f (x )=⎝ ⎛⎭⎪⎫a -12x 2+ln x ,g (x )=f (x )-2ax .(a ∈R )(1)当a =0时,求f (x )在区间⎣⎢⎡⎦⎥⎤1e ,e 上的最小值;(2)若x ∈(1,+∞),g (x )<0恒成立,求a 的取值范围. 解析:(1)函数f (x )=⎝ ⎛⎭⎪⎫a -12x 2+ln x 的定义域为(0,+∞),当a =0时,f (x )=-12x 2+ln x ,则f ′(x )=-x +1x =-x 2+1x =-(x +1)(x -1)x.当x ∈⎣⎢⎡⎭⎪⎫1e ,1时,f ′(x )>0;当x ∈[1,e]时,f ′(x )<0,∴f (x )在区间⎣⎢⎡⎭⎪⎫1e ,1上是增函数,在区间[1,e]上为减函数,又f ⎝ ⎛⎭⎪⎫1e =-1-12e 2,f (e)=1-e 22,∴f (x )min =f (e)=1-e 22.(2)g (x )=f (x )-2ax =⎝ ⎛⎭⎪⎫a -12x 2-2ax +ln x ,则g (x )的定义域为(0,+∞),g ′(x )=(2a -1)x -2a +1x =(2a -1)x 2-2ax +1x =(x -1)[(2a -1)x -1]x,①若a >12,则令g ′(x )=0,得x 1=1,x 2=12a -1, 当x 2>x 1=1,即12<a <1时,在(0,1)上有g ′(x )>0,在(1,x 2)上有g ′(x )<0,在(x 2,+∞)上有g ′(x )>0,此时g (x )在区间(x 2,+∞)上是增函数,并且在该区间上有g (x )∈(g (x 2),+∞),不合题意;当x 2≤x 1=1,即a ≥1时,同理可知,g (x )在区间(1,+∞)上有g (x )∈(g (1),+∞),也不合题意;②若a ≤12,则有2a -1≤0,此时在区间(1,+∞)上恒有g ′(x )<0, 从而g (x )在区间(1,+∞)上是减函数;要使g (x )<0在此区间上恒成立,只需满足g (1)=-a -12≤0⇒a ≥-12,由此求得a 的取值范围是⎣⎢⎡⎦⎥⎤-12,12.综合①②可知,a 的取值范围是⎣⎢⎡⎦⎥⎤-12,12.。

四川省成都市第七中学高中2020届高三高中毕业班三诊模拟数学(文科)试题附答案

四川省成都市第七中学高中2020届高三高中毕业班三诊模拟数学(文科)试题附答案

成都七中2020届高中毕业班三诊模拟数 学(文科)本试卷分选择题和非选择题两部分. 第Ⅰ卷(选择题)1至2页,第Ⅱ卷 (非选择题)3至4页,共4页,满分150分,考试时间120分钟. 注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.第Ⅰ卷 (选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合2{1,0,1,2,3,4},{|,}A B y y x x A =-==∈,则A B =I(A){0,1,2} (B){0,1,4} (C){1,0,1,2}- (D){1,0,1,4}- 2. 已知复数11iz =+,则||z =(A)2(B)1 (D)2 3. 设函数()f x 为奇函数,当0x >时,2()2,f x x =-则((1))f f = (A)1- (B)2- (C)1 (D)24. 已知单位向量12,e e 的夹角为2π3,则122e e -=(A)3 (B)75. 已知双曲线22221(0,0)x y a b a b-=>>的渐近线方程为3y x =±,则双曲线的离心率是(B)3 (C)10 (D)1096. 在等比数列{}n a 中,10,a >则“41a a <”是“53a a <”的(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件7. 如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是(A)6?i ≤ (B)5?i ≤ (C)4?i ≤ (D)3?i ≤8. 已知,a b 为两条不同直线,,,αβγ为三个不同平面,下列命题:①若///,,/ααγβ则//βγ;②若//,//,a a αβ则//αβ;③若,,αγγβ⊥⊥则αβ⊥;④若,,a b αα⊥⊥则//a b .其中正确命题序号为 (A)②③(B)②③④(C)①④(D)①②③9. 南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,5,11,21,37,61,95,则该数列的第8项为 (A)99(B)131 (C)139 (D)14110. 已知2πlog e ,a =πln ,eb =2e ln ,πc =则(A)a b c <<(B)b c a <<(C)b a c <<(D)c b a <<11. 已知一个四面体的每一个面都是以3,3,2为边长的锐角三角形,则这个四面体的外接球的表面积为 (A)11π4 (B)11π2(C)11π (D)22π 12. 已知P 是椭圆2214x y +=上一动点,(2,1),(2,1)A B -,则cos ,PA PB u u u r u u u r 的最大值是(A)4 (B)17 (C)6- (D)14第Ⅱ卷 (非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上. 13.已知数列{}n a 的前n 项和为,n S 且111,1(2),n n a a S n -==+≥则4a =14. 已知实数,x y 满足线性约束条件117x y x y ≥⎧⎪≥-⎨⎪+≤⎩,则目标函数2z x y =+的最大值是15. 如图是一种圆内接六边形ABCDEF ,其中BC CD DE EF FA ====且.AB BC ⊥则在圆内随机取一点,则此点取自六边形ABCDEF 内的概率是16. 若指数函数xy a =(0a >且1)a ≠与一次函数y x =的图象恰好有两个不同的交点,则实数a 的取值范围是三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在ABC ∆中,内角,,A B C 的对边分别为,,.a b c 已知2.tan sin a bA B= (1)求角A 的大小; (2)若2,a b ==求ABC ∆的面积.18.(本小题满分12分)成都七中为了解班级卫生教育系列活动的成效,对全校40个班级进行了一次突击班级卫生量化打分检查(满分100分,最低分20分).根据检查结果:得分在[80,100]评定为“优”,奖励3面小红旗;得分在[60,80)评定为“良”,奖励2面小红旗;得分在[40,60)评定为“中”,奖励1面小红旗;得分在[20,40)评定为“差”,不奖励小红旗.已知统计结果的部分频率分布直方图如下图:(1)依据统计结果的部分频率分布直方图,求班级卫生量化打分检查得分的中位数;(2)学校用分层抽样的方法,从评定等级为“良”、“中”的班级中抽取6个班级,再从这6个班级中随机抽取2个班级进行抽样复核,求所抽取的2个班级获得的奖励小红旗面数和不少于3的概率.19.(本小题满分12分)如图,在四棱锥M ABCD -中,2,2.,,3AB AM AD MB MD AB AD =====⊥ (1)证明:AB ⊥平面ADM ; (2)若//CD AB 且23CD AB =,E 为线段BM 上一点,且 2BE EM =,求三棱锥A CEM -的体积.20.(本小题满分12分)已知函数22e (),(e,).ln x xf x x x x++=∈+∞ (1)证明:当(e,)x ∈+∞时,3eln ex x x ->+; (2)证明:()f x 在1[2e ,)2++∞单调递增.(其中e 2.71828=L 是自然对数的底数).21.(本小题满分12分)已知点P 是抛物线21:2C y x =上的一点,其焦点为点,F 且抛物线C 在点P 处的切线l 交圆:O 221x y +=于不同的两点,A B .(1)若点(2,2),P 求||AB 的值;(2)设点M 为弦AB 的中点,焦点F 关于圆心O 的对称点为,F '求||F M '的取值范围.请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分.作答时,用2B 铅笔在答题卡上将所选题目对应的标号涂黑.22.(本小题满分10分)选修44-:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为233x y αα⎧=⎪⎨=⎪⎩(α为参数,0πα≤≤).在以坐标原点为极点,x 轴的非负半轴为极轴的极坐标系中,射线l 的极坐标方程是π6θ=.(1)求曲线C 的极坐标方程;(2)若射线l 与曲线C 相交于,A B 两点,求||||OA OB ⋅的值.23.(本小题满分10分)选修45-:不等式选讲已知0,0,a b >>且24,a b +=函数()2f x x a x b =++-在R 上的最小值为.m(1)求m 的值;(2)若22a mb tab +≥恒成立,求实数t 的最大值.成都七中2020届高中毕业班三诊模拟数 学(文科)参考答案及评分意见第Ⅰ卷 (选择题,共60分)一、选择题(每小题5分,共60分)1.B ;2.A ;3.C ;4.D ;5.A ;6.A ;7.B ;8.C ;9.D ; 10.B ; 11.C ; 12.A.第Ⅱ卷 (非选择题,共90分)二、填空题(每小题5分,共20分)13.8; 14.15; 15.2π; 16.1e (1,e ).三、解答题(共70分) 17. 解:(1)由正弦定理知sin sin a b A B =,又2,tan sin a b A B =所以2.sin tan a aA A= 于是1cos ,2A =因为0π,A <<所以π.3A = L L 6分(2)因为π2,,3a b A ===22π222cos,3c c =+-⨯⨯即2230.c c --=又0c >,所以 3.c =故ABC ∆的面积为11πsin 23sin 223bc A =⨯⨯⨯= L L 12分18.解:(1)得分[20,40)的频率为0.005200.1⨯=;得分[40,60)的频率为0.010200.2⨯=; 得分[80,100]的频率为0.015200.3⨯=;所以得分[60,80)的频率为1(0.10.20.3)0.4.-++=设班级得分的中位数为x 分,于是600.10.20.40.520x -++⨯=,解得70.x = 所以班级卫生量化打分检查得分的中位数为70分. L L 6分 (2)由(1)知题意 “良”、“中”的频率分别为0.4,0.2.又班级总数为40.于是“良”、“中”的班级个数分别为16,8.分层抽样的方法抽取的 “良”、“中”的班级个数分别为4,2.因为评定为“良”,奖励2面小红旗,评定为“中”,奖励1面小红旗.所以抽取的2个班级获得的奖励小红旗面数和不少于3为两个评定为“良”的班级或一个评定为“良”与一个评定为“中”的班级.记这个事件为.A 则A 为两个评定为“中”的班级.把4个评定为“良”的班级标记为1,2,3,4. 2个评定为“中”的班级标记为5,6.从这6个班级中随机抽取2个班级用点(,)i j 表示,其中16i j ≤<≤.这些点恰好为66⨯方格格点上半部分(不含i j =对角线上的点),于是有366152-=种. 事件A 仅有(5,6)一个基本事件. 所以114()1()1.1515P A P A =-=-= 所抽取的2个班级获得的奖励小红旗面数和不少于3的概率为14.15L L 12分19.解:(1)因为2AB AM==,MB =所以222.AM AB MB +=于是.AB AM ⊥又,AB AD ⊥且,AM AD A AM =⊂I 平面ABD ,AD ⊂平面ADM ,所以AB ⊥平面.ADM L L 5分(2)因为2,AM AD MD ===所以ADM S ∆=因为2BE EM =,所以1.3C AEM C ABM V V --=又//,CD AB AB ⊥平面.ADM所以111333A CEM C AEM C ABM D ABM B ADM V V V V V -----==== 111123333ADM S AB =⨯⋅⋅=⨯=所以三棱锥A CEM -L L 12分20.解:(1)令3e ()ln ,(e,).e x g x x x x -=-∈+∞+则22214e (e)()0.(e)(e)x g x x x x x -'=-=>++于是()g x 在(e,)+∞单调递增,所以()(e)0,g x g >=即3eln ,(e,).ex x x x ->∈+∞+ L L 5分 (2)22222222(21)ln (e )(ln 1)(e )ln (e )().(ln )(ln )x x x x x x x x x x f x x x x x +-+++--++'== 令2222()(e )ln (e ),(e,).h x x x x x x =--++∈+∞当(e,)x ∈+∞时,由(1)知3eln .e x x x ->+则222223e 1()(e )(e )2(4e 1)2[(2e )],e 2x h x x x x x x x x x ->--++=-+=-++ 当1[2e ,)2x ∈++∞时,()0h x >,从而()0.f x '> 故()f x 在1[2e ,)2++∞严格单调递增. L L 12分21.解:设点00(,)P x y ,其中2001.2y x =因为,y x '=所以切线l 的斜率为0,x 于是切线2001:.2l y x x x =-(1)因为(2,2),P 于是切线:2 2.l y x =-故圆心O 到切线l的距离为d =于是||5AB === L L 5分(2)联立22200112x y y x x x ⎧+=⎪⎨=-⎪⎩得22340001(1)10.4x x x x x +-+-= 设1122(,),(,),(,).A x y B x y M x y 则301220,1x x x x +=+32240001()4(1)(1)0.4x x x ∆=--+-> 又200,x ≥于是2002x ≤<+于是32200120022001,.22(1)22(1)x x x x x y x x x x x +===-=-++ 又C 的焦点1(0,),F 于是1(0,).F '-故||F M '===L L 9分 令201,t x =+则13t ≤<+于是||F M'==因为3t t+在单调递减,在+单调递增.又当1t =时,1||2F M '=;当t =时,||F M '=;当3t =+时,11||.22F M '=> 所以||F M '的取值范围为1).2L L 12分22.解:(1)消去参数α得22(2)3(0)x y y -+=≥将cos ,sin x y ρθρθ==代入得22(cos 2)(sin )3,ρθρθ-+=即24cos 10.ρρθ-+=所以曲线C 的极坐标方程为2π4cos 10(0).3ρρθθ-+=≤≤L L 5分 (2)法1:将π6θ=代入2π4cos 10(0)3ρρθθ-+=≤≤得210ρ-+=,设12ππ(,),(,),66A B ρρ则12 1.ρρ=于是12|||| 1.OA OB ρρ⋅== L L 10分法2:π3θ=与曲线C 相切于点,M π||2sin 1,3OM ==由切割线定理知2|||||| 1.OA OB OM ⋅== L L 10分23.解:(1)3, (,),2()2, [,],23, (,).a x a b x a f x x a x b x a b x b x a b x b ⎧--+∈-∞-⎪⎪⎪=++-=++∈-⎨⎪+-∈+∞⎪⎪⎩.当(,)2ax ∈-∞-时,函数()f x 单调递减;当(,)x b ∈+∞时,函数()f x 单调递增.所以m 只能在[,]2a b -上取到.当[,]2ax b ∈-时,函数()f x 单调递增.所以2() 2.222a a a bm f a b +=-=-++== L L 5分(2)因为22a mb tab +≥恒成立,且0,0a b >>,所以22a mb t ab +≤恒成立即mina b mb t a ⎛⎫≤+ ⎪⎝⎭.由(1)知2m =,于是a b a mb +≥== 当且仅当2aab =时等号成立即1)0,2(20.a b =>=> 所以t ≤,故实数t 的最大值为 L L 10分。

山东省济南市2024届高三下学期高考针对性训练(5月模拟)数学试题含答案

山东省济南市2024届高三下学期高考针对性训练(5月模拟)数学试题含答案

绝密★启用并使用完毕前高考针对性训练数学试题本试卷共4页,19题,全卷满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设12i2iz -=+,则z =()A .iB .i-C .4i 5+D .4i 5-2.若sin cos αα-=,则tan α=()A .1B .1-C .2D .2-3.()6111x x ⎛⎫+- ⎪⎝⎭展开式中2x 的系数为()A .5-B .5C .15D .354.已知{}n a 是等比数列,且27844a a a a =-=-,则3a =()A .B .C .2-D .2±5.某单位设置了a ,b ,c 三档工资,已知甲、乙、丙三人工资各不相同,且甲的工资比c 档高,乙的工资比b 档高,丙领取的不是b 档工资,则甲、乙、丙领取的工资档次依次为()A .a ,b ,cB .b ,a ,cC .a ,c ,bD .b ,c ,a6.三棱锥S ABC -中,SA ⊥平面ABC ,AB BC ⊥.若该三棱锥的最长的棱长为9,最短的棱长为3,则该三棱锥的最大体积为()A B C .18D .367.在平面直角坐标系xOy 中,已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,点P在C 上,且2122PF PF a ⋅= ,PO = ,则C 的离心率为()A B C .3D .28.已知函数()f x 的定义域为R ,且()()()yf x xf y xy x y -=-,则下列结论一定成立的是()A .()11f =B .()f x 为偶函数C .()f x 有最小值D .()f x 在[]0,1上单调递增二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.某同学投篮两次,第一次命中率为23.若第一次命中,则第二次命中率为34;若第一次未命中,则第二次命中率为12.记()1,2i A i =为第i 次命中,X 为命中次数,则()A .22()3P A =B .4()3E X =C .4()9D X =D .123(|)4P A A =10.已知ABC △内角A ,B ,C 的对边分别为a ,b ,c ,外接圆半径为R .若1a =,且()sin sin sin A b B c b C -=+,则()A .3sin 2A =B .ABC △面积的最大值为34C .3R =D .BC 边上的高的最大值为611.已知函数()sin ln f x x x =⋅,则()A .曲线()y f x =在πx =处的切线斜率为ln πB .方程()2024f x =有无数个实数根C .曲线()y f x =上任意一点与坐标原点连线的斜率均小于1eD .2()2x y f x =-在()1,+∞上单调递减三、填空题:本题共3小题,每小题5分,共15分.12.数列{}n a 满足22n n a a +-=,若11a =,44a =,则数列{}n a 的前20项的和为______.13.在正四棱柱1111ABCD A B C D -中,4AB =,16AA =,M ,N 分别是AB ,AD 的中点,则平面1MNC 截该四棱柱所得截面的周长为______.14.已知抛物线22x y =与圆()()22240x y rr +-=>相交于四个不同的点A ,B ,C ,D ,则r 的取值范围为______,四边形ABCD 面积的最大值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)近年来,我国众多新能源汽车制造企业迅速崛起.某企业着力推进技术革新,利润稳步提高.统计该企业2019年至2023年的利润(单位:亿元),得到如图所示的散点图.其中2019年至2023年对应的年份代码依次为1,2,3,4,5.(1)根据散点图判断,y a bx =+和2y c dx =+哪一个适宜作为企业利润y (单位:亿元)关于年份代码x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)中的判断结果,建立y 关于x 的回归方程;(3)根据(2)的结果,估计2024年的企业利润.参考公式及数据;1221ˆni ii ni i x ynx ybx nx==-=-∑∑,ˆˆay bx =-,52155i i x ==∑,541979ii x ==∑,51390i i y ==∑,511221i i i x y ==∑,5214607.9i i i x y ==∑16.(本小题满分15分)如图,在三棱台ABC DEF -中,平面ABC ⊥平面BCFE ,AF DE ⊥,45ABC CBF ∠=∠=︒,1AC AB >=.(1)求三棱台ABC DEF -的高;(2)若直线AC 与平面ABF 所成角的正弦值为155,求BC .17.(本小题满分15分)已知函数()22xxf x a =+-,其中0a >且1a ≠.(1)若()f x 是偶函数,求a 的值;(2)若0x >时,()0f x >,求a 的取值范围.18.(本小题满分17分)已知点21,2A ⎛⎫ ⎪ ⎪⎝⎭在椭圆2222:1(0)x y E a b a b +=>>上,A 到E的两焦点的距离之和为.(1)求E 的方程;(2)过抛物线()2:1C y x m m =->上一动点P ,作E 的两条切线分别交C 于另外两点Q ,R .(ⅰ)当P 为C 的顶点时,求直线QR 在y 轴上的截距(结果用含有m 的式子表示);(ⅱ)是否存在m ,使得直线QR 总与E 相切.若存在,求m 的值;若不存在,说明理由.19.(本小题满分17分)高斯二项式定理广泛应用于数学物理交叉领域.设,y q ∈R ,*n ∈N ,记[]11n n q q-=++⋅⋅⋅+,[][][][]!11n n n =⨯-⨯⋅⋅⋅⨯,并规定[]0!1=.记1(,)()()()()n n q F x n x y x y x qy x q y -=+=++⋅⋅⋅+,并规定()0,0()1q F x x y =+=.定义[][][](,),0(,)11(),1,2,,kqn kq F x n k D F x n n n n k x y k n-=⎧⎪=⎨-⋅⋅⋅-++=⋅⋅⋅⎪⎩(1)若1y q ==,求(),2F x 和1(,2)q D F x ;(2)求[][]!(0,)!k qn k D F n n -;(3)证明:[]0(0,)(,)!k nq k k D F n F x n x k ==∑.2024年5月济南市高三模拟考试数学试题参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.题号12345678答案ABACBCDC二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.题号91011答案ABDADBCD三、填空题:本题共3小题,每小题5分,共15分.12.21013.14.4);四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.【解析】(1)2y c dx =+适宜作为企业利润y (单位:亿元)关于年份代码x 的回归方程类型.(2)由题意得:52211()115i i x x ===∑,511785i i y y ===∑,52215222221553905()4607.95317.9550.8537455()5()9795ˆ5i ii ii xy x ydx x ==-⨯-⨯⨯====⎛⎫-⨯-⨯ ⎪⎝⎭∑∑,239055()0.8568.655ˆ5ˆcy d x =-⨯=-⨯=,所以,268.65ˆ0.85y x =+.(3)令6x =,268.650.85699.25ˆy=+⨯=,估计2024年的企业利润为99.25亿元.另解(此种解法酌情给分):(1)y a bx =+适宜作为企业利润y (单位:亿元)关于年份代码x 的回归方程类型.(2)由题意得:1234535x ++++==,511785i i y y ===∑,()()515222151221537851 5.13ˆ555105i ii i i x yx ybx x==-⨯-⨯⨯====-⨯-⨯∑∑,()78 5.1362.7ˆˆa y b x =-⨯=-⨯=,所以,7ˆ62. 5.1yx =+.(3)令6x =,62.7 5.1693.3ˆy=+⨯=,估计2024年的企业利润为93.3亿元.16.【解析】解:(1)作FO BC ⊥于点O ,因为平面ABC ⊥平面BCFE ,所以FO ⊥平面ABC ,FO 即为三棱台ABC DEF -的高.又因为AB ⊂平面ABC ,所以FO AB ⊥.连接AO ,因为AB DE ∥,AF DE ⊥,所以AB AF ⊥,FO AF F = ,所以AB ⊥平面AFO ,又AO ⊂平面AFO ,所以AB AO ⊥.45ABC CBF ∠=∠=︒,1AB =.所以1AO =,BO FO ==ABC DEF -.(2)以O 为原点,在面ABC 内,作OG BC ⊥,以OG ,OB ,OF 所在的直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系O xyz -,则,22A ⎛⎫ ⎪ ⎪⎝⎭,B,F,,,022AB ⎛⎫=- ⎪ ⎪⎝⎭,FB =,设平面ABF 的法向量为(),,n x y z =则022n FB n AB x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,可取()1,1,1n = ,设BC BO λ=,则22,022AC ⎛⎫=-- ⎪ ⎪⎝⎭,设直线AC 与平面ABF 所成角为α,15sin cos ,5AC n α===,化简得281890λλ-+=,解得32λ=或34λ=(舍去,因为AC AB >,所以1λ>),所以BC =.17.【解析】(1)由题意,()()11f f -=,即112222a a +-=+-,解得,12a =或2a =-(舍)又经检验,12a =时,()f x 是偶函数.所以,a 的值为12.(2)当12a =时,0x ∀>,1()22202x xf x ⎛⎫=+->= ⎪⎝⎭成立;当12a >且1a ≠时,0x ∀>,1()22222xx x xf x a ⎛⎫=+->+- ⎪⎝⎭,又12202xx⎛⎫+-> ⎪⎝⎭已证,故此时符合题意;当102a <<时,()ln 2ln 2x xf x a a '=+,易知,此时()f x '在R 上单调递增,且(0)ln(2)0f a =<'.故存在00x >,使得当0(0,)x x ∈时,()0f x '<,从而()f x 单调递减,所以,存在02x >,使得0(0)02x f f ⎛⎫<= ⎪⎝⎭,故此时不合题意.综上所述,12a ≥且1a ≠.18.【解析】(1)由题意2a =,得a =又21,2A ⎛⎫ ⎪ ⎪⎝⎭在E 上,得221112a b +=,从而1b =.故E 的方程为2212x y +=.(2)(ⅰ)当P 为C 的顶点时,()0,P m ,不妨设R 在第一象限,直线PR 的方程为y kx m =-,联立E 的方程为2212x y +=可得222(21)4220k x kmx m +-+-=.由22222Δ(4)4(21)(22)8(21)0km k m k m =-+-=-+=可得2221k m +=.联立直线PR 的方程y kx m =-与抛物线2:C y x m =-的方程可得x k =,则R 点的纵坐标为22212122R m m m y k m m ---=-=-=,由对称性知2212Q m m y --=,故直线QR 在y 轴上的截距为2212m m --.(ⅱ)要使(2)中的直线QR 与E 相切,必有22112m m b --==,即2230m m --=,解得3m =或1-(舍去).设()11,P x y ,()22,Q x y ,()33,R x y ,则2113y x =-,2223y x =-,2333y x =-.直线PQ 的方程为211121()y y y y x x x x --=--,即1212()3y x x x x x =+--.联立椭圆方程2212x y +=可得222121212122()14()(3)2(3)20x x x x x x x x x x ⎡⎤++-++++-=⎣⎦.由[]22212121212Δ4()(3)42()12(3)2x x x x x x x x ⎡⎤⎡⎤=++-+++-⎣⎦⎣⎦22221212128(2228)0x x x x x x =+---=可得222212*********x x x x x x +---=,即121212250x x y y y y ++++=.同理可得131313250x x y y y y ++++=.因为直线1112(1)50x x y y y ++++=同时经过点QR ,所以QR 的直线方程为1112(1)50x x y y y ++++=.联立椭圆方程2212x y +=可得222111118(1)8(5)16480x y x x y x y ⎡⎤++++++=⎣⎦,于是[]2222211111111Δ8(5)48(1)(1648)64(1)(3)0x y x y y y x y ⎡⎤=+-+++=+--=⎣⎦.故直线QR 与椭圆相切,因此3m =符合题意.19.【解析】(1)若1y q ==,222(,2)()()(1)(1)F x x y x qy x q xy y x =++=+++=+,而[]11(,2)2()(1)()2(1)q q D F x x y q x y x =+=++=+.(2)当0k =时,[][](1)2!(0,)(0,)(0,)!n n k n q q n k D F n D F n F n q y n --===.当0k ≠时,由[][][](0,)11(0)kn kq qD F n n n k y -=-⋅⋅⋅++[][][][][]()(1)()(1)/22!11!n k n k n k n k n kn k n n n n k qyqy n k --------=-⋅⋅⋅-+=-,可得[][]()(1)2!(0,)!n k n k k n k q n k D F n q y n -----=.因此[][]()(1)2!(0,)!n k n k k n k q n k D F n q y n -----=,0,1,2,,k n = .(3)要证[]0(0,)(,)!k nq k k D F n F x n x k ==∑,只需证[][][][][]1()(1)/2(1)/200!!()()()![]!!!nnn n k n k n k kk k n k k k k n n x y x qy x qy q y x q x y n k k n k k -------==++⋅⋅⋅+==--∑∑.令1()()()()nn k k k G y x y x qy x q y a y -==++⋅⋅⋅+=∑,一方面,110101()()()()n nkkk k k n n k k k n k k x y G qy x y a q y xa xq a q a y a q y -+-==+=+=+++∑∑,另一方面,10101()()()()n nnnkn k n n k k k n k k x q y G y x q y a y xa xa q a y a q y +-==+=+=+++∑∑,当1q ≠且0x ≠时,由于()()()()nx y G qy x q y G y +=+,比较两式中ky 的系数可得111k k n k k k k xq a q a xa q a ---+=+,则[]1111(1)[]k n k k kk q n k a q q a x q x k ----+-==-⋅,由0na x =可知[][][](1)1120120!!!k k n k k k k k k n a a a a a q x a a a n k k -----=⋅⋅⋅⋅⋅=-.当1q =时,由[]11n n q qn -=++⋅⋅⋅+=,[]!!n n =可知()[][]00!C ![]!nn nn k k k n k kn k k n x y y x yx n k k --==+==-∑∑,此时命题也成立.当0x =时,[](1)/2(0,)(,)(0,)!k nq n n nk qk D F n F x n qy D F n x k -====∑也成立.综上所述,()()[]00,,!knq k k D F n F x n x k ==∑.。

2020届四川省绵阳市高三第三次诊断性测试理科数学试题(word版含答案)

2020届四川省绵阳市高三第三次诊断性测试理科数学试题(word版含答案)
二、填空题:本大题共4小题,每小题5分,共20分.
13.已知 则sinα=____
14.若曲线f(x)=excosx-mx,在点(0, f(0))处的切线的倾斜角为 则实数m=_____.
15.已知 是椭圆C: 的两个焦点,P是椭圆C.上的一点, 且 的面积为 则b=____.
16.在一个半径为2的钢球内放置一个用来盛特殊液体的正四棱柱容器,要使该容器所盛液体尽可能多,则该容器的高应为____.
(2)设点P(x0, 0),若点M恒在以FP为直径的圆外,求 的取值范围.
(二)选考题:共10分。请考生在第22、23题中任选一题做答。如果多做,则按所做的第一题记分。
22.[选修4-4:坐标系与参数方程] (10分)
如图,在极坐标系中,曲线 是以C1(4, 0)为圆心的半圆,曲线 是以 为圆心的圆,曲线C1、 都过极点O.
C. f(2)< f(0)<f(1)D. f(2)<f(1)< f(0)
11.已知x为实数,[x]表示不超过x的最大整数,若函数f(x)=x-[x],则函数 的零点个数为
A.1B.2C.3D.4
12.在△ABC中,∠C=90°, AB=2, D为AC上的一点(不含端点),将△BCD沿直线BD折起,使点C在平面ABD上的射影O在线段AB上,则线段OB的取值范围是
若将频率视为概率,试解答如下问题:
(1).该物流公司负责人决定随机抽出3天的数据来分析配送的蔬菜量的情况,求这3天配送的蔬菜量中至多有2天小于120件的概率;
(2)该物流公司拟一次性租赁一批货车专门运营从甲地到乙地的蔬菜运输.已知一辆货车每天只能运营一趟,每辆货车每趟最多可装载40件,满载才发车,否则不发车.若发车,则每辆货车每趟可获利2000元;若未发车,则每辆货车每天平均亏损400元.为使该物流公司此项业务的营业利润最大,该物流公司应一次性租赁几辆货车?

2020届四川省绵阳市高三第三次诊断性测试数学(理)试题及答案

2020届四川省绵阳市高三第三次诊断性测试数学(理)试题及答案

绝密★启用前2020届四川省绵阳市高三第三次诊断性测试数学(理)试题注意事项:1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上一、单选题1.设集合A={(x,y)|x2+y2=1},B={(x,y)|x+y=1},则A∩B中元素的个数是()A.0 B.1 C.2 D.3答案:C可画出圆x2+y2=1和直线x+y=1的图象,从而可看出它们交点的个数,从而得出A∩B 中的元素个数.解:画出x2+y2=1和x+y=1的图象如下:可看出圆x2+y2=1和直线x+y=1有两个交点,∴A∩B的元素个数为2.故选:C.点评:考查了描述法的定义,交集的定义及运算,数形结合解题的方法,考查了计算能力,属于容易题.2.已知复数z满足(1﹣i)•z=3i|,则z=()A.1﹣i B.1+i C.2﹣2i D.2+2i答案:B利用复数的运算法则、模的计算公式即可得出. 解:(1﹣i )•z =|3+i|,∴(1+i )(1﹣i )•z =2(1+i ),则z =1+i . 故选:B . 点评:本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于容易题. 3.已知x •log 32=1,则4x =() A .4 B .6C .432logD .9答案:D利用对数的性质和运算法则及换底公式求解. 解:∵x •log 32=1, ∴x =log 23,∴4x 243944log log ===9, 故选:D . 点评:本题考查对数值的求法,是基础题,解题时要认真审题,注意对数的性质、运算法则及换底公式的合理运用,属于容易题.4.有报道称,据南方科技大学、上海交大等8家单位的最新研究显示:A 、B 、O 、AB 血型与COVID ﹣19易感性存在关联,具体调查数据统计如图:根据以上调查数据,则下列说法错误的是()A .与非O 型血相比,O 型血人群对COVID ﹣19相对不易感,风险较低B .与非A 型血相比,A 型血人群对COVID ﹣19相对易感,风险较高C .与O 型血相比,B 型、AB 型血人群对COVID ﹣19的易感性要高 D .与A 型血相比,非A 型血人群对COVID ﹣19都不易感,没有风险答案:D根据频率分布直方图,利用频率、频数与样本容量的关系,患者占有比例即可解答. 解:根据A 、B 、O 、AB 血型与COVID ﹣19易感性存在关联,患者占有比例可知: A 型37.75%最高,所以风险最大值,比其它血型相对易感; 故而D 选项明显不对. 故选:D . 点评:本题考查由频数直方图,看频数、频率,判断问题的关联性,属于中档题5.在二项式2()nx x-的展开式中,仅第四项的二项式系数最大,则展开式中常数项为() A .﹣360 B .﹣160 C .160 D .360答案:B根据展开式二项式系数最大,求出n =6,然后利用展开式的通项公式进行求解即可. 解:∵展开式中,仅第四项的二项式系数最大, ∴展开式共有7项,则n =6, 则展开式的通项公式为T k+1=C 6kx 6﹣k (2x-)k =(﹣2)k C 6kx 6﹣2k , 由6﹣2k =0得k =3,即常数项为T 4=(﹣2)3C 36=-160, 故选:B . 点评:本题主要考查二项展开式的应用,求出n 的值,结合展开式的通项公式是解决本题的关键.属于中档题.6.在△ABC 中,已知sin 2sin cos C A B =,则△ABC 一定是() A .等腰直角三角形 B .等腰三角形 C .直角三角形D .等边三角形答案:B根据三角形内角和定理以及诱导公式,将sin 2sin cos C A B =化为sin()2sin cos A B A B +=,再根据两角和的正弦公式和两角差的正弦公式的逆用公式化为in 0()s A B -=,最后根据,A B 的范围,可得A B =.解:在△ABC 中,因为sin 2sin cos C A B =, 所以sin[()]2sin cos A B A B π-+=, 所以sin()2sin cos A B A B +=所以sin cos cos sin 2sin cos A B A B A B +=, 所以sin cos cos sin 0A B A B -=, 所以in 0()s A B -=, 所以,A B k k Z π-=∈, 因为0,0A B ππ<<<<, 所以0,k A B ==,所以△ABC 一定是等腰三角形. 故选:B 点评:本题考查了三角形的内角和定理,考查了诱导公式,考查了两角和与差的正弦公式,属于基础题.7.已知两个单位向量,a b →→的夹角为120°,若向量c →═2a b →→-,则a →•c →=() A .52B .32C .2D .3答案:A根据平面向量的数量积定义,计算即可. 解:由题意知|a →|=|b →|=1,且a →•b →=1×1×cos120°12=-,又向量c →═2a b →→-,所以a →•c →=22a a →→-•b →=2×1﹣(12-)52=.故选:A . 点评:本题考查了平面向量的数量积运算问题,是基础题.8.数学与建筑的结合造就建筑艺术品,2018年南非双曲线大教堂面世便惊艳世界,如图.若将此大教堂外形弧线的一段近似看成焦点在y 轴上的双曲线()222210>,>0-=y x a b a b 上支的一部分,且上焦点到上顶点的距离为2,到渐近线距离为22,则此双曲线的离心率为( )A .2B .3C .22D .3答案:B利用已知条件求出方程组,得到a ,c ,即可求解双曲线的离心率. 解:双曲线22221(0y x a b a b-=>,>0)的上焦点到上顶点的距离为2,到渐近线距离为22可得:22222222c a bca b c a b -=⎧=+=+⎩,解得a =1,c =3,b =2, 所以双曲线的离心率为:e ca==3. 故选:B . 点评:本题考查双曲线的简单性质的应用,双曲线的离心率的求法,是基本知识的考查,属于中档题.9.设函数f (x )210210x x x x -⎧+=⎨--⎩,>,<则下列结论错误的是()A .函数f (x )的值域为RB .函数f (|x|)为偶函数C .函数f (x )为奇函数D .函数f (x )是定义域上的单调函数答案:A根据题意,依次分析选项是否正确,综合即可得答案. 解:根据题意,依次分析选项:对于A ,函数f (x )210210x x x x -⎧+=⎨--⎩,>,<,当x >0时,f (x )=2x +1>2,当x <0时,f(x )=﹣2﹣x﹣1=﹣(2﹣x+1)<﹣2,其值域不是R ,A 错误;对于B ,函数f (|x|),其定义域为{x|x ≠0},有f (|﹣x|)=f (|x|),函数f (|x|)为偶函数,B 正确;对于C ,函数f (x )210210x x x x -⎧+=⎨--⎩,>,<,当x >0时,﹣x <0,有f (x )=2x +1,f (﹣x )=﹣f (x )=﹣2﹣x﹣1,反之当x <0时,﹣x >0,有f (x )=﹣2x﹣1,f (﹣x )=﹣f (x )=2x +1,综合可得:f (﹣x )=﹣f (x )成立,函数f (x )为奇函数,C 正确;对于D ,函数f (x )210210x x x x -⎧+=⎨--⎩,>,<,当x >0时,f (x )=2x+1>2,f (x )在(0,+∞)为增函数,当x <0时,f (x )=﹣2﹣x﹣1<﹣2,f (x )在(﹣∞,0)上为增函数,故f (x )是定义域上的单调函数; 故选:A . 点评:本题考查分段函数的性质,涉及函数的值域、奇偶性、单调性的分析,属于中档题. 10.已知函数f (x )=sin (ωx+φ)(ω>0,02πϕ<<)的最小正周期为π,且关于08π⎛⎫-⎪⎝⎭,中心对称,则下列结论正确的是() A .f (1)<f (0)<f (2) B .f (0)<f (2)<f (1) C .f (2)<f (0)<f (1) D .f (2)<f (1)<f (0)答案:D根据条件求出函数的解析式,结合函数的单调性的性质进行转化判断即可. 解:∵函数的最小周期是π, ∴2πω=π,得ω=2,则f (x )=sin (2x+φ), ∵f (x )关于08π⎛⎫-⎪⎝⎭,中心对称,∴2×(8π-)+φ=k π,k ∈Z , 即φ=k π4π+,k ∈Z ,∵02πϕ<<,∴当k =0时,φ4π=,即f (x )=sin (2x 4π+),则函数在[8π-,8π]上递增,在[8π,58π]上递减,f (0)=f (4π), ∵4π<1<2,∴f (4π)>f (1)>f (2), 即f (2)<f (1)<f (0), 故选:D . 点评:本题主要考查三角函数值的大小比较,根据条件求出函数的解析式,利用三角函数的单调性进行判断是解决本题的关键,属于中档题.11.已知x 为实数,[x]表示不超过x 的最大整数,若函数f (x )=x ﹣[x],则函数x xg x f x e=+()()的零点个数为() A .1 B .2C .3D .4答案:B函数x x g x f x e =+()()的零点个数,即方程xxf x e =-()的零点个数,也就是两函数y=f (x )与y x xe=-的图象的交点个数,画出图象,数形结合得答案. 解:函数x x g x f x e =+()()的零点个数,即方程xxf x e =-()的零点个数,也就是两函数y =f (x )与y x xe =-的交点个数.由y x x e =-,得y ′21x x xx e xe x e e--=-=. 可知当x <1时,y ′<0,函数单调递减,当x >1时,y ′>0,函数单调递增.作出两函数y =f (x )与y xxe =-的图象如图:由图可知,函数xxg x f x e =+()()的零点个数为2个. 故选:B . 点评:本题考查函数的零点与方程根的关系,考查数形结合的解题思想方法,训练了利用导数研究函数的单调性,是中档题.12.在△ABC 中,∠C =90°,AB =2,3AC =,D 为AC 上的一点(不含端点),将△BCD 沿直线BD 折起,使点C 在平面ABD 上的射影O 在线段AB 上,则线段OB 的取值范围是() A .(12,1) B .(12,32) C .(32,1) D .(0,32) 答案:A由题意,OC ⊥平面ABD ,根据三余弦定理,线线角的余弦值等于线面角的余弦值与射影角余弦值的积,从而求解. 解:由题意,OC ⊥平面ABD , 如图:设∠CBD =θ,∠CBO =θ1,则∠ABD =60°-θ;则cos θ=cos θ1×cos (60°﹣θ) 所以cos θ1()6013cos cos tan θθθ==︒-+∵θ∈(30°,60°); ∴OB =cos θ1∈(12,1). 故选:A .本题考查△ABC 的折叠和三余弦定理(最小角定理),要求熟悉余弦定理,属于中档题. 二、填空题13.已知cossin22αα-=,则sin α=_____. 答案:45将已知等式两边平方,利用同角三角函数基本关系式,二倍角的正弦函数公式即可求解. 解:∵225cossinαα-=, ∴两边平方可得:cos 22α+sin 22α-2cos 1sin 225αα=,可得1﹣sin α15=, ∴sin α45=. 故答案为:45.点评:本题主要考查了同角三角函数基本关系式,二倍角的正弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于容易题.14.若曲线f (x )=e x cosx ﹣mx ,在点(0,f (0))处的切线的倾斜角为34π,则实数m =_____. 答案:2对函数求导,然后得f ′(0)314tan π==-,由此求出m 的值. 解:f ′(x )=e x(cosx ﹣sinx )﹣m .∴3'0114f m tan π=-==-(). ∴m =2. 故答案为:2 点评:本题考查导数的几何意义以及切线问题.抓住切点处的导数为切线斜率列方程是本题的基本思路.属于容易题.15.已知F 1,F 2是椭圆C :()222210x y a b a b+=>>的两个焦点,P 是椭圆C .上的一点,∠F 1PF 2=120°,且△F 1PF 2的面积为43,则b =_____. 答案:2根据正余弦定理可得PF 1•PF 2=16且4c 2=(2a )2﹣16,解出b 即可. 解:△F 1PF 2的面积12=PF 1•PF 2sin120°34=PF 1•PF 2=43,则PF 1•PF 2=16, 又根据余弦定理可得cos120°2221212122PF PF F F PF PF +-=⋅,即4c 2=PF 12+PF 22+16=(2a )2﹣32+16,所以4b 2=16,解得b =2, 故答案为:2. 点评:本题考查椭圆性质,考查正、余弦定理的应用,属于中档题.16.在一个半径为2的钢球内放置一个用来盛特殊液体的正四棱柱容器,要使该容器所盛液体尽可能多,则该容器的高应为_____. 答案:433设正四棱柱的高为h ,底面边长为a ,用h 表示出a ,写出正四棱柱容器的容积,利用导数求出V 取最大值时对应的h 值. 解:设正四棱柱的高为h ,底面边长为a ,如图所示;则h 2+2a 2=(2×2)2, 所以a 2=812-h 2,所以正四棱柱容器的容积为V =a 2h =(812-h 2)h 12=-h 3+8h ,h ∈(0,4);求导数得V ′32=-h 2+8,令V ′=0,解得h 3=,所以h ∈(0,3)时,V ′>0,V (h )单调递增;h ,4)时,V ′<0,V (h )单调递减;所以h =时,V 取得最大值.故答案为:3. 点评:本题考查了球内接正四棱柱的体积的最值问题,也考查了利用导数求函数的最值问题,是中档题. 三、解答题17.若数列{a n }的前n 项和为S n ,已知a 1=1,a n+123n S =. (1)求S n ; (2)设b n 1n s =,求证:b 1+b 2+b 3+…+b n 52<. 答案:(1)S n =(53)n ﹣1;(2)详见解析. (1)由数列的递推式:a n+1=S n+1﹣S n ,结合等比数列的定义和通项公式,可得所求; (2)求得b n 1n s ==(35)n ﹣1,由等比数列的求和公式和不等式的性质,即可得证. 解: (1)a n+123n S =,可得a n+1=S n+1﹣S n 23=S n , 由a 1=1,可得S 1=1,即S n+153=S n ,可得数列{S n }是首项为1,公比为53的等比数列, 则S n =(53)n ﹣1;(2)证明:b n 1n s ==(35)n ﹣1, 则b 1+b 2+b 3+…+b n 31()55532215n-==--•(35)n 52<.点评:本题考查数列的递推式和等比数列的通项公式和求和公式的运用,考查定义法和运算能力、推理能力,属于中档题.18.如图,已知点S 为正方形ABCD 所在平面外一点,△SBC 是边长为2的等边三角形,点E 为线段SB 的中点.(1)证明:SD//平面AEC ;(2)若侧面SBC ⊥底面ABCD ,求平面ACE 与平面SCD 所成锐二面角的余弦值. 答案:(1)详见解析;(215. (1)连接BD 交AC 于F ,连接EF ,由已知结合三角形的中位线定理可得EF ∥SD ,再由直线与平面平行的判定可得SD ∥平面AEC ;(2)取BC 的中点O ,连接OF 并延长,可知OF ⊥OC ,利用线面垂直的判定定理与性质定理可得:OS ⊥OF ,OS ⊥OC ,建立空间直角坐标系,分别求出平面CDS 与平面ACE 的一个法向量,由两法向量所成角的余弦值可得平面ACE 与平面SCD 所成锐二面角的余弦值. 解:(1)证明:连接BD 交AC 于F ,连接EF ,∵ABCD 为正方形,F 为BD 的中点,且E 为BS 的中点, ∴EF ∥SD .又SD ⊄平面AEC ,EF ⊂平面AEC , ∴SD ∥平面AEC ;(2)取BC 的中点O ,连接OF 并延长,可知OF ⊥OC ,在等边三角形SBC 中,可得SO ⊥BC ,∵侧面SBC ⊥底面ABCD ,且侧面SBC ∩底面ABCD =BC , ∴SO ⊥平面ABCD ,得OS ⊥OF ,OS ⊥OC .以O 为坐标原点,分别以OF ,OC ,OS 所在直线为x ,y ,z 轴建立空间直角坐标系,得:A (2,﹣1,0),C (0,1,0),E (0,12-3,D (2,1,0),S (0,03. ()200CD →=,,,(03CS →=-,,,()220AC →=-,,,1322AE →⎛=- ⎝⎭,,. 设平面CDS 与平面ACE 的一个法向量分别为()n x y z ,,=,()111m x y z =,,.由2030n CD x n CS y z ⎧⋅==⎪⎨⋅=-+=⎪⎩,取z =1,得()031n →=,,; 由1111122013202m AC x y m AE x y ⎧⋅=-+=⎪⎨⋅=-++=⎪⎩,取x 1=1,得(3m →=,,. ∴cos231525m nm n m n→→→→→→⋅===⋅<,>. ∴平面ACE 与平面SCD 15. 点评:本题考查直线与平面平行与垂直的判定、法向量与数量积的应用、空间角,考查空间想象能力与思维能力、计算能力,属中档题.19.2020年3月,各行各业开始复工复产,生活逐步恢复常态,某物流公司承担从甲地到乙地的蔬菜运输业务.已知该公司统计了往年同期200天内每天配送的蔬菜量X (40≤X <200,单位:件.注:蔬菜全部用统一规格的包装箱包装),并分组统计得到表格如表:若将频率视为概率,试解答如下问题:(1)该物流公司负责人决定随机抽出3天的数据来分析配送的蔬菜量的情况,求这3天配送的蔬菜量中至多有2天小于120件的概率;(2)该物流公司拟一次性租赁一批货车专门运营从甲地到乙地的蔬菜运输.已知一辆货车每天只能运营一趟,每辆货车每趟最多可装载40件,满载才发车,否则不发车.若发车,则每辆货车每趟可获利2000元;若未发车,则每辆货车每天平均亏损400元.为使该物流公司此项业务的营业利润最大,该物流公司应一次性租赁几辆货车? 答案:(1)485512;(2)3. (1)记事件A 为“在200天随机抽取1天,其蔬菜量小于120件”,则P (A )38=,由此能求出随机抽取的3天中配送的蔬菜量中至多有2天的蔬菜量小于120件的概率. (2)由题意得每天配送蔬菜量X 在[40,80),[80,120),[120,160),[160,200)的概率分别为11118428,,,,设物流公司每天的营业利润为Y ,若租赁1辆车,则Y 的值为2000元,若租赁2辆车,则Y 的可能取值为4000,1600,若租赁3辆车,则Y 的可能取值为6000,3600,1200,若租赁4辆车,则Y 的可能取值为8000,5600,3200,800,分别求出相应的数学期望,推导出为使该物流公司此项业务的营业利润最大,该物流公司应一次性租赁3辆货车. 解:(1)记事件A 为“在200天随机抽取1天,其蔬菜量小于120件”, 则P (A )38=, ∴随机抽取的3天中配送的蔬菜量中至多有2天的蔬菜量小于120件的概率为:p 22120333335355485()()()88888512C C C ⎛⎫⎛⎫=++= ⎪⎪⎝⎭⎝⎭. (2)由题意得每天配送蔬菜量X 在[40,80),[80,120),[120,160),[160,200)的概率分别为11118428,,,, 设物流公司每天的营业利润为Y , 若租赁1辆车,则Y 的值为2000元,若租赁2辆车,则Y的可能取值为4000,1600,P(Y=4000)78=,P(Y=1600)18=,∴Y的分布列为:∴E(Y)=4000160086⨯+⨯=3700元.若租赁3辆车,则Y的可能取值为6000,3600,1200,P(Y=6000)58 =,P(Y=3600)14 =,P(Y=1200)18 =,∴Y的分布列为:∴E(Y)600036001200848=⨯+⨯+⨯=4800元,若租赁4辆车,则Y的可能取值为8000,5600,3200,800,P(Y=8000)18 =,P(Y=5600)12 =,P(Y=3200)14 =,P(Y=800)18 =,∴Y的分布列为:∴E(Y)8000560032008008248=⨯+⨯+⨯+⨯=4700,∵4800>4700>3700>2000,∴为使该物流公司此项业务的营业利润最大,该物流公司应一次性租赁3辆货车. 点评:本题考查概率、离散型随机变量的分布列、数学期望的求法,考查频数分布表、古典概型等基础知识,考查运算求解能力,是中档题. 20.已知函数f (x )=ax ﹣(a+2)lnx 2x-+2,其中a ∈R . (1)当a =4时,求函数f (x )的极值;(2)试讨论函数f (x )在(1,e )上的零点个数.答案:(1)极大值6ln2,极小值4;(2)分类讨论,详见解析.(1)把a =4代入后对函数求导,然后结合导数可求函数的单调性,进而可求极值; (2)先对函数求导,然后结合导数与单调性关系对a 进行分类讨论,确定导数符号,然后结合导数与函数的性质可求. 解:(1)当a =4时,f (x )=4x ﹣6lnx 2x -+2,()()22221162'4x x f x x x x--=-+=(),x >0,易得f (x )在(0,12),(1,+∞)上单调递增,在(112,)上单调递减, 故当x 12=时,函数取得极大值f (12)=6ln2,当x =1时,函数取得极小值f (1)=4,(2)()()222122'ax x a f x a x x x--+=-+=(), 当a ≤0时,f (x )在(1,e )上单调递减,f (x )<f (1)=a ≤0,此时函数在(1,e )上没有零点;当a ≥2时,f (x )在(1,e )上单调递增,f (x )>f (1)=a ≥2,此时函数在(1,e )上没有零点; 当02a e≤<即2e a ≥时,f (x )在(1,e )上单调递减,由题意可得,1020f a f e ae a e =⎧⎪⎨=--⎪⎩()>()<, 解可得,0()21a e e -<<,当22a e <<即21e a<<时,f (x )在(1,2a )上单调递减,在(2e a ,)上单调递增, 由于f (1)=a >0,f (e )=a (e ﹣1)()2224120e e e e e ---=->>,令g (a )=f (2a )=2﹣(a+2)ln 2a-a+2=(a+2)lna ﹣(1+ln2)a+4﹣2ln2,令h (a )2'2g a lna ln a ==+-(),则22'a h a a-=()<0, 所以h (a )在(22e ,)上递减,h (a )>h (2)=1>0,即g ′(a )>0, 所以g (a )在(22e ,)上递增,g (a )>g (2e )=240e->, 即f (2a)>0,所以f (x )在(1,e )上没有零点, 综上,当0<a ()21e e -<时,f (x )在(1,e )上有唯一零点,当a ≤0或a ()21e e ≥-时,f (x )在(1,e )上没有零点.点评:本题综合考查了导数与函数性质的应用,体现了转化思想与分类讨论思想的应用,属于难题.21.已知动直线l 过抛物线C :y 2=4x 的焦点F ,且与抛物线C 交于M ,N 两点,且点M 在x 轴上方.(1)若线段MN 的垂直平分线交x 轴于点Q ,若|FQ|=8,求直线l 的斜率; (2)设点P (x 0,0),若点M 恒在以FP 为直径的圆外,求x 0的取值范围.答案:(1)3±;(2)x 0∈[0,1)∪(1,9). (1)由题意可得直线l 的斜率存在且不为0,设l 的方程与抛物线联立,求出两根之和及两根之积,进而可得MN 的中点坐标,进而可得MN 的中垂线方程,令y =0可得Q 的坐标,进而求出|QF|的值,由题意可得直线l 的斜率;(2)由题意可得∠FMP 为锐角,等价于MF MP →→⋅>0,求出MF MP →→⋅的表达式,换元等价于h (t )=t 2+(3﹣x 0)4+x 0,t >0恒成立,分两种情况求出x 0取值范围. 解:(1)由题意可得直线l 的斜率存在且不为0,设直线l 的方程为:x =ty+1,设M (x 1,y 1),N (x 2,y 2),线段MN 的最大E (x 0,y 0),联立直线与抛物线的方程可得:214x ty y x =+⎧⎨=⎩,整理可得y 2﹣4ty ﹣4=0, 所以y 1+y 2=4t ,y 1y 2=﹣4,所以y 0=2t ,x 0=ty 0+1=2t 2+1,即E (2t 2+1,2t ), 故线段MN 的中垂线方程为:y ﹣2t =﹣t (x ﹣2t 2﹣1), 令y =0,则Q (2t 2+3,0), 所以|FQ|=|22+3﹣1|=8, 解得t =,所以直线l 的斜率k 1t ==; (2)点M 恒在以FP 为直径的圆外,则∠FMP 为锐角,等价于MF MP →→⋅>0,设M (214y ,y 1),F (1,0),P (x 0,0),则MP →=(x 0214y -,﹣y 1),MF →=(1214y -,﹣y 1),故MF MP →→⋅=(x 0214y -)(1214y -)+y 1242113164y y =++(1214y -)x 0>0恒成立, 令t 214y =,t >0,原式等价于t 2+3t+(1﹣t )x 0>0对任意t >0恒成立,即t 2+(3﹣x 0)4+x 0>0对任意t >0恒成立, 令h (t )=t 2+(3﹣x 0)4+x 0,t >0, ①△=(3﹣x 0)2﹣4x 0<0,即1<x 0<9,②0030200x h ∆≥⎧⎪-⎪≤⎨⎪≥⎪⎩(),解得0≤x 0≤1,又因为x 0≠1,故x 0∈[0,1), 综上所述x 0∈[0,1)∪(1,9). 点评:本题考查抛物线的性质及直线与抛物线的综合及点在圆外的性质,属于中难题. 22.如图,在极坐标系中,曲线C 1是以C 1(4,0)为圆心的半圆,曲线C 2是以22C π⎫⎪⎭,为圆心的圆,曲线C 1、C 2都过极点O .(1)分别写出半圆C 1,C 2的极坐标方程; (2)直线l :()3R πθρ=∈与曲线C 1,C 2分别交于M 、N 两点(异于极点O ),P 为C 2上的动点,求△PMN 面积的最大值. 答案:(1)1:C 802cos πρθθ⎛⎫=≤≤⎪⎝⎭;2:C ()230sin ρθθπ=≤≤;(2)334. (1)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换. (2)利用三角函数关系式的变换和三角形的面积的公式的应用求出结果. 解:(1)曲线C 1是以C 1(4,0)为圆心的半圆, 所以半圆的极坐标方程为802cos πρθθ⎛⎫=≤≤⎪⎝⎭, 曲线C 2是以232C π⎛⎫⎪⎝⎭,为圆心的圆,转换为极坐标方程为()230sin ρθθπ=≤≤.(2)由(1)得:|MN|=|823|133M N cossinππρρ-=-=.显然当点P 到直线MN 的距离最大时,△PMN 的面积最大. 此时点P 为过C 2且与直线MN 垂直的直线与C 2的一个交点, 设PC 2与直线MN 垂直于点H , 如图所示:在Rt △OHC 2中,|223|6HC OC sinπ==所以点P 到直线MN 的最大距离d 22333||3C HC r =+==, 所以113333122PMNSMN d =⨯⋅=⨯=点评:本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,三角函数关系式的恒等变换,三角形的面积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.23.已知函数f (x )=|x ﹣2|+|x+1|. (1)解关于x 的不等式f (x )≤5;(2)若函数f (x )的最小值记为m ,设a ,b ,c 均为正实数,且a+4b+9c =m ,求11149a b c++的最小值.答案:(1){x|﹣2≤x ≤3};(2)3.(1)将f (x )写为分段函数的形式,然后根据f (x )≤5,利用零点分段法解不等式即可;(2)利用绝对值三角不等式求出f (x )的最小值m ,然后由a+4b+9c =m ,根据111111149349a b c a b c ⎛⎫++=++ ⎪⎝⎭(a+4b+9c ),利用基本不等式求出11149a b c++的最小值. 解:(1)f (x )=|x ﹣2|+|x+1|212312211x x x x x -⎧⎪=-≤≤⎨⎪-+-⎩,>,,<. ∵f (x )≤5, ∴2152x x -≤⎧⎨⎩>或﹣1≤x ≤2或2151x x -+≤⎧⎨-⎩<,∴﹣2≤x ≤3,∴不等式的解集为{x|﹣2≤x ≤3}.(2)∵f (x )=|x ﹣2|+|x+1|⩾|(x ﹣2)﹣(x+1)|=1 ∴f (x )的最小值为1,即m =3, ∴a+4b+9c =3.()11111114949349a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭ 14499334949b a b c c a a b c b a c ⎛⎫=++++++ ⎪⎝⎭21 1323⎛+= ⎝3, 当且仅当1493a b c ===时等号成立, ∴11149a b c++最小值为3. 点评:本题考查了绝对值不等式的解法,绝对值三角不等式和利用基本不等式求最值,考查了分类讨论思想和转化思想,属中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

秘密★启用前[考试时间:2020年4月13日15:00~17:00]
眉山市高2017级第三次诊断性考试
数 学(文史类)
(考试时间:120分钟 试卷满分:150分)
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x|y =
1
x -},B ={-2,-1,0,1,2,3},则A ∩B = A.{-2,-1,0,1,2} B.{0,1,2,3} C.{1,2,3} D.{2,3} 2.若i 为虚数单位,则复数z =-sin
23π-icos 23
π,则z 在复平面内对应的点位于 A.第一象限 B.第二象限 C.第三象限 D.第四象限 3.“实数x>1”是“log 2x>0”的
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件 4.函数f(x)=Asin(ωx +φ)(其中A>0,ω>0,|φ|<
2
π
)的图象如图,则此函数表达式为
A.f(x)=3sin(2x +
4π) B.f(x)=3sin(12x +4π
)
C.f(x)=3sin(2x
-4π) D.f(x)=3sin(12x -4
π
)
5.已知m ,n 是两条不重合的直线,α是一个平面,则下列命题中正确的是 A.若m//α,n//α,则m//n B.若m//α,n ⊂α,则m//n C.若m ⊥n ,m ⊥α,则n//α D.若m ⊥α,n//α,则m ⊥n
6.已知实数x ,y 满足约束条件10
3300x y x y y -+≥--≤≥⎧⎪
⎨⎪⎩
,则z =2x +y 的最大值为
A.-1
B.2
C.7
D.8
7.已知a ,b ,c 分别是△ABC 三个内角A ,B ,C 的对边,acosC +3csinA =b +c ,则A = A.
6π B.4π C.3
π
D.23π
8.《周易》是我国古代典籍,用“卦”描述了天地世间万象变化。

右图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,

”表示一个阴爻)。

若从含有两个及以上阳爻的卦中任取两卦,这两卦的六个爻中恰
有两个阴爻的概率为
A.
13 B.12 C.23 D.3
4
9.如图,平面四边形ACBD 中,AB ⊥BC ,AB ⊥DA ,AB =AD =1,BC 2,现将△ABD 沿AB 翻折,使点D 移动至点P ,且PA ⊥AC ,则三棱锥P -ABC 的外接球的表面积为
A.8π
B.6π
C.4π
D.
82
3
π 10.设F 1,F 2是双曲线C :22
221(0,0)x y a b a b
-=>>的左,右焦点,O 是坐标原点,过点F 2
作C 的一条渐近线的垂线,垂足为P 。

若|PF 1|=6|OP|,则C 的离心率为 A.2 B.3 C.2 D.3
11.函数f(x)=ax -2与g(x)=e x 的图象上存在关于直线y =x 对称的点,则a 的取值范围是 A.(-∞,
4e ] B.(-∞,2
e
] C.(-∞,e] D.(-∞,e 2] 12.已知抛物线C :y 2=4x 和点D(2,0),直线x =ty -2与抛物线C 交于不同两点A ,B ,直线BD 与抛物线C 交于另一点E 。

给出以下判断: ①直线OB 与直线OE 的斜率乘积为-2; ②AE//y 轴;
③以BE 为直径的圆与抛物线准线相切 其中,所有正确判断的序号是
A.①②③
B.①②
C.①③
D.②③ 二、填空题:本题共4小题,每小题5分,共20分。

13.已知平面向量a =(m ,2),b =(1,3),且b ⊥(a -b),则向量a 与b 的夹角的大小为 。

14.某中学举行了一次消防知识竞赛,将参赛学生的成绩进行整理后分为5组,绘制如图所示的频率分布直方图,记图中从左到右依次为第一、第二、第三、第四、第五组,已知第二组的频数是80,则成绩在区间[80,100]的学生人数是 。

15.已知sin(α+
4π)=35,且4
π<a<34π,则cos α的值为 。

16.已知f(x)是定义在R 上的偶函数,其导函数为f'(x)。

若x>0时,f'(x)<2x ,则不等式f(2x)>f(1)+4x 2-1的解集是 。

三、解答题:共70分。

解答应写出文字说明,证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生依据要求作答。

(一)必考题:共60分。

17.(本小题满分12分)
某商场为改进服务质量,随机抽取了200名进场购物的顾客进行问卷调查。

调查后,就顾客“购物体验”的满意度统计如下:
(1)是否有97.5%的把握认为顾客购物体验的满意度与性别有关?
(2)若在购物体验满意的问卷顾客中按照性别分层抽取了6人发放价值100元的购物券。

若在获得了100元购物券的6人中随机抽取2人赠其纪念品,求获得纪念品的2人中仅有1人是女顾客的概率。

附表及公式:2
2
()()()()()
n ad bc K a b c d a c b d -=++++。

18.(本小题满分12分)
已知等差数列{a n}满足a1=1,公差d>0,等比数列{b n}满足b1=a1,b2=a2,b3=a5。

(1)求数列{a n},{b n}的通项公式;
(2)若数列{c n}满足3
12
123
n
n
c c
c c
b b b b
+++⋅⋅⋅+=a n+1,求{c n}的前n项和S n。

19.(本小题满分12分)
如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,△PAD是边长为2的正三角形,PC=10,E为线段AD的中点。

(1)求证:平面PBC⊥平面PBE;
(2)是否存在满足PF FC
λ
=
u u u r u u u r
(λ>0)的点F,使得V B-PAE=
3
4
V D-PFB?若存在,求出λ的值;若不存在,请说明理由。

20.(本小题满分12分)
已知椭圆C的中心在坐标原点O,其短半轴长为1,一个焦点坐标为(1,0),点A在椭圆C 上,点B在直线y2上,且OA⊥OB。

(1)证明:直线AB与圆x2+y2=1相切;
(2)求△AOB面积的最小值。

21.(本小题满分12分)
已知函数f(x)=e x-xlnx+ax,f'(x)为f(x)的导数,函数f'(x)在x=x0处取得最小值。

(1)求证:lnx0+x0=0;
(2)若x≥x0时,f(x)≥1恒成立,求a的取值范围。

(二)选考题:共10分。

请考生在第22、23题中任选一题作答,如果多做,则按所做的第一
题记分。

22.(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系xOy 中,曲线C 1的参数方程为cos sin x y θ
θ
=⎧⎨
=⎩,以O 为极点,x 轴正半轴为极轴
建立极坐标系,设点A 在曲线C 2:ρsin θ=1上,点B 在曲线C 3:θ=-6
π
(ρ>0)上,且△AOB 为正三角形。

(1)求点A ,B 的极坐标;
(2)若点P 为曲线C 1上的动点,M 为线段AP 的中点,求|BM|的最大值。

23.(本小题满分10分)选修4-5:不等式选讲 已知函数f(x)=|2x +1|。

(1)解不等式:f(x)+f(x -2)≤6;
(2)求证:f(x +a 2)-f(x -1)≤|x +2a 2+3|+|x +2a -a 2|。

11。

相关文档
最新文档