小学奥数讲义 第十三讲-分数计算之换元与放缩竞赛集训题
分数加减法奥数练习题

分数加减法奥数练习题分数加减法是奥数中的一项基础运算,它涉及到分数的相加和相减。
掌握好这一技能,不仅可以帮助我们在奥数考试中取得好成绩,还能在日常生活中解决一些实际问题。
下面我将通过一些练习题来帮助大家更好地理解和掌握分数加减法。
1. 计算:1/2 + 1/3 = ?解答:首先,我们需要找到这两个分数的公共分母,即6。
然后,将两个分数的分子相加,得到3/6。
最后,将结果化简为最简分数,即1/2。
所以,1/2 +1/3 = 5/6。
2. 计算:2/5 - 1/4 = ?解答:同样地,我们需要找到这两个分数的公共分母,即20。
然后,将两个分数的分子相减,得到8/20。
最后,将结果化简为最简分数,即2/5。
所以,2/5 - 1/4 = 3/20。
3. 计算:3/8 + 2/3 - 1/4 = ?解答:首先,我们需要找到这三个分数的公共分母,即24。
然后,将三个分数的分子相加减,得到23/24。
最后,将结果化简为最简分数,即23/24。
所以,3/8 + 2/3 - 1/4 = 23/24。
通过以上的练习题,我们可以看到,在分数加减法中,我们需要找到公共分母,然后对分子进行相加减,最后将结果化简为最简分数。
这个过程有点繁琐,但只要我们掌握了方法,就能够轻松解决这类问题。
除了上面的练习题,我们还可以通过一些实际问题来应用分数加减法。
比如,小明有1/2块巧克力,小红有1/4块巧克力,他们想平分这些巧克力,应该怎么做呢?解答:首先,我们需要找到这两个分数的公共分母,即4。
然后,将两个分数的分子相加,得到3/4。
最后,将结果化简为最简分数,即3/4。
所以,小明和小红每人应该得到3/4块巧克力。
通过这个实际问题,我们可以看到,分数加减法不仅仅是一种运算,更是一种解决实际问题的工具。
掌握好分数加减法,我们可以在日常生活中更好地处理一些分配和平分的问题。
除了分数加减法,奥数中还有很多其他的运算技巧和题型,比如分数乘法、分数除法、整数运算等等。
小学奥数练习之分数计算应用题

小学奥数练习之分数计算应用题
小学奥数练习之分数计算应用题
小学的学生学习奥数对学校所学数学的一个补充和提高,同学们快来做做奥数题来锻炼自己吧!下面是为大家收集到的分数小学奥数计算问题练习题,供大家参考。
1.有一个分数,它的分母比分子多4。
如果把分子、分母都加上9,得到的分数约分数是7/9,这个分数是多少?
2.甲、乙两数是自然数,如果甲数的5/6恰好是乙数的1/4那么甲、乙玲数之和的最小值是多少?
3.商店的书包降价1/4后,又提价1/5,最后的.价格是8元1角一个,那么,最初是几元钱一个?
4.小萍今年的年龄是妈妈的1/3,二年前母子年龄相差24岁,四年后小萍的年龄是几岁?
5.小学奥数计算专题练习:足球赛门票15元一张,降价后观众增加一半,收入增加五分之一,一张门票降价几元?
6.把一根绳子等分拆成5股和6股,如果拆成5股比6股长20公分,那么这根绳子的长度是几公分?
7.张、王、李三人共有54元,张用自己钱数的3/5,王用自己钱数的3/4,李用自己钱数的2/3,各买一支相同的钢笔,那么张和李两人剩下的钱共有几元?
8.六一班男生的一半和女生的1/4共16人,女生的一半和男生的1/4共14人,这个班男、女生各几人?
9.李明到商店买一盒花球,一盒白球,两盒球的数量相等,花球原价是1元钱2个,白球原价是1元钱3个。
节日降价,两种球的售价都是2元钱5个,结果李明少花4元钱,那么他共买几个球?
10.在4点多钟某一时刻,时钟的时针和分针在一直线上且方向相反,这时是4点几分?
以上是为大家准备的分数小学奥数计算问题练习题,希望对大家有所帮助。
小学五年级数学思维训练(奥数)《分数的加法和减法》讲解及练习题(含答案)

分数的加法和减法专题简析:在分数加减法运算中,同分母分数相加减,分母不变,只把分子相加减。
异分母分数相加减,要先通分,然后按照同分母分数加减法的法则进行计算。
在分数加减法中,整数的一些加减运算定律同样适用。
例1 计算:16-272-375分析与解答:可根据题目的特点把后面减去的两个分数相加,再用16减去这两个分数的和,这样计算比较简便。
16-272-375=16-(272+375)=16-6=10随堂练习:计算下面各题 12-85-833 851-213-514例2 计算42235+(83-235)-21 分析与解答:观察算式发现,如果利用去括号的性质,去掉括号后计算比较简便。
42235+(83-235)-21 =42235-235+83-21 =42+83-21 =4283-84 =8741有些分数加减法试题,利用运算性质和定律去掉括号,添加括号,变换加数、减数的位置,改变运算顺序,可以达到简算的目的。
随堂练习:用简算方法计算下面各题。
45333+(452-274)-275 125612-( 125106-6011)-601例3 计算 207+1.35+52+8.65 207+1.35+52+8.65=(1.35+8.65)+(207+52) =10+43 =4310随堂练习: 254+2.75+207+2.25 1135-(2.375-1181)-853例4 计算1-101-1001-10001-100001 分析与解答:可先给后面四个分数加上括号,求出括号中四个分数之和,然后用1减去所得的和即可。
1-101-1001-10001-100001 =1-(101+1001+10001+100001) =1-100001111 =100008889 随堂练习:计算下面各题。
1-21-41-81-161 1-21-201-2001-20001例题5 计算分析与解答:先利用算式中分子的特点计算出分子,再约分。
【精品】北师大版小学六年级数学下册全册奥数知识点讲解试题附答案(全套共14套)

小学六年级下册数学奥数知识点讲解第1课《列方程解应用题》试题附答案
小学六年级下册数学奥数知识点讲解第2课《关于取整计算》试题附答案
答案
六年级奥数下册:第二讲关于取整计算习题解答
小学六年级下册数学奥数知识点讲解第3课《最短路线问题》试题附答案
答案
六年级奥数下册:第三讲最短路线问题习题解答
小学六年级下册数学奥数知识点讲解第4课《奇妙的方格表》试题附答案
答案
小学六年级下册数学奥数知识点讲解第5课《巧求面积》试题附答案
六年级奥数下册:第五讲巧求面积习题解答
小学六年级下册数学奥数知识点讲解第6课《最大与最小问题》试题附答案
答案。
分数加减法奥数练习题

分数加减法奥数练习题分数加减法是数学中的一个重要概念,掌握好分数的加减法对于解决实际问题非常有帮助。
以下是一些分数加减法的奥数练习题,供学生们练习和提高。
练习题一:计算下列分数的和:\[ \frac{3}{4} + \frac{1}{2} \]解答:首先,我们需要找到两个分数的最小公倍数,即4和2的最小公倍数是4。
然后将两个分数转换为相同的分母:\[ \frac{3}{4} + \frac{1}{2} = \frac{3}{4} + \frac{2}{4} \] 接着,将分子相加:\[ \frac{3}{4} + \frac{2}{4} = \frac{3+2}{4} = \frac{5}{4} \] 所以,\(\frac{3}{4} + \frac{1}{2} = \frac{5}{4}\)。
练习题二:计算下列分数的差:\[ \frac{5}{6} - \frac{2}{3} \]解答:同样地,我们需要找到两个分数的最小公倍数,即6和3的最小公倍数是6。
将两个分数转换为相同的分母:\[ \frac{5}{6} - \frac{2}{3} = \frac{5}{6} - \frac{4}{6} \] 然后,将分子相减:\[ \frac{5}{6} - \frac{4}{6} = \frac{5-4}{6} = \frac{1}{6} \] 所以,\(\frac{5}{6} - \frac{2}{3} = \frac{1}{6}\)。
练习题三:如果\(a\)和\(b\)是两个不同的分数,且\(a + b = 1\),求\(a\)和\(b\)的可能值。
解答:由于\(a\)和\(b\)是分数,且它们的和为1,我们可以假设\(a\)和\(b\)都是小于1的正数。
例如,如果\(a = \frac{1}{2}\),那么\(b\)可以是\(\frac{1}{2}\)。
但是题目要求\(a\)和\(b\)是不同的分数,所以我们可以选择\(a = \frac{1}{2}\),\(b =\frac{1}{4}\),因为\(\frac{1}{2} + \frac{1}{4} = \frac{2}{4}+ \frac{1}{4} = \frac{3}{4} + \frac{1}{4} = 1\)。
六年级分数奥数题及答案

六年级分数奥数题及答案分数在数学中是一个非常重要的概念,对于六年级的学生来说,掌握分数的运算和应用是提高数学能力的关键。
以下是一些分数的奥数题目以及相应的答案,供学生练习和参考。
题目1:如果一个班级有40名学生,其中3/5是男生,那么这个班级有多少名女生?答案:班级中男生的数量是40 * 3/5 = 24名。
因此,女生的数量是40 - 24 = 16名。
题目2:一个分数的分子和分母之和是21,如果分子增加2,这个分数就变成了1。
求原来的分数。
答案:设原来的分数为x/y,根据题意,x + y = 21,且 (x + 2) / y = 1。
解这个方程组,我们得到x = 19,y = 2,所以原来的分数是19/2。
题目3:小明有3/4升的果汁,他喝了1/5升。
他喝了多少升果汁?答案:小明喝的果汁量是3/4 * 1/5 = 3/20升。
题目4:一个分数,当它的分子减少1后,这个分数等于1/3;当它的分母减少1后,这个分数等于1/2。
求这个分数。
答案:设这个分数为x/y,根据题意,(x - 1) / y = 1/3,x / (y - 1) = 1/2。
解这个方程组,我们得到x = 5,y = 12,所以这个分数是5/12。
题目5:一个分数的分子是分母的3/5,如果分子增加10,分母增加20,新的分数等于1/2。
求原来的分数。
答案:设原来的分数为x/y,根据题意,x = 3/5 * y,(x + 10) / (y+ 20) = 1/2。
解这个方程组,我们得到x = 15,y = 25,所以原来的分数是15/25,简化后为3/5。
这些题目覆盖了分数的基本运算、分数与整数的转换以及分数的比较等知识点,对于提高学生的分数理解和应用能力非常有帮助。
希望这些题目能够激发学生对数学的兴趣,并帮助他们在奥数竞赛中取得好成绩。
六年级奥数培训教材
[键入文字][键入文字] 六年级拔尖数学目录第1讲定义新运算第2讲简单的二元一次不定方程第3讲分数乘除法计算第4讲分数四则混合运算第5讲估算第6讲分数乘除法的计算技巧第7讲简单的分数应用题(1)第8讲较复杂的分数应用题(2)第9讲阶段复习与测试(略)第10讲简单的工程问题第11讲圆和扇形第12讲简单的百分数应用题第13讲分数应用题复习第14讲综合复习(略)第15讲测试(略)第16讲复杂的利润问题(2)第一讲定义新运算在加.减。
乘。
除四则运算之外,还有其它许多种法则的运算。
在这一讲里,我们学习的新运算就是用“#”“*”“Δ”等多种符号按照一定的关系“临时”规定的一种运算法则进行的运算。
例1:如果A*B=3A+2B,那么7*5的值是多少?例2:如果A#B表示照这样的规定,6#(8#5)的结果是多少?例3:规定求2Δ10Δ10的值。
例4:设M*N表示M的3倍减去N的2倍,即M*N=3M-2N(1)计算(14 *10)*6(2)计算(*)*(1 *)例5:如果任何数A和B有A¤B=A×B-(A+B)求(1)10¤7(2)(5¤3)¤4(3)假设2¤X=1求X例6:设P∞Q=5P+4Q,当X∞9=91时,1/5∞(X∞ 1/4)的值是多少?例7:规定X*Y=,且5*6=6*5则(3*2)*(1*10)的值是多少?例8:▽表示一种运算符号,它的意义是已知那么20088▽2009=?巩固练习1、已知2▽3=2+22+222=246; 3▽4=3+33+333+3333=3702;按此规则类推(1)3▽2 (2)5▽3(3)1▽X=123,求X的值2、已知1△4=1×2×3×4;5△3=5×6×7计算(1)(4△2)+(5△3)(2)(3△5)÷(4△4)3、如果A*B=3A+2B,那么(1)7*5的值是多少?(2)(4*5)*6 (3)(1*5)*(2*4)4、如果A〉B,那么{A,B}=A;如果A〈B,那么{A,B}=B;试求(1){8,0.8}(2){{1。
小升初数学奥赛专题:分数计算技巧
第 1 页 共 2 页分数的计算技巧(2)一、 知识要点。
在进行分数、小数的四则混合运算时,要根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,把较复杂的四则混合运算化繁为简,化难为易。
在数学学习中,转化思想很重要。
二、知识运用典型例题。
1、考考你,请用简便方法计算下列各题。
(1)7÷ 7 9 - 7 9 ÷7 (2) 15÷ 8 9 +15× 7 8(3)3― 5 18 × 27 40 - 13 16 (4)975×0.25+934 ×76-9.75(5)211⨯+321⨯+431⨯+...+1011001⨯例1:计算2222×29100—3333×0.04+6666×0.09例2:计算:12 +14 +18 +116 +132 +164例3:用简便方法计算:211+2121202+21212150505+2121212113131313例4:(89 +137 +611 )÷(311 +57 +49 )三、知识运用课堂训练。
(华杯赛题)2、计算下列各题:(1)413⨯+743⨯+1073⨯+13103⨯+16133⨯+19163⨯+22193⨯(2)322013⨯+432013⨯+542013⨯+...+201320122013⨯(3)43202.75.19542⨯+⨯(华杯赛题)(4)12 +14 +18 +………+1256第 2 页 共 2 页课后训练 等级1、用简便方法计算下列各题:(1)421⨯+641⨯+861⨯+...+100981⨯ (2)6×712 -920 ×6+ 1130 ×6 (3)(927 +729 )÷(57 +59 ) (4) 1371531631248163264++++++ 华杯赛题:如下图,四个小三角形的顶点处有六个圆圈。
分数奥数速算巧算 - 计算结果
分数奥数速算巧算 - 计算结果简介分数奥数速算是一种通过简单的计算技巧快速得出分数运算结果的方法。
这种方法能够提高分数计算的效率和准确性,对于奥数竞赛和日常数学研究都非常有用。
本文主要介绍几种分数奥数速算的巧算方法,并给出相应的计算结果。
速算方法1. 分数加减法速算在分数加减法中,我们可以通过求出分数的通分来实现速算。
以下是一个例子:问题:计算 2/3 + 5/6 - 1/4 的结果。
2/3 + 5/6 - 1/4的结果。
解答:首先找到这三个分数的最小公倍数为12,然后按照通分的原则进行转换:2/3 = 8/12 = 8/125/6 = 10/12 = 10/121/4 = 3/12 = 3/12那么,原问题可以转换为:8/12 + 10/12 - 3/12 = (8 + 10 - 3)/12 = 15/12 = 1 1/4 = (8 + 10 - 3)/12 = 15/12 = 1 1/4因此,原问题的计算结果为 1 1/4。
1 1/4。
2. 分数乘法速算在分数乘法中,我们可以通过简化分数的乘法表达式来实现速算。
以下是一个例子:问题:计算 2/3 × 3/5 × 5/7 的结果。
2/3 × 3/5 × 5/7的结果。
解答:可以根据乘法交换律,按照任意顺序进行乘法运算。
我们选择将分母中的5和3相乘,并将分子中的2和7相乘,得到:(2 × 7)/(3 × 5) × (5/1) = 14/15 × 5/1 = 14/3 = 14/15 × 5/1 = 14/3因此,原问题的计算结果为 14/3。
14/3。
3. 分数除法速算在分数除法中,我们可以通过简化分数的除法表达式来实现速算。
以下是一个例子:问题:计算 3/4 ÷ (2/5) 的结果。
3/4 ÷ (2/5)的结果。
解答:可以根据除法的逆运算,转换为乘法运算。
最新小学奥数 分数的速算与巧算(含详解)
最新小学奥数 分数的速算与巧算教学目标本讲知识点属于计算大板块内容,分为三个方面系统复习和学习小升初常考计算题型.1、 裂项:是计算中需要发现规律、利用公式的过程,裂项与通项归纳是密不可分的,本讲要求学生掌握裂项技巧及寻找通项进行解题的能力2、 换元:让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式。
3、 循环小数与分数拆分:掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题. 4、通项归纳法通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算,使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式. 知识点拨一、裂项综合 (一)、“裂差”型运算(1)对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯-(2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有:1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。
(二)、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【例1】(2007年我爱数学夏令营)计算:
2220072008200920101
2008
20082007
【例2】1357992468100L与110相比,哪个更大,为什么?
【例3】求(
11111111
2468104850
L
)10的整数部分。
分数计算之换元与放缩
〖答案〗
【例1】2007
【例2】记a=1357992468100L,b=24681003579101L,ab,而11101100ab,有
aab22111()
10110010
,所以原分式比110小
【例3】6