高三数学一诊模拟考试试题理
四川省南充市2024届高三高考适应性考试(一诊)考试数学(理)试题(含答案)

注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将答题卡交回。
一、单项选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的四川省南充市高2024届高考适应性考试(一诊)理科数学。
1.抛物线24x y =的准线方程为()A .1x =-B .1x =C .1y =-D .1y =2.当12m <<时,复数1(2)m m i -+-在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限3.已知正方形ABCD 的边长为1,则AB BC CA +-=()A .0BC.D .44.已知直线m ,n 和平面α,n α⊂,m α⊂/,则“m n ∥”是“m α∥”的()条件A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要5.已知全集U R =,集合{}3log (1)1A x x =->,2214x B x y ⎧⎫=+=⎨⎬⎩⎭,则能表示A ,B ,U 关系的图是()A .B.C.D .6.某商品的地区经销商对2023年1月到5月该商品的销售情况进行了调查,得到如下统计表.发现销售量y (万件)与时间x (月)成线性相关,根据表中数据,利用最小二乘法求得y 与x 的回归直线方程为:0.480.56y x =+.则下列说法错误的是()时间x (月)12345销售量y (万件)11.62.0a3A .由回归方程可知2024年1月份该地区的销售量为6.8万件B .表中数据的样本中心点为()3,2.0C . 2.4a =D .由表中数据可知,y 和x 成正相关7.二项式62x ⎫-⎪⎭的展开式中常数项为()A .60-B .60C .210D .210-8.已知:123a +=,3123b -=,则下列说法中错误的是()A .2a b +=B .312b <<C .1b a -<D .1ab >9.如图,正方体1111ABCD A B C D -的棱长为2,E ,F 分别为BC ,1CC 的中点,则平面AEF 截正方体所得的截面面积为()A .32B .92C .9D .1810.如图1是函数()cos 2f x x π⎛⎫= ⎪⎝⎭的部分图象,经过适当的平移和伸缩变换后,得到图2中()g x 的部分图象,则()图1图2A .1()22g x f x ⎛⎫=-⎪⎝⎭B .202332g ⎛⎫=-⎪⎝⎭C .方程14()log g x x =有4个不相等的实数解D .1()2g x >的解集为152,266k k ⎛⎫++ ⎪⎝⎭,k Z ∈11.已知双曲线2213y x -=的左右焦点分别为1F ,2F ,左右顶点分别为1A ,2A ,P 为双曲线在第一象限上的一点,若211cos 4PF F ∠=,则12PA PA ⋅= ()A .2-B .2C .5D .5-12.已知函数2()ln 2f x x m x=-+-(03m <<)有两个不同的零点1x ,2x (12x x <),下列关于1x ,2x 的说法正确的有()个①221m x e x <②122x m >+③3233m e x m<<-④121x x >A .1B .2C .3D .4二、填空题:本题共4小题,每小题5分,共20分。
2024届绵阳市南山中学高三数学(理)上学期一诊考试卷附答案详析

2024届绵阳市南山中学高三数学(理)上学期一诊考试卷(试卷满分150分.考试用时120分钟)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U =R ,集合{}220A x x x =-<,{}1B x x =>,则()UA B = ð()A .{}12x x <<B .{}12x x ≤<C .{}01x x <<D .{}01x x <≤2.若复数5i43i z =-,则z =()A .34i 55+B .34i55-+C .34i 55--D .34i 55-3.设nS 是等差数列{}n a 的前n 项和,若25815a a a ++=,则9S =()A .15B .30C .45D .604.已知命题p :x ∃∈R ,使得2210ax x ++<成立为真命题,则实数a 的取值范围是()A .(],0-∞B .(),1-∞C .[)0,1D .(]0,15.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC -B .1344AB AC - C .3144+AB ACD .1344+AB AC6.执行如图所示的程序框图,若输出的a 的值为17,则输入的最小整数t 的值为()A .9B .12C .14D .167.纯电动汽车是以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆,它使用存储在电池中的电来发动.因其对环境影响较小,逐渐成为当今世界的乘用车的发展方向.研究发现电池的容量随放电电流的大小而改变,1898年Peukert 提出铅酸电池的容量C 、放电时间t 和放电电流I 之间关系的经验公式:C I t λ=,其中λ为与蓄电池结构有关的常数(称为Peukert 常数),在电池容量不变的条件下,当放电电流为15A 时,放电时间为30h ;当放电电流为50A 时,放电时间为7.5h ,则该萻电池的Peukert 常数λ约为()(参考数据:lg20.301≈,lg30.477≈)A .1.12B .1.13C .1.14D .1.158.若cos 0,,tan 222sin παααα⎛⎫∈=⎪-⎝⎭,则tan α=()A .1515B 5C .53D .1539.函数π()412sin 2x x f x x -⎛⎫=-⋅⋅+ ⎪⎝⎭的大致图象为()A .B .C .D .10.设函数π()sin 3f x x ω⎛⎫=+ ⎪⎝⎭在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是()A .513,36⎫⎡⎪⎢⎣⎭B .519,36⎡⎫⎪⎢⎣⎭C .138,63⎛⎤⎥⎝⎦D .1319,66⎛⎤ ⎥⎝⎦11.已知函数()1e x xf x +=.若过点()1,P m -可以作曲线()y f x =三条切线,则m 的取值范围是()A .40,e ⎛⎫⎪⎝⎭B .80,e ⎛⎫ ⎪⎝⎭C .14,e e ⎛⎫- ⎪⎝⎭D .18,e e ⎛⎫ ⎪⎝⎭12.已知函数()323,0,31,0x x f x x x x ->⎧=⎨-+≤⎩,函数()()()g x f f x m =-恰有5个零点,则m 的取值范围是()A .()3,1-B .()0,1C .[)1,1-D .()1,3二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量()()3,1,1,0,a b c a kb ===+ .若a c ⊥ ,则k =.14.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点,从A 点测得M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高200BC =m ,则山高MN =m .15.已知等比数列{}n a 的前3项和为25168,42a a -=,则6a =.16.已知函数()y f x =是R 的奇函数,对任意x R ∈,都有(2)()(2)f x f x f -=+成立,当12,,1[]0x x ∈,且12x x ≠时,都有()()1212f x f x x x ->-,有下列命题①(1)(2)(3)(2019)0f f f f ++++= ②直线5x =-是函数()y f x =图象的一条对称轴③函数()y f x =在[7,7]-上有5个零点④函数()y f x =在[7,5]--上为减函数则结论正确的有.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象,如图所示.(1)求函数()f x 的解析式;(2)将函数()f x 的图象向右平移3π个单位长度,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()g x 的图象,当0,3x π⎡⎤∈⎢⎥⎣⎦时,求函数()g x 的值域.18.已知数列{}n a 的前n 项和为n S ,313log 1log n n b b +-=,且()1122n n n a a a n +-=+≥.339S b ==,414b a =.(1)求数列{}n a 和{}n b 的通项公式;(2)若11n n n c a b ++=⋅,求数列{}n c的前n 项和n T .19.记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.20.已知函数()()e x f x a a x=+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()32ln 2f x a >+.21.已知函数()()ln 1e xf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()f x 在区间()()1,0,0,-+∞各恰有一个零点,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题做答.如果多做,则按所做的第一题记分.选修4—4:坐标系与参考方程22.在直角坐标系xOy 中,曲线M 的方程为24y x x =-+,曲线N 的方程为9xy =,以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系.(1)求曲线M ,N 的极坐标方程;(2)若射线00π:(0,0)2l θθρθ=≥<<与曲线M 交于点A (异于极点),与曲线N 交于点B ,且||||12OA OB ⋅=,求0θ.选修4—5:不等式选讲23.已知函数()121f x x x =++-.(1)求不等式()8f x <的解集;(2)设函数()()1g x f x x =--的最小值为m ,且正实数a ,b ,c 满足a b c m ++=,求证:2222a b c b c a ++≥.1.D【分析】先解一元二次不等式,化简集合A,再利用数轴进行集合的补集和交集运算可得.【详解】解一元二次不等式化简集合A,得{|02}A x x =<<,由{|1}B x x =>得{|1}U C B x x =≤,所以(){|01}U A C B x x ⋂=<≤.故选D.【点睛】本题考查了一元二次不等式的解法,集合的交集和补集运算,用数轴运算补集和交集时,注意空心点和实心点的问题,属基础题.2.C【分析】由复数的四则运算结合共轭复数的概念求解.【详解】由()5i 43i 5i 34i 43i 2555z +===-+-,得34i55z =--.故选:C 3.C【分析】根据等差数列的性质求出5a ,再根据等差数列前n 项和公式即可得解.【详解】由题意得2585315a a a a ++==,所以55a =,所以()199599452a a S a +===.故选:C.4.B【分析】由一次函数和二次函数的图象和性质,知当0a ≤时,命题为真命题,当0a >时,需0∆>,最后综合讨论结果,可得答案.【详解】命题p 为真命题等价于不等式2210ax x ++<有解.当0a =时,不等式变形为210x +<,则12x <-,符合题意;当0a >时,Δ440a =->,解得01a <<;当a<0时,总存在x ∃∈R ,使得2210ax x ++<;综上可得实数a 的取值范围为(),1-∞.故选:B 5.A【分析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得1122BE BA BD=+ ,之后应用向量的加法运算法则-------三角形法则,得到BC BA AC =+ ,之后将其合并,得到3144BE BA AC=+,下一步应用相反向量,求得3144EB AB AC=- ,从而求得结果.【详解】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++ 1113124444BA BA AC BA AC=++=+,所以3144EB AB AC=- ,故选A.【点睛】该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.6.A【分析】根据流程框图代数进行计算即可,当进行第四次循环时发现输出的a 值恰好满足题意,然后停止循环求出t 的值.【详解】第一次循环,2213a =⨯-=,3a t =>不成立;第二次循环,2315a =⨯-=,5a t =>不成立;第三次循环,2519a =⨯-=.9a t =>不成立;第四次循环,29117a =⨯-=,17a t =>,成立,所以917t <≤,输入的最小整数t 的值为9.故选:A 7.D【分析】根据题意可得1530507.5C λλ=⨯=⨯,再结合对数式与指数式的互化及换底公式即可求解.【详解】由题意知1530507.5C λλ=⨯=⨯,所以50304157.5λ⎛⎫== ⎪⎝⎭,两边取以10为底的对数,得10lg 2lg23λ=,所以2lg220.301 1.151lg310.477λ⨯=≈≈--.故选:D .8.A【分析】由二倍角公式可得2sin 22sin cos tan 2cos 212sin αααααα==-,再结合已知可求得1sin 4α=,利用同角三角函数的基本关系即可求解.【详解】cos tan 22sin ααα=- 2sin 22sin cos cos tan 2cos 212sin 2sin αααααααα∴===--,0,2πα⎛⎫∈ ⎪⎝⎭ ,cos 0α∴≠,22sin 112sin 2sin ααα∴=--,解得1sin 4α=,215cos 1sin 4αα∴-,sin 15tan cos 15ααα∴==.故选:A.【点睛】关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出sin α.9.D【分析】对函数化简后,利用排除法,先判断函数的奇偶性,再取特殊值判断即可【详解】因为()|22|cos x x f x x -=-⋅,()22cos()()x x f x x f x --=-⋅-=,所以()f x 为偶函数,所以函数图象关于y 轴对称,所以排除A ,C 选项;又1(2)4cos 204f =-<,所以排除B 选项,故选:D .10.C【分析】由x 的取值范围得到3x πω+的取值范围,再结合正弦函数的性质得到不等式组,解得即可.【详解】解:依题意可得0ω>,因为()0,x π∈,所以,333x πππωωπ⎛⎫+∈+ ⎪⎝⎭,要使函数在区间()0,π恰有三个极值点、两个零点,又sin y x =,,33x ππ⎛⎫∈ ⎪⎝⎭的图象如下所示:则5323ππωππ<+≤,解得13863ω<≤,即138,63ω⎛⎤∈ ⎥⎝⎦.故选:C .11.A【分析】切点为0001,e x x x +⎛⎫ ⎪⎝⎭,利用导数的几何意义求切线的斜率,设切线为:()000001e e x x x xy x x +--=-,可得()201e x x m +=,设()()21e xx g x +=,求()g x ',利用导数求()g x 的单调性和极值,切线的条数即为直线y m =与()g x 图象交点的个数,结合图象即可得出答案.【详解】设切点为0001,e x x x +⎛⎫ ⎪⎝⎭,由()1e x xf x +=可得()()2e e 1e e x x xx x x f x -⋅+-==',所以在点0001,e x x x +⎛⎫ ⎪⎝⎭处的切线的斜率为()000e x xk f x -'==,所以在点0001,e x x x +⎛⎫ ⎪⎝⎭处的切线为:()000001e e x x x xy x x +--=-,因为切线过点()1,P m -,所以()0000011e e x x x x m x +--=--,即()201e x x m +=,即这个方程有三个不等根即可,切线的条数即为直线y m =与()g x 图象交点的个数,设()()21exx g x +=,则()()()2222211e e xxx x x x g x +-++'-+==由()0g x '>可得11x -<<,由()0g x '<可得:1x <-或1x >,所以()()21e xx g x +=在(),1-∞-和()1,+∞上单调递减,在()1,1-上单调递增,当x 趋近于正无穷,()g x 趋近于0,当x 趋近于负无穷,()g x 趋近于正无穷,()g x 的图象如下图,且()41e g =,要使y m =与()()21e xx g x +=的图象有三个交点,则40e m <<.则m 的取值范围是:40,e ⎛⎫ ⎪⎝⎭.故选:A.12.C【分析】由题意可先做出函数()f x 的大致图象,利用数形结合和分类讨论,即可确定m 的取值范围.【详解】当0x ≤时,()233f x x ¢=-.由()0f x ¢>,得1x <-,由()0f x '<,得10-<≤x ,则()f x 在(]1,0-上单调递减,在(),1-∞-上单调递增,故()f x 的大致图象如图所示.设()t f x =,则()m f t =,由图可知当3m >时,()m f t =有且只有1个实根,则()t f x =最多有3个不同的实根,不符合题意.当3m =时,()m f t =的解是11t =-,23t =.1f x t =()有2个不同的实根,2f x t =()有2个不同的实根,则()t f x =有4个不同的实根,不符合题意.当13m ≤<时,()m f t =有3个不同的实根3t ,4t ,5t,且()321t ∈--,,(]41,0t ∈-,[)52,3t ∈.3f x t =()有2个不同的实根,4f x t =()有2个不同的实根,5f x t =()有3个不同的实根,则()t f x =有7个不同的实根,不符合题意.当11m -≤<时,()m f t =有2个不同的实根6t ,7t,且()631t ∈--,,[)71,2t ∈.6f x t =()有2个不同的实根,7f x t =()有3个不同的实根,则()t f x =有5个不同的实根,符合题意.当3<1m -<-时,()m f t =有2个不同的实根8t ,9t,且()831t ∈--,,()901t ∈,,8f x t =()有2个不同的实根,9f x t =(),有2个不同的实根,则()t f x =有4个不同的实根,不符合题意.当3m ≤-时,()m f t =有且只有1个实根,则()t f x =最多有3个不同的实根,不符合题意,综上,m 的取值范围是[)1,1-.故选:C.【点睛】方法点睛:对于函数零点问题,若能够画图时可作出函数图像,利用数形结合与分类讨论思想,即可求解.本题中,由图看出,m 的讨论应有3m =,13m ≤<,11m -≤<,3<1m -<-,3m ≤-这几种情况,也是解题关键.13.103-.【分析】利用向量的坐标运算法则求得向量c 的坐标,利用向量的数量积为零求得k 的值【详解】()()()3,1,1,0,3,1a b c a kb k ==∴=+=+,(),33110a c a c k ⊥∴⋅=++⨯=,解得103k =-,故答案为:103-.【点睛】本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量()()1122,,,p x y q x y ==垂直的充分必要条件是其数量积12120x x y y +=.14.300【分析】先求,AC AMC ∠,由正弦定理得sin sin MCA AMCAM AC ∠∠=,最后由sin MN AM MAN =⋅∠可求.【详解】由题意,2002sin BCAC CAB ==∠,18045AMC MAC MCA ∠=︒-∠-∠=︒,由正弦定理得32sin sin 2220032002MCA AMCAM AM AC AM ∠∠=⇒=⇒=m ,所以3sin 2003300MN AM MAN =⋅∠==m.故答案为:30015.3【分析】设等比数列{}n a 的公比为q ,根据已知条件利用等比数列的定义计算可得12q =,196a =,即可求得6a 的值.【详解】解:设等比数列{}n a 的公比为q ,0q ≠,由题意1q ≠,因为前3项和为168,故()3112311681a q a a a q-++==-,又()43251111a a a q a q a q q -=-=-,所以12q =,196a =,则561196332a a q ==⨯=.故答案为:3.16.①②④【分析】根据题意,利用特殊值法求得()20f =,进而分析得到1x =时函数()f x 的一条对称轴,,函数()f x 时周期为4的周期函数,且函数()f x 在[1,1]-上单调递增,据此结合选项,逐项判定,即可求解.【详解】由题意,函数()y f x =是R 的奇函数,则()00f =,对任意x R ∈,都有(2)()(2)f x f x f -=+成立,当2x =,有()()0220f f ==,即()20f =,则有(2)()f x f x -=,即1x =时函数()f x的一条对称轴,又由()f x 为奇函数,则(2)()f x f x -=--,即()()2f x f x +=-,可得()()()42f x f x f x +=-+=,所以函数()f x 时周期为4的周期函数,当12,,1[]0x x ∈,且12x x ≠时,都有()()1212f x f x x x ->-,可函数()f x 在[1,1]-上单调递增,对于①中,由()()2f x f x +=-,则(1)(2)(3)(4)0f f f f +++=,所以(1)(2)(3)(2019)504[(1)(2)(3)(4)]f f f f f f f f ++++=+++ ()(1)(2)(3)20f f f f +++==,所以①正确;对于②中,由1x =时函数()f x 的一条对称轴,且函数()f x 时周期为4的周期函数,则直线5x =-是函数()y f x =图象的一条对称轴,所以②正确;对于③中,函数()y f x =在[7,7]-上有7个零点,分别为6,4,2,0,2,4,6---,所以C 错误;对于④中,函数()y f x =在[1,1]-上为增函数且周期为4,可得()y f x =在[5,3]--上为增函数,又由5x =-是函数()y f x =图象的一条对称轴,则函数()y f x =在[7,5]--上为减函数,所以④正确.故答案为:①②④17.(1)()323f x x π⎛⎫=+ ⎪⎝⎭(2)332⎡-⎢⎣【分析】(1)根据正弦型函数的图像求三角函数的解析式,根据最大值求出A ,由最小正周期求出ω,并确定ϕ.(2)根据平移后得到新的正弦型函数解析式,由函数解析式求出函数值域.【详解】(1)解:根据函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象可得3A =1252632ππππω=-=⋅,所以2ω=.再根据五点法作图可得23πϕπ⋅+=,所以3πϕ=,()323f x x π⎛⎫=+ ⎪⎝⎭.(2)将函数()f x 的图象向右平移3π个单位后,可得323sin 2333y x x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()343g x x π⎛⎫=- ⎪⎝⎭的图象.由0,3x π⎡⎤∈⎢⎥⎣⎦,可得4,33x πππ⎡⎤-∈-⎢⎥⎣⎦又 函数()g x 在50,24π⎡⎤⎢⎥⎣⎦上单调递增,在5,243ππ⎡⎤⎢⎥⎣⎦单调递减∴3(0)2g =-,5324g π⎛⎫= ⎪⎝⎭,03g π⎛⎫= ⎪⎝⎭∴3()34,332g x x π⎛⎫⎡⎤=-∈- ⎪⎢⎝⎭⎣⎦∴函数()g x 在0,3π⎡⎤⎢⎥⎣⎦的值域332⎡-⎢⎣.18.(1)13n n b -=,21n a n =-(2)13n n T n +=⋅【分析】(1)根据对数运算得13n n b b +=,利用等比数列定义求通项公式,利用等差中项判断数列{}n a 为等差数列,建立方程求出公差,从而可得{}n a 的通项;(2)利用错位相减法计算即可.【详解】(1)∵313log 1log n n b b +-=,∴313log log (3)n n b b +=,则13n n b b +=,所以{}n b 为等比数列,又39b =,得11b =,所以13n n b -=,由112n n n a a a +-=+知{}n a 是等差数列,且41427b a ==,39S =,∴111327339a d a d +=⎧⎨+=⎩,得11a =,2d =.∴21n a n =-.(2)因为21n a n =-,13n n b -=,所以()11213n n n n c a b n ++=⋅=+,所以()()1231335373213213n nn T n n -=⋅+⋅+⋅+⋅⋅⋅+-⋅++⋅则()()23413335373213213n n n T n n +=⋅+⋅+⋅+⋅⋅⋅+-⋅++⋅上面两式作差得()223123232323213n n n T n +-=+⋅+⋅+⋅⋅⋅+⋅-+⋅()()111913922132313n n n n n -++⎛⎫-⎪=+-+⋅=-⋅ ⎪-⎝⎭,∴13n n T n +=⋅19.(1)证明见解析;(2)7cos 12ABC ∠=.【分析】(1)根据正弦定理的边角关系有acBD b =,结合已知即可证结论.(2)方法一:两次应用余弦定理,求得边a 与c 的关系,然后利用余弦定理即可求得cos ABC ∠的值.【详解】(1)设ABC 的外接圆半径为R ,由正弦定理,得sin sin ,22b c R ABC C R ==∠,因为sin sin BD ABC a C ∠=,所以22b cBD a R R ⋅=⋅,即BD b ac ⋅=.又因为2b ac =,所以BD b =.(2)[方法一]【最优解】:两次应用余弦定理因为2AD DC =,如图,在ABC 中,222cos 2a b c C ab +-=,①在BCD △中,222()3cos 23ba b b a C +-=⋅.②由①②得2222223()3b a b c a b ⎡⎤+-=+-⎢⎥⎣⎦,整理得22211203a b c -+=.又因为2b ac =,所以2261130a ac c -+=,解得3c a =或32ca =,当22,33c c a b ac ===时,333c ca b c+=<(舍去).当2233,22c c a b ac ===时,22233()722cos 31222c c ABC c c c +⋅-==⋅∠.所以7cos 12ABC ∠=.[方法二]:等面积法和三角形相似如图,已知2AD DC =,则23ABD ABC S S =△△,即21221sin sin 2332b ac AD A B BC⨯=⨯⨯∠∠,而2b ac =,即sin sin ADB ABC ∠=∠,故有ADB ABC ∠=∠,从而ABD C ∠=∠.由2b ac =,即b c a b =,即CA BA CB BD =,即ACB ABD ∽,故AD AB AB AC =,即23bc c b =,又2b ac =,所以23c a =,则2227cos 212c a b ABC ac +-==∠.[方法三]:正弦定理、余弦定理相结合由(1)知BD b AC ==,再由2AD DC =得21,33AD b CD b==.在ADB 中,由正弦定理得sin sin AD BDABD A =∠.又ABD C ∠=∠,所以s 3sin n 2i C b A b =,化简得2sin sin 3C A=.在ABC 中,由正弦定理知23c a =,又由2b ac =,所以2223b a=.在ABC 中,由余弦定理,得222222242793cos 221223a a a a c b ABC ac a +--⨯∠+===.故7cos 12ABC ∠=.[方法四]:构造辅助线利用相似的性质如图,作DE AB ∥,交BC 于点E ,则DEC ABC △∽△.由2AD DC =,得2,,333c a a DE EC BE ===.在BED 中,2222()()33cos 2323BED a c b a c -=⋅∠+⋅.在ABC 中222cos 2a a BC c A b c +-=∠.因为cos cos ABC BED ∠=-∠,所以2222222()()3322233a c ba cb ac ac +-+-=-⋅⋅,整理得22261130a b c -+=.又因为2b ac =,所以2261130a ac c -+=,即3c a =或32a c =.下同解法1.[方法五]:平面向量基本定理因为2AD DC =,所以2AD DC =uuu r uuu r.以向量,BA BC 为基底,有2133BD BC BA =+.所以222441999BD BC BA BC BA =+⋅+ ,即222441cos 999b a c c ABC a ∠=++,又因为2b ac =,所以22944cos ac a ac ABC c ⋅∠=++.③由余弦定理得2222cos b a c ac ABC =+-∠,所以222cos ac a c ac ABC =+-∠④联立③④,得2261130a ac c -+=.所以32a c =或13a c=.下同解法1.[方法六]:建系求解以D 为坐标原点,AC 所在直线为x 轴,过点D 垂直于AC 的直线为y 轴,DC 长为单位长度建立直角坐标系,如图所示,则()()()0,0,2,0,1,0D A C -.由(1)知,3BD b AC ===,所以点B 在以D 为圆心,3为半径的圆上运动.设()(),33B x y x -<<,则229x y +=.⑤由2b ac =知,2BA BC AC⋅=,2222(2)(1)9x y x y ++⋅-+=.⑥联立⑤⑥解得74x =-或732x =≥(舍去),29516y =,代入⑥式得36||,||6,32a BC c BA b ====,由余弦定理得2227cos 212a c b ABC ac +-∠==.【整体点评】(2)方法一:两次应用余弦定理是一种典型的方法,充分利用了三角形的性质和正余弦定理的性质解题;方法二:等面积法是一种常用的方法,很多数学问题利用等面积法使得问题转化为更为简单的问题,相似是三角形中的常用思路;方法三:正弦定理和余弦定理相结合是解三角形问题的常用思路;方法四:构造辅助线作出相似三角形,结合余弦定理和相似三角形是一种确定边长比例关系的不错选择;方法五:平面向量是解决几何问题的一种重要方法,充分利用平面向量基本定理和向量的运算法则可以将其与余弦定理充分结合到一起;方法六:建立平面直角坐标系是解析几何的思路,利用此方法数形结合充分挖掘几何性质使得问题更加直观化.20.(1)答案见解析(2)证明见解析【分析】(1)先求导,再分类讨论0a ≤与0a >两种情况,结合导数与函数单调性的关系即可得解;(2)方法一:结合(1)中结论,将问题转化为21ln 02a a -->的恒成立问题,构造函数()()21ln 02g a a a a =-->,利用导数证得()0g a >即可.方法二:构造函数()e 1x h x x =--,证得e 1xx ≥+,从而得到2()ln 1f x x a a x ≥+++-,进而将问题转化为21ln 02a a -->的恒成立问题,由此得证.【详解】(1)因为()()e x f x a a x=+-,定义域为R ,所以()e 1x f x a '=-,当0a ≤时,由于e 0x >,则e 0x a ≤,故()0e 1x f x a -'=<恒成立,所以()f x 在R 上单调递减;当0a >时,令()e 10x f x a '=-=,解得ln x a =-,当ln x a <-时,()0f x '<,则()f x 在(),ln a -∞-上单调递减;当ln x a >-时,()0f x ¢>,则()f x 在()ln ,a -+∞上单调递增;综上:当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(),ln a -∞-上单调递减,()f x 在()ln ,a -+∞上单调递增.(2)方法一:由(1)得,()()()ln min 2ln ln ln e 1a f aa x a f a a a --+=++=+=,要证3()2ln 2f x a >+,即证2312ln 2ln a a a ++>+,即证21ln 02a a -->恒成立,令()()21ln 02g a a a a =-->,则()21212a g a a a a -'=-=,令()0g a '<,则20a <<;令()0g a '>,则22a >;所以()g a 在22⎛⎫⎪ ⎪⎝⎭上单调递减,在22⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,所以()2min2212ln 202222g a g ⎛⎛==--=> ⎝⎭⎝⎭,则()0g a >恒成立,所以当0a >时,3()2ln 2f x a >+恒成立,证毕.方法二:令()e 1x h x x =--,则()e 1x h x '=-,由于e x y =在R 上单调递增,所以()e 1xh x '=-在R上单调递增,又()00e 10h '=-=,所以当0x <时,()0h x '<;当0x >时,()0h x '>;所以()h x 在(),0∞-上单调递减,在()0,∞+上单调递增,故()()00h x h ≥=,则e 1xx ≥+,当且仅当0x =时,等号成立,因为()2ln 22()e e e ln 1x x x a f x a a x a a x a x x a a x+=+-=+-=+-≥+++-,当且仅当ln 0x a +=,即ln x a =-时,等号成立,所以要证3()2ln 2f x a >+,即证23ln 12ln 2x a a x a +++->+,即证21ln 02a a -->,令()()21ln 02g a a a a =-->,则()21212a g a a a a -'=-=,令()0g a '<,则20a <<;令()0g a '>,则22a >;所以()g a 在22⎛ ⎝⎭上单调递减,在22⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,所以()2min2212ln 202222g a g ⎛⎛==--=> ⎝⎭⎝⎭,则()0g a >恒成立,所以当0a >时,3()2ln 2f x a >+恒成立,证毕.21.(1)2y x =(2)(,1)-∞-【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对a 分类讨论,对x 分(1,0),(0,)-+∞两部分研究【详解】(1)()f x 的定义域为(1,)-+∞当1a =时,()ln(1),(0)0e x x f x x f =++=,所以切点为(0,0)11(),(0)21e x x f x f x ''-=+=+,所以切线斜率为2所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x=(2)()ln(1)e xax f x x =++()2e 11(1)()1e (1)e x x xa xa x f x x x '+--=+=++设()2()e 1x g x a x =+-1︒若0a >,当()2(1,0),()e 10x x g x a x ∈-=+->,即()0f x '>所以()f x 在(1,0)-上单调递增,()(0)0f x f <=故()f x 在(1,0)-上没有零点,不合题意2︒若10a -≤≤,当,()0x ∈+∞,则()e 20xg x ax '=->所以()g x 在(0,)+∞上单调递增所以()(0)10g x g a >=+≥,即()0f x '>所以()f x 在(0,)+∞上单调递增,()(0)0f x f >=故()f x 在(0,)+∞上没有零点,不合题意3︒若1a <-(1)当,()0x ∈+∞,则()e 20xg x ax '=->,所以()g x 在(0,)+∞上单调递增(0)10,(1)e 0g a g =+<=>所以存在(0,1)m ∈,使得()0g m =,即()0'=f m 当(0,),()0,()x m f x f x '∈<单调递减当(,),()0,()x m f x f x '∈+∞>单调递增所以当(0,),()(0)0x m f x f ∈<=,令(),1,e x x h x x =>-则1(),1,e xxh x x -'=>-所以()x xh x e =在()1,1-上单调递增,在()1,+∞上单调递减,所以()1()1e h x h ≤=,又ee10a-->,e 1e 10e e a af a -⎛⎫-≥-+⋅= ⎪⎝⎭,所以()f x 在(,)m +∞上有唯一零点又(0,)m 没有零点,即()f x 在(0,)+∞上有唯一零点(2)当()2(1,0),()e 1x x g x a x ∈-=+-设()()e 2xh x g x ax '==-()e 20x h x a '=->所以()g x '在(1,0)-单调递增1(1)20,(0)10eg a g ''-=+<=>所以存在(1,0)n ∈-,使得()0g n '=当(1,),()0,()x n g x g x '∈-<单调递减当(,0),()0,()x n g x g x '∈>单调递增,()(0)10g x g a <=+<又1(1)0eg -=>所以存在(1,)t n ∈-,使得()0g t =,即()0f t '=当(1,),()x t f x ∈-单调递增,当(,0),()x t f x ∈单调递减,当()1,0x ∈-,()()1eh x h >-=-,又e 1e 10a -<-<,()e e 1e e 0af a a -<-=而(0)0f =,所以当(,0),()0x t f x ∈>所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点即()f x 在(1,0)-上有唯一零点所以1a <-,符合题意所以若()f x 在区间(1,0),(0,)-+∞各恰有一个零点,求a 的取值范围为(,1)-∞-【点睛】方法点睛:本题的关键是对a 的范围进行合理分类,否定和肯定并用,否定只需要说明一边不满足即可,肯定要两方面都说明.22.(1)π4cos 02ρθθ⎛⎫=≤≤ ⎪⎝⎭;2sin 218ρθ=(2)π4【分析】(1)根据极坐标与直角坐标的互化公式,即可求解曲线M 和N 的极坐标方程;(2)将0θθ=代入曲线M 和N 的方程,求得018||sin 2OB ρθ==0||4cos OA ρθ==,结合题意求得0tan 1θ=,即可求解.【详解】(1)解:由24y x x =-+224(0)y x x y =-+≥,即224(04,0)x y x x y +=≤≤≥,又由cos sin x y ρθρθ=⎧⎨=⎩,可得2π4cos (0)2ρρθθ=≤≤,所以曲线M 的极坐标方程为π4cos 02ρθθ⎛⎫=≤≤ ⎪⎝⎭.由9xy =,可得2cos sin 9ρθθ=,即2sin 218ρθ=,即曲线N 的极坐标方程为2sin 218ρθ=.(2)解:将0θθ=代入2sin 218ρθ=,可得018||sin 2OB ρθ==将0θθ=代入4cos ρθ=,可得0||4cos OA ρθ==,则012||||tan OA OB θ⋅=因为||||12OA OB ⋅=,所以0tan 1θ=,又因为0π02θ<<,所以0π4θ=.23.(1)7,33⎛⎫- ⎪⎝⎭(2)证明见详解【分析】(1)分段讨论去绝对值即可求解;(2)利用绝对值不等式可求得2m =,再利用基本不等式即可证明.【详解】(1)由题意可得:()31,11213,1131,1x x f x x x x x x x -≥⎧⎪=++-=--<<⎨⎪-+≤-⎩,当1x ≥时,则()318f x x =-<,解得23x ≤<;当11x -<<时,则()38f x x =-<,解得11x -<<;当1x ≤-时,则()318f x x =-+<,解得713x -<≤-;综上所述:不等式()8f x <的解集为7,33⎛⎫- ⎪⎝⎭.(2)∵()()1112g x f x x x x =++---≥=,当且仅当[]1,1x ∈-时等号成立,∴函数()g x 的最小值为2m =,则2a b c ++=,又∵222a a b b a b b +≥⨯=,当且仅当2a b b =,即a b =时等号成立;222b b c c b c c +≥⨯,当且仅当2b c c =,即b c =时等号成立;2222c c a a c a a +≥⨯,当且仅当2c a a =,即a c =时等号成立;上式相加可得:222222a b c b c a a b cb c a ⎛⎫⎛⎫⎛⎫+++++≥++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当a b c ==时等号成立,∴2222a b c a b c b c a ++≥++=.。
2024届重庆一诊数学试题+答案

1. 已知集合{1 2 3 4 5}A 2024年普通高等学校招生全国统一考试 高三第一次联合诊断检测数学试题一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
,,,,,2{|211120}B x x x ,则A BA .{1 2},B .{2 3},C .{3 4},D .{4 5},2. 已知复数i z a b ,若i z z ,则 A .0a bB .0a bC .0abD .1ab3. 对一个样本进行统计后得到频率分布直方图如图所示,并由此估计总体集中趋势,则 a b ,可以分别大致反映这组数据的 A .平均数,中位数 B .平均数,众数C .中位数,平均数D .中位数,众数4. 若24cos sin(2)2 ,则tan 2A .2B .12C .1D .25. 在经济学中,常用Logistic 回归模型来分析还款信度评价问题.某银行统计得到如下Logistic 模型:0.970.1270.970.127e ()1exxP x ,其中x 是客户年收入(单位:万元),()P x 是按时还款概率的预测值.如果某人年 收入是10万元,那么他按时还款概率的预测值大约为(参考数据:ln1.350.3 )A .0.35B .0.46C .0.57D .0.686. 已知()ln(1)ln()f x x a bx 是奇函数,则()f x 在点(0(0))f ,处的切线方程为A .2y xB .y xC .0yD .2y x7. 将一副三角板拼接成平面四边形ABCD (如图),1BC ,将其沿BD 折起,使得面ABD 面BCD ,若三棱锥A BCD 的顶点都在球O 的球面上,则球O 的表面积为 A .2B .73C .83D .38. 已知函数()f x 满足()()()2f x y f x f y ,(1)4f 且当0x 时,()2f x ,若存在[1 2]x ,,使得2(4)(2)1f ax x f x ,则a 的取值范围是BCDA6045A .1(0 ]2,B .15[ ]28,C .52[ ]83,D .12[ ]23,二、选择题:本题共4小题,每小题5分,共20分。
四川省遂宁市2023届高三上学期一诊模拟考试理科数学试卷(Word版含答案)

遂宁市2023届高三上学期一诊模拟考试理科数学总分: 150分一 单选题(5分*12) 1. 已知复数 z 满足z =1+i , 则i zz+3i=( )A.−35−35iB.−15+35iC.−35+35iD.15+35i 2. 人口普查是世界各国所广泛采取的一种调查方法,根据人口普查的基本情况,可以科学的研究制定社会、经济、科教等各项发展政策,是国家科学决策的重要基础工作.截止2021年6月,我国共进行了七次人口普查,下图是这七次人口普查的城乡人数和增幅情况,下列说法错误的是( )A.城镇人口数逐次增加B.历次人口普查中第七次普查城镇人口最多C.城镇人口比重逐次增加D.乡村人口数逐次增加3. 已知命题 p : “a >1”; 命题q : “函数f(x)=ax +cosx 单调递增”, 则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不必要又不充分条件4. 已知角 α的顶点与坐标原点O 重合, 始边与x 轴的非负半轴重合. 若角α终边上一点P 的坐标为(cos 2π3,sin 2π3),则sinαtanα=( ) A.−32B.−√32C.√32D.325. 执行下侧所示的程序框图, 输出 S 的值为 ( )A.30B.70C.110D.1406. 函数 y =x 28−ln|x|的图象大致为( )A. B. C. D.7. 已知离心率为 32的双曲线C:x 2a 2−y 2b2=1(a >0,b >0)的右焦点与抛物线y 2=12x 的焦点重合,则C 的方程是 ( )A.x 25−y 24=1 B.x 24−y 25=1 C.x 28−y 210=1 D.x 23−y 26=1 8. 已知 a =e 0.1,b =√3c =ln2, 则a,b,c 的大小关系为 ( )A.a >b >cB.a >c >bC.b >a >cD.b >c >a9. 已知函数 f(x)=acos (x −π3)+√3sin (x −π3)是偶函数,g(x)=f (2x +π6)+1, 若关于x 的方程g(x)=m 在[0,7π12]有两个不相等实根, 则实数m 的取值范围是( ) A.[0,3] B.[0,3) C.[2,3) D.[√2+1,3)10.已知函数 f(x)的定义域为R,f(2x −2)为偶函数,f(x −3)+f(−x +1)=0, 当x ∈[−2,−1]时,f(x)=1a x −ax −4(a >0且a ≠1), 且f(−2)=4. 则∑k=119|f(k)|=( ) A.28B.32C.36D.4011. 某四棱锥的底面为正方形, 顶点在底面的射影为正方形中心, 该四棱锥所有顶点都在半径为 3 的球 O 上, 当该四棱锥的体积最大时, 底面正方形所在平面截球O 的截面面积是( ) A.πB.4πC.8πD.9π12. 已知函数 f(x)=sinωx +cosωx , 其中ω>0. 给出以下命题:①若 f(x)在(0,π4)上有且仅有 1 个极值点, 则1<ω≤5;①若 f(x)在(π2,π)上没有零点, 则0<ω≤34或32≤ω≤74;①若 f(x)在区间(π2,3π4)上单调递增, 则0<ω≤13或52≤ω≤3.其中所有真命题的序号是( ) A.①①B.①①C.①①D.①①①二 填空题(5分*4)2a 54 150 , 214. 双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左顶点为A , 右焦点F(c,0), 若直线x =c 与该双曲线交于B 、C 两点,△ABC 为等腰直角三角形, 则该双曲线离心率为__________15. 若数列 {a n }对任意n ∈N ∗满足:a 1+2a 2+3a 3+⋯+na n =n , 则数列{an n+1}的前n 项和为__________16. 已知函数 f(x)=sin π2x , 任取t ∈R , 记函数f(x)在[t,t +1]上的最大值为M t , 最小值为m t ,设ℎ(t)=M t −m t , 则函数ℎ(t)的值域为__________ 三 解答题(共70分)17. (12分)第七次全国人口普查是对中国特色社会主义进入新时代开展的重大国情国力调查.某地区通过摸底了解到,某小区户数有1000户,在选择自主填报或人户登记的户数与户主年龄段(45岁以上和45岁及以下)分布如下2×2列联表所示:(1)将题中列联表补充完整;通过计算判断,有没有95%的把握认为户主选择自主填报与年龄段有关系?(2)根据(1)中列联表的数据,在自主填报的户数中按照户主年龄段用分层抽样的方法抽取了6户.若从这6户中随机抽取3户进行进一步复核,记所抽取的3户中“户主45岁及以下”的户数为ξ,求ξ的分布列和数学期望. 附表及公式:其中 K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d), n =a +b +c +d .18. (12分)在 △ABC 中,a,b,c 分别为角A 、B 、C 的对边,c(acosB +bcosA)=a 2−b 2+bc . (1)求 A ;(2)若角 A 的平分线AD 交BC 于D , 且BD =2DC,AD =2√3, 求a .19. (12分)已知数列 {a n }的前n 项和为S n , 且S n+1=S n +a n +1, __________. 请在a 4+a 7=13;a 1,a 3,a 7成等比数列;S 10=65, 这三个条件中任选一个补充在上面题干中, 并解答下面问题. (1)求数列 {a n }的通项公式;(2)设数列 {a n 2n }的前n 项和T n , 求证:1≤T n <3.20. (12分)如图, 四棱锥 P −ABCD 中, 侧面PAD ⊥底面ABCD , 底面ABCD 为梯形,AB//DC , 且AP =PD =CD =2AB =2√3,∠APD =∠ADC =60∘. 作PH ⊥AD 交AD 于点H , 连结AC,BD 交于点(1)设 G 是线段PH 上的点, 试探究: 当G 在什么位置时, 有GF//平面PAB ; (2)求平面 PAD 与平面PBC 所成二面角的正弦值.21. (12分)已知函数 f(x)=lnx +ax +1(其中a ∈R ).(1) 讨论函数 f(x)的单调性;(2) 对任意 x ∈(0,+∞)都有f(x)≤xe x 成立, 求实数a 的取值范围.22. (10分)在直角坐标系 xOy 中, 曲线C 的参数方程为{x =1+cosαy =1+sinα(α为参数). 以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系, 直线l 的极坐标方程为ρcos (θ−π4)=√2. (1)求直线 l 的直角坐标方程与曲线C 的普通方程;(2)已知点 A 的直角坐标为(−1,3), 直线l 与曲线C 相交于E,F 两点, 求AE ∙|AF|的值. 23. (10分)已知函数 f(x)=|x −1|+2|x +1|. (1) 求不等式 f(x)<5的解集;(2) 设 f(x)的最小值为m . 若正实数a,b,c 满足a +2b +3c =m , 求3a 2+2b 2+c 2的最小值.答案1. D【解析】z=1+i, 故i zz̅+3i =i(1+i)1−i+3i=−1+i1+2i=(−1+i)(1−2i)(1+2i)(1−2i)=1+3i5=15+35i.故选: D2. D【解析】根据给定的条形图,可得城镇人口在逐年增加,所以A正确;从给定的条形图象,可得再历次人口普查中第七次普查城镇人口最多的,所以B正确;从图表中的数据可得,七次人口普查中城镇人口比重依次为13.06,18.30,20.91,26.40,36.32,69.68,63.89,可知城镇人口比值逐次增加,所以C正确;由图表,可得乡村人口先增加后减少,所以D不正确.故选:D。
2024届绵阳中学高三数学(理)上学期一诊模拟卷(五)附答案解析

2024届绵阳中学高三数学(理)上学期一诊模拟卷(五)2023.10(试卷满分150分;考试时间120分钟)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的).1.已知集合{1,22x U x y A x ⎧⎫===>⎨⎬⎩⎭,则U A =ð()A .(],1-∞-B .[)2,1--C .[]2,1--D .[)2,-+∞2.实数a ,b 满足a b ≥,则下列不等式成立的是()A .1a b ≥B .tan tan a b ≥C .21a b -≥D .()ln 0a b -≥3.已知,,a b c 分别为ABC 的内角,,A B C 的对边,命题p :若222a b c +<,则ABC 为钝角三角形,命题q:若a b <,则cos cos A B <.下列命题为真命题的是()A .p q∧B .()p q ∧⌝C .()()p q ⌝∧⌝D .()p q⌝∨4.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入2x =,2n =,依次输入a 的值为1,2,3,则输出的s =()A .10B .11C .16D .175.如图,在平行四边形ABCD 中,23BE BC =,34DF DE=,若AF AB AD λμ=+ ,则λμ-=()A .32B .112-C .112D .06.等差数列{}n a 中,1472120a a a ++=,则746S a -=()A .60B .30C .10D .07.垃圾分类是指按一定规定或标准将垃圾分类储存、投放和搬运,从而转变成公共资源的一系列活动,做好垃圾分类是每一位公民应尽的义务.已知某种垃圾的分解率v 与时间t (月)近似地满足关系tv a b=⋅(其中,a b 为正常数),经过5个月,这种垃圾的分解率为5%,经过10个月,这种垃圾的分解率为10%,那么这种垃圾完全分解大约需要经过()个月.(参考数据:lg20.3≈)A .20B .27C .32D .408.函数()()3π3πe e 2sin ,22x x f x x x x -⎛⎫⎛⎫=--∈- ⎪ ⎪⎝⎭⎝⎭的图像大致是()A.B .C.D.9.定义:{},max ,,,a a ba b b a b ≥⎧=⎨<⎩函数(){}max sin ,cos f x x x =,下列选项正确的是()A .函数()f x 为偶函数B .函数()f x 不是周期函数C .函数()f x 在π0,2⎡⎤⎢⎥⎣⎦上单调递增D .函数()f x 的图像关于9π4x =对称10.若α,β为锐角,且π4αβ+=,则tan tan αβ+的最小值为()A.2B1C.2D111.{}n a 为等差数列,公差为d ,且01d <<,5()2k a k Z π≠∈,223557sin 2sin cos sin a a a a+⋅=,函数()sin(4)(0)f x d wx d w =+>在20,3π⎛⎫ ⎪⎝⎭上单调且存在020,3x π⎛⎫∈ ⎪⎝⎭,使得()f x 关于0(,0)x 对称,则w 的取值范围是()A .20,3⎛⎤⎥⎝⎦B .30,2⎛⎤ ⎥⎝⎦C .24,33⎛⎤ ⎥⎝⎦D .33,42⎛⎤ ⎥⎝⎦12.函数()f x 和()g x 的定义域均为R ,且()33y f x =+为偶函数,()32y g x =++为奇函数,对x ∀∈R ,均有()()21f xg x x +=+,则()()77f g =()A .615B .616C .1176D .2058第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.已知()1,2AB =- ,点()()2,0,3,1C D -,则向量AB 在CD 方向上的投影为.14.若πtan 9α=,则7πcos()18πsin()9αα+=+.15.已知函数()22e ,1e ,1x xx x f x x x ⎧<⎪=⎨≥⎪⎩,若关于x 的方程()()220f x af x -=⎡⎤⎣⎦有两个不相等的实数根,则实数a 的取值范围是.16.已知正整数数列{}n a 满足:11,1,,nn n n n a n a na a a n a n +->⎧==⎨+≤⎩,则2022a =三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第.22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭,已知函数()y f x =的图象与x 轴相邻两个交点的距离为π2,且图象关于点π,08M ⎛⎫- ⎪⎝⎭对称.(1)求()f x 的单调区间;(2)求不等式()1f x -≤≤的解集.18.设n S 是数列{}n a 的前n 项和,已知11a =,11,,22,.nn n a n n a a n n +⎧+⎪=⎨⎪-⎩为奇数为偶数(1)证明:{}22n a -是等比数列;(2)求满足20n S >的所有正整数n.19.如图,在平面四边形ABCD 中,1AB =,3BC =,2AD CD ==.(1)当四边形ABCD 内接于圆O 时,求角C ;(2)当四边形ABCD 面积最大时,求对角线BD 的长.20.已知函数322()2f x x ax a x m =+++在1x =处取得极小值.(1)求实数a 的值;(2)若()f x 有3个零点,求实数m 的取值范围.21.已知函数()()2e 2x f x ax a =-∈R .(1)讨论()f x 的单调性;(2)若()sin cos 0e x x xf x -+≥对任意的[)0,x ∈+∞恒成立,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,曲线C 的参数方程为22cos 22sin x y αα=+⎧⎨=+⎩(α为参数),直线l 的参数方程为cos sin x t y t ββ=⎧⎨=⎩(t 为参数,0πβ≤<),以坐标原点O 为极点,x 轴的正半轴为极轴,取相同的长度单位,建立极坐标系.(1)求曲线C 的极坐标方程;(2)设直线l 与曲线C 交于A ,B 两点,且2216OA OB +=,求β的值.[选修4-5:不等式选讲]23.已知函数()2f x x =-.(1)解不等式()()216f x f x ++≥;(2)对()1,0a b a b +=>及R x ∀∈,不等式()412f x m x a b ----≤+恒成立,求实数m 的取值范围.1.C【分析】因为集合,U A 的代表元素都是x ,所以分别解关于x 的不等式可得集合,U A ,进而求出U A ð.【详解】由20x +≥得2x ≥-,由122x >得122x ->,即1x >-,所以{}{}2,1U x x A x x =≥-=>-,所以[]2,1U A -=-ð.故选:C.2.C【分析】举反例即可判定ABD ,由a b ≥,得出0a b -≥,利用指数函数的性质即可判定C.【详解】取1,1a b ==-,满足a b ≥,但1ab =-,所以A 错误;取3ππ,44a b ==,满足a b ≥,但tan 1tan 1a b =-<=,所以B 错误;若a b ≥,则0a b -≥,0221a b-≥=,所以C 正确;取1e a b -=,则()1ln ln 1e a b -==-,所以D 错误.故选:C.3.B【分析】分别判断两个命题的真假,再根据选项判断复合命题的真假.【详解】因为222a b c +<,所以222cos 02a b c C ab +-=<,则p 为真命题.因为a b <,所以A B <,又cos y x=在[]0,π上是减函数,所以cos cos A B >,则q 为假命题,只有()p q ∧⌝为真命题.故选:B4.B【分析】根据循环结构,令1,2,3a =依次进入循环系统,计算输出结果.【详解】解:∵输入的2x =,2n =,当输入的a 为1时,1S =,1k =,不满足退出循环的条件;当再次输入的a 为2时,4S =,2k =,不满足退出循环的条件;当输入的a 为3时,11S =,3k =,满足退出循环的条件;故输出的S 值为11.故选:B 5.D【分析】由已知结合向量的线性运算及平面向量基本定理即可求解.【详解】在平行四边形ABCD 中,23BE BC =,34DF DE =,所以()3344AF AD DF AD DE AD DC CE=+=+=++ 31334344AD AB AD AB AD⎛⎫=+-=+ ⎪⎝⎭,若AF AB AD λμ=+ ,则34λμ==,则0λμ-=.故选:D .6.B【分析】本题可由等差数列的性质即中项公式来求解.【详解】 等差数列{}n a 中,1472120a a a ++=,∴44120a =即430a =,∴()1774444470763662a a S a a a a a +-=-==-=.故选:B.7.B【分析】根据v 和t 的两组值求出,a b ,再根据100%1v ==求出t 即可得解.【详解】依题意得5105%10%a b a b ⎧=⋅⎨=⋅⎩,解得152b =, 2.5%a =,则152.5%2v =⋅,这种垃圾完全分解,即分解率为100%,即152.5%21t v =⋅=,所以15240=,所以21log 405t =,所以25lg 405log 40lg 2t ==5(lg 41)5(2lg 21)lg 2lg 2++==55101027lg 20.3=+≈+≈.故选:B8.A【分析】根据函数的奇偶性和特殊值,逐一判断,即可得到本题答案.【详解】由()()()()()e e 2sin e e 2sin xxxxf x x x x x f x ---=-+-=--=,又3π3π,22x ⎛⎫∈- ⎪⎝⎭,可知()f x 为偶函数,排除B ;因为()π0f =,可排除D ,又由1(1)(e2)sin10ef=--⋅>,可排除C.故选:A 9.D【分析】利用正弦曲线、余弦曲线确定(){}max sin,cosf x x x=的图像.【详解】因为(){}max sin,cosf x x x=,所以()f x的图像如下:由图可知,A,B,C错误,D正确.故选:D.10.A【分析】利用两角和的正切公式进行转化,结合基本不等式求得tan tan2αβ++≥,从而求得tan tanαβ+的最小值.【详解】因为()tan tantan11tan tanαβαβαβ++==-,所以()()1tan1tan1tan tan tan tanαβαβαβ++=+++()11tan tan tan tan2αβαβ=+-+=,所以()()21tan1tan1tan1tan2αβαβ+++⎛⎫++ ⎪⎝⎭≤,即2≤()2tan tan24αβ++,得()2tan tan28αβ++≥,由于α,β为锐角,所以tan tan20αβ++>,所以tan tan2αβ++≥,当且仅当tan tan1αβ==时等号成立,所以tan tanαβ+的最小值为2-.故选:A11.D【分析】推导出sin4d=1,由此能求出d,可得函数解析式,利用在23xπ⎛⎫∈ ⎪⎝⎭,上单调且存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,,即可得出结论.【详解】∵{an}为等差数列,公差为d ,且0<d <1,a52k π≠(k ∈Z ),sin2a3+2sina5•cosa5=sin2a7,∴2sina5cosa5=sin2a7﹣sin2a3=2sin 372a a +cos 732a a -•2cos 372a a +sin 732a a -=2sina5cos2d•2cosa5sin2d ,∴sin4d =1,∴d 8π=.∴f (x )8π=cosωx ,∵在203x π⎛⎫∈ ⎪⎝⎭,上单调∴23ππω≥,∴ω32≤;又存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,,所以f (x )在(0,23π)上存在零点,即223ππω<,得到ω34>.故答案为33,42⎛⎤ ⎥⎝⎦故选D【点睛】本题考查等差数列的公差的求法,考查三角函数的图象与性质,准确求解数列的公差是本题关键,考查推理能力,是中档题.12.B【分析】由题意可以推出()()6f x f x =-,()()46g x g x =---,再结合()()21f xg x x +=+可得函数方程组,解出函数方程组后再代入求值即可.【详解】由函数()33f x +为偶函数,则()()3333f x f x +=-,即函数()f x 关于直线3x =对称,故()()6f x f x =-;由函数()32g x ++为奇函数,则()()3232g x g x ++=--+-,整理可得()()334g x g x ++-+=-,即函数()g x 关于()3,2-对称,故()()46g x g x =---;由()()21f xg x x +=+,可得()()266(6)1f xg x x -+-=-+,所以()()24(6)1f x g x x --=-+,故()()()()2214(6)1f x g x x f x g x x ⎧+=+⎪⎨--=-+⎪⎩,解得()()2621,620f x x xg x x =-+=-,所以()()27672128,67202277f g =-⨯+==⨯-=,所以()()772822616f g =⨯=.故选:B.13.2-【分析】根据投影的计算公式即可求解.【详解】由点()()2,0,3,1C D -,得()1,1CD =-,所以向量AB在CD方向上的投影为:cos ,2AB CD AB AB CD CD⋅⋅==-.故答案为:322-.14.3-##3-+【分析】利用和角的正余弦公式化简,再利用诱导公式及齐次式求法求解即可.【详解】πtan 9α=,则7π7π7ππππcos()cos cos sin sin cos sin sin cos tan tan 181818999ππππππsin()sin cos cos sin sin cos cos sin tan tan999999αααααααααααα+---===++++3=-=.故答案为:315.222e e ,,e 82⎛⎫⎛⎫⋃+∞ ⎪ ⎪⎝⎭⎝⎭【分析】利用导数研究()f x 的单调性和极值,作出()f x 的图像;由关于x 的方程2[()]2()0f x af x -=有两个不相等的实数根,得到函数()y f x =与2y a =有一个交点,利用图像法求解.【详解】对于函数()22e ,1e ,1x xx x f x x x ⎧<⎪=⎨≥⎪⎩.当()2()e 1x f x x x =<时,2()(2)e x f x x x '=+.令()0f x '>,解得:<2x -或01x <<;令()0f x '<,解得:20x -<<;所以()f x 在(,2)-∞-上单调递增,在(2,0)-上单调递减,在(0,1)上单调递增.而<2x -,()0f x >;24(2)e f -=,(1)e f =.当()2e ()1x f x x x =≥时,24e ()(2)x f x x x x '=-.令()0f x '<,解得:12x <<;令()0f x '>,解得:2x >;所以()f x 在(1,2)上单调递减,在(2,)+∞上单调递增.而()1e f =;2e (2)4f =,2x >,()0f x >.作出()f x的图像如图所示:解关于x 的方程2[()]2()0f x af x -=有两个不相等的实数根,即关于x 的方程()[()2]0f x f x a -=有两个不相等的实数根,()0f x =只有一个实数根0x =,所以关于x 的方程()20f x a -=有一个非零的实数根,即函数()y f x =与2y a =有一个交点,横坐标0x ≠.结合图像可得:224e 2e4a <<或2a e >,所以a 的取值范围是222e e ,,e 82⎛⎫⎛⎫⋃+∞ ⎪ ⎪⎝⎭⎝⎭.16.630【分析】根据已知条件,易得到数列的初值,根据初值,可以进行归纳,得到1k n a =中项数满足的递推关系,然后使用数列归纳法进行推导论证,得到1213(21)k k n n ++=+的递推公式,然后通过构造等比数列求解出k n 的表达式,结合2022所满足的关系代入合适的关系式求解即可.【详解】由11,1,,nn n n n a n a na a a n a n +->⎧==⎨+≤⎩可得:n1234567891011121314na 1241510411312213114我们可以看到1k n a =的下标:1231,4,13,,n n n === 它们满足的递推关系:131,1,2,3k k n n k +=+=①,对k 归纳:1,2k =时已经成立,设已有1k n a =,则由条件,11k n k a n +=+,222k n k a n +=+,3k n ka n +=,423k n k a n +=+,归纳易得:212,1,2,3,,1k n m k k a n m m n +-=+-=+ ,221,1,2,3,,k n m k ka n m m n +=++= ,②于是,当1k m n =+时,312(1)1k n k k a n n +=+-+=,因此,131,(1,2,3,)k k n n k +=+= 即①式成立,根据①式,1213(21)k k n n ++=+,令21k kn x +=,所以13k kx x +=,13x =,所以3kk x =,因此312k k n -=,1,2,3,k = ,而773110932n -==,883132802n -==,则782022n n <<,7202224651n =+- ,故由②式可得,20227246510932465630a n =+-=+-=故答案为:630.17.(1)单调递增区间:3πππ,π8282k k ⎛⎫-++ ⎪⎝⎭,k ∈Z ,无递减区间(2)ππππ,42242k k x x k ⎧⎫-+≤≤+∈⎨⎬⎩⎭Z 【分析】(1)根据函数周期性,结合函数图象过的点的坐标,代值计算即可求得参数,则解析式可求;利用整体法代换法,即可求得函数的单调区间;(2)根据(1)中所求解析式,利用正切函数的单调性,即可解得不等式.【详解】(1)由题意知,函数f(x)的最小正周期为T =2π,即2ππω=,因为ω>0,所以ω=2,从而f(x)=tan(2x +φ),因为函数y =f(x)的图象关于点M ,08π⎛⎫- ⎪⎝⎭对称,所以2×8π⎛⎫- ⎪⎝⎭+φ=2k π,k ∈Z ,即φ=2k π+4π,k ∈Z.因为0<φ<2π,所以φ=4π,故f(x)=tan 24x π⎛⎫+ ⎪⎝⎭.令-2π+kπ<2x +4π<2π+kπ,k ∈Z ,得3244k x k k Zππππ-+<<+∈,,即38282k k x k Zππππ-+<<+∈所以函数的单调递增区间为3,8282k k ππππ⎛⎫-++ ⎪⎝⎭,k ∈Z ,无单调递减区间.(2)由(1)知,f(x)=tan 24x π⎛⎫+ ⎪⎝⎭.由-1≤tan 24x π⎛⎫+ ⎪⎝⎭得2443k x k k πππππ-+≤+≤+∈,Z ,即42242k k x k ππππ-+≤≤+∈,Z所以不等式-42242k k x x k ππππ⎧⎫-+≤≤+∈⎨⎬⎩⎭Z ∣,.18.(1)证明见解析(2)正整数n 为1,2【分析】(1)由定义能证明数列{}22n a -是等比数列;(2)由1211222n n a -⎛⎫-=-⋅ ⎪⎝⎭,得21218432nn n a a n -⎛⎫+=--⋅ ⎪⎝⎭,从而()()()22123421233123222nnn n S a a a a a a n -⎛⎫⎛⎫=++++⋅⋅⋅++=--++⨯ ⎪ ⎪⎝⎭⎝⎭;由求和式子由此能求出满足20n S >的所有正整数n 的值.【详解】(1)由已知得()222122111214211222n n n n a a n a n n a ++=++=-++=+,所以()2221222n n a a +-=-,其中232a =,21202a -=-≠,所以{}22n a -是以12-为首项,12为公比的等比数列;(2)由(1)知1211222n n a -⎛⎫-=-⋅ ⎪⎝⎭,所以2122n n a ⎛⎫=-+ ⎪⎝⎭,1211642n n a n --⎛⎫=-- ⎪⎝⎭,所以21218432nn n a a n -⎛⎫+=--⋅ ⎪⎝⎭,所以()()()21234212n n n S a a a a a a -=++++⋅⋅⋅++()2211118412326332222n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫=-++⋅⋅⋅+-++⋅⋅⋅+=-+-+⨯⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦233123222nn ⎛⎫⎛⎫=--++⨯ ⎪ ⎪⎝⎭⎝⎭,当2n ≥时,{}2n S 单调递减,其中252S =,474S =,6218S =-,所以满足20n S >的所有正整数n 为1,2.19.(1)π3C =【分析】(1)根据πA C +=,结合余弦定理求解即可;(2)将四边形ABCD 的面积拆成两个三角形的面积之和,由余弦定理和三角形面积公式结合三角函数的性质即可求解.【详解】(1)由余弦定理可得:222222cos 12212cos BD AB AD AB AD A A =+-⋅⋅=+-⨯⨯⨯,222222cos 32232cos BD BC CD BC CD C C =+-⋅⋅=+-⨯⨯⨯,所以54cos 1312cos A C -=-.又四边形ABCD 内接于圆O ,所以πA C +=,所以()54cos 1312cos C Cπ--=-,化简可得1cos 2C =,又()0,πC ∈,所以π3C =.(2)设四边形ABCD 的面积为S ,则11sin sin 22ABD BCD S S S AB AD A BC CD C =+=⋅⋅⋅+⋅⋅⋅△△,又222222cos 2cos BD AB AD AB AD A BC CD BC CD C =+-⋅⋅=+-⋅⋅,所以2222111223221221223223S sinA sinC cosA cosC ⎧=⨯⨯+⨯⨯⎪⎨⎪+-⨯⨯=+-⨯⨯⎩,即3,23,S sinA sinC cosC cosA =+⎧⎨=-⎩平方后相加得24106sin sin 6cos cos S A C A C +=+-,即()266cos S A C =-+,又()0,2πA C +∈,所以πA C +=时,2S 有最大值,即S 有最大值.此时,πA C =-,代入23cos cos C A =-得1cos 2C =.又()0,πC ∈,所以π3C =在BCD △中,可得:22222π2cos 23223cos73BD BC CD BC CD C =+-⋅⋅=+-⨯⨯⨯=,即BD 所以,对角线BD.20.(1)1-(2)4,027⎛⎫- ⎪⎝⎭【分析】(1)求得22()34f x x ax a '=++,根据题意得到2(1)340f a a '=++=,求得a 的值,再利用函数极小值的定义,进行判定,即可求解;(2)由(1)得到函数的()f x 单调性和极值,结合题意,列出不等式组,即可求解.【详解】(1)解:由题意,函数322()2f x x ax a x m =+++,可得22()34f x x ax a '=++,因为()f x 在1x =处取得极小值,所以2(1)340f a a '=++=,解得3a =-或1a =-.①当3a =-时,2()31293(1)(3)f x x x x x =-+=--'.令()0f x '>,解得1x <或3x >;令()0f x '<,解得13x <<.所以()f x 在(,1)-∞,(3,)+∞上单调递增,在(1,3)上单调递减,此时()f x 在1x =处取得极大值,不合题意,舍去.②当1a =-时,2()341(31)(1)f x x x x x '=-+=--.令()0f x '>,解得13x <或1x >;令()0f x '<,解得113x <<.所以()f x 在1,3⎛⎫-∞ ⎪⎝⎭,(1,)+∞上单调递增,在1,13⎛⎫⎪⎝⎭上单调递减,此时()f x 在1x =处取得极小值,符合题意.综上可知,1a =-.(2)解:由(1)知,当1a =-时,函数32()2f x x x x m =-++,且()f x 在1,3⎛⎫-∞ ⎪⎝⎭,(1,)+∞上单调递增,在1,13⎛⎫ ⎪⎝⎭上单调递减,要使()f x 有3个零点,只需112132793f m ⎛⎫=-++> ⎪⎝⎭且(1)1210f m =-++<,解得4027m -<<.故实数m 的取值范围为4,027⎛⎫- ⎪⎝⎭.21.(1)答案见解析(2)(],2-∞【分析】(1)利用导数与函数单调性的关系,分类讨论0a ≤与0a >即可得解;(2)构造函数()2sin cos e 2e x x x xh x ax -=-+,利用导数得到()h x '的单调性,从而分类讨论2a >与2a ≤,结合()00h =的特性进行分析即可得解.【详解】(1)因为()2e 2x f x ax=-,所以()()222e 22e x x f x a a'=-=-,当0a ≤时,2e 0x a -≥,即()0f x '≥,所以()f x 在R上单调递增;当0a >时,令2e 0xa -=,得1ln 2x a =,令()0f x '<,得1ln 2x a <;令()0f x ¢>,得1ln 2x a >;所以()f x 在1,ln 2a ⎛⎫-∞ ⎪⎝⎭上单调递减;()f x 在1ln ,2a ⎛⎫+∞ ⎪⎝⎭上单调递增;综上,当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在1,ln 2a ⎛⎫-∞ ⎪⎝⎭上单调递减;()f x 在1ln ,2a ⎛⎫+∞ ⎪⎝⎭上单调递增.(2)因为()2e 2x f x ax=-,所以由()sin cos 0e x x x f x -+≥,得2sin cos e 20e x x x x ax --+≥在[)0,∞+上恒成立,令()()2sin cos e 20e x x x x h x ax x -=-+≥,则()22cos 2e 2e xx x h x a '=-+,()00h =,令()()2cos e 0e x x x x a x ϕ=-+≥,则()22πsin cos 42e 2e e e x xx x x x x x ϕ⎛⎫+ ⎪--⎝⎭'=+=-,因为0x ≥,则e 1x≥,2e 1x ≥,π4x ⎛⎫+≤ ⎪⎝⎭,则π4e x x ⎛⎫+ ⎪⎝⎭≤所以2π42e 20e x x x ⎛⎫+ ⎪⎝⎭-≥>,则()0x ϕ'>在[)0,∞+上恒成立,所以()x ϕ在[)0,∞+上单调递增,则()h x'在[)0,∞+上单调递增,令()()32e 2e 0x x m x x x =-≥,则()()()326e 21e 2e 3e 1x x x x m x x x '=-+=--,令()()23e 10x n x x x =--≥,则()26e 10x n x '=-≥在[)0,∞+上恒成立,所以()n x 在[)0,∞+上单调递增,则()()00n x n ≥>,即()0m x '>,所以()m x 在[)0,∞+上单调递增,则()()02m x m ≥=,则32e 2e 2cos 22cos 0x xx x x -+≥-≥,故22cos 2e 20e x x xx -+≥,所以当2a >时,()002cos002e 2420e h a a '=-+=-<,()22cos 2e 20e a aah a a '=-+≥,所以()h x'在(]0,a 上必存在0x ,使得()00h x '=,又()h x '在[)0,∞+上单调递增,故当00x x <<时,()00h x '<,所以()h x 在()00,x 上单调递减,而()()00h x h <=,不满足题意;当2a ≤时,()()002cos 002e 22420e h x h a ''≥=-+≥-+=,所以()h x 在[)0,∞+上单调递增,故()()00h x h ≥=,满足题意;综上:2a ≤,即a 的取值范围为(],2-∞.【点睛】关键点睛:本题解决的关键在于利用导数求得当2a >时,存在()00,x x ∈使得()0h x <,从而排除2a >的情况,由此得解.22.(1)24cos 4sin 40ρρθρθ--+=(2)π12β=或5π12β=【分析】(1)首先将曲线C 的参数方程化为普通方程,再根据转化公式,化为极坐标方程;(2)首先将直线的极坐标方程代入曲线C 的极坐标方程,利用韦达定理表示22OA OB+,即可求解.【详解】(1)曲线C 的直角坐标方程:224440x y x y +--+=,根据公式直角坐标与极坐标转化公式,222x y ρ+=,cos x ρθ=,sin y ρθ=,所以C 的极坐标方程:24cos 4sin 40ρρθρθ--+=;(2)直线l 的极坐标方程:()R θβρ=∈,代入C 的极坐标方程得:()24cos sin 40ρββρ-++=,124cos 4sin ρρββ∴+=+,124ρρ=,()222221212122816sin 216OA OB ρρρρρρβ+=+=+-=+=,1sin 22β∴=,0πβ≤<,π26β∴=或5π12,即π12β=或5π12β=,23.(1)(,1][3,)-∞-+∞ ;(2)135m -≤≤.【分析】(1)写出()()21f x f x ++的分段函数的形式,分类讨论即可求得不等式的解集.(2)利用均值不等式,根据1a b +=,求得41a b +的最小值,再结合绝对值三角不等式,即可将问题转化为关于m 的不等式,则问题得解.【详解】(1)依题意,133,21()(21)2211,2233,2x x f x f x x x x x x x ⎧-<⎪⎪⎪++=-+-=+≤≤⎨⎪->⎪⎪⎩,当12x <时,由336x -≥,解得1x ≤-,则1x ≤-;当122x ≤≤时,16x +≥,解得5x ≥,无解;当2x >时,由336x -≥,解得3x ≥,则3x ≥,所以不等式()()216f x f x ++≥的解集为(,1][3,)-∞-+∞ .(2)由1(,0)a b a b +=>,得41414()559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当4b a a b =,即223a b ==时取等号,则当223a b ==时,min 41(9a b +=,依题意,R x ∀∈,|2||2|9x m x -----≤,而当x ∈R 时,|2||2||(2)(2)||4||4|x m x x m x m m -----≤--+--=--=+,当且仅当(2)(2)0x m x ----≤,且|2||2|x m x --≥--时取等号,因此|4|9m +≤,解得135m -≤≤,所以135m -≤≤.。
2023届绵阳市高三数学(理)上学期11月一诊考试卷附答案解析

2023届绵阳市高三数学(理)上学期11月一诊考试卷【考试时间:2022年11月1日15:00—17:00】一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}13A x x =∈-≤≤Z ,{}22B x x =≤,则A B = ()A ⎡-⎣ B.{}1,0,1- C.{}1,0,1,2- D.⎡⎤⎣⎦2.若0a b >>,则一定有()A.cos cos a b< B.220a b -< C.11a b> D.33a b >3.若命题“x ∀∈R ,sin cos m x x ≥+”是真命题,则实数m 的取值范围是()A.m ≥B.2m ≥ C.m ≤ D.2m ≤-4.设9log 4a =,则3a 的值是()A 1B.2C.4D.95.在ABC 中,点M 为边AB 上一点,2AM MB =,若3CM CA CB λμ=+ ,则μ=()A.3B.2C.1D.1-6.已知n S 是等差数列{}n a 的前n 项和,若1957S =,则5143a a a --=()A.2B.3C.4D.67.某地锰矿石原有储量为a 万吨,计划每年的开采量为本年年初储量的m (01m <<,且m 为常数)倍,那么第n (*n ∈N )年在开采完成后剩余储量为()1na m -,并按该计划方案使用10年时间开采到原有储量的一半.若开采到剩余储量为原有储量的70%时,则需开采约( 1.4≈)A 4B.5C.6D.88.若函数πcos 6y x ω⎛⎫=+⎪⎝⎭(0ω>)在区间π,02⎛⎫- ⎪⎝⎭上恰有唯一极值点,则ω的取值范围为()A.17,36⎡⎤⎢⎥⎣⎦B.17,36⎛⎤ ⎥⎝⎦C.17,33⎛⎤ ⎥⎝⎦D.27,33⎛⎫⎪⎝⎭9.函数()()1,21,20x x f x f x x ⎧-≤≤⎪=⎨+-≤<⎪⎩的图象大致为()A. B.C. D.10.已知()tan 2tan cos 22ααα-⋅=,则tan α=()A.2B.C.2- D.1211.已知直线l :0x my n ++=既是曲线ln y x =的切线,又是曲线2e x y -=的切线,则m n +=()A.0B.2- C.0或eD.2-或e-12.若函数()f x 的定义域为R ,且()21f x +偶函数,()1f x -关于点()3,3成中心对称,则下列说法正确的个数为()①()f x 的一个周期为2②()223f =③()f x 的一条对称轴为5x =④()19157i f i ==∑A.1B.2C.3D.4二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量()1,3a =-,()1,b m = ,且()2a a b ⊥- ,则m =______.14.已知等比数列{}n a 的各项均为正数,设n S 是数列{}n a 的前n 项和,且22a =,48a =,则5S =______.15.某游乐场中的摩天轮作匀速圆周运动,其中心距地面20.5米,半径为20米.假设从小军同学在最低点处登上摩天轮开始计时,第6分钟第一次到达最高点.则第10分钟小军同学离地面的高度为______米.16.已知函数c ()223,,2,,x x x a f x x x a ⎧--≥=⎨-<⎩若存在实数m ,使得关于x 的方程()f x m =恰有三个不同的实数根,则a 的取值范围是______.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知函数())cos cos f x xx x =-.(1)求()f x 的单调递减区间;(2)求()1f x =-在[]0,π上的解.18.已知数列{}n a 满足:112a =,21a =,2145n n n a a a +++=(*n ∈N ).(1)证明:数列{}1n n a a +-是等比数列;(2)求数列{}n a 的通项公式.19.在锐角ABC 中,角A ,B ,C 所对的边为a ,b ,c ,且()cos 1cos a B b A ⋅=+.(1)证明:sin sin 3C B =;(2)求ca的取值范围.20.已知函数()3211124326k f x x x kx ⎛⎫=-++- ⎪⎝⎭(R k ∈).(1)讨论函数()f x 的单调性;(2)若函数()f x 在()0,3上恰有两个零点,求函数()f x 在[]0,3上的最小值.21.已知函数()22e 2x f x x ax =---,当0x ≥时,()0f x ≥.(1)求a 的取值范围;(2)求证:232222111152e 12e 12e 12e 1n⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+< ⎪⎪⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭(*n ∈N ).(二)选考题:共10分.请考生在第22、23题中任选一题做答.如果多做,则按所做的第一题记分.[选修4—4:坐标系与参考方程]22.在直角坐标系xOy 中,圆C 的参数方程为33cos ,3sin x y θθ=+⎧⎨=⎩(θ为参数),直线l 的参数方程为πcos ,3π6sin 3x t y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数).(1)判断直线l 和圆C 的位置关系,并说明理由;(2)设P 是圆C 上一动点,()4,0A ,若点P 到直线l的距离为2,求CA CP ⋅ 的值.[选修4—5:不等式选讲]23.已知函数()221f x x x =+++.(1)求()f x 的最小值;(2)若a ,b ,c 均为正数,且()()()18f a f b f c ++=,证明:2221119a b c a b c ++≥++一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}13A x x =∈-≤≤Z ,{}22B x x =≤,则A B = ()A.⎡-⎣B.{}1,0,1- C.{}1,0,1,2- D.⎡⎤⎣⎦【答案】B【分析】先解不等式,再求交集即可.【详解】由{}13A x x =∈-≤≤Z ,可得{}1,0,1,2,3A =-,由{}22B x x =≤,可得{B x x =≤≤,所以{}1,0,1A B =- .故选:B2.若0a b >>,则一定有()A cos cos a b < B.220a b -< C.11a b> D.33a b >【答案】D 【解析】【分析】根据余弦函数、指数函数、反比例函数和幂函数单调性依次判断各个选项即可.【详解】对于A ,cos y x = 在(),2ππ上单调递增,∴当2a b ππ>>>时,cos cos a b >,A 错误;对于B ,2x y = 在()0,∞+上单调递增,22a b ∴>,即220a b ->,B 错误;对于C ,1y x =在()0,∞+上单调递减,11a b∴<,C 错误;对于D ,3y x = 在()0,∞+上单调递增,33a b ∴>,D 正确.故选:D.3.若命题“x ∀∈R ,sin cos m x x ≥+”是真命题,则实数m 的取值范围是()A.m ≥B.2m ≥ C.m ≤ D.2m ≤-【答案】A 【解析】【分析】根据命题是真命题,转换为求函数的最大值,即可求解.【详解】sin cos 4x x x π⎛⎫+=+ ⎪⎝⎭,根据命题是真命题可知,()max sin cos m x x ≥+,即m ≥故选:A4.设9log 4a =,则3a 的值是()A.1B.2C.4D.9【答案】B 【解析】【分析】根据对数的定义,结合指数式的运算律,可得答案.【详解】由9log 4a =,则94a =,234a =,32a =.故选:B.5.在ABC 中,点M 为边AB 上一点,2AM MB =,若3CM CA CB λμ=+ ,则μ=()A.3B.2C.1D.1-【答案】C 【解析】【分析】根据向量的线性运算法则求解即可.【详解】由2AM MB = 得13AM AB =,所以()11213333CM CA AM CA AB CA CB CA CA CB =+=+=+-=+,所以32CM CA CB =+,即1μ=,故选:C.6.已知n S 是等差数列{}n a 的前n 项和,若1957S =,则5143a a a --=()A.2 B.3C.4D.6【答案】B【分析】利用等差数列的求和公式,结合等差中项的性质,解得103a =,根据等差数列整理所求代数式,可得答案.【详解】由题意,()11910191019192195722a a a S a +⨯====,解得103a =,设等差数列{}n a 的公差为d ,则()()514111110334393a a a a d a a d a d a --=+--+=+==.故选:B.7.某地锰矿石原有储量为a 万吨,计划每年的开采量为本年年初储量的m (01m <<,且m 为常数)倍,那么第n (*n ∈N )年在开采完成后剩余储量为()1na m -,并按该计划方案使用10年时间开采到原有储量的一半.若开采到剩余储量为原有储量的70%时,则需开采约(1.4≈)A.4B.5C.6D.8【答案】B 【解析】【分析】根据题意得关系式1012n y a ⎛⎫= ⎪⎝⎭,进而根据指数与对数式的互化即可求解.【详解】设第n 年开采完后剩余储量为y ,则()1ny a m =-,当10n =时,12y a =,所以()10112a a m =-,0a >,故()11010111122m m ⎛⎫=-⇒-= ⎪⎝⎭,进而1012ny a ⎛⎫= ⎪⎝⎭,设第x 年时,70%y a =,故10101222271717101log log log 1.4log 102102101072nn a n a ⎛⎫⎛⎫=⇒=⇒==≈≈ ⎪ ⎪⎝⎭⎝⎭,故5n ≈,故选:B8.若函数πcos 6y x ω⎛⎫=+⎪⎝⎭(0ω>)在区间π,02⎛⎫- ⎪⎝⎭上恰有唯一极值点,则ω的取值范围为()A.17,36⎡⎤⎢⎥⎣⎦ B.17,36⎛⎤ ⎥⎝⎦C.17,33⎛⎤ ⎥⎝⎦D.27,33⎛⎫⎪⎝⎭【答案】C 【解析】【分析】根据余弦函数的图象特征,根据整体法即可列出不等式满足的关系进行求解.【详解】当π,02x ⎛⎫∈-⎪⎝⎭,πππ66,26πx ωω⎛⎫∈-+ ⎪+⎝⎭,由于πcos 6y x ω⎛⎫=+⎪⎝⎭(0ω>)在区间π,02⎛⎫- ⎪⎝⎭上恰有唯一极值点,故满足0ππ2π6ω≤-+<-,解得17,33ω⎛⎤∈ ⎥⎝⎦,故选:C9.函数()()1,21,20x x f x f x x ⎧-≤≤⎪=⎨+-≤<⎪⎩的图象大致为()A. B.C. D.【答案】D 【解析】【分析】先利用导函数研究01x <≤上的单调性,得到()f x x =-在10,4x ⎛⎫∈ ⎪⎝⎭上单调递减,在1,14x ⎛⎤∈ ⎥⎝⎦上单调递增,且1144f ⎛⎫=- ⎪⎝⎭,进而研究10-<≤x 上的单调性,得到在314x -<≤-上单调递减,在304x -<≤上单调递增,且3142f ⎛⎫-=- ⎪⎝⎭,从而选出正确答案.【详解】当01x <≤时,()1f x '=-=当10,4x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,当1,14x ⎛⎤∈ ⎥⎝⎦时,()0f x ¢>,故()f x x =10,4x ⎛⎫∈ ⎪⎝⎭上单调递减,在1,14x ⎛⎤∈ ⎥⎝⎦上单调递增,所以()f x x =-14x =处取得极小值,11114424f ⎛⎫=-=- ⎪⎝⎭,当10-<≤x 时,011x <+≤,故()(21f x x =+-,()2f x '==,当314x -<≤-时,()0f x '=<,当304x -<≤时,()0f x '=>,()(21f x x =+-在314x -<≤-上单调递减,在304x -<≤上单调递增,且33121442f ⎛⎛⎫-=-+-=- ⎪ ⎝⎭⎝,显然1124-<-,综上:只有D 选项满足要求.故选:D10.已知()tan 2tan cos 22ααα-⋅=,则tan α=()A.2B.C.2- D.12【答案】A 【解析】【分析】利用二倍角公式及同角三角函数的基本关系计算可得.【详解】解:因为()tan 2tan cos 22ααα-⋅=,所以sin 2tan cos 22cos 2αααα⎛⎫-⋅=⎪⎝⎭,所以sin sin 2cos 22cos αααα-⋅=,即()2sin 2sin cos 2cos 12cos ααααα-⋅-=,即sin 2sin cos 2sin cos 2cos αααααα-+=,即sin tan 2cos ααα==.故选:A11.已知直线l :0x my n ++=既是曲线ln y x =的切线,又是曲线2e x y -=的切线,则m n +=()A.0B.2-C.0或eD.2-或e-【答案】D 【解析】【分析】本题主要求切线方程,设两个曲线方程的切点,由两条切线均为0x my n ++=,通过等量关系可得到,m n 的取值.【详解】()ln f x x =,2()e x g x -=,''21(),()e x f x g x x-∴==,设切点分别为1122(,),(,)M x y N x y ,则曲线()ln f x x =的切线方程为:()1111ln y x x x x -=-,化简得,1111111ln ()ln 1y x x x x x x x ∴=+-=⋅+-,曲线2()e x g x -=的切线方程为:22222e e ()x x y x x ---=-,化简得,22222e (1)e x x y x x --=⋅+-,22212211e (1)e ln 1x x x x x --⎧=⎪∴⎨⎪-=-⎩,故111(1)(ln 1)0x x --=,解得1x =e 或11x =.当1x =e ,切线方程为e 0x y -=,故e,0,m n =-=故e m n +=-.当11x =,切线方程为1y x =-,故1m n ==-,则2m n +=-.故m n +的取值为e -或2-.故选:D12.若函数()f x 的定义域为R ,且()21f x +偶函数,()1f x -关于点()3,3成中心对称,则下列说法正确的个数为()①()f x 的一个周期为2②()223f =③()f x 的一条对称轴为5x =④()19157i f i ==∑A.1 B.2C.3D.4【答案】C 【解析】【分析】由题意,根据函数的对称性,可得()()11f x f x -=+,()()262f x f x -=-+,且()23f =,根据函数周期性的定义,可判①的正误;根据周期性的应用,可判②的正误;根据函数的轴对称性的性质,可判③的正误;根据函数的周期性,进行分组求和,根据函数的对称性,可得()()136f f +=,()()246f f +=,可判④的正误.【详解】因为()21f x +偶函数,所以()()1212f x f x -=+,则()()11f x f x -=+,即函数()f x 关于直线1x =成轴对称,因为函数()f x 的图象是由函数()1f x -的图象向左平移1个单位,所以函数()f x 关于点()2,3成中心对称,则()()262f x f x -=-+,且()23f =,对于①,()()()()()()2626116116f x f x f x f x f x +=--=---=-+-=-,()()()()()()4226226611f x f x f x f x f x +=++=---=--=--+()()6112f x f x =-++=-()()()1111f x f x f x =+-=-+=,则函数()f x 的周期4T =,故①错误;对于②,()()()2224523f f f =+⨯==,故②正确;对于③,()()()()()()51411145f x f x f x f x f x f x +=++=+=-=-+=-,故③正确;对于④,()()()121621f f f =-=-+,则()()136f f +=,()()()()()40111123f f f f f ==-=+==,则()()246f f +=,由19443÷= ,则()()()()1911219i f i f f f ==+++∑ ()()()()()()()()41234171819f f f f f f f =++++++()()()()466123486357f f f =⨯++++=++=,故④正确.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量()1,3a =-,()1,b m = ,且()2a a b ⊥- ,则m =______.【答案】2【解析】【分析】根据向量加法的坐标公式,结合垂直向量的坐标表示,可得答案.【详解】由题意,()23,32a b m -=--,因为()2a a b ⊥- ,所以()20a a b ⋅-= ,则()33320m +-=,解得2m =.故答案为:2.14.已知等比数列{}n a 的各项均为正数,设n S 是数列{}n a 的前n 项和,且22a =,48a =,则5S =______.【答案】31【解析】【分析】利用等比数列通项公式,结合0q >,可求得公比2q =,进而得到1a ,利用等比数列求和公式可求得结果.【详解】设等比数列{}n a 的公比为q ,0n a > ,0q ∴>,又2424a q a ==,2q ∴=,211a a q ∴==,()551123112S ⨯-∴==-.故答案为:31.15.某游乐场中的摩天轮作匀速圆周运动,其中心距地面20.5米,半径为20米.假设从小军同学在最低点处登上摩天轮开始计时,第6分钟第一次到达最高点.则第10分钟小军同学离地面的高度为______米.【答案】10.5【解析】【分析】建立直角坐标系,利用三角函数定义将摩天轮的高度求出,即可求解.【详解】以摩天轮的圆心为坐标原点,平行地面的直径所在的直线为x 轴,建立直角坐标系,设t 时刻的坐标为(,)x y ,转过的角度为2266t t ππ=⨯,根据三角函数的定义有20sin()20cos 626y t t πππ=-=-,地面与坐标系交线方程为0.5y =-,则第10分钟时他距离地面的高度大约为100.520cos 10.56π-=米.故答案为:10.516.已知函数c ()223,,2,,x x x a f x x x a ⎧--≥=⎨-<⎩若存在实数m ,使得关于x 的方程()f x m =恰有三个不同的实数根,则a 的取值范围是______.【答案】(-2,1)【解析】【分析】根据函数()f x 图象与y m =的交点即可求解.【详解】在直角坐标系中画出21223,2y x x y x =--=-的图象,当2a ≤-时,()f x m =至多有2个实数根,如图(1),当1a ≥时,()f x m =至多有2个实数根,如图(2),当21a -<<时,()f x m =恰好有3个实数根,如图(3),故a 的取值范围为21a -<<,故答案为:21a -<<三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知函数())cos 3cos f x xx x =-.(1)求()f x 的单调递减区间;(2)求()1f x =-在[]0,π上的解.【答案】(1)π5πππ36k k ⎡⎤++⎢⎥⎣⎦,(Z k ∈)(2)2π0π3x =,,【解析】【分析】(1)利用三角恒等变化化简三角函数,根据正弦函数的单调性,结合整体思想,可得答案;(2)利用整体思想,结合正弦函数求值,可得答案.【小问1详解】2()cos cos f x x x x =-2sin 2cos 2x x =-cos 21sin 222x x +=-112cos2222x x =--π1sin 262x ⎛⎫=-- ⎪⎝⎭.令ππ3π2π22π262k x k +≤-≤+(Z k ∈),解得π5πππ36k x k +≤≤+(Z k ∈),∴函数()f x 的单调递减区间为π5πππ36k k ⎡⎤++⎢⎥⎣⎦,(Z k ∈).【小问2详解】由()1f x =-,得π1sin 262x ⎛⎫-=- ⎪⎝⎭,∵[]0πx ∈,,∴ππ11π2666x ⎡⎤-∈-⎢⎥⎣⎦,.∴ππ7π11π26666x -=-,,,解得2π0π3x =,.18.已知数列{}n a 满足:112a =,21a =,2145n n n a a a +++=(*n ∈N ).(1)证明:数列{}1n n a a +-是等比数列;(2)求数列{}n a 的通项公式.【答案】(1)证明见解析(2)n a 23*1(21)()3n n N -=+∈【解析】【分析】(1)结合递推公式利用等比数列的定义证明即可;(2)结合(1)中结论,利用累加法和等比数列求和公式即可求解.【小问1详解】证明:∵*2145n n n a a a n +++=∈N ,,∴*2114(),n n n n a a a a n +++-=-∈N ,∵12112,a a ==,∴2112a a -=,∴数列{1n n a a +-}是以12为首项,4为公比的等比数列.【小问2详解】由(1)知,12311422n-n n n a a -+-=⨯=,当2n ≥时,112211()()()+n n n n n a a a a a a a a ---=-+-++- 2527291122222n n n -----=+++++ ()()123114112212143n n ---=+=+-当n =1时,1111(21)32a -=+=满足上式.所以,n a 23*1(21)()3n n N -=+∈.19.在锐角ABC 中,角A ,B ,C 所对的边为a ,b ,c ,且()cos 1cos a B b A ⋅=+.(1)证明:sin sin 3C B =;(2)求ca的取值范围.【答案】(1)证明见解析(2)()23,c a ∈【解析】【分析】(1)由正弦定理化简cos (1cos )a B b A ⋅=+可得2A B =,所以3C A B B ππ=--=-,即可证明.(2)因为△ABC 为锐角三角形,可求出B 的范围,即可求出cos B 的范围,由正弦定理化简c a =12cos 2cos B B -,令cos B t =,1232,,222y t t t ⎛⎫=-∈ ⎪ ⎪⎝⎭,由函数的单调性即可求出ca 的取值范围.【小问1详解】∵cos (1cos )a B b A ⋅=+,由正弦定理,得sin cos sin (1cos )A B B A ⋅=+,即sin cos cos sin sin A B A B B ⋅-⋅=,∴sin sin A B B -=(),∴A B B -=或A B B π-+=()(舍),即2A B =,∴3C A B B ππ=--=-,∴sin sin(3)sin 3C B B π=-=.【小问2详解】由锐角△ABC ,可得02B π<<,022A B π<=<,032C B ππ<=-<.即64B ππ<<,∴cos 22B <<.∵sin sin 3sin sin 2c C B a A B ==sin 2cos cos 2sin sin 2B B B B B ⋅+⋅=12cos 2cos B B=-.令cos B t =,12,,222y t t t ⎛⎫=-∈ ⎪ ⎪⎝⎭,因为122y t t =-在,22t ⎛⎫∈ ⎪ ⎪⎝⎭上单调递增,所以当min ,222t y ===,当max ,233t y ===,∴(23,c a ∈.20.已知函数()3211124326k f x x x kx ⎛⎫=-++- ⎪⎝⎭(R k ∈).(1)讨论函数()f x 的单调性;(2)若函数()f x 在()0,3上恰有两个零点,求函数()f x 在[]0,3上的最小值.【答案】(1)答案不唯一,具体见解析(2)()min116136********.265k f x k k ⎧-≤<⎪⎪=⎨⎪-<<⎪⎩,,【解析】【分析】(1)求导,分类讨论导函数的正负即可求解,(2)根据第一问可知()f x 的单调性,进而可判断()f x 在()0,3上恰有两个零点,满足03k <<,根据零点存在性定理即可列不等式求解.【小问1详解】由题意得2()(4)4(4)()f x x k x k x x k '=-++=--.当4k =时,由2()(4)0f x x '=-≥,函数()f x 在()-∞+∞,上单调递增.当4k >时,令()04f x x k ¢<Þ<<,令()04f x x ¢>Þ<或x k>故函数()f x 在(4)k ,上单调递减,在(4)∞-,和()k ∞+,上单调递增.当4k <时,令()04f x k x ¢<Þ<<,令()0f x x k ¢>Þ<或>4x 函数()f x 在(k ,4)上单调递减,在()k ∞-,,(4)+∞,上单调递增.【小问2详解】当0k ≤或3k ≥时,函数()f x 在(0,3)上为单调函数,最多只有一个零点.当03k <<时,函数()f x 在(0,k )上单调递增,在(k ,3)上单调递减.要使函数()f x 在(0,3)上有两个零点,则需满足:03k <<且()()()00030f k f f ⎧>⎪<⎨⎪<⎩,,,解得1319k <<.∴()()(){}min min 03f x f f =,.又15(3)(0)92f f k -=-,∴当65k >时,(3)(0)f f >;当65k <时,(3)(0)f f <.又61359<,∴()min 116136********.265k f x k k ⎧-≤<⎪⎪=⎨⎪-<<⎪⎩,21.已知函数()22e 2x f x x ax =---,当0x ≥时,()0f x ≥.(1)求a 的取值范围;(2)求证:232222111152e 12e 12e 12e 1n⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+< ⎪⎪⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭(*n ∈N ).【答案】(1)(]2-∞,(2)证明见解析【解析】【分析】(1)由导数法对2a ≤、2a >分类讨论()min 0f x ≥是否满足即可;(2)由(1)结论,当2a =时,()0f x ≥恒成立,即可得22e 121n n n -≥++,即可列项得211212n n n <--+e ,构造()ln 1h x x x =-+,由导数法证()(1)0h x h ≤=,则有ln 1≤x x -,即2211ln(1)2e 12e 12n n n n +<<---+,最后结合对数运算性质即可证【小问1详解】由题意得()2e 2x f x x a '=--.令()2e 2xx a g x -=-,则()2e 20x g x '=->.∴函数()f x '在区间[0),+∞上单调递增,则函数()f x '的最小值为(0)2f a '=-.①当20a -≥,即2a ≤时,可得()(0)0f x f ''≥≥,∴函数()f x 在[0),+∞上单调递增.又()00f =,∴()()00f x f ≥=恒成立.②当20a -<,即2a >时,函数()f x '的最小值为(0)2f a '=-<0,且存在00x >,当0[0)x x ∈,时,()0f x '<.又()00f =,∴当0[0)x x ∈,时,()0f x <,这与0x ≥时,()0f x ≥相矛盾.综上,实数a 的取值范围是(]2-∞,.【小问2详解】由(1)得当2a =时,不等式()22e 220xf x x x =---≥恒成立,∴22e 121x x x -≥++.令x n =,得22e 121n n n -≥++.∴2222112121(2)2n n n n n n n <=--++++≤e .令()ln 1h x x x =-+,则()1xh x x'-=,(0,1)x ∈时,()0h x '>,()h x 为(0,1)上的增函数;(1,)x ∈+∞时,()0h x '<,()h x 为(1,+)∞上的减函数;∴()(1)0h x h ≤=,则ln 1≤x x -.∴2211ln(1)2e 12e 12n n n n +<<---+,∴232222ln(1)(1(1)2e 12e 12e 12e 1n ++++---- =232222ln(1)ln(1)ln(1)ln(1)2e 12e 12e 12e 1n +++++++---- <111111111(1)()(()()32435112n n n n -+-+-++-+--++ =311212n n --++32ln e ln 5<=<=.∴232222(1(1)52e 12e 12e 12e 1n ++++<---- .【点睛】方法点睛:证明数列累乘不等式,可通过不等式两边取对数,转换成累加不等式的证明,接着一般可结合题中结论,通过对数列通项放缩,达到证明目的(二)选考题:共10分.请考生在第22、23题中任选一题做答.如果多做,则按所做的第一题记分.[选修4—4:坐标系与参考方程]22.在直角坐标系xOy 中,圆C 的参数方程为33cos ,3sin x y θθ=+⎧⎨=⎩(θ为参数),直线l 的参数方程为πcos ,3π6sin3x t y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数).(1)判断直线l 和圆C 的位置关系,并说明理由;(2)设P 是圆C 上一动点,()4,0A ,若点P 到直线l的距离为2,求CA CP ⋅ 的值.【答案】(1)直线l 和圆C 相离;理由见解析(2)2CA CP ⋅=-【解析】【分析】(1)把直线方程和圆的方程都化为普通方程,利用圆心到直线距离判断直线与圆的位置关系.(2)用参数方程表示P 点坐标,利用点到直线距离求值,再计算向量坐标和向量数量积.【小问1详解】圆C 的参数方程为33cos 3sin x y θθ=+⎧⎨=⎩(θ为参数),消参得圆C 的普通方程为22(3)9x y -+=,圆心C 坐标为()3,0,半径为3.直线l 的参数方程为πcos ,3π6sin 3x t y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),消参得直线l60y -+=.∵圆心C 到直线l的距离632d +=>,∴直线l 和圆C 相离.【小问2详解】设[)()π33cos 3s )0,2in Pθθθ+∈(,,由点P 到直线l2=,∴2cos()26θ+++=πcos 16θ⎛⎫+=- ⎪⎝⎭π.∴6θ+=ππ,则5π6θ=,∴332P ⎛⎫ ⎪ ⎪⎝⎭,,()1,0CA =,32CP ⎛⎫= ⎪ ⎪⎝⎭∴2CA CP ⋅=- .[选修4—5:不等式选讲]23.已知函数()221f x x x =+++.(1)求()f x 的最小值;(2)若a ,b ,c 均为正数,且()()()18f a f b f c ++=,证明:2221119a b c a b c++≥++.【答案】(1)32(2)证明见解析【解析】【分析】(1)由绝对值不等式的性质可求解;(2)由题意得3a b c ++=,再由基本不等式及不等式的性质可证明.【小问1详解】11()222f x x x x =+++++≥11(2)()22x x x +-+++=3122x ++≥32.(当且仅当12x =-时,取等号)∴函数f (x )的最小值为32.【小问2详解】因为a ,b ,c 均为正数,所以()()()33333318f a f b f c a b c ++=+++++=,∴3a b c ++=.由111()()a b c a b c++++111a ab bc c b c a c a b =++++++++()()()3a b c a c b b a a c b c =++++++≥9,得1113a b c++≥.∵2()a b c ++222222a b c ab bc ac =+++++2223()≤a b c ++,∴2233a b c ++≥.∴()2221119a b c a b c ≥⎛⎫++++⎪⎝⎭,∴2221119≥a b c a b c ++++.。
高三数学一诊考试试题理含解析试题

2021届高三数学一诊考试试题 理〔含解析〕一、选择题:此题一共12小题,每一小题5分,一共60分。
在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的。
{1,0,1,2,3}M =-,{}2|20=-N x x x ,那么MN =〔 〕A. {1,0,1,2}-B. {1,0,1}-C. {0,1,2}D. {0,1}【答案】C 【解析】 【分析】求出N 中不等式的解集确定出N ,找出M 与N 的交集即可. 【详解】由N 中不等式变形得:x 〔x ﹣2〕≤0, 解得:0≤x ≤2,即N =[0,2], ∵M ={﹣1,0,1,2,3}, ∴M ∩N ={0,1,2}, 应选C .【点睛】此题考察了交集及其运算,纯熟掌握交集的定义是解此题的关键.212ii+=-〔 〕 A. i B. -iC.4i 5+ D.4i 5- 【答案】A 【解析】 【分析】由复数代数形式的乘除运算化简得答案.【详解】∵()()()()21222241212125i i i i ii i i i +++-++===--+. 应选A .【点睛】此题考察复数代数形式的乘除运算,是根底题.()()121a b m =-=-,,,,假设a b λ=〔λ∈R 〕,那么m =〔 〕A. -2B. 12-C.12D. 2【答案】C 【解析】 【分析】根据向量的坐标运算计算即可.【详解】∵向量()()121a b m =-=-,,,,a b λ=〔λ∈R 〕,∴()12-,=λ()1m -,, ∴12mλλ-=⎧⎨=-⎩,∴m =12, 应选C .【点睛】此题考察了一共线向量的坐标运算,属于根底题.{}n a 的前n 项和为n S ,假设2466++=a a a ,那么7S=〔 〕A .7B. 14C. 21D. 42【答案】B 【解析】 【分析】由等差数列的性质可得:a 4=2,而由求和公式可得S 7=7a 4,代入可得答案. 【详解】由等差数列的性质可得:2a 4=a 2+a 6,又2466++=a a a ,解得a 4=2, 而S 7()17477222a a a +⨯===7a 4=14 应选B .【点睛】此题考察等差数列的性质和求和公式,属根底题. 5.,a b ∈R ,那么“0a b <<〞是“11a b>〞的〔 〕 A. 充分不必要条件 B. 必要比充分条件 C. 充要条件 D. 既不充分又不必要条件【答案】A 【解析】 【分析】根据充分必要条件的定义分别判断其充分性和必要性即可. 【详解】假设11a b >,即b a ab->0, ∴00b a ab ->⎧⎨⎩>或者00b a ab -<⎧⎨⎩<,即a ,b 同号时:a <b ,a ,b 异号时:a >b ,∴当a <b<0时,11a b >成立,但11a b>成立,不一定有a <b<0, 所以“0a b <<〞是“11a b>〞的充分不必要条件应选A .【点睛】此题考察了充分必要条件,考察不等式问题,是一道根底题. 6.执行右图所示的程序框图,那么输出的n =〔 〕A. 3B. 4C. 5D. 6【答案】C【解析】【分析】由中的程序语句可知:该程序的功能是利用循环构造计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】第一次执行循环体后,n=1,不满足退出循环的条件,第二次执行循环体后,n=2,不满足退出循环的条件,第三次执行循环体后,n=3,不满足退出循环的条件,第四次执行循环体后,n=4,不满足退出循环的条件,第四次执行循环体后,n=5,满足退出循环的条件,故输出的n值为5,应选C.【点睛】此题考察了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是根底题.7. 1.22a =,0.43b =,8ln 3=c ,那么〔 〕 A. b a c >>B. a b c >>C. b c a >>D.a cb >>【答案】B 【解析】 【分析】容易得出 1.20.4822132013ln ><<<,,<,从而得出a ,b ,c 的大小关系.【详解】 1.210.50.40822223331013a b c ln lne =>=>>==<==,>,<; ∴a >b >c . 应选B .【点睛】此题考察指数函数、对数函数的单调性,考察了比拟大小的方法:中间量法.3()e 1=+xx f x 的图象大致是〔 〕 A. B.C. D.【答案】D 【解析】 【分析】利用特殊值及函数的导数判断函数的单调性进展排除,即可得到函数的图象. 【详解】当x<0时,f 〔x 〕<0.排除AC ,f ′〔x 〕()()()32222333(1)11x xx xxxx e xe x e x e ee+-+-==++,令33x x e xe +-=g (x )g ′〔x 〕()()312x x xe x e x e =-+=-,当x ∈〔0,2〕,g ′〔x 〕>0,函数g (x )是增函数,当x ∈〔2,+∞〕,g ′〔x 〕<0,函数g (x )是减函数,g (0)= 60>,g (3)=3>0, g (4)=4 3e -<0, 存在()03,4x ∈,使得g (0x )=0,且当x ∈〔0,0x 〕,g (x )>0,即f ′〔x 〕>0,函数f 〔x 〕是增函数, 当x ∈〔0x ,+∞〕,g (x )<0,即f ′〔x 〕<0,函数f 〔x 〕是减函数, ∴B 不正确, 应选D .【点睛】此题考察函数图象的判断,一般通过函数的定义域、值域、奇偶性、对称性、单调性、特殊点以及变化趋势判断.α的顶点在坐标原点O ,始边与x 轴的非负半轴重合,将α的终边按顺时针方向旋转4π后经过点〔3,4〕,那么sin 2α=〔 〕 A. 1225-B. 725-C.725D.2425【答案】B 【解析】 【分析】由题意利用任意角的三角函数的定义及二倍角的余弦公式,求得结果.【详解】∵角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边按顺时针方向旋转4π后经过点〔3,4〕,∴345cos πα⎛⎫-= ⎪⎝⎭, ∴27212?2242542cos cos cos sin πππαααα⎛⎫⎛⎫⎛⎫--=-=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴7225sin α=-, 应选B .【点睛】此题主要考察任意角的三角函数的定义,二倍角的余弦公式,考察了逻辑思维才能,属于根底题.()sin(2)(0)f x x ϕϕ=+>的图象关于点,03π⎛⎫⎪⎝⎭对称,那么ϕ的最小值为〔 〕A.12πB.6π C.3π D.512π 【答案】C 【解析】 【分析】由正弦函数图象的性质可得φ=23k ππ-,〔k ∈z 〕再求解即可. 【详解】由f (x )=sin 〔2x +φ〕,令23π⨯+φ=kπ,〔k ∈z 〕 得:φ23k ππ=-,〔k ∈z 〕又φ>0,所以k =1时 那么φmin 3π=,应选C .【点睛】此题考察了正弦函数图象的性质,属简单题.a =22b a b =⋅=-,,.假设1c a b --=,那么c 的取值范围是〔 〕A. 13,22⎡⎤⎢⎥⎣⎦B. 15,22⎡⎤⎢⎥⎣⎦C. [2,3]D. [1,3]【答案】D 【解析】 【分析】由题意得到a ,b 是夹角为23π,模为2的两个向量,设OA a =,OB b =, O C c =, 利用向量加减法的几何意义求出C 的轨迹,那么可求得c 的取值范围. 【详解】因为向量a =22b a b a b cos θ=⋅==-,,可得12cos θ=-, 所以a ,b 是夹角为23π,模为2的两个向量, 设OA a =,OB b =, O C c =,那么A ,B 在以原点为圆心,2为半径的圆上,如图,不妨令A 〔2,0〕,那么B 〔-13,那么13OA OB OD +==,,那么1c a b OC OA OB OC OD DC --=--=-==,所以C 在以D 为圆心,1为半径的圆上,c OC =,即求以D 为圆心,1为半径的圆上的动点C 到〔0,0〕的间隔 的最值问题, 又|OD |2=.所以OC ∈[21-,21+]= [1,3], 应选D .【点睛】此题考察了向量加减法的几何意义的应用,考察了动点的轨迹问题,考察了转化思想,解题时我们要根据题目中的条件,选择转化的方向,属于中档题.R 上的可导函数()f x 满足(2)()22-=-+f x f x x ,记()f x 的导函数为()f x ',当1x 时恒有()1f x '<.假设()(12)31---f m f m m ,那么m 的取值范围是〔 〕A. (],1-∞-B. 1,13⎛⎤- ⎥⎝⎦C. [)1,-+∞D.11,3⎡⎤-⎢⎥⎣⎦【答案】D 【解析】 【分析】令g 〔x 〕=f 〔x 〕-x ,求得g 〔x 〕=g 〔2﹣x 〕,那么g 〔x 〕关于x =1对称,再由导数可知g 〔x 〕在1x 时为减函数,化f 〔m 〕﹣f 〔1﹣2m 〕≥3m ﹣1为g 〔m 〕≥g 〔1﹣2m 〕,利用单调性及对称性求解.【详解】令g 〔x 〕=f 〔x 〕-x ,g ′〔x 〕=f ′〔x 〕﹣1,当x ≤1时,恒有f '〔x 〕<1.∴当x ≤1时,g 〔x 〕为减函数, 而g 〔2﹣x 〕=f 〔2﹣x 〕-〔2﹣x 〕, ∴由(2)()22-=-+f x f x x 得到f 〔2﹣x 〕-〔2﹣x 〕=f 〔x 〕-x∴g 〔x 〕=g 〔2﹣x 〕. 那么g 〔x 〕关于x =1对称,由f 〔m 〕﹣f 〔1﹣2m 〕≥3m ﹣1,得f 〔m 〕-m ≥f 〔1﹣2m 〕-〔1﹣2m 〕,即g 〔m 〕≥g 〔1﹣2m 〕,∴1121m m -≥--,即-113m ≤≤. ∴实数m 的取值范围是[﹣1,13]. 应选D .【点睛】此题考察利用导数研究函数的单调性,构造函数是解答该题的关键,属于中档题. 二、填空题:本大题一一共4小题,每一小题5分,一共20分。
2025届湖南省怀化三中高三一诊考试数学试卷含解析

2025届湖南省怀化三中高三一诊考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.观察下列各式:2x y ⊗=,224x y ⊗=,339x y ⊗=,4417x y ⊗=,5531x y ⊗=,6654x y ⊗=,7792x y ⊗=,,根据以上规律,则1010x y ⊗=( )A .255B .419C .414D .2532.下列函数中,在定义域上单调递增,且值域为[)0,+∞的是( ) A .()lg 1y x =+ B .12y x =C .2x y =D .ln y x =3.以()3,1A -,()2,2B-为直径的圆的方程是A .2280x y x y +---= B .2290x y x y +---= C .2280x y x y +++-=D .2290x y x y +++-=4.已知椭圆C 的中心为原点O ,(25,0)F -为C 的左焦点,P 为C 上一点,满足||||OP OF =且||4PF =,则椭圆C 的方程为( )A .221255x y +=B .2213616x y +=C .2213010x y += D .2214525x y += 5.已知等差数列{}n a 中,468a a +=则34567a a a a a ++++=( ) A .10B .16C .20D .24 6.用数学归纳法证明,则当时,左端应在的基础上加上( )A .B .C .D .7.已知等差数列{}n a 的前n 项和为n S ,262,21a S ==,则5a = A .3B .4C .5D .68.大衍数列,米源于我国古代文献《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释我国传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.已知该数列前10项是0,2,4,8,12,18,24,32,40,50,…,则大衍数列中奇数项的通项公式为( )A .22n n -B .212n -C .212n (-)D .22n9.已知函数()f x 在R 上都存在导函数()f x ',对于任意的实数都有2()e ()x f x f x -=,当0x <时,()()0f x f x '+>,若e (21)(1)af a f a +≥+,则实数a 的取值范围是( )A .20,3⎡⎤⎢⎥⎣⎦B .2,03⎡⎤-⎢⎥⎣⎦C .[0,)+∞D .(,0]-∞10.设函数1()ln1xf x x x+=-,则函数的图像可能为( ) A . B . C . D .11.若函数()sin 2f x x =的图象向右平移6π个单位长度得到函数()g x 的图象,若函数()g x 在区间[0,]a 上单调递增,则a 的最大值为( ). A .2π B .3π C .512π D .712π 12.已知命题p :任意4x ≥,都有2log 2x ≥;命题q :a b >,则有22a b >.则下列命题为真命题的是( ) A .p q ∧B .()p q ∧⌝C .()()p q ⌝∧⌝D .()p q ⌝∨二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省成都市龙泉第二中学2017届高三数学一诊模拟考试试题 理本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择),考生作答时,须将答案答答题卡上,在本试卷、草稿纸上答题无效。
满分150分,考试时间120分钟。
第Ⅰ卷(选择题,共60分)注意事项:1.必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑. 2.考试结束后,将本试题卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|2}M x x =<,集合{}2|0N x x x =-<,则下列关系中正确的是A.M N ⋃=RB.M C N ⋃=R RC.N C M ⋃=R RD.M N M =I 2. 复数iiZ 212+-=(i 为虚数单位)所对应复平面内的点在 A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3.已知数列n S 为等比数列{}n a 的前n 项和,14,2248==S S ,则=2016SA .22252-B .22253-C .221008- D.222016-4.函数)(x f 是定义在)2,2(-上的奇函数,当)2,0(∈x 时,,12)(-=x x f 则)31(log 2f 的值为 A .2- B .32-C .7D .123- 5.函数cos sin y x x x =+的图象大致为A B C D6.函数的定义域为A.(,1)B.(,+)C.(1,+)D.7.执行如图所示的程序框图,如果输入a=2,b=2,那么输出的a 值为A .14B .15C .16D .178.若不等式组表示的区域Ω,不等式(x ﹣)2+y 2表示的区域为T ,向Ω区域均匀随机撒360颗芝麻,则落在区域T 中芝麻数约为 A .114 B .10C .150D .509.如图,在OMN ∆中,,A B 分别是,OM ON 的中点,若(),OP xOA yOB x y R =+∈u u u v u u u v u u u v,且点P 落在四边形ABNM 内(含边界),12y x y +++的取值范围是A.12,33⎡⎤⎢⎥⎣⎦ B .13,34⎡⎤⎢⎥⎣⎦C .13,44⎡⎤⎢⎥⎣⎦D .12,43⎡⎤⎢⎥⎣⎦10.设函数()sin()(0,0,||)2f x A x A πωϕωϕ=+≠><的图像关于直线23x π=对称,且它的最小正周期为π,则A.()f x 的图像经过点1(0,)2B.()f x 在区间52[,]123ππ上是减函数 C.()f x 的图像的一个对称中心是5(,0)12π D.()f x 的最大值为A11、把3盆不同的兰花和4盆不同的玫瑰花摆放在下图图案中的1,2,3,4,5,6,7所示的位置上,其中三盆兰花不能放在一条直线上,则不同的摆放方法为A .2680种B .4320种C .4920种D .5140种 12.已知命题p : x R ∀∈,3sin 2x >, 则 A.﹁p : x R ∃∈,sin 32x ≤B.﹁p : x R ∃∈,3sin 2x < C.﹁p : x R ∀∈,错误!未指定书签。
D.﹁p : x R ∀∈,3sin 2x ≤第Ⅱ卷(非选择题,共90分)二、填空题(每小题4分,共20分) 13.曲线21x yxe -=在点(1,1)处的切线方程为 .14.已知三棱锥A-BCD 中,AB ⊥面BCD ,△BCD 为边长为2的正三角形,AB=2,则三棱锥的外接球体积为 。
15.数列{}n a 中,)2,(122,511≥∈-+==*-n N n a a a n n n ,若存在实数λ,使得数列⎭⎬⎫⎩⎨⎧+nn a 2λ为等差数列,则λ= .16.已知函数)(x f =x+sinx.项数为19的等差数列{}n a 满足⎪⎭⎫⎝⎛-∈22ππ,n a ,且公差0≠d .若0)()()()(191821=++⋯++a f a f a f a f ,则当k =______时,0)(=k a f三、解答题(共6小题,共70分.解答应写出文字说明,演算步骤或证明过程) 17.(本小题满分12分)已知三角形ABC 中,()()2211,,,y x AC y x AB ==. (1)若()()3,1,1,3-==AC AB .求三角形ABC 的面积∆S ; (2)求三角形ABC 的面积∆S .18.(本小题满分12分) 已知函数.(1)当时,求的极值;(2)若在区间上单调递增,求b 的取值范围.19.设函数f (x )=x 2+bln (x+1),其中b ≠0. (Ⅰ)当时,判断函数f (x )在定义域上的单调性;(Ⅱ)当21≤b 时,求函数f (x )的极值点;20. (本小题满分12分)已知动圆过定点P (4,0),且在y 轴上截得的弦MN 的长为8. (1)求动圆圆心C 的轨迹方程;(2)过点(2,0)的直线l 与C 相交于A ,B 两点.求证:OA OB u u u r u u u rg 是一个定值.21.(本小题满分12分)已知动圆P 与圆()221:381F x y ++=相切,且与圆()222:31F x y -+=相内切,记圆心P 的轨迹为曲线C ;设Q 为曲线C 上的一个不在x 轴上的动点,O 为坐标原点,过点2F 作OQ 的平行线交曲线C 于,M N 两个不同的点.(1)求曲线C 的方程;(2)试探究MN 和2OQ 的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由; (3)记2QF M ∆的面积为1S ,2OF N ∆的面积为2S ,令12S S S =+,求S 的最大值.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分。
作答时请写清题号,本小题满分10分。
22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t (t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ. (1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.23.(本题满分10分)选修4-5:不等式选讲 若a >0,b >0,且1a +1b =ab . (1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由.成都龙泉第二中学高2017届高三上期期末考试模拟试题数学(理工类)参考答案1—5 BCBAD 6—10 ACACC 11—12 BA 13. e ex y 23-= 14.282127π 15.1- 16.10 17.(本小题满分12分)解:已知,sin 2A AC AB S ⋅=∆,cos 2121A AC AB y y x x AC AB ⋅⋅=+=⋅ ……6分得:,4sin 2222∆=⋅S A AC AB ①,)(cos 22121222y y x x A AC AB +=⋅ ②由①+②,得: ,)(422121222y y x x S AC AB ++=⋅∆ 又.,2222221212y x AC y x AB +=+=代入化简,得: 122121y x y x S -=∆. ......12分 18.(1)当b =2时,()()=x+2-x f x 212的定义域为1-2⎛⎫∞ ⎪⎝⎭,()()()()2'5222122221212x x f x x x x x x-+=+-++-=-- 令()'0fx =,解得12x 2,0x =-=当1x 2x<2<-和0<时,()'0f x <,所以()f x 在()1,2,2⎛⎫-∞- ⎪⎝⎭,0上单调递减; 当12x<2-<时,()'0f x >,所以()f x 在12,2⎛⎫- ⎪⎝⎭上单调递增;所以,当x 2=-时,()f x 取得极小值(2)0f -=;当1x 2=时,()f x 取得极大值(0)4f =。
(2)()f x 在10,3⎛⎫ ⎪⎝⎭上单调递增⇔()'0,f x ≥且不恒等于0对x 10,3⎛⎫∈ ⎪⎝⎭恒成立……………………7分()(()2'2212221212fx x b x x bx b x x=+-++-=--25320x bx x ∴--+≥……………………………………8分 min253x b -⎛⎫∴≤ ⎪⎝⎭……………………………………10分1252513339x-⨯->=Q……………………………………11分 19b ∴≤……………………………………12分19.解:(Ⅰ)函数f (x )=x 2+bln (x+1)的定义域在(-1,+∞)令g (x )=2x 2+2x+b ,则g (x )在上递增,在上递减,g (x )=2x 2+2x+b >0在(-1,+∞)上恒成立, 所以f'(x )>0即当,函数f (x )在定义域(-1,+∞)上单调递增. 5分(Ⅱ)(1)当时,,∴,∴时,函数f (x )在(-1,+∞)上无极值点 7分(2)当时,解f'(x )=0得两个不同解2211,221121bx b x -+-=---=当b <0时,2211,221121bx b x -+-=---=, ∴x 1∈(-∞,-1),x 2∈(-1,+∞),f (x )在(-1,+∞)上有唯一的极小值点22112bx -+-=当时,x 1,x 2∈(-1,+∞)f'(x )在(-1,x 1),(x 2,+∞)都大于0,f'(x )在(x 1,x 2)上小于0,f (x )有一个极大值点22111bx ---=和一个极小值点22112bx -+-=综上可知,b <0,时,f (x )在(-1,+∞)上有唯一的极小值点22112bx -+-=时,f (x )有一个极大值点22111b x ---=和一个极小值点22112bx -+-=21=b 时,函数f (x )在(-1,+∞)上无极值点. 12分20.解:(1)设圆心为C (x ,y ),线段MN 的中点为T ,则1分 |MT |=|MN |2=4.依题意,得|CP |2=|CM |2=|MT |2+|TC |2,∴()222244y x x +-=+,∴28y x =为动圆圆心C 的轨迹方程.4分(2)证明:设直线l 的方程为x =ky +2,A (x 1,y 1),B (x 2,y 2) 5分由⎩⎨⎧=+=xy ky x 822,得y 2-8ky -16=0. ∴264640k ∆=+>。