几种常见的离心泵性能曲线形式

合集下载

离心泵的性能曲线

离心泵的性能曲线
6
B 当 ≈ 0.02 , df 值 小 时 K 最 D 2 HT µu2c2u∞ =
增 高 级 程 于 高2 用 n提 单 扬 优 提 D 械 失 近 视 常 机 损 可 似 为数

离心泵的各种功率和效率
N 效 率 Ne = 有 功
述 轴 率 前 功
ρQ H
1000
kw
1
水力功率和水力效率 水力功率: 水力功率:单位时间里泵叶轮给出的能量
l c2 hf = λ d 2 λ是 Re和 道 对 糙 有 的 数 与 流 相 粗 度 关系 阻 系 ) ( 力 数 内 为 常 , c Q 正 , 泵 λ认 一 数 与2即 2成 比 R均 阻 平 区 在 力 方 , e hf = CK1Q2 CK1与 道 面 糙 及 流 积 关 流 表 粗 度 过面 有 , 二 抛 线 是 次 物
(3)η--Q特性 --Q
检查泵的经济性,在何种情况下工作效率高、节能。 检查泵的经济性,在何种情况下工作效率高、节能。 工程上把最高点叫额定点, 工程上把最高点叫额定点,该点的各参数 Qopt额定流量 Hopt额定扬程 Nopt额定功率 为扩大泵的使用范围,各种泵规定了良好工作区。 为扩大泵的使用范围 , 各种泵规定了良好工作区 。 最高效率点以下7 范围内诸点, 有给额定点, 最高效率点以下 7 % 范围内诸点 , 有给额定点 , 有给 良好工作区。 良好工作区。
N- 曲 同 扬 下 去 恒 速 Q 线 一 程 减 q 转
3、η—Q性能曲线
H Q - 易 到 曲 很 得 η −Q 线 N Q - Ne ρQ H η= = 用 立 的、 、 代 求 对 点 Q H N 入 得 N N η曲 是 原 , 横 标 于 = max的 线 线 过 点 与 坐交 Q Q 曲

离心泵特性曲线

离心泵特性曲线

离心泵特性曲线首先离心泵的特性曲线图如下接下来是对于这个图的一些解读:离心泵的性能曲线包括流量-扬程(Q-H)曲线、流量-功率曲线(Q-N)、流量-效率曲线(Q-ŋ)以及流量-汽蚀余量(Q-NPSHr)曲线。

水泵的性能参数之间的相互变化关系及相互制约性:首先以该水泵的额顶转速为先决条件的。

水泵性能曲线主要有三条曲线:流量—扬程曲线,流量—功率曲线,流量—效率曲线。

它是离心泵的基本的性能曲线。

比转速小于80的离心泵具有上升和下降的特点称驼峰性能曲线。

比转速在80~150之间的离心泵具有平坦的性能曲线。

比转数在150以上的离心泵具有陡降性能曲线。

一般的说,当流量小时,扬程就高,随着流量的增加扬程就逐渐下降。

上述曲线都是在一定的转速下,以试验的方法求得的。

不同的转速,可以通过公式进行换算。

在性能曲线上,对于一个任意的流量点,都可以找出一组与其相对应的扬程、功率、效率以及汽蚀余量值。

通常,把这一组相对应的参数称为工作状况,简称工况或工况点。

对于离心泵最高效率点的工况称为最佳工况点。

泵在最高效率点工况下运行是最理想的。

但是用户要求的性能千差万别,不一定和最高效率点下的性能相一致。

要想使每一个用户要求的泵都在泵最高效率点下运行,那样做需要的泵规格就太多了。

为此,规定一个范围(通常以效率下降5%~8%为界),称为泵的工作范围。

我们利用叶轮的切割或者变频技术可以扩大泵的工作范围。

我们把同一类型的水泵,将它的各种不同比转数以及相同比转数不同口径的泵的工作区域集中画在同一个Q-H坐标平面上。

为了使图面上大泵的方块不致太大,坐标可以采用对数坐标,于是就得到了该类型泵的系列型谱。

各类型的泵均有各自的型谱,使用户选用水泵十分方便。

每种系列用几种比转数的水力模型,泵的口径按一定的流量间隔比变化。

同一口径的泵扬程也按一定的间隔变化。

ISO 2858规定了标准的型谱。

离心泵的曲线

离心泵的曲线

离心泵的曲线
离心泵的曲线是用来描述离心泵性能的一种图形表示。

它展示了离心泵在不同工况下的流量、扬程和效率之间的关系。

通常,离心泵的曲线包括以下几个主要参数:
1. 流量-Q:表示单位时间内通过泵的液体体积。

通常以立方米每小时(m³/h)或升每秒(L/s)来表示。

2. 扬程-H:表示泵能够提供的压力。

通常以米(m)为单位。

3. 效率-η:表示泵转化输入功率为输出功率的能力。

通常以百分比形式表示。

离心泵的曲线通常由以下几条线组成:
1. H-Q曲线(等速曲线):在恒定转速下,流量与扬程之间的关系曲线。

当流量增大时,扬程会逐渐降低。

2. η-Q曲线(效率曲线):在恒定转速下,效率与流量之间的关系曲线。

通常在设计流量附近效率较高,而在低流量和高流量处效率较低。

3. NPSHr曲线(净正吸入头曲线):表示给定流量下泵要求的最低净正吸入头。

当净正吸入头低于该值时,泵可能会产生气穴或性能下降。

4. NPSHa曲线(净正吸入头可利用余量曲线):表示给定流量下实际系统提供的净正吸入头与NPSHr之间的差值。

当可利用余量大于零时,系统运行正常。

不同型号和尺寸的离心泵有不同的曲线特征,根据具体工程要求选择合适的泵型和工作点是非常重要的。

泵—离心泵的性能曲线

泵—离心泵的性能曲线
4. NPSHr-Q曲线
NPSHr-Q曲线是检查泵工作时是否发生汽蚀的依据,应全面考虑泵的安装高度、
入口阻力损失等,防止泵发生汽蚀现象。
例2-2:用清水测定一台离心泵的主要性能参数。实验中测得流量为10m3/h,泵出口 处压力表的读数为0.17MPa(表压),入口处真空表的读数为-0.021Mpa,轴功率为 1.07KW,电动机的转速为2900r/min,真空表测压点与压力表测压点的垂直距离为 0.2m。试计算此在实验点下的扬程和效率。
见图2-35所示,M、D、C点都是离心泵的工作点。
图2-35 泵的工作点
二、工作点的类型
离心泵的性能曲线有平坦、陡降和驼峰三种,显然, 对于平坦和陡降性质的性能曲线,交点只有一个,该点 称为稳定工作点(M)。
对于驼峰性质的性能曲线,交点有两个(D、C), 但只有一个是稳定工作点(C),另一个工作点称为不稳 定工作点(D),泵只能在稳定工作点下工作。
图2-38 改变转速的调节
2. 特点
① 用这种方法调节流量,没有附加能量损失,所以是一种最经济的调节方法。
3. 驼峰H-Q曲线
具有这种性能的泵在运行中容易出现不稳定工况, 一般应在下降曲线部分操作。
图2-26 三种形状的H-Q曲线
四、离心泵性能曲线的应用
到目前为止,离心泵的性能曲线,还不能用理论计算方法精确确定,只能通过实验 获得。 离心泵的性能曲线,一般由泵的制造厂家提供,供使用部门选泵和操作时参考。
管路性能曲线
在石油化工生产中,泵和管路一起组成了一个输送系统。 能否保证泵在管路系统装置中处于最高效率点下运转,不仅取决于离心泵的性能特 性曲线,还与离心泵所在的管路特性曲线有关。
一、 管路性能曲线
所谓管路性能曲线是指使一定液体流过管路时,需 要从外界给予单位重量液体的能头HC(m)与管路液体 流量Q(m3/h)之间的关系曲线。

叶片泵的性能曲线

叶片泵的性能曲线
解:由于Sh型泵为双吸泵, 应除以2,故应采用式 = 3.65
/2
3Τ4
Τ2
2900 0.08Τ2
= 3.65 3Τ4 = 3.65 ×
= 130
Τ
3
4

41
所以,该泵的型号为8Sh-13,泵的比转数被10除的整数。
,即
料以外,还需做大量的试验研究工作。但对于大型泵,在一般的试
验室条件下进行试验是很困难的,也是不经济的。只能根据相似理
论,将原型泵缩小为模型泵进行试验,再将模型泵数据换算为原型
泵数据。
因此,相似理论不仅用于水泵的设计和制造,而且还用于解决水
泵运行中的问题。
1、几何相似
2、运动相似
3、动力相似
叶片泵的比转速
功率随流量的增加而减小。当流量为零时,
轴功率达到最大值,约为额定功率的两倍左
右。在小流量区,轴功率曲线也呈马鞍形。
从功率曲线的特点可知,轴流泵则应开
阀起动,一般在轴流泵出水管上不装闸阀。
图9-3 14ZLB-100型轴流泵的实验性能曲线
3、流量与效率曲线
轴流泵效率曲线的变化趋势是从最高效
率点向两侧下降。轴流泵的效率曲线变化较
离心泵的性能曲线


1
离心泵的性能曲线
2
流量与扬程曲线
3
流量与功率曲线
4
流量与效率曲线
1、离心泵的性能曲线
表征叶片泵性能参数之间的相互关系的曲线,称之为基本性能曲
线。由于泵内液流的复杂性,对于有限多叶片的理论扬程以及各部分
效率都难以从理论上准确计算,所以基本性能曲线是通过试验的方法
测绘出来的,也称为心泵应关阀
起动,以减小动力机起动负载。

关于离心水泵性能曲线与参数

关于离心水泵性能曲线与参数

关于离心水泵性能曲线与参数!一、关于离心水泵参数之间必须遵从的关系:1、能量关系:机械能守恒原理:功率N ∝扬程H ³流量Q2、流体动力学原理:A、阻力矩M正比流速v的平方:M ∝ v^2B、速度头与水头的转换关系(流速v的平方与扬程H的转换关系):v^2 /2∝gHC、流量与管网阻力R的关系:H ∝流量Q^23、运动学关系:线速度与角速度成正比 v ∝ω4、功能关系:A、功率N = 转矩M³角速度ωB、功率N ∝角速度ω的立方:N ∝ω^3二、各种曲线:1、流量-扬程曲线(Q-H)2、流量-功率曲线(Q-N)3、流量-效率曲线(Q-η)4、流量-气蚀余量曲线(Q-(NPSH)r)5、意义:A、性能曲线作用是泵的任意的流量点,都可以在曲线上找出一组与其相对的扬程、功率、效率和气蚀余量值;B、这一组参数称为工作状态,简称工况或工况点;C、离心泵取高效率点工况称为最佳工况点;D、最佳工况点一般为设计工况点;E、一般离心泵的额定参数即设计工况点和最佳工况点相重合或很接近;F、在实践中选高效率区间运行、即节能、又能保证泵正常工作,因此了解泵的性能参数相当重要。

要分清几个过程的前提条件:1、管网曲线一定时:1)系统压力增大,流量增大,压力与流量的平方成正比,即H ∝流量Q^22)是一个系统功率增大的过程,或者说泵机转速提高的过程,变频频率升高的过程; 3)管网曲线是一个二次曲线;4)就相当于电路电阻R一定,电压变化、电流变化、功率变化的情况;2、改变管网曲线,增大流量:1)相关物理过程例如打开出水龙头时;2)改变管网曲线减小管网阻力R,系统流量增大,压力减小很少认为恒定,3)压力恒定,系统流量与功率成正比,流量增大,功率增大,电机转子转速在稳定区速度梢微降低,负荷增大;4)这就是泵的实际运行状态,流量大,功率大,流量小功率小,例如风门关小时、回流阀开大时,系统流量减小,功率减小,用电量也小;5)风门关小时、回流阀开大时,系统流量减小,功率减小,用电量也小,此时转子转速在稳定区速度梢微升高,负荷减轻;6)如果这时改变出水管径,就等于改变流量,改变电机运行功率,这就是改变出水管径改变流量的原理;7)相当于电路的电压不变,电阻R变化时,电流、功率变化的情况;3、泵机功率不变:1)相关物理过程如灭火水枪;2)用减小出水管截面,增大管网阻力R,减小流量、增大压力,泵机功率不变;3)目的在于增大压力,增大出口水流速度等;4)也是管网改造,减小流量、增大扬程、不增大系统功率的方法的原理;5)这个过程H-Q曲线,是上翘的双曲线形,流量与压力反比降低,或压力与流量反比升高的曲线;6)这个过程相当于恒流源电路中,外电路变阻器的电阻增大时,电流减小、电压升高、功率不变的情形;1、管网曲线一定时:这种运行情况适宜封闭式流体循环系统;2、改变管网曲线,调节流量:1)这是大部分风机、供水泵的正常工作状态;2)在这种状态下运行时,忽略压力的变化既恒压;3)在这种状态下运行时,流量与电机输出功率成正比,既风门大功率大、风门小功率小,所以用风门调节风量大小并不浪费电。

离心泵性能曲线

离心泵性能曲线

离心泵性能曲线离心泵是一种常用的流体机械设备,是将高速旋转的叶轮利用离心力将液体输送到管道或设备中的装置。

离心泵性能曲线是描述离心泵在不同运行条件下的流量和扬程关系的一种图形表示形式。

下面我们将详细介绍离心泵性能曲线的相关知识。

1. 基本概念离心泵性能曲线是指根据离心泵的实验数据绘制的一条曲线,它描述了离心泵在不同流量下所能提供的扬程或功率。

一般情况下,离心泵性能曲线是由离心泵的hf−Q(扬程-流量)曲线和η-Q(效率-流量)曲线组成的。

2. 性能曲线的分类根据离心泵的工作方式和结构特点,性能曲线可分为普通型、单级型、多级型和多速型等四种。

(1) 普通型性能曲线是指泵的流量和扬程基本不随着运行状态的改变而变化,通常用于输送水类流体。

(2) 单级型性能曲线是指离心泵为单级泵的性能曲线,其特点是流量和扬程比较平稳,适用于输送清洁水类流体。

(4) 多速型性能曲线是指离心泵具有多个转速的性能曲线,其性能曲线的特点是在不同的转速下,流量和扬程均有所不同。

离心泵性能曲线的绘制一般分为三个步骤:实验测试,数据处理和曲线绘制。

(1) 实验测试:对离心泵进行试验测试,测定其在不同流量下的扬程、功率、流速和效率等参数,以获取定义离心泵性能曲线的参数。

(2) 数据处理:根据泵的实验测试数据,通过计算和数据处理方法,得出离心泵的实际扬程、功率、效率等参数值,用于性能曲线的绘制。

离心泵性能曲线可以帮助人们更好地了解离心泵的性能和工作状态,对于正确选择和使用离心泵具有重要的指导意义。

通过性能曲线可以确定泵的最佳运行点,保证泵的有效工作和长寿命。

此外,性能曲线也可以用于泵的检测和维护工作,帮助人们诊断泵的故障原因,并开展相应的维修和保养工作。

总之,离心泵性能曲线是离心泵的重要性能参数之一,其绘制和应用可以帮助人们更好地了解离心泵的工作状态和性能特点,从而保证泵的有效使用和运行。

离心泵特性曲线

离心泵特性曲线

离心泵特性曲线
离心泵特性曲线(Centrifugal pump performance curve)是描述离心泵在不同工作条件下流量、扬程、效率和功率
等性能参数的变化关系的曲线。

离心泵特性曲线通常由以下几个要素构成:
1. 流量(Flow):流经离心泵的液体体积或质量的量度,
通常以升/秒或立方米/小时表示。

2. 扬程(Head):液体在离心泵内获得的压力能量,通常以米或千帕表示。

3. 效率(Efficiency):离心泵将输入的功率转化为输出的液体动能的比例。

效率通常以百分比表示。

4. 功率(Power):离心泵所需的电功率或机械功率,通常以千瓦或马力表示。

离心泵特性曲线一般由实验测量得到,根据不同工作条件下的流量、扬程和功率等数据绘制而成。

典型的离心泵特性曲线通常呈现出以下特点:
1. 最大扬程点(Maximum Head Point):离心泵在某一流量下能够提供的最大扬程。

该点通常是离心泵特性曲线上的最高点,也是离心泵的额定扬程。

2. 最大效率点(Maximum Efficiency Point):离心泵在某一流量下能够达到的最高效率。

该点通常是离心泵特性曲线上的效率最大值点。

3. 关闭阻塞点(Shut-off Head Point):离心泵在流量为零时的扬程。

该点通常是离心泵特性曲线上的最低点。

离心泵特性曲线的形状和特点对于选型和运行离心泵都具有重要的参考价值,可以帮助用户了解离心泵在不同工况下的性能和适用范围,并进行合理的运行和维护。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几种常见的离心泵性能曲线形式
几种常见的离心泵性能曲线形式:
(1)平坦的性能曲线
这种性能曲线适用于流量调节范围较大,而压力要求变化较小的系统中。

例如,对需要用调节阀调节流量。

而又必须维持一定液面或一定压力的系统中(如锅炉),采用具有平坦性能曲线的泵,可以在一定范围内起到自动维持液面和压力的作用。

(2)陡降的性能曲线
这种性能曲线适用于在流量变化不大时要求压头变化较大的系统中,或在压头有波动时,要求流量变化不在的系统中。

例如,在输送纤维浆液的系统中,为了避免在流速减慢时纤维浆液在管道中堵塞,也就是希望无论管路系统中的阻力增大多秒,而流速(流量)变化不大,因此,用具有陡降性能的泵比较合适。

另外。

轧钢过程中的除磷泵。

对泵的曲线也有此种要求。

(3)有驼峰的性能曲线
具有这种曲线的泵在运行过程中可能出现不稳定工况。

泵运行工况点由泵性能曲线与装置性能曲线交点确定,而有驼峰的泵性能曲线却常常与泵的装置特性曲线交于两点,使泵处于不稳定工况,影响泵的安全运行。

因此,对有驼峰的性能曲线,
一般规定工作点扬程必须小于关死扬程(即出口阀门关闭,流量等于零时的扬程),以免泵在不稳定工况运行。

目前,常要用以下方法来消除性能曲线中的驼峰。

1)用减小叶片出口安放角的方法,可以得到平坦下降的性能曲线,从而消除驼峰。

2)使进入叶轮的液体有预旋,这样可以促使获得完全下降的性能曲线。

液体有预旋后,泵的大流量区域性能曲线下降。

具有半螺旋形吸入室泵,液体在进入叶轮时也有预旋,故泵的性能曲线也有同样现象。

虽然有预旋后能促使获得完全下降的,陆能曲线,但负作用是泵的扬程减少了。

3)泵压出室(包括涡室和导叶的入口)面积不但影响关死扬程的大小,而且影响性能曲线的形状,压出室面积减少可使泵的关死扬程略有提高,使性能曲线变陡,并使最佳工况点向小流量方向移动;增大压出室面积能使关死扬程略有降低,使性能曲线平坦,最佳工况点向大流量方向移动。

但需要注意的是,过分的增大或缩小压出室入口面积都要引起泵效率的降低。

4)有时,采用斜切叶轮外径的方法,使前后流线长度之差减小,来消除曲线的驼峰。

相关文档
最新文档