2021-2022年高三数学1月阶段性测试试题理
山西省朔州市怀仁市第一中学2022届高三下学期第一次模拟数学(理)试题

怀仁一中2021—2022学年第二学期高三年级第一次模拟考试数学试题(理科)(时间:120分钟 满分:150分)注意事项:1.答题前,考生务必将自己的学校、姓名、班级、准考证号填写在答题卡相应的位置。
2. 全部答案在答题卡上完成,答在本试题上无效。
3. 回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案用0.5毫米及以上黑色笔迹签字笔写在答题卡上。
4. 考试结束后,将本试题和答题卡一并交回。
一、选择题(本大题共12小题,每小题5分,共60分,在每小题的四个选项中,只有一项是符合题目要求的) 1.已知集合,,则等于A . (0,6)B . (-6,1)C .(-1,0)D . (0,1) 2.已知复数z =1−i 1+i+2i (i 为虚数单位),则|z|等于A .B . 1C .12 D .03.下列命题中,真命题有①∀x ∈R ,e x −x −1≥0; ②∃x 0>0,lnx 0+1lnx 0≤2;③若命题pVq 是真命题,则⌝p 是真命题; ④22x xy -=-是奇函数。
A .4个 B .3个 C .2个 D .1个4.已知双曲线x 2a2−y 22=1(a >√2)的两条渐近线的夹角为3π,则a 的值为A .B.3 C .D.35.下午活动时间,全校进行大扫除,某班卫生委员将包括甲、乙在内的6位同学平均分成3组,分别派到3块班级管辖区域清理卫生,问甲、乙被分到同一个管辖区域的概率为A .13B .14C .15D .166.中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:C =Wlog 2(1+SN )。
它表示:在受噪音干扰的信道中,最大信息传递速度C 取决于信道带宽W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中SN 叫做信噪比。
当信噪比比较大时,公式中真数里面的1可以忽略不计,按照香农公式,若带宽W 增大到原来的1.2倍,信噪比SN 从1000提升到16000,则C 比原来大约增加了(附:1g2≈0,3)A . 32%B .43%C .54%D .68%7.已知数列{a n }为等差数列,S n 为其前n 项和,若a 4+a 7=8,S 11=5,则S 9等于 A .27 B .25 C .20 D .10 8.已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a 等于 A .-1 B .-2 C .-3 D .-49.已知f (x )是奇函数并且是R 上的单调函数,若方程f (x 3+1)+f (−3x −λ)=0有三个不同的实数解,则实数λ的取值范围为A .(−∞,,−1)∪(3,,+∞)B . (-3,1)C .(−∞,,−3)∪(1,,+∞)D . (-1,3)10.若点P 是圆C :(x +3)2+(y −2)2=1上任一点,则点P 到直线1y kx =-距离的最大值为 A . 5 B . 6 C. 3√2+1 D .11.如图,已知抛物线24y x =,圆C :x 2+y 2−2x =0,过C 点的直线l 与抛物线和圆依次交于P ,M ,N ,Q ,则PM|⋅|QN|等于A .1B .2C . 4D .812.已知三棱锥P —ABC 的顶点P 在底面的射影O 为△ABC 的垂心,若△ABC 的面积为S △A BC ,△OBC的面积为S △OBC ,△PBC 的面积为S △PBC ,满足S ΔABC ⋅S ΔOBC =S ΔPBC 2,当△PAB ,△PBC ,△PAC 的面积之和的最大值为8时,则三棱锥P —ABC 外接球的体积为A .32π3B .163πC .8π3 D .43π二、填空题(本大题共4小题,每小题5分,共20分)13.已知|a|=1,b =(1,,√3),(b +a )⊥a ,则向量a 与向量b 的夹角为___________。
河南省2021-2022学年高三上学期阶段性大联考一数学试题(理)

的底面圆上的点 P 出发,绕圆锥表面爬行一周后回到点 P 处.若该小虫爬行
Hale Waihona Puke 的最短路程为 4 2,则圆锥底面圆的半径等于_______. 三、解答题(本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演 算步骤.) 17.(本小题满分 10 分)已知角 α 的顶点与原点 O 重合,始边与 x 轴的非负半轴重合,它 的终边过点 P(-35,-45 ).
2x(x-3)-x2 x(x-6) ∴f′(x)= (x-3)2 =(x-3)2,
∵1≤x≤2,∴f′(x)<0,∴f(x)在[1,2]上为减函数.
(2)由(1)知 f(x)在[1,2]上为减函数,
∴f(x)min=f(2)=2-4 3=-4,f(x)max=f(1)=1-1 3=-12.
20.[解析]
则使不等式 22 + 23 + ···+ 2n+1 < 63 成立的最大正整数 n 的值是( )
S1S2 S2S3
SnSn+1 127
A. 5
B. 6
C. 7
D. 8
11.不等式 ax2 + 5x − 7a > 3 − 2x2 对一切 a ∈ (−1,0) 恒成立,则实数 x 的取值范围是
()
A.
(-
)
D.{−2, −1, 0,1}
A.3
B. 2 2
C.2
D. 2
3.下列说法中正确的个数是( )
(1)命题“所有幂函数 f (x) = xα 的图象经过点(1,1)”.
(2)“在
中,若 sin A > sin B ,则 A > B ”的逆否命题是真命题.
辽宁省葫芦岛市绥中县第一高级中学2021-2022学年高三数学理月考试卷含解析

辽宁省葫芦岛市绥中县第一高级中学2021-2022学年高三数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. (5分)(2011秋?乐陵市校级期末)已知a,b∈R+,A为a,b的等差中项,正数G为a,b的等比中项,则ab与AG的大小关系是()C解答:解:依题意A=,G=,∴AG﹣ab=?﹣ab=(﹣)=?≥0,∴AG≥ab.故选C2. 已知,则函数有()A.最小值6 B.最大值6 C.最小值 D.最大值参考答案:A 3. 设是定义在上的增函数,且对任意,都有恒成立,如果实数满足不等式,那么的取值范围是(9,49)(13,49)(9,25)(3,7)参考答案:4. 设P为等边所在平面内的一点,满足,若AB=1,则的值为()A.4 B.3 C.2 D.1参考答案:B略5. ,复数= ( )A. B. C.D.参考答案:A因为,可知选A6. 椭圆=1的一个焦点为F1,点P在椭圆上.如果线段PF1的中点M在y轴上,那么点M的纵坐标是()A.± B.± C.± D.±参考答案:A略7. 设平面α∥平面β,A∈α,B∈β,C是AB的中点,当A、B分别在α、β内运动时,那么所有的动点C()A.不共面B.当且仅当A,B在两条相交直线上移动时才共面C.当且仅当A,B在两条给定的平行直线上移动时才共面D.不论A,B如何移动都共面参考答案:D【考点】LJ:平面的基本性质及推论.【分析】本题考查空间想象力,因为平面α∥平面β,所以线段AB的中点到平面α和平面β的距离相等,从而动点C构成的图形是到平面α和平面β的距离相等的一个平面.【解答】解:根据平行平面的性质,不论A、B如何运动,动点C均在过C且与α,β都平行的平面上.故选:D8. 2016年鞍山地区空气质量的记录表明,一天的空气质量为优良的概率为0.8,连续两天为优良的概率为0.6,若今天的空气质量为优良,则明天空气质量为优良的概率是()A.0.48 B.0.6 C.0.75 D.0.8参考答案:C【考点】n次独立重复试验中恰好发生k次的概率.【分析】设随后一天的空气质量为优良的概率是p,利用相互独立事件概率乘法公式能求出结果.【解答】解:∵一天的空气质量为优良的概率为0.8,连续两天为优良的概率为0.6,设随后一天空气质量为优良的概率为p,若今天的空气质量为优良,则明天空气质量为优良,则有0.8p=0.6,∴p===0.75,故选:C.9. 已知3sin2α=cosα,则sinα可以是()A.﹣B.C.D.参考答案:B【考点】GI:三角函数的化简求值.【分析】根据二倍角公式化简3sin2α=cosα,消去cosα求出sinα的值.【解答】解:3sin2α=cosα,∴6sinαcosα=cosα,若cosα≠0,则6sinα=1,解得sinα=.故选:B.10. 对于一组数据(,2,3,,),如果将它们改变为(,2,,)其中,则下面结论正确的是()A.平均数与方差均不变B.平均数变了,而方差保持不变C.平均数不变,而方差变了D.平均数与方差均发生了变化参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 复数Z=i(1+i)在复平面内对应的点的坐标为.参考答案:(﹣1,1)【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、几何意义即可得出.【解答】解:Z=i(1+i)=i﹣1在复平面内对应的点的坐标为(﹣1,1).故答案为:(﹣1,1)12. 春天即将来临,某学校开展以“拥抱春天,播种绿色”为主题的植物种植实践体验活动.已知某种盆栽植物每株成活的概率为p,各株是否成活相互独立.该学校的某班随机领养了此种盆栽植物10株,设X为其中成活的株数,若X的方差,,则p=________.参考答案:0.7【分析】由题意可知:,且,从而可得值.【详解】由题意可知:∴,即,∴故答案为:0.7【点睛】本题考查二项分布的实际应用,考查分析问题解决问题的能力,考查计算能力,属于中档题.13. 设f(x)=,则 ___.参考答案:14. 点G是△ABC 的重心,,(λ,μ∈R),若∠A=120°,,则最小值为.参考答案:【考点】向量的共线定理;两向量的和或差的模的最值;平面向量数量积的运算.【分析】欲求最小值,先求其平方的最小值,这里解决向量模的问题常用的方法.【解答】解:∵点G 是△ABC的重心,∴,∴=∵,∴AB×AC×COSA=﹣2,∴AB×AC=4.∴AG2≥故填.15. 《孙子算经》是我国古代重要的数学著作,约成书于四、五世纪,传本的《孙子算经》共三卷,其中下卷“物不知数”中有如下问题:“今有物,不知其数.三三数之,剩二;五五数之,剩三;七七数之,剩二.问:物几何?”其意思为:“现有一堆物品,不知它的数目.3个3个数,剩2个;5个5个数,剩3个;7个7个数,剩2个.问这堆物品共有多少个?”试计算这堆物品至少有个.参考答案:2316. 设表示等差数列的前项和,且,,若,则=参考答案:15略17. 函数的零点个数为。
河北省衡水中学2022届高三下学期同步月考卷数学(理)试题 Word版含答案

2021-2022年河北衡水中学同步原创月考卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟. 第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)i 1A i ∈11iA i -∈+5i A ∈i A -∈U R =(){}(){}2|21,|ln 1,x x A x B x y x -=<==- {}|1x x ≥{}|1x x ≤{}|01x x <≤{}|12x x ≤<()()()13222,1log 2,1x e x f x x x +⎧<⎪=⎨≥⎪-⎩()2f f =⎡⎤⎣⎦2e22e 2e ˆˆˆy bx a =+ˆb ˆb ˆb 0.87-222p q +=2p q +≤2p q +>222p q +≠,,a b c a b a c =b c =():01x p y a a a =>≠且:sin q y x =p q ∧2000:,310p x R x x ∃∈-+≥2:,310p x R x x ⌝∀∈-+<.O ABC -120AOB ∠=AOC BOCO ABC -3233 23 13 03233{}n a 1241,6a a a =+=n N *∈()()1212cos sin n n n n n f x a a a x a x a x ++++=-++-02f π⎛⎫'= ⎪⎝⎭12n n n a c a =+{}n c n n S 2122n n n +-214122n n n -++-22122n n n ++-24122n n n ++-()y f x =x ()()2f x f x +=11x -≤<()sin 2f x xπ=()()()log 0,1a g x f x x a a =->≠且 ()10,5,5⎛⎤+∞ ⎥⎝⎦()10,5,5⎛⎫+∞ ⎪⎝⎭ ()11,5,775⎛⎤⎥⎝⎦[)11,5,775⎛⎫⎪⎝⎭第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分. 3n a x ⎛⎫+ ⎪⎝⎭{}n a ()11,0n a a n N *=>∈n n S {}n S 12n n S a +,x y 0,50,30,x y x y y -≤⎧⎪+-≥⎨⎪-≤⎩()()222m x y x y +≤+()()221,x x e x e x f x g x x e +==()12,0,x x ∀∈+∞()()121g x f x k k ≤+ 三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明,证明过程或演算步骤. 17.(本小题满分12分) 32BA BC ⋅=a c +18.(本小题满分12分)19.(本小题满分12分) 已知是边长为3的等边三角形,点D,E 分别是边AB,AC 上的点,且满足将DE 折起到的位置,并使得平面(1)求证: (2)设P 为线段BC 上的一点,试求直线与平面所成角的正切值的最大值. 20.(本小题满分12分)OAB S OAB ODE S ODE .(本小题满分12分)()()()()213121ln 0.2f x x a x a a x a =-+++>()f x 1x =320x y -+=()f x []()21,,6x e f x k k ∀∈≥+ 请考生在22~24三题中任选一题作答,假如多做,则按所做的第一题记分. 22.(本小题满分10分)选修4—1,几何证明选讲 O O AE CD ⊥BDE ∠.O 3AB =3AE =xoy 3sin ,:3cos ,x C y αααα⎧=+⎪⎨=-⎪⎩αx :sin 16l πρθ⎛⎫+= ⎪⎝⎭.l l ()32.f x x x k =-+-+()3f x ≥1k =()3.f x x <。
高三数学上学期第一次月考试题含解析

一中2021-2021学年第一学期高三年级阶段性检测〔一〕创作人:历恰面日期:2020年1月1日数学学科一、填空题:本大题一一共14小题,每一小题5分,一共70分.,,那么___________.【答案】【解析】【分析】此题是集合A与集合B取交集。
【详解】因为,所以【点睛】交集是取两集合都有的元素。
是虚数单位)是纯虚数,那么实数的值是___________.【答案】-2【解析】【分析】此题考察的是复数的运算,可以先将复数化简,在通过复数是纯虚数得出结果。
【详解】,因为是纯虚数,所以。
【点睛】假如复数是纯虚数,那么。
3.“〞是“直线与直线互相垂直〞的___________条件〔填“必要不充分〞“充分不必要〞“充要〞或者“既不充分又不必要〞〕.【答案】充分不必要【解析】【分析】可以先通过“直线与直线互相垂直〞解得的取值范围,再通过与“〞进展比照得出结论。
【详解】因为直线与直线互相垂直,所以两直线斜率乘积为或者者一条直线与轴平行、一条与轴平行,所以或者者,解得或者者,由“〞可以推出“或者者〞,但是由“或者者〞推不出“〞,所以为充分不必要条件。
【点睛】在判断充要条件的时候,可以先将“假设A那么B〞中的A和B化为最简单的数集形式,在进展判断。
的递增区间是___________.【答案】【解析】【分析】此题可以先通过的取值范围来将函数分为两段函数,再依次进展讨论。
【详解】当时,,开口向下,对称轴为,所以递增区间是,当时,,开口向上,对称轴是,所以在定义域内无递增区间。
综上所述,递增区间是。
【点睛】在遇到带有绝对值的函数的时候,可以根据的取值范围来将函数分为数段函数,在依次求解。
5.按如下图的程序框图运行后,输出的结果是63,那么判断框中的整数的值是___________.【答案】5【解析】【分析】此题中,,可根据这几个式子依次推导出每一个A所对应的S的值,最后得出结果。
【详解】因为当时输出结果,所以【点睛】在计算程序框图时,理清每一个字母之间的关系,假如次数较少的话可以依次罗列出每一步的运算结果,最后得出答案。
安徽省合肥市新明中学2021-2022学年高三数学理测试题含解析

安徽省合肥市新明中学2021-2022学年高三数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1.若函数的图象按向量平移后,它的一条对称轴是=,则的一个可能值A. B. C. D.参考答案:答案:B2. 函数y=的定义域为()A.(-4,-1) B.(-4,1)C.(-1,1) D.(-1,1参考答案:C3. 在空间中,a, b是两条不同的直线,,是两个不同的平面,则下列命题中的真命题是A.若 a //, b//,则 a//bB.若a,b,则a丄bC.若a//,a//b,则b//D.若//,a,则a//参考答案:D4. 下列说法正确的是A. 命题“存在x∈R,x2+x+2013>0”的否定是“任意x∈R,x2+x+2013<0”B. 两个三角形全等是这两个三角形面积相等的必要条件C. 函数在其定义域上是减函数D. 给定命题p、q,若“p且q”是真命题,则是假命题参考答案:D5. 已知实数a<0,函数,若f(1﹣a)≥f(1+a),则实数a的取值范围是()A.(﹣∞,﹣2] B.[﹣2,﹣1] C.[﹣1,0) D.(﹣∞,0)参考答案:B【考点】函数的值.【分析】根据条件判断1﹣a和1+a的范围,结合分段函数的表达式进行转化求解即可.【解答】解:∵a<0,则1﹣a>1,1+a<1,则f(1﹣a)≥f(1+a)等价为﹣(1﹣a)≥(1+a)2+2a,即a2+3a+2≤0,得﹣2≤a≤﹣1,即实数a的取值范围是[﹣2,﹣1],故选:B【点评】本题主要考查不等式的求解,根据分段函数的表达式判断变量1﹣a和1+a的范围是解决本题的关键.6. 已知集合,集合,则A. B. C. D.参考答案:B略7. 若一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为()A. B. C. D.参考答案:C8. 已知函数f(x)=klnx+1(k∈R),函数g(x)=f(x2﹣4x+5),若存在实数k使得关于x的方程g(x)+sin x=0有且只有6个实数根,则这6个根的和为()A.3πB.6 C.12 D.12π参考答案:C【考点】根的存在性及根的个数判断.【分析】根据条件,先判断g(x)关于x=2对称,然后利用函数与方程之间的关系转化为两个函数的交点问题进行求解即可.【解答】解:∵y=x2﹣4x+5的对称轴为x=2,∴由g(x)=f(x2﹣4x+5),得g(x)关于x=2对称,由g(x)+sin x=0得g(x)=﹣sin x,作出函数y=﹣sin x的图象,若程g(x)+sin x=0只有6个根,则六个根两两关于x=2对称,则关于对称的根分别为x1和x2,x3和x4,x5和x6,则=2, =2, =2则x1+x2=4,x3+x4=4,x5+x6=4则这6个根之和为4+4+4=12,故选:C.9. 设集合M={x|x2+3x+2<0},集合{y|y=x2﹣2},则M∪N=()A.(﹣2,﹣1)B.[﹣2,﹣1)C.(﹣2,+∞)D.[﹣2,+∞)参考答案:D【考点】1D:并集及其运算.【分析】解不等式得集合M、求值域得集合N,再计算M∪N.【解答】解:集合M={x|x2+3x+2<0}={x|﹣2<x<﹣1}=(﹣2,﹣1),集合N={y|y=x2﹣2}={y|y≥﹣2}=[﹣2,+∞),则M∪N=[﹣2,+∞).故选:D.10. 已知正三棱锥的高为6,侧面与底面成60°的二面角,则其内切球(与四个面都相切)的表面积为()A.4πB.16 πC.36πD.64π参考答案:B如图,过点P作PD⊥平面ABC于D,连结并延长AD交BC于E,连结PE,△ABC是正三角形,∴AE是BC边上的高和中线,D为△ABC的中心.∴为侧面与底面所成的二面角的平面角,∴=∵PD=6,∴DE=2,PE=4 , AB=12,∴S△ABC=×(12)2=36,S△PAB=S△PBC=S△PCA==24.∴S表=108.设球的半径为r,以球心O为顶点,棱锥的四个面为底面把正三棱锥分割为四个小棱锥,∵PD=6,∴V P﹣ABC=?36?6=72.则由等体积可得r==2,∴S球=4π22=16π.故选B.二、填空题:本大题共7小题,每小题4分,共28分11. 如图圆上的劣弧所对的弦长CD=,弦AB是线段CD的垂直平分线,AB=2,则线段AC的长度为____参考答案:12. 把正整数排列成如图甲的三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数,得到如图乙的三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列,若,则___.参考答案:103313. 设函数f(x)=,则f(f(﹣1))的值为.参考答案:﹣2【考点】分段函数的应用;函数的值.【专题】函数的性质及应用.【分析】直接利用分段函数化简求解即可.【解答】解:函数f(x)=,则f(﹣1)=,f(f(﹣1))=f()=log2=﹣2.故答案为:﹣2.【点评】本题考查分段函数的应用,函数值的求法,考查计算能力.14. 已知集合M={f(x)},有下列命题①若f(x)=,则f(x)M;②若f(x)=2x,则f(x)M;③f(x)M,则y=f(x)的图像关于原点对称;④f(x)M,则对于任意实数x1,x2(x1x2),总有﹤0成立;其中所有正确命题的序号是_______。
安徽省合肥市2021-2022学年高三上学期第一次教学质量检测理科数学试卷含答案

安徽省合肥市2021-2022学年高三上学期第一次教学质量检测理科数学试卷(考试时间:120分钟 满分:150分)第I 卷 (满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有 一项是符合题目要求的。
1.集合M={x|1<x<4},N={x|2≤x≤3},则M ∩N=A.{x|2≤x<4}B.{x|2≤x≤3}C.{x|1<x≤3}D.{x|1<x<4}2.复数1+i i(i 为虚数单位)在复平面内对应的点在 A.第一象限 B.第二象限 C.第三象限 D.第四象限3.若向量a ,b 为单位向量,|a -2b ,则向量a 与向量b 的夹角为A.30°B.60°C.120°D.150°4.函数y=2sin|2x||1x +在[-π,π]的图象大致为5.在高一入学时,某班班委统计了本班所有同学中考体育成绩的平均分和方差.后来又转学来 一位同学。
若该同学中考体育的绩恰好等于这个班级原来的平均分,则下列说法正确的是A.班级平均分不变,方差变小B.班级平均分不变,方差变大C.班级平均分改变,方差变小D.班级平均分改变,方差变大6.若sin α=13,α=2ππ⎛⎫ ⎪⎝⎭,,则sin(α-32π)的值为A.- 13B.- 3C. 13D. 37.若直线l :x-2y-15=0经过双曲线M: 2222-x y a b =1的一个焦点,且与双曲线M 有且仅有一 个公共点,则双曲线M 的方程为A. 22-520x y =1B. 22-205x y =1C. 22-312x y =1D. 22-123x y 1 8.命题p: ∀x ∈R,e x >2x(e 为自然对数的底数);命题q: ∃x>1,1nx+1ln x≤2,则下列命题中,真命题是A. ⌝ (p ∨q)B.p ∧qC.p ∧ (⌝q)D.( ⌝p) ∧^q9.若数列{a n }的前n 项积b n =1-27n,则a,的最大值与最小值之和为 A-13 B. 57 C.2 D. 73 10.平行六面体ABCD-A 1B 1C 1D 1中,AB=AD=AA 1=2, ∠BAD=60°,点A 1在平面ABCD 内的射影是AC 与BD 的交点O,则异面直线BD,与AA,所成的角为A.90°B.60°C.45°D.30°11.椭圆E: 2222x y a b+=1(a>b>0)的左右焦点分别为F 1,F 2,点P 在椭圆E 上,ΔPF 1F 2的重心为 G.若ΔPF 1F 2的内切圆H 的直径等于121||2F F ,且GH//F 1F 2,则椭圆E 的离心率为 A.B. 23C. 2D. 12 12.若不等式e x -aln(ax-1)+1≥0对∀x ∈1,12⎡⎤⎢⎥⎣⎦恒成立(e 为自然对数的底数),则实数a 的最大值为A.e+1B.eC.e 2+1D.e 2第II 卷 (非选择题 共90分)本卷包括必考题和选考题两部分.第13题一第21题为必考题,每个试题考生都必须作答.第22题、第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,满分20分.第16题第一空2分,第二空3分. 把答案填在答题卡上的相应位置。
天津市第二十中学2024-2025学年高三上学期第一次阶段性检测数学试题(含解析)

2024—2025第一学期高三数学学科第一次阶段性检测一、单选题:本题共9小题,每小题5分,共45分.1.已知集合,集合,则集合为( )A. B. C. D.2.在中,若是的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件3.如图5个数据,去掉后,下列说法错误的是()A.相关系数变大B.相关指数变大C.残差平方和变大D.解释变量与预报变量的相关性变强4.已知函数的图象如图所示,则函数的解析式可能为( )A. B.C. D.5.已知,则( )A.B.C. D.6.从一副不含大小王的52张扑克牌中,每次从中随机抽取1张扑克牌,抽出的牌不再放回.在第一次抽到{}2540A xx x =-+≥∣{}12B x x =∈-≤Z ∣()R A B ⋂ð()1,3{}2,3(]1,3{}1,2,3ABC V :60,:sin p A q A ==p q (),x y ()3,10D r 2R x y ()f x ()f x ()e e x x f x x --=()221sin2ln x f x x x +=⋅()e e x x f x x -+=()221cos2ln x f x x x +=⋅2log 0.40.40.312,log 2,log 0.4a b c ===a b c >>b a c >>c a b >>a c b>>牌的条件下,第二次抽到牌的概率为( )A. B. C. D.7.定义运算、若,则等于( )A. B. C. D.8.在锐角中,,则的周长的取值范围是()A. B.C. D.9.已知函数,有下列命题:①为函数图象的一条对称轴②将的图象向左平移个单位,得到函数的图象,若在上的最大值为,则的最大值为③在上有3个零点,则实数的取值范围是④函数在上单调递增其中错误的命题个数为()A.1 B.2 C.3 D.4二、填空题:本题共6小题,共29分.10.是虚数单位,则复数__________.11.在的展开式中,的系数是__________.12.已知随机变量,且,则__________.13.从六个数字中任取三个组成无重复数字的三位数.其中偶数的个数为__________.K K 14113126117a b ad bc c d =-sin sin 1πcos ,cos cos 72αβαβααβ==<<<βπ12π6π4π3ABC V 222(),2S a b c a =--=ABC V (]4,6(4,2⎤⎦(6,2⎤+⎦(2⎤+⎦()44cos 2sin cos sin f x x x x x =+-5π8x =()f x ()f x π4()g x ()g x []0,t ()0g t 3π4()f x []0,a a 9π13π,88⎡⎫⎪⎢⎣⎭()f x ππ,42⎡⎤⎢⎥⎣⎦i 34i 1i +=+522x x ⎛⎫+ ⎪⎝⎭2x ()6,B p ξ~()2E ξ=()32D ξ+=0,1,2,3,4,514.已知,且,则的最小值为__________.15.设,函数,若在区间内恰有4个零点,则的取值范围是__________.三、解答题:本题共5小题,共67分.解答应写出文字说明,证明过程或演算步骤.16.在中,.(1)求;(2)求;(3)求.17.(本小题12分)已知函数的部分图象如图所示.(1)求的解析式及对称中心坐标;(2)先将的图象纵坐标缩短到原来的倍,再向右平移个单位,最后将图象向上平移1个单位后得到的图象,求函数在上的单调减区间和最值.18.(本小题12分)如图,在四棱台中,,四边形和都是正方形,平面,点为棱的中点0,0a b >>111a b +=1411a b +--a ∈R ()2sin2π,0474,0x x f x x x a x <⎧=⎨-+->⎩()f x (),a ∞-+a ABC V 92cos ,5,163a Bbc ===a sin A ()cos 2B A -()()cos (0,0,π)f x A x A ωϕωϕ=+>><()f x ()f x 12π12()g x ()y g x =π3π,124x ⎡⎤∈⎢⎥⎣⎦1111ABCD A B C D -1111,2A A A B AB ===ABCD 1111A B C D 1AA ⊥ABCD E BC(1)求证:平面;(2)求平面与平面所成角的余弦值;(3)求点到平面的距离.19.(本小题12分)已知函数.(1)讨论的单调性;(2)若时,的图象恒在轴上方,求的范围;(3)若存在不相等的实数,使得,证明:.20.(本小题16分)已知函数.(1)求曲线在处的切线斜率;(2)当时,求证:;(3)证明:.1ED ∥11AA B B 1A DE ABCD B 1C DC ()()ln f x x m x m =-∈R ()f x 0m >()f x x m 12,x x ()()12f x f x =120m x x <<+()()11ln 12f x x x ⎛⎫=++ ⎪⎝⎭()y f x =2x =0x >()1f x >()51ln !ln 162n n n n ⎛⎫<-++≤ ⎪⎝⎭2024—2025第一学期高三数学学科第一次阶段性检测一、单选题:本题共9小题,每小题5分,共45分.在每小题给出的选项中,只有一项是符合题目要求的.1.【答案】B【解析】解:集合或,则,集合,故.故选:B.先求出集合,再结合补集、交集的定义,即可求解.本题主要考查集合的混合运算,属于基础题.2.【答案】A【解析】略3.【答案】C【解析】【分析】本题考查了利用散点图判断两个变量的相关关系,相关系数和相关指数,属于简单题.由散点图知,去掉后,与的线性相关加强,由相关系数,相关指数及残差平方和与相关性的关系得出选项.【解答】解:由散点图知,去掉后,与的线性相关加强,且为正相关,所以变大,变大,残差平方和变小.故选C.4.【答案】B 【解析】解:根据题意,由函数的图象,的定义域为,其图象关于原点对称,在区间上,函数图象与轴存在交点,由此分析选项:对于A ,,其定义域为,有为偶函数,不符合题意;对于B ,,其定义域为,有{}2540{4A x x x x x =-+≥=≥∣∣1}x ≤R {14}A xx =<<∣ð{}{}121,0,1,2,3B x x =∈-≤=-Z∣(){}R 2,3A B ⋂=ð,A B ()3,10D y x r 2R ()3,10D y x r 2R ()f x {}0x x ≠∣()0,∞+x ()e e x x f x x --={}0x x ≠∣()()()e e e e ,x x x x f x f x f x x x-----===-()221sin2ln x f x x x+=⋅{}0x x ≠∣为奇函数,其图象关于原点对称,当时,函数图象与轴存在交点,符合题意;对于C ,,当时,,必有恒成立,该函数图象在区间上与轴不存在交点,不符合题意;对D ,于,其定义域为,有为偶函数,不符合题意.故选:B.根据题意,由函数的图象分析的性质,由此分析选项,综合可得答案.本题考查函数的图象分析,涉及函数奇偶性和函数值的分析,属于基础题.5.【答案】C【解析】解:,,则,故.故选:C.根据已知条件,结合指数函数的单调性,即可求解.本题主要考查数值大小的比较,属于基础题.6.【答案】D【解析】解:由题意,第一次抽到牌后剩余51张扑克牌,剩余牌3张,故第二次抽到牌的概率为.故选:D.根据题意,第一次抽到牌后剩余51张扑克牌,剩余牌3张,进而求解即可.本题主要考查了条件概率公式,属于基础题.7.【答案】D【解析】【分析】此题要求学生会根据新定义化简求值,灵活运用角度的变换解决数学问题.掌握两角和与差的正弦函数公式的运用.()()()()222211sin 2ln sin2ln ,x x f x x x f x f x x x++-=-⋅=-⋅=-ππ2x k =+()(),sin20,0k x f x ∈==Z x ()e e x xf x x-+=0x >e e 0,0x x x +->>()0f x >()0,∞+x ()221cos2ln x f x x x+=⋅{}0x x ≠∣()()()()222211cos 2ln cos2ln ,x x f x x x f x f x x x++-=-⋅=⋅=()f x 2log 0.40.40.420.4,log 2log 10a b ===<=0.30.30.30log 1log 0.4log 0.31=<<=1c >c a b >>K K K 315117=K K根据新定义化简原式,然后根据两角差的正弦函数公式变形得到的值,根据,利用同角三角函数间的基本关系求出,再根据求出,利用两边取正切即可得到的值,根据特殊角的三角函数值即可求出.【解答】解:依题设得:..又,.故选D.8.【答案】A【解析】【分析】本题考查了正余弦定理在解三角形中的应用,及三角形面积公式,结合二倍角公式及和差化积公式化简,属于难题.根据结合三角形面积公式,得到和,再由正弦定理得到的周长可表示为,再根据和差化积和二倍角公式进行化简,最后结合角的范围求得答案.【解答】解:根据,得到,化简得,根据()sin αβ-π02βα<<<()cos αβ-cos αsin α()βααβ⎡⎤=--⎣⎦tan ββ()sin cos cos sin sin αβαβαβ⋅-⋅=-=()π130,cos 214βααβ<<<∴-= 1cos ,sin 7αα=∴= ()()()sin sin sin cos cos sin βααβααβααβ⎡⎤=--=⋅--⋅-⎣⎦131147=-=π3β∴=222()S a b c =--3cos 5A =4sin 5A =ABC V ()52sin sin 2l a b c B C =++=++222()S a b c =--()12sin 21cos 2b c A b c A ⋅⋅⨯⨯=⨯⨯⨯-()sin 21cos A A =-,化简得,解得(舍).又因为为锐角三角形,故.再由正弦定理,,则的周长可表示为,再根据和差化积公式得到:,再根据二倍角公式得到,下面讨论,根据题意得到,则,得到,故,故,故.9.【答案】B【解析】解:由,可得,对于①,当时,对于②,,当,则,()21cos A =-25cos 8cos 30A A -+=3cos,cos 15A A ==ABC V 4sin 5A =254sin sin sin 24b c a B C A ====ABC V ()52sin sin 2l a b c B C =++=++25sincos 22B C B C l +-=+⨯π25sin cos 22A B C --=+⨯π2252cos 22B C A C l ---=+=+π2cos 2A C --π02A <<π0π2A C <--<πππ,2222A A A A C A C --<<--<-<π2cos cos 122A A C --<…π2cos 12A C --<…(6,2l ⎤∈+⎦()44cos 2sin cos sin f x x x x x =+-()()()2222πcos sin cos sin 2sin cos cos2sin224f x x x x x x x x x x ⎛⎫=-++=+=+ ⎪⎝⎭5π8x =5π5ππ2884f ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭()ππππ224244g x f x x x ⎛⎫⎛⎫⎛⎫=+=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭[]0,x t ∈πππ2,2444x t ⎡⎤+∈+⎢⎥⎣⎦由于在上的最大值为,所以,故,故的最大值为,故②正确;对于③,令,则,可得,故的正零点有,要使在上有3个零点,则,故③错误,对于④,当,则,故在上单调递减,故④错误.故选:B.根据三角恒等变化化简,根据对称轴处取得最值判断①,根据平移判断②,根据零点求值判断③,根据正弦函数的单调区间判断④.本题考查三角函数的性质,属中档题.二、填空题:本题共6小题,共29分.10.【答案】【解析】解:.故答案为:.根据已知条件,结合复数的四则运算,即可求解.本题主要考查复数的四则运算,属于基础题.11.【答案】10【解析】【分析】写出二项展开式的通项公式,整理后令的指数为2,即可求出.【详解】因为的展开式的通项公式为,令,解得.所以的系数为.故答案为:10.【点睛】本题主要考查二项展开式的通项公式的应用,属于基础题.()g x []0,t ()0g π7π244t +≤3π4t ≤t 3π4()π204f x x ⎛⎫=+= ⎪⎝⎭π2π,4x k k +=∈Z ππ,82k x k =-+∈Z ()f x 3π7π11π15π,,,,8888r = ()f x []0,a 11π15π88a ≤<ππ,42x ⎡⎤∈⎢⎥⎣⎦π3π5ππ3π2,,44422x ⎡⎤⎡⎤+∈∈⎢⎥⎢⎥⎣⎦⎣⎦()f x ππ,42⎡⎤⎢⎥⎣⎦()π24f x x ⎛⎫=+ ⎪⎝⎭71i 22+()()()()34i 1i 34i 71i 1i 1i 1i 22+-+==++-+71i 22+x 522x x ⎛⎫+ ⎪⎝⎭()55315522C C 20,1,2,3,4,5rr r r r r r T x x r x --+⎛⎫==⋅⋅= ⎪⎝⎭532r -=1r =2x 15C 210⨯=12.【答案】12【解析】【分析】本题考查二项分布的期望和方差,考查推理能力和计算能力,属于基础题.先求出和,再利用即可求解.【解答】解:因为随机变量,所以,又因为,所以.故答案为12.13.【答案】52【解析】【分析】本题考查排列的应用,考查分类、分步计数原理的应用,解题需要注意偶数的末位数字以及0不能在首位等性质.分2种情况讨论:①、若0在个位,由排列公式即可得此时三位偶数的数目,②、若0不在个位,且由于0不能在首位,由分步计数原理可得此情况下三位偶数的数目,综合2种情况,由分类计数原理计算可得答案.【解答】解:根据题意,分2种情况讨论:①、若0在个位,此时只须在中任取2个数字,作为十位和百位数字即可,有个没有重复数字的三位偶数;②、若0不在个位,此时必须在2或4中任取1个,作为个位数字,有2种取法,0不能作为百位数字,则百位数字有4种取法,十位数字也有4种取法,此时共有个没有重复数字的三位偶数;综合可得,共有个没有重复数字的三位偶数.故答案为52.13p =()()413D n p p ξ=⋅⋅-=()()329D D ξξ+=()6,B p ξ~()62E np p ξ===13p =()()12416333D n p p ξ=⋅⋅-=⨯⨯=()()32912D D ξξ+==1,2,3,4,525A 20=24432⨯⨯=203252+=14.【答案】4【解析】【分析】本题考查利用基本不等式求最值,属于中档题.由正数满足,可得,所以结合基本不等式即可求解.【解答】解:正数满足,,解得同理则,当且仅当时取等号(此时.的最小值为4.故答案为:4.15.【答案】【解析】解:①当在区间有4个零点且在区间没有零点时,满足,无解;②当在区间有3个零点且在区间有1个零点时,满足,或,a b 111a b +=01a b a =>-()1414141111111a a ab a a a +=+=+-------,a b 111a b+=01ab a ∴=>-1,a >1,b >141411111a ab a a +=+-----()14141a a =+-=- (3)2a =3)b =1411a b ∴+--371,,224⎛⎤⎛⎤⋃ ⎥⎥⎝⎦⎝⎦()f x (),0a -[)0,∞+()Δ164740522a a ⎧=--<⎪⎨-≤-<-⎪⎩()f x (),0a -[)0,∞+()()Δ16474000322a f a ⎧⎪=-->⎪<⎨⎪⎪-≤-<-⎩者解得③当在区间有2个零点且在区间有2个零点时,满足,解得,综上所述,的取值范围是.分类讨论,分在区间有4个零点且在区间没有零点,在区间有3个零点且在区间有1个零点和在区间有2个零点且在区间有2个零点三种情况求解即可.本题考查了分段函数,函数的零点与方程根的关系,属于难题.三、解答题:本题共5小题,共67分.解答应写出文字说明,证明过程或演算步骤.16.【答案】解:(1)在中,,设,则,,解得,;(2)由(1)得,由正弦定理得,即解得.(3)是锐角,且,()Δ164740322a a ⎧--=⎪⎨-≤-<-⎪⎩72;4a <≤()f x (),0a -[)0,∞+()()Δ16474000312a f a ⎧⎪=-->⎪≥⎨⎪⎪-≤-<-⎩312a <≤a 371,,224⎛⎤⎛⎤⋃ ⎥⎥⎝⎦⎝⎦()f x (),0a -[)0,∞+()f x (),0a -[)0,∞+()f x (),0a -[)0,∞+ABC V 92cos ,5,163a Bbc ===2a k =3,0c k k =>2294259cos 23216k k B k k +-∴==⨯⨯2k =24a k ∴==4,6,sin a c B ====sin sin a bA B=4sin A =sin A =π,sin sin ,4a b A A <=<=∴ π4A <,.17.【答案】解:(1)根据函数的部分图象,可得,.再由图象知:,又,故有.令,解得,故函数的对称中心为.(2)先将的图象纵坐标缩短到原来的倍,可得的图象,再向右平移个单位,得到的图象,最后将图象向上平移1个单位后得到的图象.令,求得,sin22sin cos 2A A A ∴===1cos28A ==()cos 2cos cos2sin sin2B A B A B A∴-=+91168=⨯5764=()()cos (0,0,π)f x A x A ωϕωϕ=+>><πϕ<32π5ππ2,4123A ω=⋅=+2ω∴=5π22π,12k k ϕ⨯+=∈Z 5ππ,6ϕϕ<∴=-()5π2cos 26f x x ⎛⎫=-⎪⎝⎭5ππ2π62x k -=+2ππ,32k x k =+∈Z 2ππ,0,32k k ⎛⎫+∈⎪⎝⎭Z ()f x 125πcos 26y x ⎛⎫=- ⎪⎝⎭π12()cos 2πcos2y x x =-=-()cos21g x x =-+2ππ22π,k x k k -≤≤∈Z πππ,2k x k k -≤≤∈Z可得的减区间为,结合,可得的单调减区间为.,故当时,取得最大值,为;当时,取得最小值,为.【解析】本题主要考查由函数的部分图象求解析式,函数的图象变换规律,三角函数的图象的对称性,余弦函数的定义域和值域,属于中档题.(1)由函数的图象的顶点坐标求出,由周期求出,由图象过点求出的值,可得的解析式,再利用三角函数的图象的对称性,得出结论;(2)由题意利用函数的图象变换规律求得的解析式,再利用余弦函数的单调性、余弦函数的定义域和值域,得出结论.18.【答案】(1)证明:连接,在四棱台中,且,又四边形是正方形,故,点为棱的中点,则,故,即四边形为平行四边形,则平面平面,故平面;(2)由于平面,四边形是正方形,以为坐标原点,所在直线为轴,建立空间直角坐标系,()g x ππ,π,2k k k ⎡⎤-∈⎢⎥⎣⎦Z π3π,124x ⎡⎤∈⎢⎥⎣⎦()g x π3π,24⎡⎤⎢⎥⎣⎦π3π2,62x ⎡⎤∈⎢⎥⎣⎦2πx =()g x ()112--+=π26x =()gx 1+()sin y A x ωϕ=+()sin y A x ωϕ=+A ω5π,212⎛⎫⎪⎝⎭ϕ()f x ()sin y A x ωϕ=+()g x 1A B 1111ABCD A B C D -11A D ∥AD 1112A D AD =ABCD BC ∥,AD BC AD =E BC BE ∥1,2AD BE AD =11A D ∥11,BE A D BE =11A D EB 1D E∥11,A B D E ⊄111,AA B B A B ⊂11AA B B 1ED ∥11AA B B 1AA ⊥ABCD ABCD A 1,,AB AD AA ,,x y z由于,则,则,设平面的一个法向量为,则,即,令,则,平面的一个法向量为,故由图知平面与平面所成角为锐角,故平面与平面(3)由(2)可知,则,设平面的一个法向量为,则,即,令,则,设点到平面的距离为,则.【解析】1)连接,先证明,再根据线面平行的判定定理即可证明结论;(2)建立空间直角坐标系,求出相关点的坐标,求出平面与平面的法向量,根据空间角的向量求法,即可求得答案;1111,2A A A B AB ===()()()10,0,1,0,2,0,2,1,0A D E ()()10,2,1,2,1,0DA ED =-=-1A DE (),,m x y z = 100m DA m ED ⎧⋅=⎪⎨⋅=⎪⎩2020yz x y -+=⎧⎨-+=⎩1x =()1,2,4m =ABCD ()0,0,1n =cos ,m n m n m n ⋅<>===1A DE ABCD 1A DE ABCD ()()()()11,1,1,0,2,0,2,2,0,2,0,0C D C B ()()()10,2,0,1,1,1,2,0,0BC DC DC ==-=1C DC (),,u s t g = 100u DC u DC ⎧⋅=⎪⎨⋅=⎪⎩ 020s t g s -+=⎧⎨=⎩1t =()0,1,1u =B 1C DC d BC u d u ⋅=== 1A B 1D E∥1A B 1A DE ABCD(3)求出平面的法向量,根据空间距离的向量求法,即可求得答案.19.【答案】解:(1)函数的定义域为,,①当时,,所以在上是增函数;②当时,由得,所以在上是增函数,由得,所以在上是减函数;故时,在上单调递增;当时,在上单调递增,在上单调递减;(2)由的图象恒在轴上方,可得,因为且,不等式两边同时除以,可得,设可得令,解得,令,解得所以在上单调递增,在上单调递减,所以当时,取得最大值为,所以,即,所以的范围是;(3)证明:,1C DC ()f x ()0,∞+()1m x m f x x x-=-='0m ≤()0f x '>()f x ()0,∞+0m >()0f x '>x m >()f x (),m ∞+()0f x '<0x m <<()f x ()0,m 0m ≤()f x ()0,∞+0m >()f x (),m ∞+()0,m ()f x x ()ln 0f x x m x =->0x >0m >mx 1ln xm x>()ln ,x h x x =()21ln ,xh x x-='()0h x '>0e x <<()0h x '<e,x >()h x ()0,e ()e,∞+e x =()h x ()1e eh =max 1()h x m>11em >m ()0,e ()ln ,0f x x m x x =->则,由(1)可知,当时,在上是增函数,故不存在不相等的实数,使得,所以,由,得,即,不妨设,则,要证,只需证,即证,只需证令只需证,即证令,则,所以在上是增函数,所以,即成立,故成立.【解析】本题考查了利用导数求函数的单调区间(含参)、利用导数研究恒成立与存在性问题、利用导数求函数的最值(含参)、利用导数解(证明)不等式,属于较难题.()1m x m f x x x-=-='0m ≤()f x ()0,∞+12,x x ()()12f x f x =0m >()()12f x f x =1122ln ln x m x x m x -=-()2121ln ln m x x x x -=-120x x <<21210ln ln x x m x x -=>-12m x x <+211221ln ln x x x x x x -<+-212112ln ln x x x x x x -<-+2122111ln 1x x x x x x -<+211x t x =>1ln 1t t t -<+1ln 0,1t t t -->+()()1ln 11t g t t t t -=->+()2221210(1)(1)t g t t t t t +=-=>++'()g t ()1,∞+()()10g t g >=1ln 01t t t -->+120m x x <<+(1)求出函数的导数,讨论的取值,利用导数判断函数的单调性与单调区间;(2)问题转化为,设,利用导数求出,即可求出结果;(3)易得,由得,要证,只需证,只需证,令,只需证,即证,令,利用导数研究单调性即可得证.20.【答案】解:(1)对函数求导,可得,则曲线在处的切线斜率为;(2)证明:当时,,即,即,而在上单调递增,因此原不等式得证;(3)证明:设数列的前项和,则;当时,,由(2),,故,不等式右边得证;要证,只需证:对任意的,()f x m ()f x 1ln x m x >()ln x h x x=max ()h x 0m >()()12f x f x =21210ln ln x x m x x -=>-12m x x <+211221ln ln x x x x x x -<+-2122111ln 1x x x x x x -<+211x t x =>1ln 1t t t -<+1ln 01t t t -->+()()1ln 11t g t t t t -=->+()f x ()()()221ln 121x f x x x x x+=-++'()y f x =2x =()1ln3234f =-'0x >()1f x >()2ln 112x x x ++>()()2ln 102xg x x x =+->+()()()220,1(2)x g x g x x x =>++'()0,∞+()()00,g x g >={}n a n ()1ln !ln 2n S n n n n ⎛⎫=-++ ⎪⎝⎭111a S ==2n ≥11111111ln 1ln 11122111n n n n a S S n f n n n n -⎛⎫ ⎪-⎛⎫⎛⎫⎛⎫=-=+-=-++=- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎪-⎝⎭()02n a n <≥11n S S ≤=56n S ≤()22112,116n n k k k n a f k ==⎛⎫⎛⎫≥-=-≤ ⎪⎪-⎝⎭⎝⎭∑∑令,则,当时,,函数在上单调递减,则,即,则,因此当时,,当时,累加得,又,故,即得证.【解析】(1)对函数求导,求出的值即可得解;(2)令,先利用导数求出的单调性,由此容易得证;(3)设数列的前项和,可得当时,,由此可知,证得不等式右边;再证明对任意的,令,利用导数可知,由此可得.再求得,由此可得证不等式左边,进而得证.本题考查导数的综合运用,考查逻辑推理能力和运算求解能力,属于难题.()()()()2ln 121x x h x x x +=+-+()222(1)x h x x '=-+0x >()0h x '<()h x ()0,∞+()0h x <()()()2ln 121x x x x ++<+()()()()222211221414x x x x x f x x x x ++-<⋅-=<++2k ≥22111111114(1)4(1)122321f k k k k k ⎛⎫⎛⎫-<<=- ⎪ ⎪------⎝⎭⎝⎭4n ≥()441111111111111,1257792321252110n nk k k a f k n n n ==⎛⎫⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-<-+-++-=-< ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥----⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦∑∑ ()()233353511ln210.69410.041,ln 1 1.10.69310.017522222a f a -=-=-<⨯-=-=-<--=()()2324110.0410.01750.1585106nnkk k k a aa a ==-=--+-=++=<∑∑()f x ()2f '()()1g x f x =-()g x {}n a n ()1ln !ln 2n S n n n n ⎛⎫=-++ ⎪⎝⎭2n ≥10n n n a S S -=-<11n S S ≤=()22112,116nnk k k n a f k ==⎛⎫⎛⎫≥-=-≤⎪ ⎪-⎝⎭⎝⎭∑∑()(2)()ln 12(1)x x h x x x +=+-+()()()2ln 121x x x x ++<+()4110n k k a =-<∑23,a a --。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021-2022年高三数学1月阶段性测试试题理
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.若集合A={x|x=4k+1,k∈Z},B={x|x=2k-1,k∈Z},则()
A.AB B. BA C.B=A D.
2.已知,其中m,n是实数,i是虚数单位,则m-n= ()
A.3 B.2 C.1 D.﹣1
3.某空间几何体的三视图如图所示,则该几何体的体积为()
A.128 B. C. D.
4.已知圆O的一条弦AB的长为4,则().
A. 4 B .8 C. 12 D. 16
5.已知,则().
A. B. C. D.
6.已知等比数列{a
n }的前n项和为S
n
,S
2n
=3(a
1
+a
3
+a
5
+…a
2n-1
),a
2
a
3
a
4
=8,则a
7
=()
A.32 B.64 C.54 D.162
7.直线(m2+1)x-2my+1=0(其中m∈R)的倾斜角不可能为().
A. B. C. D.
8.过抛物线C:y2=8x焦点F的直线与C相交于P,Q两点,若,则=()A. B. C. 3 D. 2
9.在平面直角坐标系中,O为坐标原点,设向量=a,=b,其中=(3,1),=(1,3).若,且,那么C点所有可能的位置区域用阴影表示正确的是()
10.若将函数y=的图象上各点的横坐标伸长到原来的3倍(纵坐标不变),再向右平移个单位长度,得到函数y= f(x)的图象,若y= f(x)+a在x∈[-,]上有两个不同的零点,则实数a的取值范围是()
A.[-3, ] B.[-,] C.[,3] D. (-3, ]
11.已知a,b,c∈R ,则“a+b>c”是“”成立的()
A.充分不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条件
12.已知函数f(x)= ,若函数g(x)= f2(x)+m f(x)有三个不同的零点,则实数m的取值范围为().
A.(0,e)
B.(1,e)
C.(e,+∞)
D.(- ∞,-e)
第II卷(非选择题,共90分)
本卷包括必考题和选考题两部分。
第13题—第21题为必考题,每个试题考生都必须作答,第
22-23题为选考题,考生根据要求作答。
二、填空题:本大题共4个小题,每小题5分,共20分.
13.=.
14. 如果实数x,y满足不等式组,且z= 的最小值为,则正数a的值为__________________.
15.已知三角形ABC中,a,b,c分别是三个内角A,B,C的对边,设B=2A,则的取值范围是.16.已知函数y=-2sin2x+4cosx+1的定义域为[],其最大值为,则实数的取值范围是_________________.
三、解答题(解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分12分)
已知数列{a
n }是单调递增的等差数列,首项a
1
=2,前n项和为Sn,数列{b
n
}是等比数列,首项
b
1=1,且a
2
b
2
=12,S
3
+b
2
=15.
(Ⅰ)求数列{a
n }与{b
n
}的通项公式;
(Ⅱ)设,求数列{c
n }的前n项和为T
n
.
18.(本小题满分12分)
已知f(x)= sincos+ cos2- .
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)在ABC中,角A、B、C的对边分别是a、b、c,满足(2a- c)cosB=bcosC,求函数f(A)
的取值范围.
19.(本小题满分12分)
如图,在多面体ABCDEF中,四边形ABCD为梯形,四边形ADEF为正方形,其中
AB∥CD,CD=2AB=2AD=4,AC=EC=2
(Ⅰ)求证:平面EBC平面EBD;
(Ⅱ)若M为EC的中点,求二面角M-DB-E余弦值.
20.(本小题满分12分)
已知函数f(x)= -axlnx(aR)(其中e≈2.71828……是自然对数的底数)的图象在点(1,f(1))处的切线为y=-x++b-1(bR).
(Ⅰ)求a,b的值;
(Ⅱ)求证:对任意的x(0, +∞),都有f(x)< .
21.(本小题满分12分)
已知椭圆C: =1(a>b>0),点B是其下顶点,直线x+3y+6=0与椭圆C交于AB两点(点A,在x轴下方),且线段AB的中点E在直线y=x上.
(I)求椭圆C的方程;
(Ⅱ)若点P为椭圆C上异于AB的动点,且直线AP, BP分别交直线y=x于点M,N,证明:为定值.
请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题计分.
22.(坐标系与参数方程)(本小题满分10分)
在平面直角坐标系xOy中,圆C的参数方程为(其中为参数,r为常数且r>0),以原点O为极点,以x轴非负半轴为极轴,并取相同的单位长度建立极坐标
系,直线l的极坐标方程为.
(Ⅰ)求圆C的标准方程与直线l的一般方程;
(Ⅱ)当r为何值时,圆C上的点到直线l的最大距离为5?
23.(不等式选讲)(本小题满分10分)
设函数f(x)=|kx-2|(k∈R).
(Ⅰ)若不等式f(x) ≤3的解集为{x|≤x≤},求k的值;
(Ⅱ)若f(1)+ f(2)<5,求k的取值范围.
D27226 6A5A 橚|36518 8EA6 躦26417 6731 朱G21952 55C0 嗀27588 6BC4 毄X30267 763B 瘻27310 6AAE 檮39559 9A87 骇21783 5517 唗29012 7154 煔38219 954B 镋。