【新课标】浙教版最新2018年七年级数学下册《图形的平移》单元考点练习及答案解析
七年级数学下册《平移》同步练习题及答案

七年级数学下册《平移》同步练习题及答案一、单选题(共15小题)1.下列各组图形,可经平移变换由一个图形得到另一个图形的是()A.B.C.D.2.如图所示,四幅汽车标志设计中,能通过平移得到的是()A.B.C.D.3.如图所示,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF的位置,下面正确的平移步骤是()A.先向左平移5个单位,再向下平移2个单位B.先向右平移5个单位,再向下平移2个单位C.先向左平移5个单位,再向上平移2个单位D.先向右平移5个单位,再向下平移2个单位4.线段AB经过平移得到线段CD,若CD=5cm,则AB等于()A.3cm B.4cm C.5cm D.6cm5.通过平移得到的新图形中的每一点与原图形中的对应点的连线()A.平行B.相等C.共线D.平行(或在同一条直线上)且相等6.下列运动过程属于平移的是()A.荡秋千B.摇动水井上的轱辘C.小火车在笔直的铁轨上行进D.宇宙中的行星运轨7.将字母“E” 沿垂直方向向下平移3㎝的作图中,第一步应在字母“E”上找出的关键点的个数为()A.4个B.5个C.6个D.7个8.将长度为3cm的线段向下平移2cm,则平移后的线段长度是()A.3cm B.2cm C.5cm D.1cm9.在下列说法中:①△ABC在平移过程中,对应线段一定相等;②△ABC在平移过程中,对应线段一定平行;③△ABC在平移过程中,周长保持不变;④△ABC在平移过程中,对应边中点所连线段的长等于平移的距离;⑤△ABC在平移过程中,面积不变,其中正确的有()A.①②③B.①②④C.①③④D.①③④⑤10.如图,O是正六边形ABCDEF的中心,下列图形中可由△OBC平移得到的是()A.△OCD B.△OAB C.△OAF D.△DEF11.将图形A向右平移3个单位得到图形B ,再将图形B向左平移5个单位得到图形C。
如果直接将图形A平移到图形C,则平移方向和距离为()A.向右2个单位B.向右8个单位C.向左8个单位D.向左2个单位12.下列情形中,不属于平移的有()A.钟表的指针转动B.电梯上人的升降C.火车在笔直的铁轨上行驶D.农村辘轳上水桶的升降13.如图所示第1个图案是由黑白两种颜色的正六边形地面砖组成,第2个,第3个图案可以看作是第1个图案经过平移而得,那么(1)第4个图案中有白色六边形地面砖________块,第个图案中有白色地面砖________ 块,则下列选项中正确的是()A.B.C.D.14.在5×5方格纸中将图(1)中的图形N平移后的位置如图(2)中所示,那么正确的平移方法是().A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格15.如图所示,由△ABC平移得到的三角形的个数是()A.5B.15C.8D.6二、填空题16.将线段AB平移1cm,得到线段A′B′,则点A到点A′的距离是cm.17.如图所示,直径为4cm的△O1平移5cm到△O2,则图中阴影部分面积为cm2.18.如图所示,将△ABC沿直线BC方向平移3个单位得到△DEF,若BC=5,则CF=.19.如图所示,如果把图中任一条线段沿方格线平移1格称为“1步”,那么要通过平移使图中的四条线段首尾相接组成一个四边形,最少需要步.20.如图:直角△ABC中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为.三、解答题(共5小题)21.如图所示,点A、B、C分别平移到了点D、E、F,请你指出图中有哪些相等的线段和相等的角?22.画图并填空:(1)画出△ABC先向右平移6格,再向下平移2格得到的△A1B1C1.(2)线段AA1与线段BB1的关系是:.(3)△ABC的面积是平方单位.23.某宾馆打算在宽为2米的一段楼梯面上铺上地毯,台阶的侧面如图所示,如果这种地毯每平方米售价为80元,则购买这种地毯至少需要多少元?24.如图所示,王飞打算在院子里种上蔬菜,已知院子为东西长32m,南北宽20m的长方形.为了行走方便,要修筑同样宽的三条道路:东西两条,南北一条,南北道路垂直于东西道路,余下的部分要分别种上西红柿、青椒、黄瓜等蔬菜.若每条道路的宽均为1m,则蔬菜的总种植面积是多少?25.△ABC沿着BC方向平移,如图:B与C重合,C与D重合,A与E重合,已知△ABC的面积为3。
七年级数学下册《图形的平移》单元测试卷(附答案解析)

七年级数学下册《图形的平移》单元测试卷(附答案解析)一.选择题(共8小题,满分24分)1.“冰墩墩”是2022年北京冬奥会吉祥物(如图).在如图的四个图中,能由如图经过平移得到的是()A.B.C.D.2.下列生活现象中,属于平移的是()A.升降电梯的上下移动B.荡秋千运动C.把打开的课本合上D.钟摆的摆动3.如图,将△ABC沿BC方向平移到△DEF,若A、D间的距离为2,CE=4,则BF=()A.4 B.6 C.8 D.104.如图,已知△ABC的周长为20cm,现将△ABC沿AB方向平移2cm至△A′B′C′的位置,连接CC′,则四边形AB′C′C的周长为()A.20cm B.22cm C.24cm D.26cm5.如图,△ABC中,∠ABC=90°,沿BC所在的直线向右平移得到△DEF,下列结论中,错误的()A.EC=CF B.∠A=∠D C.AC∥DF D.∠DEF=90°6.如图所示,某公园里有一处长方形风景欣赏区ABCD,AB长50米,BC宽25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小明同学在假期沿着小路的中间行走(图中虚线),小路宽1米,则小明同学所走的路径长为()A.98米B.100米C.123米D.75米7.下列语句中正确的有()个①过一点有且只有一条直线与已知直线平行;②如果两个角的两边互相平行,则这两个角相等;③垂直于同一直线的两直线平行;④△ABC平移到△A′B′C′,则对应点的连线段AA′、BB′、CC′平行且相等.A.0 B.1 C.2 D.38.如图,将△ABC沿着某一方向平移一定的距离得到△DEF,则下列结论:①AD=CF;②AC∥DF;③∠ABC =∠DFE;④∠DAE=∠AEB.其中正确的是()A.仅①②B.仅①②④C.仅①②③D.①②③④二.填空题(共10小题,满分30分)9.如图,△ABC沿BC所在直线向右平移得到△DEF,则△ABC平移的距离是图中线段的长度.10.如图,在宽为13米、长为24米的长方形地面上修筑同样宽的道路(图中阴影部分),道路的宽为2米,余下部分种植草坪.则草坪的面积为.11.要在台阶上铺设某种红地毯,已知这种红地毯每平方米的售价是20元,台阶宽为3米,侧面如图所示,购买这种红地毯至少需要元.12.如图,△DEF是由△ABC先向右平移格,再向平移得到的.13.如图,直线a与∠AOB的一边射线OA相交,∠1=130°,向下平移直线a得到直线b,与∠AOB的另一边射线OB相交,则∠2+∠3=.14.在以下现象中:①用打气筒打气时,气筒里活塞的运动;②传送带上,瓶装饮料的移动;③在笔直的公路上行驶的汽车;④随风摆动的旗帜;⑤钟摆的摆动,属于平移现象的有(只填序号).15.如图,在一块长为a米、宽为b米的长方形地上,有一条弯曲的柏油马路,马路的任何地方的水平宽度都是2米,其他部分都是草地,则草地的面积为平方米.16.如图,直线a∥b,且a、b之间相距4cm,点P是直线a上一定点,点Q在直线b上运动,则在Q点的运动过程中,线段PQ的最小值是cm.17.把一副直角三角尺如图摆放,点C与点E重合,BC边与EF边都在直线l上,将△ABC向右平移得△A'B'C',当边A'C'经过点D时,∠EDC'=°.18.如图,已知长方形ABCD的长为a,宽为b,若将长方形ABCD向右平移,再向下平移,得到长方形A′B′C′D′,则阴影部分的面积为.(用含a、b的代数式表示)三.解答题(共6小题,满分46分)19.如图,在边长为1个单位的正方形网格中,△ABC经过平移后得到△A'B'C',图中标出了点B的对应点B'.根据下列条件,利用网格点和无刻度的直尺画图并解答相关的问题保留画图痕迹:(1)画出△A'B'C';(2)连接AA'、CC',那么AA'与CC'的关系是,线段AC扫过的图形的面积为;20.在如图所示4×4方格中,按下列要求作格点三角形(图形的顶点都在正方形格纸的格点上).(1)在图1中,将△ABC平移,得到△A′B′C′,使得△A′B′C′与△ABC无重合部分.(2)在图2中,线段AB与CD相交,产生∠α,请画一个△ABE,使得△ABE中的一个角等于∠α.21.如图,在Rt△ABC中,∠ACB=90°,∠E=55°,将△ABC沿AB方向向右平移得到△DEF.(1)求∠A的度数;(2)若AE=8cm,DB=2cm,请求出AD的长度.22.如图,△ABC中,BC=4cm,将△ABC以0.2cm/s的速度沿BC所在直线向右平移,所得图形对应为△DEF,设运动时间为t秒.(1)若∠ADE=60°,求∠B的度数?(2)当t为何值时,EC=1cm?23.如图,已知直线CB∥OA,∠C=∠OAB=100°,点E、F在线段BC上,满足∠FOB=∠FBO=α,OE平分∠COF.(1)OC与AB是否平行?请说明理由.(2)用含有α的代数式表示∠COE的度数;(3)若左右平移线段AB,是否存在∠OEC=∠OBA的可能?若存在,求出此时α的值;若不存在,请说明理由.24.动手操作(1)如图1,在5×5的网格中,将线段AB向右平移,得到线段A'B',连接AA',BB'.①线段AB平移的距离是;②四边形ABB'A'的面积;(2)如图2,在5×5的网格中,将折线ACB向右平移3个单位长度,得到折线A'C'B'.③画出平移后的折线A'C'B';④连接AA',BB',多边形ACBB'C'A'的面积;拓展延伸(3)如图3,在一块长为a米,宽为b米的长方形草坪上,修建一条宽为m米的小路(小路宽度处处相同),直接写出剩下的草坪面积.参考答案与解析一.选择题(共8小题,满分24分)1.解:根据平移的性质可知:能由如图经过平移得到的是B,故选:B.2.解:A、升降电梯的运动,属于平移现象,故A符合题意;B、荡秋千运动,不属于平移现象,故B不符合题意;C、把打开的课本合上,不属于平移现象,故B不符合题意;D、钟摆的摆动,不属于平移现象,故D不符合题意;故选:A.3.解:∵将△ABC沿CB方向平移到△DEF的位置,点A,D之间的距离为2,∴BE=CF=2,∵CE=4,∴BF=CF+BE+CE=2+2+4=8,故选:C.4.解:根据题意,得A的对应点为A′,B的对应点为B′,C的对应点为C′,所以BC=B′C′,BB′=CC′,则四边形AB′C′C的周长=CA+AB+BB′+B′C′+C′C=△ABC的周长+2BB′=20+4=24(cm).故选:C.5.解:∵Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,∴AC∥DF,△ABC≌△DEF,∴∠ACB=∠DFE,∠DEF=∠ABC=90°,AC=DF,BC=EF,∠A=∠D,∴AC∥DF,∴BC﹣CE=EF﹣CE,即BE=CF,∴选项B、C、D正确,不符合题意,但BE不一定与EC相等,故选项A错误,符合题意;故选:A.6.解:将所走的路线分段进行平移可得,小明同学所走的路径长为50+(25﹣1)×2=98(米),故选:A.7.解:过直线外一点有且只有一条直线与已知直线平行,所以①错误;如果两个角的两边互相平行,则这两个角相等或互补,所以②错误;在同一平面内,垂直于同一直线的两直线平行,所以③错误;△ABC平移到△A′B′C′,则对应点的连线段AA′、BB′、CC′平行(或共线)且相等,所以④错误.故选:A.8.解:∵△ABC沿着某一方向平移一定的距离得到△DEF,∴①AD∥CF,正确;②AC=DF,正确;③∠ABC=∠DEF,故原命题错误;④∠DAE=∠AEB,正确.所以,正确的有①②④.故选:B.二.填空题(共10小题,满分30分)9.解:∵△ABC沿BC所在直线向右平移得到△DEF,∴△ABC平移的距离是图中线段BE或CF的长度,故答案为:BE或CF.10.解:草坪的面积为:(24﹣2)×(13﹣2)=242(平方米).故答案为:242平方米.11.解:利用平移线段,把楼梯的横竖向上向右平移,构成一个矩形,长宽分别为5.2米,4.8米,∴地毯的长度为5.2+4.8=10(米),地毯的面积为10×3=30(平方米),∴购买这种红地毯至少需要30×20=600(元).故答案为:600.12.解:如图所示:△ABC可以先向右平移6格,再向下平移3格,得到△DEF.故答案为:6,下,3.13.解:作OC∥a,如图∵直线m向上平移直线a得到直线b,∴a∥b,∴OC∥b,∴∠1=∠AOC=180°,∠3+∠BOC=180°,∴∠1+∠AOC+∠3+∠BOC=360°,即∠1+∠2+∠3=360°,∠2+∠3=360°﹣∠1=360°﹣130°=230°.故答案为230°.14.解:①用打气筒打气时,气筒里活塞的运动符合平移的定义,故正确;②直线传送带上,瓶装饮料的移动符合平移的定义,故正确;③在平直的公路上行驶的汽车符合平移的定义,故正确;④随风摆动的旗帜不在同一条直线上,故错误;⑤钟表的摆动不在同一条直线上,故错误;故答案为:①②③.15.解:由题可得,草地的面积是(ab﹣2b)平方米.故答案为:(ab﹣2b).16.解:当PQ⊥b时,根据垂线段最短,可以知道此时线段PQ最短, ∵直线a∥b,且a、b之间相距4cm,∴线段PQ的最小值是4cm,故答案为:4.17.解:由题意得:∠A′C′B′=60°,∠DEC′=45°,∴∠EDC'=180°﹣45°﹣60°=75°,故答案为:75.18.解:由题意,空白部分是矩形,长为,宽为,∴阴影部分的面积=ab×2﹣2×=,故答案为:.三.解答题(共6小题,满分46分)19.解:(1)如图,△A'B'C'即为所求;(2)根据平移的性质知,AA'∥CC',AA'=CC',线段AC扫过的图形为四边形CAA'C',∴四边形CAA'C'的面积为10,故答案为:AA'∥CC',AA'=CC',10.20.解:(1)如图1,△A′B′C′为所作;(2)如图2,△ABE为所作.21.解:(1)∵BC∥EF,∴∠ABC=∠E=55°,∵∠ACB=90°,∴∠A=90°﹣55°=35°;(2)由平移得,AD=BE=CF,∵AE=8cm,DB=2cm,∴AD=BE=×(8﹣2)=3(cm).22.解:(1)∵△ABC沿BC所在直线向右平移,所得图形对应为△DEF,∴∠B=∠DEF,AD∥BF,∵AD∥BF,∴∠DEF=∠ADE=60°,∴∠B=60°;(2)∵△ABC以0.2cm/s的速度沿BC所在直线向右平移,所得图形对应为△DEF,∴BE=0.2tcm,当E点在线段BC上,∵BE+CE=BC,∴0.2t+1=4,解得t=15,当E点在BC的延长线上时,∵BE=BC+CE,∴0.2t=4+1,解得t=25,,综上所述,当t=15或25时,EC=1cm.23.解:(1)OC∥AB,理由如下:∵BC∥OA,∴∠COA+∠C=180°,∵∠C=∠OAB,∴∠COA+∠OAB=180°,∴OC∥AB;(2)∵∠CFO=∠FOB+∠FBO,∠FOB=∠FBO=α,∴∠CFO=2α,∴∠COF=180°﹣2α﹣100°=80°﹣2α,∵OE平分∠COF,∴∠COE=∠COF=40°﹣α;(3)存在∠OEC=∠OBA,理由如下:∵∠COE=∠EOF=40°﹣α,∠FOB=∠FBO=α,∴∠EOB=40°,∵∠CEO=∠ABO,∴∠ABO=∠CEO=∠EOB+∠FBO=40°+α,∵AB∥OC,∴∠C+∠ABC=180°,∵∠C=100°,∴∠ABC=80°,∴40°+α+α=80°,∴α=20°.24.解:(1)①线段AB平移的距离是4;②四边形ABB'A'的面积=4×2=8;故答案为:4,8;(2)③如图所示,多边形ACBB'C'A'的面积=×+3×2=7,故答案为:7;(3)由题意可得:铺设小径后草坪(阴影部分)的面积=(a﹣m)•b=(ab﹣bm).答:铺设小径后草坪(阴影部分)的面积为(ab﹣bm)米2.故答案为:(ab﹣bm)米2.。
七年级数学下册 第1章 平行线 1.5 图形的平移作业设计 (新版)浙教版-(新版)浙教版初中七年级

1.5 图形的平移一.选择题(共11小题)1.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为18,阴影部分三角形的面积为8.若AA'=1,则A'D等于()(第1题图)A.3 B.2 C.32 D.232.某酒店打算在一段楼梯面上铺上宽为2米的地毯,台阶的侧面如图所示,如果这种地毯每平方米售价为80元,则购买这种地毯至少需要()(第2题图)A.2560元B.2620元C.2720元D.2840元3.下列四组图形都含有两个可以重合的三角形,其中可以通过平移其中一个三角形得到另一个三角形的是()A.B.C.D.4.如图,将△ABC沿着由点B到点C的方向平移到△DEF,已知AB=7,BC=6,EC=4,那么平移的距离为()(第4题图)A.1 B.2 C.3 D.65.如图,若△DEF是由△ABC平移后得到的,已知点A、D之间的距离为1,CE=2,则BC=()(第5题图)A.3 B.1 C.2 D.不确定6.如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()(第6题图)A.42 B.96 C.84 D.487.如图中的五个正方体大小相同,则A,B,C,D四个正方体中平移后能得到正方体W的是()(第7题图)A.正方体A B.正方体B C.正方体C D.正方体D8.如图,直线AB∥CD,EF分别交AB、CD于G、F两点,射线FM平分∠EFD,将射线FM平移,使得端点F与点G重合且得到射线GN.若∠EFC=110°,则∠AGN的度数是()(第8题图)A.120°B.125°C.135°D.145°9.如图,将直角三角形ABC沿着点B到点C的方向平移3cm得到三角形DEF.且DE交AC 于点H,AB=6cm.BC=9cm.DH=2cm.那么图中阴影部分的面积为()(第9题图)A.9 cm2B.10 cm2C.15 cm2D.30 cm210.如图,将△ABC沿BC方向平移1个单位得到△DEF,若△ABC的周长等于9,则四边形ABFD的周长等于()(第10题图)A.9 B.1 C.11 D.1211.如图,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条小路(图中阴影部分),余下部分绿化,小路的宽为2m,则两条小路的总面积是()m2(第11题图)A.108 B.104 C.100 D.98二.填空题(共3小题)12.如图,图中是重叠的两个直角三角形.现将其中一个直角三角形沿BC方向平移得到△DEF.如果AB=9cm,BE=4cm,DH=3cm,则图中阴影部分面积为cm2.(第12题图)13.如图,将周长为18cm的△ABC沿BC平移得到△DEF.平移后,如果四边形ABFD的周长是21cm,那么平移的距离是cm.(第13题图)14.如图,把Rt△ABC(∠ABC=90°)沿着射线BC方向平移得到Rt△DEF,AB=8,BE=5,则四边形ACFD的面积是.(第14题图)三.解答题(共2小题)15.如图,将△ABC沿直线BC向右平移到△A1B1C1的位置,延长AC、A1B1相交于点D.(1)求证:∠A=∠D;(2)请写出图中3条不同类型的正确结论.(第15题图)16.如图,在△ABC中,AB=6cm,BC=4cm,AC=3cm.将△ABC沿着与AB垂直的方向向上平移3cm,得到△DEF.(1)四边形ABDF是什么四边形?(2)求阴影部分的面积?(第16题图)参考答案一.1.B2.C3.D4.B5.A6.D7.C8.D9.C10.C 11.C二.12.3014.40三.15.证明:(1)由平移性质,得∠B=∠A1B1C1.又∵∠A1B1C1=∠BB1D.∴∠B=∠BB1D,∴AB∥A1D,∴∠A=∠D;(2)三条不同类型的正确结论是:①AD∥A1C1;②BB1=CC1;③∠A=∠A1.16.解:(1)由平移可得,DF=AB,DF∥AB,∴四边形ABDF是平行四边形,又由平移的方向可得,∠ABD=90°,∴四边形ABDF是矩形;(2)由平移可得,△ABC≌△FDE,BD=3cm,∴S△ABC=S△FDE,∴阴影部分的面积=矩形ABDF的面积=6×3=18cm2.。
1.5 图形的平移(专项练习) 浙教版数学七年级下册基础知识讲与练(含答案)

专题1.12 图形的平移(专项练习)一、单选题1.下列现象中,属于平移现象的是()A.方向盘的转动B.行驶的自行车的车轮的运动C.电梯的升降D.钟摆的运动2.在下列汽车标志的图案中,能用图形的平移来分析其形成过程的是( )A.B.C.D.3.如图,沿直线m向右平移,得到,下列说法错误的是()A.B.C.D.4.如图,沿射线方向平移到(点E在线段上),如果,,那么平移距离为()A.3cm B.5cm C.8cm D.13cm5.有以下说法:①△ABC在平移的过程中,对应线段一定相等;②△ABC在平移过程中,对应线段一定平行;③△ABC在平移过程中,周长保持不变;④△ABC在平移过程中,对应角分别相等.正确的是( )A.①②③④B.①③④C.②③④D.①②③6.如图,在一块长方形草地上原有一条等宽的笔直小路,现在要把这条小路改为同样宽度的弯曲小路,则改造后草地部分的面积()A.变大B.不变C.变小D.无法确定7.下列平移作图不正确的是()A.B.C.D.8.定义:将一个图形L沿某个方向平移一段距离后,该图形在平面上留下的痕迹称之为图形L在该方向的拖影.如图,四边形ABB′A′是线段AB水平向右平移得到的拖影.则将下面四个图形水平向右平移适当距离,其拖影是五边形的是( )A.B.C.D.9.如图所示,将边长为的正方形先向上平移,再向右平移,得到正方形,此时阴影部分的面积为()A.B.C.D.10.小红同学在某数学兴趣小组活动期间,用铁丝设计并制作了如图所示的三种不同的图形,请您观察甲、乙、丙三个图形,判断制作它们所用铁丝的长度关系是()A.制作甲种图形所用铁丝最长B.制作乙种图形所用铁丝最长C.制作丙种图形所用铁丝最长D.三种图形的制作所用铁丝一样长二、填空题11.下列生活中的物体的运动情况可以看成平移的是____.(1)摆动的钟摆;(2)在笔直的公路上行驶的汽车;(3)随风摆动的旗帜;(4)汽车玻璃上雨刷的运动;(5)从楼顶自由落下的球(球不旋转).12.如图所示是一座楼房的楼梯,高1 m,水平距离是2.8 m.如果要在台阶上铺一种地毯,那么至少要买这种地毯________13.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为__14.如图,将沿着射线的方向平移,得到,若,,则平移的距离为__.15.如图,将△ABC平移到△A’B’C’的位置(点B’在AC边上),若∠B=55°,∠C=100°,则∠AB’A’的度数为_____°.16.如图,在长方形ABCD中,线段AC,BD相交于O,DE//AC,CE//BD,BC=2cm,那么三角形EDC可以看作由____平移得到的,连接OE,则OE=____cm.17.如图,在长为9m,宽为7m的矩形场地上修建两条宽度都为1m且互相垂直的道路,剩余部分进行绿化,则绿化面积共有______.18.如图,公园里长为20米宽为10米的长方形草地内修建了宽为1米的道路,则草地面积是________平方米.三、解答题19.如图示,每个小方格的边长为1,把三角形ABC先向右平移5个格再向下平移2个格得到三角形DNF.(1) 在方格中画出平移后的三角形DNF.(2) 计算平移后三角形DNF的面积.20.如图所示的正方形网格中,每个小正方形的边长都为1个单位长度,三角形ABC的顶点都在正方形网格的格点上,将三角形ABC向上平移m个单位,再向右平移n个单位,平移后得到三角形,其中图中直线l上的点是点A的对应点。
浙教版七年级下册数学 第1章 1.5图形的平移 素材(解析版)

浙教版七年级下第一章平行线同步练习1.5图形的平移一.选择题1.在下列生活中的各个现象中,属于平移变换现象的是( )A. 拉开抽屉B. 用放大镜看文字C. 时钟上分针的运动D. 你和平面镜中的像【答案】A【解析】A. 拉开抽屉是平移现象;B. 用放大镜看文字是位似现象;C. 时钟上分针的运动是旋转现象;D. 你和平面镜中的像镜面对称现象;故选A.2.把如图的图形进行平移,能得到的图形是( )A. B. C. D.【答案】C【解析】试题分析:易知平移后图形形状大小不变只是位置变化了。
所以选C考点:平移点评:本题难度较低,主要考查学生对平移知识点的掌握,抓住只是位置变化其他不变为解题关键。
3.下列四幅名车标志设计中能用平移得到的是( )A. B.C. D.【答案】A【解析】【分析】根据平移的定义结合图形进行判断.【详解】根据平移的定义可知,只有A选项是由一个圆作为基本图形,经过平移得到.故选A.【点睛】本题考查了平移的定义:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移.注意平移是图形整体沿某一直线方向移动,平移不改变图形的形状和大小.4.下列四幅图中,每幅图中的两个图形可以通过平移得到的有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】根据平移的性质,结合图形对小题进行一一分析,选出正确答案.【详解】①、②、③图形的形状和大小没有变化,符合平移的性质,属于平移得到;④图形的方向发生变化,不符合平移的性质,不属于平移得到.故选C.【点睛】本题考查的是平移的性质,熟知图形平移后所得图形与原图形全等是解答此题的关键.5.下列图案只用其中一部分平移就可得到的是( )A. B. C. D.【答案】B【解析】【分析】根据平移的性质,对选项进行一一分析,排除错误答案.【详解】A、是图形旋转所得,故错误;B、图形的形状和大小不变,符合平移性质,故正确;C、是图形旋转所得,故错误;D、最后一个形状不同,故错误.故选B.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.6.观察下列图案,能通过如图的图形平移得到的是()A. B. C. D.【答案】D【解析】【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】通过图案平移得到必须与题中已知图案完全相同,角度也必须相同,观察图形可知C可以通过题中已知图案平移得到.故选D.【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.7.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A. 16cmB. 18cmC. 20cmD. 21cm【答案】C【解析】试题分析:已知,△ABE向右平移2cm得到△DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因△ABE 的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案选C.考点:平移的性质.8. 某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A. 甲种方案所用铁丝最长B. 乙种方案所用铁丝最长C. 丙种方案所用铁丝最长D. 三种方案所用铁丝一样长:学*科*网]【答案】D【解析】试题分析:解:由图形可得出:甲所用铁丝的长度为:2a+2b,乙所用铁丝的长度为:2a+2b,丙所用铁丝的长度为:2a+2b,故三种方案所用铁丝一样长.故选:D.考点:生活中的平移现象9.如图,在长方形ABCD中,AB=2cm,AD=4cm,E,F分别为AD,BC的中点,分别以C,F为圆心、2cm 为半径画图把长方形分成三个部分,则图中两个阴影部分的面积为( )A. 2cm2B. 4cm2C. 6cm2D. 无法确定【答案】B【解析】【分析】把扇形CDF平移到扇形BFE,我们会发现阴影部分的面积正好是长方形面积的一半,即等于2×2的正方形的面积.【详解】阴影部分面积=长方形面积的一半.故阴影部分面积=2×2=4 cm2.故选B.【点睛】本题的关键是利用平移把阴影部分的面积变成正方形的面积.10.如图,在长方形ABCD中,AB=8,BC=5,则图中四个小长方形的周长和为( )A. 13B. 23C. 24D. 26【答案】D【解析】试题分析:由平移的性质可知:四个小长方形的周长和=2×(AB+BC)=2×13=26.故选D.考点:生活中的平移现象.二.填空题11.如图:直角△ABC中,AC=5,BC=12,AB=13,则内部五个小直角三角形的周长为________.【答案】30【解析】试题解析:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为AC+BC+AB=30.故答案为:30.12.如图是某公园里一处长方形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为________米.【答案】98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析,水平距离等于AB,铅直距离等于(AD-1)×2,又∵长AB=50米,宽BC=25米,∴小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为50+(25-1)×2=98米,故答案为:98.13.如图,将直径为4cm的圆平移5cm到圆,则图中阴影部分面积为_________.【答案】20【解析】【分析】通过平移,把⊙O1的半圆向左平移到⊙O2的位置,则圆中阴影部分面积等于一个矩形的面积,然后根据面积公式计算即可.【详解】圆中阴影部分面积=5×4=20(cm2).故答案为:20.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.14.如图,△A′B′C′是△ABC向右平移4cm得到的,已知∠ACB=30°,B′C=3cm,则∠C′=_________,B′C′=________cm.【答案】(1). (2). 30° 7【解析】【分析】根据平移的性质,对应点的连线互相平行且相等,平移变换只改变图形的位置不改变图形的形状与大小对各小题分析判断即可得解.【详解】∵△A′B′C′是△ABC向右平移4cm得到的,∴BB′=CC′=4cm,∠C′=∠ACB=30°,∵B′C=3cm,∴B′C′=4+3=7cm.故答案为:30°,7.【点睛】本题考查了平移的性质,根据对应点找出平移变化的相等的线段是解题的关键.15.如图,某住宅小区内有一长方形地,想在长方形地内修筑同样宽的两条“之”字路,余下部分绿化,道路的宽为2米,则绿化的面积为________m2.【答案】540【解析】如图,把两条“之”字路平移到长方形地块ABCD的最上边和最左边,则余下部分EFGH是矩形.∵CF=32−2=30(米),CG=20−2=18(米),∴矩形EFCG的面积=30×18=540(平方米).故答案为:540.16.如图,边长为3cm的正方形ABCD沿BA方向平移2cm,则=___________,=______________.【答案】(1). 5cm(2). 1cm【解析】【分析】首先根据题意可得CD=3,根据沿BA方向平移2个单位,可得CC1=DD1=2,再根据线段的和差关系可以计算出CD1和C1D的长.【详解】∵正方形ABCD边长为3cm,∴CD=3 cm,∵沿BA方向平移2个单位,∴CC1=DD1=2 cm,∴CD1=2+3=5 cm,C1D=3-2=1cm,故答案为:5cm;1cm.【点睛】此题主要考查了平移的性质,关键是掌握平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.三.解答题17.在一块长方形草地上,有人设计了如图①②③所示的三条不同的小路,但任何地方小路的水平宽度都是m.问长方形草地做路后,花草部分的面积哪个大?为什么?【答案】一样大,面积都为ab-bm【解析】【分析】结合图形,根据平移的性质可知,图1、图2、图3中阴影部分的面积都可看作是以b为长,m为宽的长方形的面积.【详解】利用平移性质可得出:花草部分的面积都为:ab-bm.一样大.【点睛】此题主要考查了平移的性质,能利用平移的性质把不规则的图形拆分或拼凑为简单图形来计算草地的面积是解题的关键.18.如图,在三角形ABC中,已知AB=3cm,AC=4cm,BC=5cm.现将三角形ABC沿着垂直于BC的方向平移6cm,到三角形DEF的位置,求三角形ABC所扫过的面积.【答案】36cm2.【解析】【分析】由图中可以看出,三角形ABC所扫过的面积是一个长方形BEFC和一个三角形ABC的面积之和.【详解】由题意可知,长方形BEFC的面积为5×6=30cm2,由已知可得,AB2+AC2=BC2所以△ABC为直角三角形,直角三角形ABC的面积为3×4÷2=6cm2,30+6=36cm2.∴三角形ABC所扫过的面积为36cm2.【点睛】解决本题的关键是利用平移的性质得到三角形ABC所扫过的面积是一个长方形BEFC和一个三角形ABC的面积之和.19.某宾馆在重新装修后,准备在大厅的主楼梯上铺上红色地毯,已知这种红色地毯的售价为每平方米32元,主楼道宽2米,其侧面与正面如图所示,则购买地毯至少需______元.【答案】512元【解析】【分析】根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.【详解】解:利用平移线段,把楼梯的横竖向上向左平移,构成一个长方形,长宽分别为5米,3米,∴地毯的长度为5+3=8(米),∴地毯的面积为8×2=16(平方米),∴买地毯至少需要16×32=512(元)【点睛】本题考查平移性质的实际运用.解决此题的关键是要利用平移的知识,把要求的所有线段平移到一条直线上进行计算.20.如图,在直角三角形ABC中,∠ACB=90°,AC=4cm,BC=3cm,将三角形ABC沿AB方向向右平移得到三角形DEF,若AE=8cm,DB=2cm.(1)求三角形ABC向右平移的距离AD的长;(2)求四边形AEFC的周长.【答案】(1)3c m (2)18cm【解析】【分析】(1)根据平移的性质可得AD=BE=CF,BC=EF=3cm,然后根据AE、BD的长度求解即可;(2)根据平移的性质可得EF=BC,CF=AD,然后根据四边形的周长的定义列式计算即可得解.【详解】(1)∵△ABC沿AB方向向右平移得到△DEF,∴AD=BE=CF,BC=EF=3cm,∵AE=8cm,DB=2cm,∴AD=BE=CF==3cm;(2)四边形AEFC的周长=AE+EF+CF+AC=8+3+3+4=18cm.【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.21.在网格上,平移△ABC,并将△ABC的一个顶点A平移到点D处,(1)请你作出平移后的图形△DEF;(2)请求出△DEF的面积.【答案】(1)作图见解析;(2)4.【解析】试题分析:(1)根据图形平移的性质画出△DEF即可;(2)利用矩形的面积减去三个顶点上三角形的面积即可.试题解析:(1)作图如下:(2)由图可知,S△DEF=3×4﹣×2×4﹣×2×3﹣×2×1=12﹣4﹣3﹣1=4.22.如图,在四边形ABCD中,AD∥BC,BC>AD,将AB,CD分别平移到EF和EG的位置,若AD=4cm,BC=8cm,求FG的长.【答案】4cm【解析】【分析】因为在四边形ABCD中,AB、DC分别平移到EF和EG的位置,所以有AD=BF+CG,FG=BC-AD.【详解】因为AD∥BC,且AB平移到EF,CD平移到EG,所以AE=BF,DE=CG,所以AE+DE=BF+CG,即AD=BF+CG.因为AD=4 cm,所以BF+CG=4cm.因为BC=8 cm,所以FG=8-4=4(cm).【点睛】本题考查了平移的性质,解题的关键是根据平移的性质得到相等的线段.23.两个一模一样的梯形纸片如图(1)摆放,将梯形纸片ABCD沿上底AD方向向右平移得到图(2).已知AD=4,BC=8,若阴影部分的面积是四边形A′B′CD的面积的,求图(2)中平移距离A′A.【答案】3【解析】【分析】由两梯形全等,得到上底及下底对应相等,设梯形A′B′C′D′的高为h,A′A=x,则B′B=x,由上底及下底的长分别表示出AD′和BC′,根据平移的性质得到图(2)除去阴影部分左边把右边四边形的面积相等,根据阴影部分的面积等于图(2)总面积的,得到阴影部分的面积等于梯形A′B′C′D′面积的一半,由梯形的面积公式分别表示出阴影部分的面积等于梯形A′B′C′D′的面积,把各自表示出的边代入,消去h求出x的值,即为平移距离A′A的长.【详解】∵梯形ABCD与梯形A′B′C′D′全等,∴AD=A′D′=4,BC=B′C′=8,设梯形A′B′C′D′的高为h,A′A=x,则B′B=x,∴AD′=A′D′-A′A=4-x,BC′=B′C′-B′B=8-x,由平移的性质可知:S四边形A′ABB′=S四边形D′DCC′,又∵S阴影=S四边形A′B′CD,∴S阴影=S四边形ABCD,∴h(AD′+BC′)=×h(A′D′+B′C′),即h(4-x+8-x)=h(4+8),化简得:6-x=3,解得:x=3,∴A′A=3.【点睛】此题考查了平移的性质,以及梯形的面积公式,平移的性质有:对应点的连线平行(或重合)且相等,对应线段平行(或重合)且相等.其中根据平移的性质及题意得出S阴影=S四边形A′B′C′D′是解本题的关键.。
浙教版数学七年级下册《图形的平移》习题.docx

《图形的平移》习题1.如图2所示,下列四组图形中,有一组中的两个图形经过平移其中一个能得到另一个,这组图形是( ).ABC D2.如图所示,△DEF 经过平移可以得到△ABC ,那么∠C 的对应角和ED 的对应边分别是( ).O F EC BADA .∠F ,ACB .∠BOD ,BAC .∠F ,BAD .∠BOD ,AC3.如图所示,右边的两个图形中,经过平移能得到左边的图形的是( ). DC B A4.下列说法中正确的是( ). A .一个图形经过平移后,与原图形成轴对称B .如果两个图形成轴对称,那么一个图形可由另一个图形经过平移变换得到C .一个图形经过平移后,它的性质都发生了变化D .图形的平移由平移的方向和距离决定5.在以下现象中,属于平移的是( ).①在挡秋千的小朋友;②打气筒打气时,活塞的运动;③钟摆的摆动;④传送带上,瓶装饮料的移动.A.①②B.①③C.②③D.②④6.下列现象是数学中的平移的是()A、冰化成水B、电梯由一楼升到二楼C、导弹击中目标后爆炸D、卫星绕地球运动7.如图,正六边形ABCDEF中,CD是由图中哪条线段平移得到的?是否能把AB作某些平移后得到线段CD?8.如图,平移方格纸中的图形,使点A平移到点A'处,画出平移后的图形.AA' .9.观察如图网格中的图形,解答下列问题:将网格中左图沿水平方向向右平移,使点A移至点A1处,作出平移后的图形:10.如图,在每个小正方形的边长均为1个单位长度的方格纸中,有一个△ABC,△ABC的顶点与小正方形的顶点重合.在方格纸中,将△ABC向下平移5个单位长度,向右平移3单位长度得到△A1B1C1,请画出△A1B1C1.初中数学试卷鼎尚图文**整理制作。
平行线的性质与平移(考点剖析)浙江省七年级数学下学期期末必考点复习(浙教版)

专题02 平行线的性质与平移【考点剖析】1、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.2. 平移平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.①图形的平移的两要素:平移的方向与平移的距离.②图形的平移不改变图形的形状与大小,只改变图形的位置.平移的性质:(1)平移后,对应线段平行且相等;(2)平移后,对应角相等;(3)平移后,对应点所连线段平行且相等;(4)平移后,新图形与原图形是一对全等图形.平移的作图:(1)定:确定平移的方向和距离;(2)找:找出表示图形的关键点;(3)移:过关键点作平行且相等的线段,得到关键点的对应点;(4)连:按原图形顺次连接对应点.【典例】例1.已知:如图,点C在∠MON的一边OM上,过点C的直线AB∥ON,CD平分∠ACM,CE⊥CD.(1)若∠O=50°,求∠BCD的度数;(2)求证:CE平分∠OCA;(3)当∠O为多少度时,CA分∠OCD成1:2两部分,并说明理由.【答案】见解析【解析】解:(1)∵AB∥ON,∴∠O=∠MCB(两直线平行,同位角相等)∵∠O=50°,∴∠MCB=50°,∵∠ACM+∠MCB=180°(平角定义),∴∠ACM=180°﹣50°=130°,又∵CD平分∠ACM,∴∠DCM=65°(角平分线定义),∴∠BCD=∠DCM+∠MCB=65°+50°=115°(2)证明:∵CE⊥CD,∴∠DCE=90°,∴∠ACE+∠DCA=90°又∵∠MCO=180°(平角定义)∴∠ECO+∠DCM=90°,∵∠DCA=∠DCM,∴∠ACE=∠ECO(等角的余角相等)即CE平分∠OCA,(3)结论:当∠O=36°或90°时,CA分∠OCD成1:2两部分①当∠O=36°时∵AB∥ON∴∠ACO=∠O=36°∴∠ACM=144°又∵CD平分∠ACM∴∠ACD=72°∴∠ACO∠ACD即CA分∠OCD成1:2两部分.②当∠O=90°时∵AB∥ON∴∠ACO=∠O=90°∴∠ACM=90°又∵CD平分∠ACM∴∠ACD=45°∴∠ACD∠ACO即CA分∠OCD成1:2两部分.【点睛】本题主要考查了角的计算,平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.例2.探究:如图①,AB∥CD,点E在直线AB与CD之间,连接AE、CE,试说明∠BAE+∠DCE=∠AEC,下面给出了这道题的解题过程,请完成下面的解题过程,并填空(理由或数学式).解:如图①,过点E作EF∥AB,∴∠BAE=∠1(________________________).∵AB∥CD(________)∴CD∥EF.∴∠2=∠DCE;∴∠BAE+∠DCE=∠1+∠2.∴∠BAE+∠DCE=∠AEC.拓展:当点E在如图②的位置时,其他条件不变,试探索∠AEC、∠BAE、∠DCE之间的关系,并说明理由;应用:点E、F、G在直线AB与CD之间,连接AE、EF、FG和CG,其他条件不变,如图③,若∠EFG =40°,则∠BAE+∠AEF+∠FGC+∠DCG=__________度.【答案】见解析【解析】探究:证明:如图1中,如图①,过点E作EF∥AB,∴∠BAE=∠1(两直线平行内错角相等).∵AB∥CD(已知)∴CD∥EF.∴∠2=∠DCE;∴∠BAE+∠DCE=∠1+∠2.∴∠BAE+∠DCE=∠AEC.拓展:解:如图2中,结论:∠BAE+∠AEC+∠ECD=360°.理由:作EH∥AB.∵AB∥CD,AB∥EH,∴EH∥CD,∴∠BAE+∠AEH=180°,∠HEC+∠ECD=180°,∴∠BAE+∠AEH+∠HEC+∠ECD=360°,∴∠BAE+∠AEC+∠ECD=360°.应用:解:如图3中,作FH∥AB.∵AB∥CD,FH∥AB,∴FH∥CD,由拓展可知:∠BAE+∠AEF+∠EFH=360°①∠HFG+∠FGC+∠GCD=360°②,①+②得到,∠BAE+∠AEF+∠FGC+∠GCD=720°﹣(∠EFH+∠HFG),∴∠EFH+∠HFG=360°﹣∠EFG=320°,∴∠BAE+∠AEF+∠FGC+∠GCD=720°﹣320°=400°,故答案分别为:两直线平行内错角相等,已知,400.【点睛】本题考查平行线的判定和性质、解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考常考题型.例3.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系______________________;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.【答案】见解析【解析】解:(1)如图1,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.例4.如图所示,直角三角形ABO的周长为100,在其内部的n个小直角三角形周长之和为_______.【答案】100【解析】解:由平移的性质可得,n个小直角三角形较长的直角边平移后等于AO边,较短的直角边平移后等于BO边,斜边之和等于AB边长,∴n个小直角三角形的周长之和=Rt△AOB的周长,∵直角三角形AOB的周长为100,∴这n个小直角三角形的周长之和=100.故答案为:100.【点睛】本题主要考查了平移和矩形的性质,正确理解小直角三角形的周长等于直角△ABC的周长是解题的关键.【巩固练习】1.如图,在长为50米,宽为30米的长方形地块上,有纵横交错的几条小路,宽均为1米,其它部分均种植花草.试求出种植花草的面积是多少?【答案】见解析【解析】解:根据题意,小路的面积相当于横向与纵向的两条小路,种植花草的面积=(50﹣1)(30﹣1)=1421m2.故答案为:1421m2.2.如图,已知:AB∥CD,E在直线AB上,且EF⊥EG,EF交直线CD于点M.EG交直线CD于点N.(1)若∠1=34°,求∠2的度数;(2)若∠2=2∠1,直接写出图中等于4∠1的角.【答案】见解析【解析】解:(1)∵AB∥CD,∴∠1=∠GEB=34°,∵EF⊥EG,∴∠2=180°﹣90°﹣34°=56°;(2)∵∠2=2∠1,∠1=∠GEB,∴∠2=2∠GEB,又∵∠2+∠GEB=90°,∴∠GEB=30°=∠1,∴4∠1=120°,∠2=60°,∴∠FMN=∠CME=∠MEB=120°,即图中等于4∠1的角为∠FMN,∠CME,∠MEB.3.如图,AB∥CD,∠CDE=119°,点E、G在AB上,GF交∠DEB的平分线EF于点F,∠AGF=130°,求∠F的度数.【答案】见解析【解析】解:∵AB∥CD,∠CDE=119°,∴∠AED=180°﹣119°=61°,∠DEB=119°.∵GF交∠DEB的平分线EF于点F,∴∠DEF119°°,∴∠GEF=61°°°.∵∠AGF=130°,∴∠F=∠AGF﹣∠GEF=130°﹣°°.4.如图,已知DC∥FP,∠1=∠2,∠FED=30°,∠AGF=80°,FH平分∠EFG.(1)说明:DC∥AB;(2)求∠PFH的度数.【答案】见解析【解析】解:(1)∵DC∥FP,∴∠3=∠2,又∵∠1=∠2,∴∠3=∠1,∴DC∥AB;(2)∵DC∥FP,DC∥AB,∠DEF=30°,∴∠DEF=∠EFP=30°,AB∥FP,又∵∠AGF=80°,∴∠AGF=∠GFP=80°,∴∠GFE=∠GFP+∠EFP=80°+30°=110°,又∵FH平分∠EFG,∴∠GFH∠GFE=55°,∴∠PFH=∠GFP﹣∠GFH=80°﹣55°=25°.5.已知:下列各图中都有AB∥CD,分别探究图(1)图(2)图(3)中∠D,∠E,∠B之间的数量关系,并填在相应的横线上.(1)图1中∠D,∠E,∠B之间的关系是______________________________.(2)图2中∠D,∠E,∠B之间的关系是____________________.(3)图3中∠D,∠E,∠B之间的关系是____________________.(4)请你从(1)(2)(3)中选择一个进行证明.【答案】见解析【解析】解:(1)图1中∠D,∠E,∠B之间的关系是∠D+∠E+∠B=360°;(2)图2中∠D,∠E,∠B之间的关系是∠D+∠B=∠E;(3)图3中∠D,∠E,∠B之间的关系是∠D﹣∠B=∠E;(4)选(1)进行证明:如图,过E作EF∥AB,则AB∥CD∥EF,∴∠D+∠DEF=180°,∠B+∠BEF=180°,∴∠D+∠DEB+∠B=360°;选(2)进行证明:如图,过E作EF∥AB,则AB∥CD∥EF,∴∠D=∠DEF,∠B=∠BEF,∴∠D+∠B=∠DEF+∠BEF=∠DEB;选(3)进行证明:如图,过E作EF∥AB,则AB∥CD∥EF,∴∠D=∠DEF,∠B=∠BEF,∴∠D﹣∠B=∠DEF﹣∠BEF=∠DEB.6.已知:AB∥DE.(1)如图1,点C是夹在AB和DE之间的一点,当AC⊥CD时,垂足为点C,你知道∠A+∠D是多少吗?这一题的解决方法有很多,例如(i)过点C作AB的平行线;(ii)过点C作DE的平行线;(iii)联结AD;(iv)延长AC、DE相交于一点.请你选择一种方法(可以不选上述四种),并说明理由.(2)如图2,点C1、C2是夹在AB和DE之间的两点,请想一想:∠A+∠C1+∠C2+∠D=__________度,并说明理由.(3)如图3,随着AB与CD之间点增加,那么∠A+∠C1+∠C2+……+∠C n+1+∠D=____________________度.(不必说明理由)【答案】见解析【解析】解:(1)如图1,过点C作AB的平行线CF,∵AB∥DE,∴CF∥DE,∴∠A+∠ACF=180°,∠DCF+∠D=180°,∴∠A+∠ACD+∠D=180°×2=360°,又∵AC⊥CD,∴∠A+∠D=360°﹣90°=270°;(2)如图2,过C1作C1F∥AB,过C2作C2G∥DE,∵AB∥DE,∴C1F∥AB∥C2G∥DE,∴∠A+∠AC1F=180°,∠FC1C2+∠C1C2G=180°,∠GC2D+∠D=180°,∴∠A+∠AC1C2+∠C1C2D+∠D=180°×3=540°,故答案为:540;(3)如图3,∠A+∠C1+∠C2+……+∠C n+1+∠D=180°×(n+2),故答案为:180(n+2).7.已知直线l1∥l2,直线l3与l1、l2分别交于C、D两点,点P是直线l3上的一动点,如图①,若动点P 在线段CD之间运动(不与C、D两点重合),问在点P的运动过程中是否始终具有∠3+∠1=∠2这一相等关系?试说明理由;如图②,当动点P在线段CD之外且在CD的上方运动(不与C、D两点重合),则上述结论是否仍成立?若不成立,试写出新的结论,并说明理由.【答案】见解析【解析】解:(1)∠3+∠1=∠2成立,理由如下:如图①,过点P作PE∥l1,∴∠1=∠AEP,∵l1∥l2,∴PE∥l2,∴∠3=∠BPE,∵∠BPE+∠APE=∠2,∴∠3+∠1=∠2;(2)∠3+∠1=∠2不成立,新的结论为∠3﹣∠1=∠2,理由为:如图②,过P作PE∥l1,∴∠1=∠APE,∵l1∥l2,∴PE∥l2,∴∠3=∠BPE,∵∠BPE﹣∠APE=∠2,∴∠3﹣∠1=∠2.。
1.5图形的平移 浙教版数学七年级下经典题型一课一练-学生版

浙江版七年级数学下册第1章平行线1.5 图形的平移本节应掌握和应用的知识点:1.平移的定义2.平移的性质3.平移性质的应用基础知识和能力拓展精练一.选择题(共10小题)1.下列生活中的各个现象,属于平移变换现象的是()A.拉开抽屉 B.用放大镜看文字 C.时钟上分针的运动 D.你和平面镜中的像2.下列哪个图形是由如图平移得到的()A. B. C. D.3.下列图形中,不能通过其中一个四边形平移得到的是()A. B. C. D.4.下列现象属于平移的有()个.①气筒活塞的往复运动,②荡秋千,③钟摆的摆动,④转动的门.A.2 B.3 C.1 D.45.如图,△DEF是由△ABC通过平移得到,且点B,E,C,F在同一条直线上.若BF=14,EC=6.则BE的长度是()A.2 B.4 C.5 D.36.下列说法不正确的是()A.把一个图形平移到一个确定位置,大小形状都不变B.在平移图形的过程中,图形上的各点坐标发生同样的变化C.在平移过程中图形上的个别点的坐标不变D.平移后的两个图形的对应角相等,对应边相等,对应边平行或共线7.如图,四边形EFGH是由四边形ABCD平移得到的,已知AD=5,∠B=70°,则()A.FG=5,∠G=70°B.EH=5,∠F=70°C.EF=5,∠F=70°D.EF=5,∠E=70°8.如图,在6×6方格中有两个涂有阴影的图形M、N,①中的图形M平移后位置如②所示,以下对图形M的平移方法叙述正确的是()A.向右平移2个单位,向下平移3个单位 B.向右平移1个单位,向下平移3个单位C.向右平移1个单位,向下平移4个单位 D.向右平移2个单位,向下平移4个单位9.在下列说法中:①△ABC在平移过程中,对应线段一定相等;②△ABC在平移过程中,对应线段一定平行;③△ABC在平移过程中,周长保持不变;④△ABC在平移过程中,对应边中点所连线段的长等于平移的距离;⑤△ABC在平移过程中,面积不变,其中正确的有()A.①②③④ B.①②③④⑤ C.①②③⑤ D.①③④⑤10.如图,将直线l1沿着AB的方向平移得到直线l2,若∠1=50°,则∠2的度数是()A.40° B.50° C.90° D.130°二.填空题(共8小题)11.某景点拟在如图的矩形荷塘上架设小桥,若荷塘中小桥的总长为100米,则荷塘周长为.12.白云宾馆在装修时,准备在主楼梯上铺上红地毯.已知这种地毯每平方米售价30元,主楼梯宽2米,其侧面如图所示,则购买这种地毯至少需要元.13.如图,在长为50米,宽为30米的长方形地块上,有纵横交错的几条小路(图中阴影部分),宽均为1米,其他部分均种植花草.则种植花草的面积是米2.14.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD 的周长为.15.如图,两个直角三角形重叠在一起,将其中一个沿点B到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,则阴影部分的面积.16.如图,直径为2cm的圆O1平移3cm到圆O2,则图中阴影部分的面积为cm2.17.如图,将△ABC沿BC方向平移3cm得到△DEF,若四边形ABFD的周长为22cm,则△ABC 的周长为cm.18.如图,将直角三角形ABC沿BC方向平移得到直角三角形DEF,若AB=8,BE=6,DM=5,则阴影部分的面积是.三.解答题(共7小题)19.如图,某居民小区有一长方形地,居民想在长方形地内修筑同样宽的两条小路,余下部分绿化,道路的宽为2米,则绿化的面积为多少平方米?20.如图所示,将三角形ABC向右平移到三角形DEF的位置,若AD=2,CE=1,指出A,B,C 平移后的对应点,并求EF的长.21.星期天早晨,小刚和爸爸正在商量往楼梯上铺地毯的事,如图所示,爸爸:“小刚,你帮我算一下,从一层铺到二层需要地毯几米?”小刚:“我早已用盒尺量好了,每阶高15cm,宽为20cm…”爸爸:(打断小刚的话)“不量每阶的高度和宽度,你想想有没有办法?”小刚:(思索)“有了,只需要量出楼梯的总高和总长度再相加,就行了.”你认为小刚的方法可以吗?说明理由.22.如图,已知三角形ABC中,∠ACB=90°,边BC=12cm,把三角形ABC向下平移至三角形DEF后,AD=5cm,GC=4cm,请求出图中阴影部分的面积.23.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,将△ABC沿AB方向向右平移得到△DEF,若AE=8cm,DB=2cm.(1)求△ABC向右平移的距离AD的长;(2)求四边形AEFC的周长.24.(1)图①是将线段AB向右平移1个单位长度,图②是将线段AB折一下再向右平移1个单位长度,请在图③中画出一条有两个折点的折线向右平移1个单位长度的图形.(2)若长方形的长为a,宽为b,请分别写出三个图形中除去阴影部分后剩余部分的面积.(3)如图④,在宽为10m,长为40m的长方形菜地上有一条弯曲的小路,小路宽为1m,求这块菜地的面积.25.现有一张台阶的图纸,如图所示,请按要求回答问题:(1)如果需要在台阶上铺红地毯,需要铺多长的红地毯?(2)如果红地毯的宽度为2米,需要多大面积的红地毯?(3)如果红地毯的售价为2元/平方米(1平方米两元钱),需要花多少钱购置红地毯?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的平移
一、课堂练习:
1.举出生活中平移的一些例子.
2.观察下图,在A 、B 、C 、D 四幅图案中,能通过图案(1)的平移得到的是( )
3.在下图所示的正方形网格中,DEF ∆是由ABC ∆平移得到的. (1)点B 平移到了点 ; (2)点C 移动了 格;
(3)线段AB 与DE 有什么关系?
.
4.
如图,直角ABC ∆平移得到直角D EF
∆,90B ∠=,60A ∠
=,8BC cm =,则
(1)F ∠= ,COE ∠= ,EF = cm ; (2)若平移的距离为5cm ,则EC = cm .
5.如图,DOE ∆可以由 平移得到,CD 可以由 平移得到. 二、课后作业:
6.下图中的小船(a)通过平移后可得到的图案是( )
(1) A B C D A B C D E F
A B
C D
E F
O
A
B
C
D
E
F
O 第3题 第4题 第5题
(a ) A B C D
7.下列三幅图案可以由什么图形平移形成?请用虚线方框分别把可作平移的最简单的图形框画出来.
8.如图,DEF ∆是ABC ∆经过平移得到的,30ACB ∠=,4EF cm =,则
F ∠= °,BC = cm.
9.如图,一束平行光线(其中每两条光线互相平行)正对着一个图案及它后面的墙壁,这个图案与它在墙上的影子的形状和大小有什么关系?说出其中的道理.
10.用平移方法说明怎样得出平行四边形的面积公式S=ah .
A
B
C
D
E
F
a
h
h
a
A
B
C D
E
F
11.观察图形中的图案. (1)说出它有什么特点.
(2)它是由什么基本图案经过怎样的平移而形成的?
(3)在平移过程中,基本图案的大小、形状、位置是否发生变化,试解释其中的道理.
12.如图1,在长方形的草坪上有两条等宽且互相垂直的长方形小路,为求草坪面积,我们进行了如图2所示的平移变换,那么你能求出草坪的面积吗?
参考答案
一、课堂练习
:
2
30
50
图1 图2
1.举出生活中平移的一些例子.
解:电梯的上下运动、汽车在笔直公路上行驶、玻璃拉门的开和关等等. 2.观察下图,在A 、B 、C 、D 四幅图案中,能通过图案(1)的平移得到的是( C )
3.在下图所示的正方形网格中,DEF ∆是由ABC ∆平移得到的. (1)点B 平移到了点 E ; (2)点C 移动了 5 格;
(3)线段AB 与DE 有什么关系? 平行且相等 .
4.如图,直角ABC ∆
平移得到直角D EF ∆,90B ∠=
,60A ∠=,8BC
cm =,则 (1)F ∠=
30 ,COE ∠=
60 ,EF = 8 cm ; (2)若平移的距离为5cm ,则EC = 3 cm .
5.如图,DOE ∆可以由 △AOF 或△BOC 平移得到,CD 可以由 AF 或BO 或OE 平移得到. 二、课后作业:
6.下图中的小船(a)通过平移后可得到的图案是( B )
7.下列三幅图案可以由什么图形平移形成?请用虚线方框分别把可作平移的最简单的图形框画出来.
(1) A B C D A B C D E F
A B
C D
E F
O
A
B
C
D
E
F
O 第3题 第4题 第5题
(a ) A B C D
8.如图,DEF
∆是ABC ∆经过平移得到的,30ACB ∠=,4EF cm =,则
F ∠= 30 °,BC = 4 cm.
9.如图,一束平行光线(其中每两条光线互相平行)正对着一个图案及它后面的墙壁,这个图案与它在墙上的影子的形状和大小有什么关系?说出其中的道理. 解:这个图案与它在墙上的影子的形状和大小完全相同.
因为由上述做法得到的影子相当于是由这个图案平移得到的.
10.用平移方法说明怎样得出平行四边形的面积公式S=ah . 答:如图,ABF ∆通过平移得到DCE ∆, 则ABF ∆面积和DCE ∆面积相等,
所以平行四边形ABCD 的面积等于矩形AFED 的面积, 由矩形面积S ah =,得平行四边形面积S ah =.
11.观察图形中的图案. (1)说出它有什么特点.
(2)它是由什么基本图案经过怎样的平移而形成的?
(3)在平移过程中,基本图案的大小、形状、位置是否发生变化,试解释其中的道理. 解:(1)由5个半径相同的圆组成.
(2)可以看作由最左边的一个圆向右平移
A
B C
D
E
F
a
h
h
a
A
B
C
D
E F
或由最右边的一个圆向左平移而形成的.
(3)在平移过程中,圆的形状和大小都没有发生变化,
但位置发生了变化,这是因为平移只改变基本图形的位置.
12.如图1,在长方形的草坪上有两条等宽且互相垂直的长方形小路,为求草坪面积,我们进行了如图2所示的平移变换,那么你能求出草坪的面积吗? 解:经过平移后草坪的面积 就是图2中空白部分的面积. 所以草坪的面积为
(50-2)(30-2)=1 344
2
30
50
图1 图2。