011 4.5单点定位4.6相对定位

合集下载

单点定位

单点定位
除了3h的观测时段之外,还分析处理了其他不同时段长度(6h,8h,12h,24h)BDS/GPS PPP的定位偏差。 对所有分时段数据计算平均RMS偏差。可以看出,对于3h的观测数据,BDS静态PPP定位精度优于5cm;动态PPP水 平方向定位精度优于8cm,高程方向约12cm。GPS静态PPP定位精度优于2cm,动态PPP水平方向优于3cm,高程方 向约4cm。随着观测时间的增加,BDS静态、动态PPP的定位精度都有不同程度的提高,静态单天解水平方向优于 1cm,高程方向约为2cm;动态单天解可达水平方向3~4cm,高程方向6cm左右的精度。
数据预处理阶段首先进行钟跳探测与修复,避免将接收机钟跳引起的观测值跳变误判为周跳,然后联合使用 GF与MW组合探测周跳。使用扩展卡尔曼滤波(EKF)进行参数估计,并通过对验后残差进行分析,采用改进的 IGGIII抗差估计方案进行质量控制。
BDS/GPS PPP试验及结果分析为了评价BDS PPP的定位性能,选取了March 2015Vol.44No.3AGCS : ∥xb.sinomaps.com8个测站2013年DOY264—270共7d的BDS/GPS双系统GNSS观测数据,分别进行静态和动态 PPP试验。试验数据来源于IGS的MGEX(muti-GNSS experiment)观测,所选测站信息如表2所示,CUAA、 CUBB以及CUT1-CUT3均分布在Curtin大学里面,GMSD和NNOR分别位于日本和澳大利亚,REUN站位于南非附近。 作为对比,对各测站同时进行GPS PPP解算,并以其静态单天解作为各测站坐标参考真值。
整体上而言,BDS PPP收敛后的定位精度要略低于GPS。这主要是由于当前BDS的MEO卫星数较少,卫星分布 及定位的几何图形结构比GPS差一些,且轨道和钟差产品精度相对较低,导致其PPP定位精度要略低于GPS,动态 精度的差别更为明显,这是因为静态结果统计是对各时段收敛后最后一个历元的定位偏差计算RMS,而动态结果 统计是从各时段的收敛时刻开始对偏差序列计算RMS。

GPS-7定位基本原理

GPS-7定位基本原理

m os m os m os m os
AXL0
XA1L
( X Y Z ) T ( X 0Y 0Z 0 ) T ( dd X d Y ) T Z
观测到多颗卫星
~ ~1 2R R0 01 2ll1 2
m1 n1 m2 n2
1 1d d dZ Y X d dT T 1 2a a1 2ttm mo oss
用矩阵形式表示为:
V AX L
v11
l11 m11 n11 1 0 . 0 λ 0 . 0
.
.
.
.
...
.
..
.
v1n v21
l1n l21
m1n m21
n1n 1 0 . n21 0 1 .
0 0
0 0 . λ
λ 0 .
0
V ;A .
n1 n2 n3 n4
1 1 1 1d d d dZ Y Xt d d d dT T T T 1 4 3 2a a a a1 4 3 2ttttm m m mo o o ossss
l1 All3 2
l4
m 1 n1 m 2 n2 m 3 n3 m 4 n4
1 1 1,
1
Xd d d dZ Y X ,t L ~ ~ ~ ~1 4 3 2R R R R 0 0 0 0 1 4 3 2 d d d d1 4 3 2 T T T T a a a a 1 4 3 2tttt
N,E,H为站心坐标系下的坐标分量
DOP值与定位精度
mposURP ADOP 其中m, po为 s 位置中U 误R为 差 A用 ,户等效距
DOP值的性质 ➢DOP值与单点定位时,所观测卫星的数量 与分布有关,它所表示的是定位的几何条件 ➢DOP值越小,定位的几何条件越好

六点定位原理

六点定位原理

六点定位原理在机械制造和加工领域,六点定位原理是一个极其重要的基础性概念。

它就像是一座基石,支撑着整个精密制造体系的大厦。

那什么是六点定位原理呢?简单来说,就是用六个合理分布的支撑点,来限制工件的六个自由度,从而使工件在空间中的位置完全确定。

我们先得明白啥是自由度。

想象一下一个放在空间中的物体,它可以沿着三个坐标轴移动,分别是 X 轴、Y 轴和 Z 轴,这就有了三个移动的自由度。

同时,这个物体还能绕着这三个坐标轴转动,这又产生了三个转动的自由度。

所以,一个物体在空间中总共有六个自由度。

六点定位原理中的这六个支撑点,可不是随便乱放的。

它们得精心布置,才能有效地限制住这六个自由度。

比如说,在一个平面上,如果我们用三个不在同一直线上的支撑点,就可以限制工件沿 X 轴和 Y轴的移动,以及绕 Z 轴的转动。

这三个支撑点就像是三把“锁”,把工件在这个平面上的自由度给“锁住”了。

再往上,如果我们在工件的侧面再设置两个支撑点,这两个支撑点就能够限制工件沿 Z 轴的移动以及绕 X 轴的转动。

这两个点又给工件加上了两把“锁”。

最后,在工件的顶部或者底部,设置一个支撑点,这个点就能限制工件绕 Y 轴的转动。

这样,六个支撑点就把工件的六个自由度全部限制住了,工件在空间中的位置就被完全确定了下来。

六点定位原理在实际的生产加工中有着广泛的应用。

比如说,在车床上加工一个轴类零件,我们需要把这个轴牢牢地固定住,不让它在加工过程中发生移动或者转动。

这时候,就可以运用六点定位原理,通过卡盘和顶尖等装置,给这个轴提供六个合理分布的支撑点,让它稳稳地待在那里,接受我们的加工。

在夹具设计中,六点定位原理更是起着关键的指导作用。

夹具设计师需要根据工件的形状、尺寸和加工要求,巧妙地布置这六个支撑点,以确保工件能够被精确地定位和夹紧。

如果支撑点布置得不合理,就可能导致工件在加工过程中出现位置偏差,影响加工精度,甚至可能造成废品。

而且,六点定位原理也不是绝对死板的。

绝对定位和相对定

绝对定位和相对定

GPS基线向量网的平差:(1/3)
图中红色点代表测站; 有方向的线段代表各个测站之间的 1 基线向量。 Δ X12 Δ X31 GPS 2 Δ X23 基线 向量 网 Δ X52 Δ X35
Δ X24
3
Δ X73 Δ X36 7
Δ X67
4
Δ X45
5 Δ X85 Δ X95
Δ X56
6
Δ X48
Δ X69
Δ X89
8 9
GPS基线向量网的平差:(2/3)
• 定义 就是以载波相位观测解算得到的基 线向量为观测值,以其方差阵的逆阵 为权,进行平差计算,求得各GPS网 点在WGS-84坐标系的坐标,并进行 精度评定的过程。
GPS基线向量网的平差:(3/3)
• GPS基线网平差的目的: 消除基线网中各类图形闭合条件的不符值, 并建立网的基准,即网的位置、方向和尺度 基准。 目前主要采用的平差方法有:三维无约束 平差、三维约束平差及三维联合平差三种平 差模型。
定位精度的评价
为了评价定位结果,在导航学中,一般 采用有关精度因子(精度衰减因子、精度系 数、精度弥散)DOP(Dilution Of Precision)的概念。 在实践中,根据不同 要求,可选用不同的精度评价模型和相应的 精度因子,通常有:
※平面位置精度因子HDOP(horizontal DOP) ※高程精度因子VDOP(Vertical DOP) ※空间位置精度因子PDOP(Position DOP) ※接收机钟差精度因子TDOP(Time DOP) ※几何精度因子GDOP(Geometric DOP),描述空 间位置误差和时间误差综合影响的精度因子
绝对定位和相对定位
GPS定位方法分类
定位方法分类 按参考点的不同位臵划分为: (1)绝对定位(单点定位):在地球协议坐 标系中,确定观测站相对地球质心的位臵。 (2)相对定位:在地球协议坐标系中,确定 观测站与地面某一参考点之间的相对位臵。

精密单点定位技术原理(张小红)

精密单点定位技术原理(张小红)



To ensure GLONASS minimum operational capability (constellation of 18 NSV) by the end of 2007 To ensure GLONASS full operational capability (constellation of 24 NSV) by the end of 2009 To ensure GLONASS performance comparable with that of GPS and GALILEO by 2010
9c49处定a1据s76543210数与pmerusmr用g应sp2g3gps定位技术的发展历程第四代定位技术x第四代非差相位精密单点定位非差相位精密单点定位网络rtk技术第三代网络rtk技术第三代pppppp第二代第二代常规rtk常规rtk广域差分定位广域差分定位第一代第一代伪距单点定位载波静态相对定位伪距差分定位伪距单点定位载波静态相对定位伪距差分定位相对定位绝对定位相对定位绝对定位gps应用与数据处理培训班主讲
Master Control Station Monitor Station Ground Antenna
sites have co-located: • VLBI (very long baseline interferometry); • lunar laser-ranging (from instrument left by Apollo astronauts) …primarily for length of day considerations • satellite laser-ranging 《GPS应用与数据处理》培训班 主讲:张小红
《GPS应用与数据处理》培训班

单点定位名词解释

单点定位名词解释

单点定位名词解释什么是单点定位单点定位(Single Point Positioning,简称SPP)是一种用于确定物体或人在空间中单一位置的定位技术。

它是基于全球导航卫星系统(Global Navigation Satellite System,简称GNSS)的原理和技术,通过接收来自多颗卫星的信号,并利用这些信号的时间延迟、频率变化等信息,来计算被定位物体或人的地理坐标。

GNSS与单点定位的关系GNSS是由一组卫星组成的导航系统,包括全球定位系统(GPS,GlobalPositioning System)、伽利略卫星导航系统(Galileo)、北斗卫星导航系统(BeiDou)等。

这些卫星以恒定的轨道绕地球运行,向地面发送无线电信号,接收器接收并处理这些信号,从而实现定位和导航功能。

单点定位是GNSS中最基本的定位方式,它仅利用一个接收器接收卫星信号,通过计算信号的时间差、频率等信息,确定接收器所在的位置。

相比于差分定位和RTK定位,单点定位的精度较低,但它具有简单、易操作等特点,在不需要高精度定位的情况下,具有较为广泛的应用。

单点定位的原理单点定位的原理主要基于三个方面的信息:接收时间、卫星位置和信号传播速度。

•接收时间:接收器接收到来自卫星的信号后,可以通过测量信号到达的时间差来计算信号的传播距离。

•卫星位置:接收器需要知道至少四颗卫星的位置信息,这样才能计算得到接收器所在的位置。

卫星的位置信息可以通过广播信号传输给接收器。

•信号传播速度:信号在空间中传播的速度是一个固定值,接收器可以利用信号的传播速度,将信号传播时间转换为接收器与卫星之间的距离。

基于上述信息,接收器可以通过解算的方式,计算出接收器所在的位置坐标。

常用的解算方法包括最小二乘法、加权最小二乘法等。

单点定位的误差源单点定位的精度受到多个因素的影响,主要的误差源包括以下几个方面:1.天线相位中心偏移误差:接收器的天线相位中心与经纬度坐标系的参考点之间存在一定的偏移,这会引入一定的误差。

GPS各章节知识点总结

GPS各章节知识点总结

第一章绪论1、GPS的应用:导航、授时、定位测量2、卫星定位经历了三个发展阶段:卫星三角测量、卫星多普勒测量、GPS卫星定位测量卫星三角测量:卫星仅作为一种空间动态观测目标,由地面通过拍摄卫星的位置而测定地面点的坐标。

卫星多普勒测量:利用地面跟踪站上的多普勒测量资料可以精确确定卫星轨道。

定位原理是基于“多普勒效应”3、子午卫星系统:利用多普勒效应进行导航定位,也被称为多普勒定位系统。

(6颗卫星,6个轨道,轨道夹角30,轨道倾角90,卫星高度1075,周期107min)局限性:①一次定位所需时间过长②不是连续的、独立的卫星导航系统③效率低、精度低4、GPS在各个领域的应用:①军事:配备GPS的士兵;导航的导弹;核潜艇;舰载飞弹②交通运输:航运、航空搜索;陆路交通(车辆导航、监控);船舶远洋导航和进港引水③测量:建立和维持全球性的参考框架;板块运动和监测;建立各级国家平面控制网;布设城市控制网、工程测量控制网,进行各种工程测量;在航空摄影测量、地籍测量、海洋测量中的应用。

④其他:精细农业;遥感;卫星定轨;资源勘探;GPS气象学;个人旅游…5、美国政府的GPS政策SPS:标准定位服务,使用C/A码,民用PPS:精密定位服务,可使用P码,军用SA:选择可用性技术;1991.7.1-2000.5.2;人为降低普通用户的测量精度;方法:降低星历精度(加入误差);卫星钟加高频抖动(短周期,快变化)AS:反电子欺骗技术;1994.1.31-今天;P码加密。

P+W→Y6、GPS现代化:①在Block IIR卫星的L2载波上调制C/A码,在Block II F卫星中增加f =1176.45MHz的民用频率;②增强卫星信号强度,增加抗干扰能力;③增设新的军用码(M码),与民用码分开,并具有更好的保密性和抗干扰能力;④使用新技术,以阻止或干扰敌方使用GPS;⑤军用接收机具有更好的保护装置,特别是抗干扰能力,具有快速初始化功能。

第6章 单点定位

第6章 单点定位

• 单位权中误差,其受伪距测量精度、星历精度及大气延迟 影响;
• 对应的协因数矩阵,它由卫星的空间几何分布决定
6.1 伪距单点定位
协因数矩阵中各个元素反映了在特定的卫星空间几何分布 下,不同参数的定位精度及其相关性信息。因此,利用这些信 息即可描述卫星空间几何分布对定位精度影响的精度因子: 常用的精度因子有: (1)几何精度因子(Geometric Dilution of Precision, GPOP)
式中 , Qx
qYX
qYY
qYZ
R
sin L0
cos L0
0
为坐标转换矩阵,
qZX qZY qZZ
cos B0 cos L0 cos B0 sin L0 sin B0
B0和L0分别为对应的大地纬度和大地经度。
6.1 伪距单点定位
由此可得到另两个常用的精度因子 (4)水平精度因子(Horizontal Dilution of Precision, GPOP)
23934824.154
23978631.5766+43
822.577
24181945.803 24298916.7595+116 967.755
22957572.280 22965399.9529+7 834.145
22385541.968 22355209.7858 30 330.506
ni
1
VX VY
VZ
=i
i0
+cV t
i
S
Ii Ti i
cVtR
若接收机同时接收n( n ≥4)颗卫星,则上式可写为:
6.1 伪距单点定位
l1
l2
l3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 获得定位结果的时效
– 事后定位 – 实时定位
• 观测值类型
– 伪距测量 – 载波相位测量
GPS测量定位技术与应用
距离测量与GPS定位 > 单点定位 > 单点定位简介
单点定位简介
• 定义
– 单独利用一台接收机确定待定点在地固坐标系中绝对位 置的方法
• 定位结果-与所用星历同属一坐标系的绝对坐标
– 采用广播星历时属WGS-84 – 采用IGS – International GPS Service精密星历时为ITRF – International Terrestrial Reference Frames
GPS测量定位技术与应用
§4.5 单点定位
GPS测量定位技术与应用
距离测量与GPS定位 > 单点定位 > GPS测量定位方法分类
GPS测量定位方法分类
• 定位模式
– 绝对定位(单点定位) – 相对定位 – 差分定位
• 定位时接收机天线的运动状态
– 静态定位-天线相对于地固坐标系静止 – 动态定位-天线相对于地固坐标系运动
• 卫星钟差
– 精密钟差、地面跟踪
• 电离层延迟
– 双频改正
• 对流层延迟
– 模型改正
GPS测量定位技术与应用
距离测量与GPS定位 > 单点定位 > 精密单点定位
精密单点定位
• 精密单点定位
– PPP – Precise Point Positioning – 特点
• 主要观测值为载波相位 • 采用精密的卫星轨道和钟数据 • 采用复杂的模型
各种误差对相对定位结果的影响
• • • • • 卫星轨道误差 – 削弱 卫星钟差 – 消除 大气折射误差 – 削弱 接收机钟差 – 消除 接收机天线相位中心偏差和变化 – 消除
GPS测量定位技术与应用
距离测量与GPS定位 > 相对定位 > 相对定位的类型
相对定位的类型
• 静态定位
– 普通静态定位 – 快速静态定位
• Go and Stop • 快速确定整周未知数
• 动态定位
– 动态定位中整周未知数的确定
• 静态初始化 • 动态初始化(OTF)
– 实时动态定位(RTK – Real Time Kinematic)
• 单基准站RTK • 多基准站RTK(网络RTK)
GPS测量定位技术与应用
距离测量与GPS定位 > 相对定位 > RTK – 实时动态
– 定位精度
• 亚分米级
– 用途
• 全球高Leabharlann 度测量 • 卫星定轨GPS测量定位技术与应用
§4.6 相对定位
GPS测量定位技术与应用
距离测量与GPS定位 > 相对定位 > 概述
概述①
• 定义
– 确定进行同步观测的接收机之间相对位 置的定位方法,称为相对定位。
• 定位结果
– 与所用星历同属一坐标系的基线向量 (坐标差)及其精度信息
• 特点
– 优点:一台接收机单独定位,观测简单,可瞬时定位 – 缺点:精度主要受系统性偏差的影响,定位精度低
• 应用领域
– 低精度导航、资源普查、军事、...
GPS测量定位技术与应用
距离测量与GPS定位 > 单点定位 > 单点定位的误差源及应对方法
单点定位的误差源及应对方法
• 卫星星历
– 精密星历
• 采用广播星历时属WGS-84 • 采用IGS – International GPS Service精密星 历时为ITRF – International Terrestrial Reference Frame
– 基线向量中含有:2个方位基准(一个 水平方法,一个垂直方位)和1个尺度 基准,不含有位置基准
RTK – 实时动态
• Real Time Kinematic
GPS测量定位技术与应用
距离测量与GPS定位 > 相对定位 > RTK – 实时动态
RTK – 实时动态
• Real Time Kinematic
基准站
流动站 (用户)
数据通讯 链
GPS测量定位技术与应用
距离测量与GPS定位 > 相对定位 > 概述
概述②
• 特点
– 优点:定位精度高 – 缺点:
• 多台接收共同作业,作业复杂 • 数据处理复杂 • 不能直接获取绝对坐标
• 应用
– 高精度测量定位及导航
相对定位
GPS测量定位技术与应用
距离测量与GPS定位 > 相对定位 > 各种误差对相对定位结果的影响
相关文档
最新文档