对数坐标纸

合集下载

氨水吸收实验双对数坐标图

氨水吸收实验双对数坐标图

氨水吸收实验双对数坐标图篇一:吸收实验实验报告姓名专业月实验内容吸收实验指导教师一、实验名称:吸收实验二、实验目的:1.学习填料塔的操作;2. 测定填料塔体积吸收系数KYa.三、实验原理:对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。

但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。

(一)、空塔气速与填料层压降关系气体通过填料层压降△P与填料特性及气、液流量大小等有关,常通过实验测定。

若以空塔气速uo[m/s]为横坐标,单位填料层压降?P[mmH20/m]为纵坐标,在Z?P~uo关系Z双对数坐标纸上标绘如图2-2-7-1所示。

当液体喷淋量L0=0时,可知为一直线,其斜率约1.0—2,当喷淋量为L1时,?P~uo为一折线,若喷淋量越大,Z?P值较小时为恒持Z折线位置越向左移动,图中L2>L1。

每条折线分为三个区段,液区,?P?P?P~uo关系曲线斜率与干塔的相同。

值为中间时叫截液区,~uo 曲ZZZ?P值较大时叫液泛区,Z线斜率大于2,持液区与截液区之间的转折点叫截点A。

姓名专业月实验内容指导教师?P~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点B。

在液泛区塔已Z无法操作。

塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。

图2-2-7-1 填料塔层的?P~uo关系图 Z图2-2-7-2 吸收塔物料衡算(二)、吸收系数与吸收效率本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。

若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名专业月实验内容指导教师平均推动力可用对数平均浓度差法进行计算。

其吸收速率方程可用下式表示: NA?KYa???H??Ym(1)式中:NA——被吸收的氨量[kmolNH3/h];?——塔的截面积[m2]H——填料层高度[m]?Ym——气相对数平均推动力KYa——气相体积吸收系数[kmolNH3/m3·h]被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2):NA?V(Y1?Y2)?L(X1?X2) (2)式中:V——空气的流量[kmol空气/h]L——吸收剂(水)的流量[kmolH20/h]Y1——塔底气相浓度[kmolNH3/kmol空气]Y2——塔顶气相浓度[kmolNH3/kmol空气]X1,X2——分别为塔底、塔顶液相浓度[kmolNH3/kmolH20]由式(1)和式(2)联解得:KYa?V(Y1?Y2)(3) ??H??Ym为求得KYa必须先求出Y1、Y2和?Ym之值。

化工原理 流体阻力

化工原理 流体阻力

1.根据粗糙管实验结果,在双对数坐标纸上标绘出λ-Re 曲线,对照化工原理教材上有关曲线图,即可估算出该管的相对粗糙度和绝对粗糙度。

由于实验仪器问题,我们组的粗糙管压差数据错误,无法计算该题。

2.根据光滑管实验结果,对照柏拉修斯方程,计算其误差:取第一组实验举例进行计算: 光滑管d=0.02m L=1m 根据公式水的流速9258.302.090044.490022=⨯⨯==ππd V u 根据书上附录表可得:当t=25.3℃ 时,水的密度ρ=997.221kg/m 3,水的粘度μ=0.0008973Pa •s73.872590008973.0221.9979258.302.0Re =⨯⨯==μρdu阻力系数01491.09258.31221.99702.057302222=⨯⨯⨯⨯=∆=Lu dP f ρλ光滑管道数据处理表:根据光滑管实验结果,对照柏拉修斯式,即 25.0Re 3164.0=λ,计算其误差01841.073.872593164.0Re 3164.025.025.0===λ 误差%=%99.18%10001841.001491.0-01841.0%100-=⨯=⨯柏拉修斯柏拉修斯λλλ误差计算结果如下:结果分析:1. 从实验数据可得,在湍流区内,随着雷诺数Re 的减小,阻力系数λ呈增加趋势。

2. 当2100<Re<105时,在光滑管内的湍流公式为柏拉修斯式,所以我们的数据都在其使用范围内。

随着雷诺数的减小,实验误差基本呈下降趋势,可以判断,在范围内,Re 较小时,更符合柏拉修斯公式。

如果想进一步判断这结论正确与否,继续减小雷诺数进行验证。

3. 在实验结果中,我们的误差基本呈下降趋势,但是第二组误差突然增大,可以判断其中存在一定的实验操作误差。

一个误差原因可能是没有等待数据稳定就记录了读数。

3.根据局部阻力实验结果,求出闸阀全开时的平均ξ值。

以第一组数据为例进行计算: 局部阻力管d=0.02m L=0.95m在t=23.1℃时,水的密度ρ=997.513kg/m 3光滑管压差f P ∆=5730Pa 局部阻力管压差 1f P ∆=7310Pa根据公式22Lu dP f ρλ∆=得,f P ’∆=0.95f P ∆P ∆=1f P ∆-f P ’∆=7310-0.95*5730=1866.5Pa根据公式ξ=02464.03.93466g 997.5135.18662gu Δ222=⨯⨯⨯=P ρ局部阻力管数据处理结果如下表:平均局部阻力系数= 0.026613结果分析:1. 由数据可以看出,随着雷诺数Re 的减小,局部阻力系数ξ并没有太大的变化,雷诺数对局部阻力管阻力系数影响不大。

坐标纸的使用方法

坐标纸的使用方法

坐标纸的使用方法
坐标纸是一种用于绘制图形和进行数学计算的工具。

下面是坐标纸的使用方法:
1. 确定坐标纸的尺寸:坐标纸通常由方格组成,每个方格代表一个单位长度。

常见的尺寸有10x10、20x20和25x25等。

2. 绘制坐标轴:在坐标纸上,通常有两条相交的直线,一条是横轴,另一条是纵轴。

可以在横轴上方和纵轴右侧添加箭头表示正方向。

3. 标记坐标轴刻度:在横轴上每个方格之间标记上数字,通常从左到右从1开始逐渐增加。

在纵轴上每个方格之间也进行类似的标记,从下到上逐渐增加。

4. 绘制图形:可以利用坐标纸上的方格来绘制直线、曲线、多边形等图形。

根据需要,确定每个点所在的坐标位置,并在相应的位置上做上标记。

5. 进行计算:使用坐标纸可以进行数学计算和推理。

可以利用图形上的坐标位置计算线段的长度、计算图形的面积等等。

6. 注意比例:使用坐标纸时,需要注意保持图形的比例。

每个方格代表一个单位长度,确保在绘制图形时保持一致的比例,以免造成误差。

总的来说,坐标纸是一个便于进行图形绘制和数学计算的工具,通过确定坐标轴
和标记刻度,可以方便地进行准确的图形绘制和数学计算。

对数坐标纸

对数坐标纸

对数坐标纸
对数坐标纸是一种专为发现有关数据结构的图表,其中Y轴使用对数标度,并且X轴
使用线性标度,它利用了自然对数函数的积累特性,绘出这种图表的方法即为所谓的对数
坐标纸。

对数坐标纸的优点在于,他可以使得一些极端的数值的区分变得清晰可见,当图表中
出现反常大范围测量时,它可以使被测变量更加集中,以便观察到规律性和数量变化,并
能很容易地确认出来动态变化趋势,而不至于造成大范围数据特别大的乱跑,这些都是线
性坐标纸很难做到的。

此外,应用对数坐标纸还可以使高度数据值处于必要比例范围内,
因而能更好更快地观测出变化趋势,让同一图表内的不同参数不至于被突出或被掩盖。

使用对数坐标纸的方法是从图表的X轴,Y轴上分别选择一个对数函数作为度量单位,把所有的测量值都标度到比例中并使用坐标系统将数据可视化,从而更容易发现空间结构
特性和规律性。

这种坐标纸需要在画图时选择合适的参数,以便达到最佳的图表效果。

对数坐标纸的使用,为拟合时间序列、观察发展趋势,解决一定规模数据变化无法捕
捉的问题等提供了可靠的可视化工具。

它的处理结果被广泛用于经济、社会、地理、管理、航空等领域,也可以应用于同位素分析、成分分析、社会统计学分析等领域。

综上所述,
对数坐标纸可让我们更加深入地了解数据,提高研究质量,多角度观察变化趋势,为对应
领域的解决问题和发现变化规律做出了同样的重要贡献。

大学物理实验坐标纸2024

大学物理实验坐标纸2024

引言概述:大学物理实验常常需要使用坐标纸来记录和分析实验数据。

本文将详细介绍大学物理实验坐标纸(二),包括其结构、用途、制作方法和注意事项。

通过理解和掌握这些知识,学生们能够更好地应用坐标纸进行实验数据处理和分析。

正文内容:一、坐标纸结构1.1概述坐标纸是由若干个格点组成的二维平面纸张,通常具有等距的横纵坐标轴线。

1.2横纵坐标轴线横坐标轴线通常称为x轴,纵坐标轴线通常称为y轴。

它们互相垂直,共同组成了一个直角坐标系。

1.3格点格点是坐标纸上的小方格,通常用于定位和记录实验数据点的位置。

二、坐标纸的用途2.1数据绘制坐标纸可以用于将实验数据点绘制在纸上,从而更直观地观察和分析数据的变化趋势。

2.2曲线描绘基于坐标纸上的数据点,可以通过绘制线段或曲线来表示数据之间的关系,进一步分析数据规律和趋势。

2.3计算测量误差坐标纸上的每个格点代表一个单位,可以用于计算实验测量数据的误差范围和精确度。

三、制作方法3.1和打印模板可以通过互联网坐标纸的模板,并使用打印机打印到纸张上。

3.2手工制作使用直尺、铅笔和细线笔,在纸张上自行制作坐标纸。

可以通过刻度尺或图形学工具绘制横纵坐标轴线,并在纵轴上标注单位刻度。

四、注意事项4.1纸张质量选择适合的纸张质量,以确保绘制的数据点和线条能够清晰可读,并且不易模糊和晕染。

4.2刻度准确性在制作坐标纸时,要确保坐标轴线的刻度准确,并且格点的间距一致,以保证绘制的数据点具有可比较性和可靠性。

4.3使用工具在绘制数据点和曲线时,使用细线笔和直尺等工具能够帮助绘制更精确的图形,提高数据分析的准确性。

五、总结大学物理实验中使用坐标纸是非常重要的,它能够帮助学生更好地理解和分析实验数据。

坐标纸的制作和使用需要注意质量、准确性和工具的选择。

希望通过本文的介绍,能够让读者对大学物理实验坐标纸有更深入的了解,提升实验数据处理和分析的能力。

总结完毕,总字数达到1306字。

液塑限试验——图绘制(双对数坐标)

液塑限试验——图绘制(双对数坐标)
图1 插入图表
图2 散点图
图3 生成数据区域
图4 选择数据
图5 生成散点图预览
图6 设置标题及数轴名称
图7 设置网格线
图8 点击完成
图9 初步生成图表
图10 设置X坐标轴格式
图11 坐标轴格式勾选对数刻度
图12 设置Y坐标轴格式
图13 勾选对数刻度
图14 生成h-w图
图15 调整X轴坐标值使图表协调美观
图16 连接A-B,A-C绘制两条直线
图17 取AB\AC之间的直线作为最终h-w曲线图
双对数表绘制方法图1插入图表图2散点图图3生成数据区域图4选择数据图5生成散点图预览图6设置标题及数轴名称图7设置网格线图8点击完成图9初步生成图表图10设置x坐标轴格式图11坐标轴格式勾选对数刻度图12设置y坐标轴格式图13勾选对数刻度图14生成h
液塑限试验——图绘制(对数坐标)
液塑限试验——双对数表绘制方法

(完整版)化工原理实验(思考题答案)

(完整版)化工原理实验(思考题答案)

(完整版)化⼯原理实验(思考题答案)实验1 流体流动阻⼒测定1. 启动离⼼泵前,为什么必须关闭泵的出⼝阀门?答:由离⼼泵特性曲线知,流量为零时,轴功率最⼩,电动机负荷最⼩,不会过载烧毁线圈。

2. 作离⼼泵特性曲线测定时,先要把泵体灌满⽔以防⽌⽓缚现象发⽣,⽽阻⼒实验对泵灌⽔却⽆要求,为什么?答:阻⼒实验⽔箱中的⽔位远⾼于离⼼泵,由于静压强较⼤使⽔泵泵体始终充满⽔,所以不需要灌⽔。

3. 流量为零时,U 形管两⽀管液位⽔平吗?为什么?答:⽔平,当u=0 时柏努利⽅程就变成流体静⼒学基本⽅程:Z1 P1 g Z2 p2 g, 当p1 p2时, Z1 Z24. 怎样排除管路系统中的空⽓?如何检验系统内的空⽓已经被排除⼲净?答:启动离⼼泵⽤⼤流量⽔循环把残留在系统内的空⽓带⾛。

关闭出⼝阀后,打开U形管顶部的阀门,利⽤空⽓压强使U形管两⽀管⽔往下降,当两⽀管液柱⽔平,证明系统中空⽓已被排除⼲净。

5. 为什么本实验数据须在双对数坐标纸上标绘?答:因为对数可以把乘、除变成加、减,⽤对数坐标既可以把⼤数变成⼩数,⼜可以把⼩数扩⼤取值范围,使坐标点更为集中清晰,作出来的图⼀⽬了然。

6. 你在本实验中掌握了哪些测试流量、压强的⽅法?它们各有什么特点?答:测流量⽤转⼦流量计、测压强⽤U 形管压差计,差压变送器。

转⼦流量计,随流量的⼤⼩,转⼦可以上、下浮动。

U 形管压差计结构简单,使⽤⽅便、经济。

差压变送器,将压差转换成直流电流,直流电流由毫安表读得,再由已知的压差~电流回归式算出相应的压差,可测⼤流量下的压强差。

7. 读转⼦流量计时应注意什么?为什么?答:读时,眼睛平视转⼦最⼤端⾯处的流量刻度。

如果仰视或俯视,则刻度不准,流量就全有误差。

8. 假设将本实验中的⼯作介质⽔换为理想流体,各测压点的压强有何变化?为什么?答:压强相等,理想流体u=0,磨擦阻⼒F=0,没有能量消耗,当然不存在压强差。

Z1 P1 g u122g Z2 p2 g u222g,∵d1=d2 ∴ u1=u2 ⼜∵ z1=z2(⽔平管) ∴P1=P29. 本实验⽤⽔为⼯作介质做出的λ-Re 曲线,对其它流体能否使⽤?为什么?答:能⽤,因为雷诺准数是⼀个⽆因次数群,它允许d、u、、变化。

化工原理实验(思考题答案)

化工原理实验(思考题答案)

化⼯原理实验(思考题答案)实验1 流体流动阻⼒测定1. 启动离⼼泵前,为什么必须关闭泵的出⼝阀门?答:由离⼼泵特性曲线知,流量为零时,轴功率最⼩,电动机负荷最⼩,不会过载烧毁线圈。

2. 作离⼼泵特性曲线测定时,先要把泵体灌满⽔以防⽌⽓缚现象发⽣,⽽阻⼒实验对泵灌⽔却⽆要求,为什么?答:阻⼒实验⽔箱中的⽔位远⾼于离⼼泵,由于静压强较⼤使⽔泵泵体始终充满⽔,所以不需要灌⽔。

3. 流量为零时,U 形管两⽀管液位⽔平吗?为什么?答:⽔平,当u=0时柏努利⽅程就变成流体静⼒学基本⽅程:21212211,,Z Z p p g p Z g P Z ==+=+时当ρρ4. 怎样排除管路系统中的空⽓?如何检验系统内的空⽓已经被排除⼲净?答:启动离⼼泵⽤⼤流量⽔循环把残留在系统内的空⽓带⾛。

关闭出⼝阀后,打开U 形管顶部的阀门,利⽤空⽓压强使U 形管两⽀管⽔往下降,当两⽀管液柱⽔平,证明系统中空⽓已被排除⼲净。

5. 为什么本实验数据须在双对数坐标纸上标绘?答:因为对数可以把乘、除变成加、减,⽤对数坐标既可以把⼤数变成⼩数,⼜可以把⼩数扩⼤取值范围,使坐标点更为集中清晰,作出来的图⼀⽬了然。

6. 你在本实验中掌握了哪些测试流量、压强的⽅法?它们各有什么特点?答:测流量⽤转⼦流量计、测压强⽤U 形管压差计,差压变送器。

转⼦流量计,随流量的⼤⼩,转⼦可以上、下浮动。

U 形管压差计结构简单,使⽤⽅便、经济。

差压变送器,将压差转换成直流电流,直流电流由毫安表读得,再由已知的压差~电流回归式算出相应的压差,可测⼤流量下的压强差。

7. 读转⼦流量计时应注意什么?为什么?答:读时,眼睛平视转⼦最⼤端⾯处的流量刻度。

如果仰视或俯视,则刻度不准,流量就全有误差。

8. 假设将本实验中的⼯作介质⽔换为理想流体,各测压点的压强有何变化?为什么?答:压强相等,理想流体u=0,磨擦阻⼒F=0,没有能量消耗,当然不存在压强差。

,2222222111g u g p Z g u g P Z ++=++ρρ∵d 1=d 2 ∴u 1=u 2 ⼜∵z 1=z 2(⽔平管)∴P 1=P 29. 本实验⽤⽔为⼯作介质做出的λ-Re 曲线,对其它流体能否使⽤?为什么?答:能⽤,因为雷诺准数是⼀个⽆因次数群,它允许d 、u 、ρ、变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档