培优专题5_因式分解小结(含答案)[1] 2
精讲精练:因式分解方法分类总结-培优(含答案)

因式分解·提公因式法【知识精读】如果多项式的各项有公因式,根据乘法分配律的逆运算,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。
提公因式法是因式分解的最基本也是最常用的方法。
它的理论依据就是乘法分配律。
多项式的公因式的确定方法是:(1)当多项式有相同字母时,取相同字母的最低次幂。
(2)系数和各项系数的最大公约数,公因式可以是数、单项式,也可以是多项式。
下面我们通过例题进一步学习用提公因式法因式分解 【分类解析】1. 把下列各式因式分解 (1)-+--+++a xabx acx ax m m m m 2213(2)a a b a b a ab b a ()()()-+---32222分析:(1)若多项式的第一项系数是负数,一般要提出“-”号,使括号内的第一项系数是正数,在提出“-”号后,多项式的各项都要变号。
解:-+--=--+++++a xabx acx ax ax ax bx c x m m m m m 221323()(2)有时将因式经过符号变换或将字母重新排列后可化为公因式,如:当n 为自然数时,()()()()a b b a a b b a nn n n -=--=----222121;,是在因式分解过程中常用的因式变换。
解:a a b a b a ab b a ()()()-+---32222)243)((]2)(2))[(()(2)(2)(222223b b ab a b a a b b a a b a b a a b a ab b a a b a a ++--=+-+--=-+-+-=2. 利用提公因式法简化计算过程例:计算1368987521136898745613689872681368987123⨯+⨯+⨯+⨯ 分析:算式中每一项都含有9871368,可以把它看成公因式提取出来,再算出结果。
解:原式)521456268123(1368987+++⨯= =⨯=987136813689873. 在多项式恒等变形中的应用 例:不解方程组23532x y x y +=-=-⎧⎨⎩,求代数式()()()22332x y x y x x y +-++的值。
初中数学培优:因式分解小结(含答案)

因式分解小结【知识精读】因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初中代数中占有重要的地位和作用,在其它学科中也有广泛应用,学习本章知识时,应注意以下几点。
1. 因式分解的对象是多项式;2. 因式分解的结果一定是整式乘积的形式;3. 分解因式,必须进行到每一个因式都不能再分解为止;4. 公式中的字母可以表示单项式,也可以表示多项式;5. 结果如有相同因式,应写成幂的形式;6. 题目中没有指定数的范围,一般指在有理数范围内分解;7. 因式分解的一般步骤是:(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。
即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;下面我们一起来回顾本章所学的内容。
【分类解析】1. 通过基本思路达到分解多项式的目的例1. 分解因式分析:这是一个六项式,很显然要先进行分组,此题可把分别看成一组,此时六项式变成二项式,提取公因式后,再进一步分解;也可把,,分别看成一组,此时的六项式变成三项式,提取公因式后再进行分解。
解一:原式解二:原式=2. 通过变形达到分解的目的例1. 分解因式解一:将拆成,则有解二:将常数拆成,则有3. 在证明题中的应用例:求证:多项式的值一定是非负数分析:现阶段我们学习了两个非负数,它们是完全平方数、绝对值。
本题要证明这个多项式是非负数,需要变形成完全平方数。
证明:设,则4. 因式分解中的转化思想例:分解因式:分析:本题若直接用公式法分解,过程很复杂,观察a+b,b+c与a+2b+c的关系,努力寻找一种代换的方法。
解:设a+b=A,b+c=B,a+2b+c=A+B说明:在分解因式时,灵活运用公式,对原式进行“代换”是很重要的。
因式分解小结

课题因式分解小结授课人陈林教学目标知识与技能进一步巩固因式分解的概念以及选择恰当的方法进行因式分解,应用因式分解解决一些实际问题.过程与方法经历探索因式分解的过程,感受逆向思维的意义,掌握因式分解的基本方法.培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.情感态度价值观培养严谨的推理能力,以及自主合作的精神.教学重点灵活地应用恰当的方法进行因式分解教学难点灵活地应用恰当的方法进行因式分解.教学活动教学步骤师生活动设计意图知识回顾1.因式分解的定义;2. 因式分解与整式乘法的关系。
学生回忆并回答活动一:实践探究判断下列各式哪些是因式分解?(1) x2-4y2=(x+2y)(x-2y)(2) (a+3)(a-3)= a2-9(3)a2-26=(a+5)(a-5)-1(4)x2+x= x2(1+1x)【总结】①要分解的式子必须是多项式;②分解的结果一定是几个整式的乘积的形式;借助练习巩固理解因式分解的定义3.因式分解的方法★提公因式法:am+bm+cm=m(a+b+c)(1)6mx+9my;(2)-12x3-24x2+48xy;(3)m(x-y)+n(y-x);【规律总结】提公因式法分解因式,找准公因式是关键,还要注意多项式各项的符号。
找公因式一看系数,二看因式,公因式由各项系数的最大公约数与相同因式的最低次幂的积组成。
活动二:自主合作探究★公式法▲平方差公式:a2-b2=(a+b)(a-b)(说明:公式中的a,b可以表示数,单项式,多项式,甚至更复杂的整式)(1)- y2 + x2; (2)x4-16; (3)4(x-1)2-9(x+2)2; (4)12x3y-27xy3; 【规律总结】对于二项式进行因式分解,首先看有没有公因式,有公因式要先提公因式,再看能不能用平方差公式。
要注意必须分解到每个因式都不能再分解为止。
▲完全平方公式:a2±2ab+b2=(a±b)2(1) a2-a+14;(2)221122x xy y++(3)-x2y2+2xy-1;(4)4-12(a-b)+9(b-a)2; (5)ax2+2a2x+a3;(6)(x+y)2-6x2+6y2+9(x-y)2【规律总结】运用完全平方公式分解因式,被分解的多项式必须满足三个特点:①是三项式;②其中有两项是平方式,且这两项的符号相同;③第三项是两个平方项幂的底数的2倍或-2倍。
上海中远实验学校数学整式的乘法与因式分解(培优篇)(Word版 含解析)

一、八年级数学整式的乘法与因式分解解答题压轴题(难)1.观察下列各式:()()2111,x x x -+=-()()23 111,x x x x -++=-()()324 111,x x x x x -+++=-()()4325 1 11,x x x x x x -++++=-······()1根据规律()()122 1 ...1n n x x x x x ---+++++=(其中n 为正整数) ;()()3029282(51)5555251-+++++()3计算:201920182017321(2)(2)(2)(2)(2)(2)1-+-+-++-+--++ 【答案】(1)1n x -;(2)311-5;(3)2020213-- 【解析】【分析】(1)归纳总结得到一般性规律,即可得到结果;(2)根据一般性结果,将n=31,x=5代入(1)中即可;(3)将代数式适当变形为(1)的形式,根据前面总结的规律即可计算出结果.【详解】(1)根据上述规律可得()()122 1 ...1n n x x x x x ---+++++=1n x -,故填:1n x -;(2)由(1)可知()3029282(51)555551-+++++=311-5()3 201920182017321(2)(2)(2)(2)(2)(2)1-+-+-+⋅+-+-+-+ =201920182011732[(2)1](2)(2)(2)(2)(2)(2)13⎡⎤---+-+-+⋯+-+--+⎣⎦-+ =2020(2)13--- =2020213-- 【点睛】本题考查整式的乘法,能根据题例归纳总结出一般性规律是解题关键,(3)中能对整式适当变形是解题关键,但需注意变形时要为等量变形.2.把几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2(1)如图2,将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,试用不同的形式表示这个大正方形的面积,你能发现什么结论?请用等式表示出来.(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.(3)如图3,将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF.若这两个正方形的边长满足a+b=10,ab=20,请求出阴影部分的面积.【答案】(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)45;(3)20.【解析】【分析】(1)此题根据面积的不同求解方法,可得到不同的表示方法.一种可以是3个正方形的面积和6个矩形的面积,种是大正方形的面积,可得等式(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)利用(1)中的等式直接代入求得答案即可;(3)利用S阴影=正方形ABCD的面积+正方形ECGF的面积-三角形BGF的面积-三角形ABD 的面积求解.【详解】(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)∵a+b+c=11,ab+bc+ac=38,∴a2+b2+c2 =(a+b+c)2﹣2(ab+ac+bc)=121﹣76=45;(3)∵a+b=10,ab=20,∴S阴影=a2+b2﹣12(a+b)•b﹣12a2=12a2+12b2﹣12ab=12(a+b)2﹣32ab=12×102﹣32×20=50﹣30=20.【点睛】本题考查了完全平方公式几何意义,解题的关键是注意图形的分割与拼合,会用不同的方法表示同一图形的面积.3.观察下列等式:22()()a b a b a b -=-+3322()()a b a b a ab b -=-++443223()()a b a b a a b ab b -=-+++55432234()()a b a b a a b a b ab b -=-++++完成下列问题:(1)n n a b -=___________(2)636261322222221+++⋯⋯++++= (结果用幂表示).(3)已知4,1a b ab -==,求33a b -.【答案】(1)(a-b )(a n-1+a n-2b+…+ab n-2+b n-1);(2)264-1;(3)76.【解析】【分析】(1)根据规律可得结果(a-b )(a n-1+a n-2b+…+ab n-2+b n-1);(2)利用(1)得出的规律先计算(2-1)63626132(2222221+++⋯⋯++++)即可得出结果;(3)利用(1)得出的规律变形,再用完全平方公式进行变形,变成只含a-b 及ab 的形式,整体代入计算即可得到结果.【详解】解:(1)()()22a b a b a b -=-+,()()3322a b a b a ab b -=-++,()()443223a b a b a a b ab b -=-+++, ()()55432234a b a b a a b a b ab b -=-++++, 由此规律可得:a n -b n =(a-b )(a n-1+a n-2b+…+ab n-2+b n-1),故答案是:(a-b )(a n-1+a n-2b+…+ab n-2+b n-1);(2)由(1)的规律可得(2-1)()636261322222221+++⋯⋯++++=264-1, ∴636261322222221+++⋯⋯++++=264-1.故答案是:264-1.(3)已知4,1a b ab -==,求33a b -.()()3322a b a b a ab b -=-++=()() [a b a b --2+3 a b ]∴33a b -=24431⨯+⨯()=76. 故答案是:76.【点睛】此题考查了多项式乘以多项式,弄清题中的规律是解本题的关键.4.请你观察下列式子:2(1)(1)1x x x -+=-()()23111x x x x -++=-()()324111x x x x x -+++=-()()4325111x x x x x x -++++=-……根据上面的规律,解答下列问题:(1)当3x =时,计算201720162015(31)(333-+++…323331)++++=_________;(2)设201720162015222a =+++…322221++++,则a 的个位数字为 ;(3)求式子201720162015555+++…32555+++的和.【答案】(1)201831-;(2)3;(3)2018554- 【解析】【分析】(1)根据已知的等式发现规律即可求解;(2)先根据x=2,求出a=20182-1,再发现2的幂个位数字的规律,即可求出a 的个位数字;(3)利用已知的等式运算规律构造(5-1)×(2016201520142555...551++++++)即可求解.【详解】(1)∵2(1)(1)1x x x -+=- ()()23111x x x x -++=-()()324111x x x x x -+++=-()()4325111x x x x x x -++++=-……∴()()1122.1..11n n n n x x x x x x x --+-+++++=-+故x=3时,201720162015(31)(333-+++…323331)++++=201831-故填:201831-;(2)201720162015222a =+++…322221++++=(2-1)201720162015(222+++…322221)++++=201821-∵21=2,22=4,23=8,24=16,25=32,26=64∴2n 的个位数按2,4,8,6,依次循环排列,∵2018÷4=504…2,∴20182的个位数为4,∴201821-的个位数为3,故填:3;(3)201720162015555+++…32555+++=1(51)54-⨯⨯(201620152014555+++…2551+++) =54×(5-1)(201620152014555+++…2551+++) =54×(201751-) =2018554- 【点睛】此题主要考查等式的规律探索及应用,解题的关键是根据已知等式找到规律.5.阅读材料小明遇到这样一个问题:求计算()()()22334x x x +++所得多项式的一次项系数.小明想通过计算()()()22334x x x +++所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.他决定从简单情况开始,先找()()223x x ++所得多项式中的一次项系数,通过观察发现:也就是说,只需用2x +中的一次项系数1乘以23x +中的常数项3,再用2x +中的常数项2乘以23x +中的一次项系数2,两个积相加13227⨯+⨯=,即可得到一次项系数. 延续上面的方法,求计算()()()22334x x x +++所得多项式的一次项系数,可以先用2x +的一次项系数1,23x +的常数项3,34+x 的常数项4,相乘得到12;再用23x +的一次项系数2,2x +的常数项2,34+x 的常数项4,相乘得到16;然后用34+x 的一次项系数3,2x +的常数项223x +的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.参考小明思考问题的方法,解决下列问题:(1)计算()()443x x ++所得多项式的一次项系数为____________________.(2)计算()()()13225x x x +-+所得多项式的一次项系数为_____________.(3)若231x x -+是422x ax bx +++的一个因式,求a 、b 的值.【答案】(1)19;(2)1;(3) a= -6,b= -3.【解析】【分析】(1)根据两多项式常数项与一次项系数乘积的和即为所得多项式一次项系数可得;(2)根据三个多项式中两个多项式的常数项与另一个多项式一次项系数的乘积即为所求可得;(3)由x 4+ax 2+bx+2中4次项系数为1、常数项为2可设另一个因式为x 2+mx+2,根据三次项系数为0、二次项系数为a 、一次项系数为b 列出方程组求出a 、b 的值,可得答案.【详解】解:(1)(x+4)(4x+3)所得多项式的一次项系数为1×3+4×4=19,故答案为:19;(2)()()()13225x x x +-+所得多项式的一次项系数为1×(-2)×5+1×3×5+1×(-2)×2=1, 故答案为:1;(3)由x 4+ax 2+bx+2中4次项系数为1、常数项为2可设另一个因式为x 2+mx+2,则(x 2-3x+1)(x 2+mx+2)=x 4+ax 2+bx+2,13101211(3)321m m a m b ⨯-⨯=⎧⎪∴⨯+⨯+-⨯=⎨⎪-⨯+⨯=⎩解得: 363m a b =⎧⎪=-⎨⎪=-⎩故答案为:a= -6,b= -3.【点睛】本题考查多项式乘多项式,解题关键是熟练掌握多项式乘多项式的运算法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.6.图①是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积: 方法1: 方法2:(2)观察图②请你写出下列三个代数式:(m+n )2,(m ﹣n )2,mn 之间的等量关系. ;(3)根据(2)题中的等量关系,解决:已知:a ﹣b=5,ab=﹣6,求:(a+b )2的值;【答案】(1)(m-n)2;(m+n)2-4mn;(2)(m-n)2=(m+n)2-4mn;(3)1.【解析】【分析】(1)方法1:表示出阴影部分的边长,然后利用正方形的面积公式列式;方法2:利用大正方形的面积减去四周四个矩形的面积列式;(2)根据不同方法表示的阴影部分的面积相同解答;(3)根据(2)的结论整体代入进行计算即可得解.【详解】解:(1)方法1:∵阴影部分的四条边长都是m-n,是正方形,∴阴影部分的面积=(m-n)2方法2:∵阴影部分的面积=大正方形的面积减去四周四个矩形的面积∴阴影部分的面积=(m+n)2-4mn;(2)根据(1)中两种计算阴影部分的面积方法可知(m-n)2=(m+n)2-4mn;(3)由(2)可知(a+b)2=(a-b)2+4ab,∵a-b=5,ab=-6,∴(a+b)2=(a-b)2+4ab=52+4×(-6)=25-24=1.【点睛】本题考查几何图形与完全平方公式,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形面积展开分析.7.阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3(1)上述分解因式的方法是,共应用了次.(2)若分解1+x+x(x+1)+x(x+1)2+…+ x(x+1)2004,则需应用上述方法次,结果是 .(3)分解因式:1+x+x(x+1)+x(x+1)2+…+ x(x+1)n(n为正整数).【答案】(1)提公因式,两次;(2)2004次,(x+1)2005;(3) (x+1)1n【解析】【分析】(1)根据已知材料直接回答即可;(2)利用已知材料进而提取公因式(1+x),进而得出答案;(3)利用已知材料提取公因式进而得出答案.【详解】(1)上述分解因式的方法是:提公因式法,共应用了2次.故答案为提公因式法,2次;(2)1+x+x(x+1)+x(x+1)2+…+ x(x+1)2004,=(1+x)[1+x+x(1+x)+…+ x(x+1)2003]⋯=22003(1) (1)(1)(1)(1)xx x x x+++++个=(1+x)2005,故分解1+x+x(x+1)+x(x+1)2+…+ x(x+1)2004,,则需应用上述方法2004次,结果是:(x+1)2005.(3)分解因式:1+x+x(x+1)+x(x+1)2…+x(x+1)n(n为正整数)的结果是:(x+1)n+1.故答案为(x+1)n+1.【点睛】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.8.一个四位正整数m各个数位上的数字互不相同且都不为0,四位数m的前两位数字之和为5,后两位数字之和为11,称这样的四位数m为“半期数”;把四位数m的各位上的数字依次轮换后得到新的四位数m′,设m′=abcd,在m′的所有可能的情况中,当|b+2c﹣a ﹣d|最小时,称此时的m′是m的“伴随数”,并规定F(m′)=a2+c2﹣2bd;例如:m=2365,则m′为:3652,6523,5236,因为|6+10﹣3﹣2|=11,|5+4﹣6﹣3|=0,|2+6﹣5﹣6|=3,0最小,所以6523叫做2365的“伴随数”,F(5236)=52+32﹣2×2×6=10.(1)最大的四位“半期数”为;“半期数”3247的“伴随数”是.(2)已知四位数P=abcd是“半期数”,三位数Q=2ab,且441Q﹣4P=88991,求F(P')的最大值.【答案】(1)4192,7324;(2)42.【解析】【分析】(1)根据“半期数”的定义分析最大的四位“半期数”应该是千位最大,最大只能为4,所以百位是1,十位最大是9,个位是2,所以最大半期数为:4192,分析3247的所有可能为,2473,4732,7324.根据题意|b+2c﹣a﹣d|最小的数是7324,所以3247的“伴随数”是:7324.(2)根据定义可知a+b=5,c+d=11.再根据441Q﹣4P=88991,可以算出P的值,从而求出F(P')的最大值.【详解】解;(1)根据题意可得最大的四位“半期数”应该是千位最大,最大只能为4,所以百位是1,十位最大是9,个位是2,所以最大半期数为:4192.∵3247的所有可能为,2473,4732,7324.∵|4+14﹣2﹣3|=13,|7+6﹣4﹣2|=7,|3+4﹣7﹣4|=4, 4最小,所以7324为3247的“伴随数”.故答案为4192;7324.(2)∵P 为“半期数”∴a +b =5,c +d =11,∴b =5﹣a ,d =11﹣c ,∴P =1000a +100(5﹣a )+10c +11﹣c =900a +9c +511.∵Q =200+10a +c ,∴441Q ﹣4P =88991,∴441(200+10a +c )﹣4(900a +9c +511)=88991 化简得:2a +c =7①当a =1时,c =5,此时这个四位数为1456符合题意;②当a =2时,c =3,此时这个四位数为2338不符合题意,舍去;③当a =3时,c =1,不符合题意,舍去;综上所述:这个四位数只能是1456,则P '可能为4561,5614,6145.∵|5+12﹣4﹣1|=12,|6+2﹣5﹣4|=1,|1+8﹣6﹣5|=2,1最小,所以5614为P 的“伴随数”,∴F (5614)=a 2+c 2﹣2bd =25+1﹣2×6×4=﹣22;F (4561)=a 2+c 2﹣2bd =16+36﹣2×5×1=42;F (6145)=a 2+c 2﹣2bd =36+16﹣2×1×5=42;∴F (P ')的最大值为42.【点睛】解决本道题的关键是理解好半期数的定义:一个四位正整数m 各个数位上的数字互不相同且都不为0,四位数m 的前两位数字之和为5,后两位数字之和为11,称这样的四位数m 为“半期数”,然后根据当|b +2c ﹣a ﹣d |最小时,称此时的m '是m 的“伴随数”来确定伴随数.9.阅读以下文字并解决问题:对于形如222x ax a ++这样的二次三项式,我们可以直接用公式法把它分解成()2x a +的形式,但对于二次三项式2627x x +-,就不能直接用公式法分解了。
《整式的乘除与因式分解》培优训练及答案

整式的乘除与因式分解一、选择题:1.下列计算正确的是( )A .105532a a a =+B .632a a a =⋅C .532)(a a =D . 8210a a a =÷2.下列计算结果正确的是( )A .4332222y x xy y x -=⋅-B .2253xy y x -=y x 22-C .xy y x y x 4728324=÷D .49)23)(23(2-=---a a a3.两个三次多项式相加,结果一定是 ( )A .三次多项式B .六次多项式C .零次多项式D .不超过三次的多项式4.把多项式()()()111---+x x x 提取公因式()1-x 后,余下的部分是( )A .()1+xB .()1+-xC .xD .()2+-x5.计算24(1)(1)(1)(1)x x x x -++--的结果是 ( )A 、2B 、0C 、-2D 、-56.已知代数式12x a -1y 3与-3x -b y 2a+b 是同类项,那么a 、b 的值分别是( )A .2,1a b =-⎧⎨=-⎩B .2,1a b =⎧⎨=⎩C .2,1a b =⎧⎨=-⎩D .2,1a b =-⎧⎨=⎩7.已知2239494b b a b a n m =÷,则( )A .3,4==n mB .1,4==n mC .3,1==n mD .3,2==n m8.如图,是一个正方形与一个直角三角形所拼成的图形,则该图形的面积为()A .m 2+12mnB .22mn n -C .22m mn+ D .222m n +9.若2()9a b +=,2()4a b -=,则ab 的值是( )A 、54B 、-54C 、1D 、-1 二、填空题: 1.分解因式2233ax ay -= .2.分解因式ab b a 8)2(2+- =_______.3.分解因式221218x x -+= .4.若22210a b b -+-+=,则a = ,b = .5.代数式4x 2+3mx +9是完全平方式,则m =___________.6. 已知a+b=5,ab=3,求下列各式的值:(1)a 2+b 2= ;(2)-3a 2+ab-3b 2= .7. 已知522=+b a ,()()223232a b a b --+=-48,则a b +=________. 8. 已知正方形的面积是2269y xy x ++ (x >0,y >0),利用分解因式,写出表示该正方形的边长的代数式 .9.观察下列等式: 第一行 3=4-1第二行 5=9-4第三行 7=16-9第四行 9=25-16… …按照上述规律,第n 行的等式为____________ .三、解答题:1.计算题(1)(-3xy 2)3·(61x 3y )2 (2)4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2)(3)222)(4)(2)x y x y x y --+( (4)221(2)(2))x x x x x-+-+-(2.因式分解(1)3123x x - (2)2222)1(2ax x a -+(3)xy y x 2122--+ (4))()3()3)((22a b b a b a b a -+++-3.解方程:41)8)(12()52)(3(=-+--+x x x x4.已知x 2+x -1=0,求x 3+2x 2+3的值5.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.四.综合拓展:1.已知c b a 、、是△ABC 的三边的长,且满足0)(22222=+-++c a b c b a ,试判断此三角形的形状.2.已知2006x+2006y=1,x+3y=2006,试求2x 2+8xy+6y 2的值五.巩固练习:1.若n221623=÷,则n 等于( )A .10B .5C .3D .62.计算:xy xy y x y x 2)232(2223÷+--的结果是( ) A .xy y x 232- B .22322+-xy y x C .1232+--xy y x D .12322+--xy y x3.下列计算正确的是( )A .x y x y x 221222223=⋅÷ B .57222257919n m n m m n n m =÷⋅ C .mn mn n m n m =⋅÷24322)(2 D .22242231043)3012(y x y x y x y x +=÷+4.已知一个多项式与单项式457y x -的积为2234775)2(72821y x y y x y x +-,则这个多项式为___5.若(a+b )2=13(a-b )2=7求a 2+b 2和ab 的值。
因式分解培优题(超全面、详细分类)

因式分解专题培优把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下:因式分解的一般方法及考虑顺序:1、基本方法:提公因式法、公式法、十字相乘法、分组分解法.2、常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法.3、考虑顺序:(1)提公因式法;(2)公式法;(3)十字相乘法;(4)分组分解法.一、运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1),其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例题1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.例题2 分解因式:a 3+b 3+c 3-3abc .例题3 分解因式:x 15+x 14+x 13+…+x 2+x +1.对应练习题 分解因式:2211(1)94n n x x y +-+;(2) x 10+x 5-2422332223(3)244(4)4x x y xy x y y x y --+++(4) (x 5+x 4+x 3+x 2+x +1)2-x 5(5) 9(a -b )2+12(a 2-b 2)+4(a +b )2(6) (a -b )2-4(a -b -1)(7)(x +y )3+2xy (1-x -y )-1二、分组分解法(一)分组后能直接提公因式例题1 分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系.此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提.例题2 分解因式:bx by ay ax -+-5102对应练习题 分解因式:1、bc ac ab a -+-22、1+--y x xy(二)分组后能直接运用公式例题3 分解因式:ay ax y x ++-22例题4 分解因式:2222c b ab a -+-对应练习题 分解因式:3、y y x x 3922---4、yz z y x 2222---综合练习题 分解因式:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22(3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++-(5)92234-+-a a a (6)y b x b y a x a 222244+--(7)222y yz xz xy x ++-- (8)122222++-+-ab b b a a(9))1)(1()2(+---m m y y (10))2())((a b b c a c a -+-+(11)abc b a c c a b c b a 2)()()(222++++++ (12)432234232.a a b a b ab b ++++(13)22)()(bx ay by ax -++ (14)333333333)(y x x z z y z y x xyz ---++(15)a a x ax x -++-2242 (16)a x a x x 2)2(323-++-(17))53(4)3()1(33+-+++x x x三、十字相乘法1、十字相乘法(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解.特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和. 例题1 分解因式:652++x x例题2 分解因式:672+-x x对应练习题 分解因式:(1)24142++x x (2)36152+-a a (3)542-+x x(4)22-+x x (5)1522--y y (6)24102--x x(二)二次项系数不为1的二次三项式——2ax bx c ++条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例题3 分解因式:101132+-x x对应练习题 分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)二次项系数为1的齐次多项式例题4 分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解. 1 8b1 -16b8b +(-16b )= -8b对应练习题 分解因式:(1)2223y xy x +- (2)2286n mn m +- (3)226b ab a --(四)二次项系数不为1的齐次多项式例题5 分解因式:22672y xy x +- 例题6 分解因式:2322+-xy y x对应练习题 分解因式:(1)224715y xy x -+ (2)8622+-ax x a综合练习题 分解因式:(1)17836--x x (2)22151112y xy x --(3)10)(3)(2-+-+y x y x (4)344)(2+--+b a b a(5)222265x y x y x -- (6)2634422++-+-n m n mn m(7)3424422---++y x y xy x (8)2222)(10)(23)(5b a b a b a ---++(9)10364422-++--y y x xy x (10)2222)(2)(11)(12y x y x y x -+-++思考:分解因式:abc x c b a abcx +++)(22222、双十字相乘法定义:双十字相乘法用于对F Ey Dx Cy Bxy Ax +++++22型多项式的分解因式. 条件:(1)21a a A =,21c c C =,21f f F =(2)B c a c a =+1221,E f c f c =+1221,D f a f a =+1221即: 1a 1c 1f2a 2c 2fB c a c a =+1221,E f c f c =+1221,D f a f a =+1221则=+++++F Ey Dx Cy Bxy Ax 22))((222111f y c x a f y c x a ++++例题7 分解因式: (1)2910322-++--y x y xy x(2)613622-++-+y x y xy x解:(1)2910322-++--y x y xy x应用双十字相乘法: x y 5- 2x y 2 1-xy xy xy 352-=-,y y y 945=+,x x x =+-2∴原式=)12)(25(-++-y x y x(2)613622-++-+y x y xy x应用双十字相乘法: x y 2- 3x y 3 2- xy xy xy =-23,y y y 1394=+,x x x =+-32∴原式=)23)(32(-++-y x y x对应练习题 分解因式:(1)67222-+--+y x y xy x (2)22227376z yz xz y xy x -+---3、十字相乘法进阶例题8 分解因式:)122()1)(1(22+++++y y x x y y例题9 分解因式:))(()1)(()(222222y x b a xy b a y x ab ++-+---四、主元法例题 分解因式:2910322-++--y x y xy x对应练习题 分解因式:(1)613622-++-+y x y xy x (2)67222-+--+y x y xy x(3)2737622--+--y x y xy x (4)36355622-++-+b a b ab a五、换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例题1 分解因式:(x 2+x +1)(x 2+x +2)-12.例题2 分解因式:22222)84(3)84(x x x x x x ++++++例题3 分解因式:9)5)(3)(1)(1(-+++-x x x x分析:型如e abcd +的多项式,分解因式时可以把四个因式两两分组相乘.例题4 分解因式:56)6)(67(22+--+-x x x x .例题5 分解因式:(x 2+3x +2)(4x 2+8x +3)-90.例题6 分解因式:22224(31)(23)(44)x x x x x x --+--+-提示:可设2231,23x x A x x B --=+-=,则244x x A B +-=+.例题7 分解因式:272836+-x x例题8 分解因式:22244)()()(b a b a b a -+++-例题9 分解因式:272)3()1(44-+++y y例题9对应练习 分解因式:444)4(4-++a a例题10 分解因式:(x 2+xy +y 2)2-4xy (x 2+y 2).分析:本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x +y ,v=xy ,用换元法分解因式.例题11 分解因式:262234+---x x x x分析:此多项式的特点——是关于x 的降幂排列,每一项的次数依次少1,并且系数成“轴对称”.这种多项式属于“等距离多项式”.方法:提中间项的字母和它的次数,保留系数,然后再用换元法.例题11对应练习 分解因式:6x 4+7x 3-36x 2-7x +6.例题11对应练习 分解因式:144234+++-x x x x对应练习题 分解因式:(1)x 4+7x 3+14x 2+7x +1 (2))(2122234x x x x x +++++(3)2005)12005(200522---x x (4)2)6)(3)(2)(1(x x x x x +++++(5) (1)(3)(5)(7)15x x x x +++++ (6)(1)(2)(3)(4)24a a a a ----- (7)2(25)(9)(27)91a a a +--- (8)(x +3)(x 2-1)(x +5)-20(9)222222)3(4)5()1(+-+++a a a (10) (2x 2-3x +1)2-22x 2+33x -1(11)()()()a b c a b b c ++-+-+2333(12)21(1)(3)2()(1)2xy xy xy x y x y +++-++-+-(13)2(2)(2)(1)a b ab a b ab +-+-+-六、添项、拆项、配方法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.说明 用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例题1 分解因式:x 3-9x +8.例题2 分解因式:(1)x 9+x 6+x 3-3; (2)(m 2-1)(n 2-1)+4mn ; (3)(x +1)4+(x 2-1)2+(x -1)4; (4)a 3b -ab 3+a 2+b 2+1.对应练习题 分解因式:(1)4323+-x x (2)2223103)(2b ab a x b a x -+-++(3)1724+-x x (4)22412a ax x x -+++(5)444)(y x y x +++ (6)444222222222c b a c b c a b a ---++(7)x 3+3x 2-4 (8)x 4-11x 2y 2+y 2 (9)x 3+9x 2+26x +24 (10)x 4-12x +323 (11)x 4+x 2+1; (12)x 3-11x +20;(13)a 5+a +1 (14)56422-++-y x y x(15)ab b a 4)1)(1(22---七、待定系数法例题1 分解因式:613622-++-+y x y xy x分析:原式的前3项226y xy x -+可以分为)2)(3(y x y x -+,则原多项式必定可分为)2)(3(n y x m y x +-++对应练习题 分解因式:(1)2737622--+--y x y xy x (2)2x 2+3xy -9y 2+14x -3y +20(3)2910322-++--y x y xy x (4)6752322+++++y x y xy x例题2 (1)当m 为何值时,多项式6522-++-y mx y x 能分解因式,并分解此多项式.(2)如果823+++bx ax x 有两个因式为1+x 和2+x ,求b a +的值.(3)已知:p y x y xy x +-+--1463222能分解成两个一次因式之积,求常数p 并且分解因式.(4)k 为何值时,253222+-++-y x ky xy x 能分解成两个一次因式的乘积,并分解此多项式.八、余式定理(试根法)1、()x f 的意义:已知多项式()x f ,若把x 用c 带入所得到的值,即称为()x f 在x =c 的多项式值,用()c f 表示.2、被除式、除式、商式、余式之间的关系:设多项式()x f 除以()x g 所得的商式为()x q ,余式为()x r ,则:()x f =()x g ×()x q +()x r3、余式定理:多项式)(x f 除以b x -之余式为)(b f ;多项式)(x f 除以b ax -之余式)(ab f . 例如:当 f(x )=x 2+x +2 除以 (x – 1) 时,则余数=f(1)=12+1+2=4.当2()967f x x x =+-除以(31)x +时,则余数=2111()9()6()78333f -=⨯-+⨯--=-.4、因式定理:设R b a ∈,,0≠a ,)(x f 为关于x 的多项式,则b x -为)(x f 的因式⇔0)(=b f ;b ax -为)(x f 的因式⇔0)(=abf .整系数一次因式检验法:设f(x)=0111c x c x c x c n n n n ++++-- 为整系数多项式,若ax –b 为f(x)之因式(其中a , b为整数 , a ≠0 , 且a , b 互质),则 (1)0,c b c a n(2)( a –b ))1()(,)1(-+f b a f例题1 设61923)(23+-+=x x x x f ,试问下列何者是f (x )的因式?(1)2x –1 ,(2) x –2,(3) 3x –1,(4) 4x +1,(5) x –1,(6) 3x –4例题2 把下列多项式分解因式:(1)453+-x x(2) 6423++-x x x (3) 245323-++x x x (4)1027259234++++x x x x (5)31212165234--++x x x x课后作业分解因式: (1)x 4+4(2)4x 3-31x +15 (3)3x 3-7x +10 (4)x 3-41x +30 (5)x 3+4x 2-9 (6)x 3+5x 2-18 (7)x 3+6x 2+11x +6 (8)x 3-3x 2+3x +7 (9)x 3-11x 2+31x -21(10)x 4+1987x 2+1986x +1987 (11)19981999199824-+-x x x (12)19961995199624+++x x x (13)x 3+3x 2y +3xy 2+2y 3 (1412)x 3-9ax 2+27a 2x -26a 3(15)23)12)(10)(6)(5(4x x x x x -++++ (16)12)4814)(86(22+++++x x x x (17)222215)4(8)4(xx x x x x ++++++(18)222222)1(2)1)(16(5)16(2++++++++x x x x x x (19)x 4+x 2y 2+y 4 (20)x 4-23x 2y 2+y 4(21)a 3+b 3+3(a 2+b 2)+3(a +b )+2 (22)641233-++ab b a (23)12233+++-b a ab b a .(24)1)1()2+-+ab b a ( (25)2222224)()(2b a x b a x -++-(26)))(()()(333333y x b a by ax bx ay ++-+++ (27)633621619y y x x --(28)x 2y -y 2z +z 2x -x 2z +y 2x +z 2y -2xyz (29)810381032345++---x x x x x因式分解的应用1、证明:四个连续整数的的乘积加1是整数的平方.2、2n -1和2n +1表示两个连续的奇数(n 是整数),证明这两个连续奇数的平方差能被8整除.3、已知1248-可以被60与70之间的两个整数整除,求这两个整数.4、已知724-1可被40至50之间的两个整数整除,求这两个整数.5、求证:139792781--能被45整除.6、求证:146+1能被197整除.7、设4x -y 为3的倍数,求证:4x 2+7xy -2y 2能被9整除. 8、已知222y xy x -+=7,求整数x 、y 的值. 9、求方程07946=--+y x xy 的整数解. 10、求方程xy -x -y +1=3的整数解. 11、求方程4x 2-4xy -3y 2=5的整数解.12、两个小朋友的年龄分别为a 和b ,已知a 2+ab =99,则a =______,b =_______ . 13、 计算下列各题: (1)23×3.14+5.9×31.4+180×0.314;(2)19952199519931995199519963232--+-⨯.14、求积()()()()()11131124113511461198100+++++⨯⨯⨯⨯⨯ ()1199101+⨯的整数部分?15、解方程:(x 2+4x )2-2(x 2+4x )-15=016、已知ac +bd =0,则ab (c 2+d 2)+cd (a 2+b 2)的值等于___________.17、已知a -b =3, a -c =326, 求(c —b )[(a -b )2+(a -c )(a -b )+(a -c )2]的值.18、已知012=++x x ,求148++x x 的值.19、若x 满足145-=++x x x ,计算200419991998x x x +++ .20、已知三角形的三边a 、b 、c 满足等式abc c b a 3333=++,证明这个三角形是等边三角形.。
专题05 因式分解(学生版)

2023-2024学年苏科版数学七年级下册培优专题真题汇编卷专题05 因式分解考试时间:100分钟试卷满分:100分难度系数:0.43姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一、选择题(本大题共10小题,每小题2分,共20分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在括号内)1.(2分)(2023春•鼓楼区校级期中)已知a、b、c是△ABC的三条边,且满足a2+bc=b2+ac,则△ABC一定是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形2.(2分)(2022春•赣榆区期中)下列从左到右的变形,是因式分解的是()A.(x+4)(x﹣4)=x2﹣16 B.x2+2x+1=x(x+2)+1C.x2+1=x(x+)D.a2b+ab2=ab(a+b)3.(2分)(2021春•沭阳县期中)下列等式从左到右的变形中,属于因式分解的是()A.a2﹣2ab+b2=(a﹣b)2B.(x﹣1)(x+2)=x2+x﹣2C.ma+mb﹣1=m(a+b)﹣1 D.8x3y2=2x3•4y24.(2分)(2023秋•平山县期末)下列各式从左到右的变形,是因式分解的是()A.x2﹣9+6x=(x+3)(x﹣3)+6xB.(x+5)(x﹣2)=x2+3x﹣10C.x2﹣8x+16=(x﹣4)2D.x2+1=x(x+)5.(2分)(2023春•东台市月考)下列从左到右的变形中,是因式分解的是()A.(x+3)2=x2+6x+9 B.a2﹣4=(a+2)(a﹣2)C.3xy2=3x•y•y D.x2+2x+2=x(x+2)+26.(2分)(2022春•高新区校级期末)若多项式2x2+ax﹣6能分解成两个一次因式的积,且其中一个一次因式2x﹣3,则a的值为()A.1 B.5 C.﹣1 D.﹣57.(2分)(2022春•高新区期中)已知x2+x=1,那么x4+2x3﹣x2﹣2x+2023的值为()A.2020 B.2021 C.2022 D.20238.(2分)(2022春•江阴市期中)若一个正整数能表示成另两个正整数的平方差,即x=a2﹣b2(其中a、b、x为正整数),则称这个正整数为完美数.下列各数中不是完美数的是()A.2022 B.2021 C.2020 D.20199.(2分)(2020春•高邮市期末)利用因式分解简便计算69×99+32×99﹣99正确的是()A.99×(69+32)=99×101=9999B.99×(69+32﹣1)=99×100=9900C.99×(69+32+1)=99×102=10096D.99×(69+32﹣99)=99×2=19810.(2分)(2023秋•海门市校级月考)已知长方形的周长为16cm,它两邻边长分别为x cm,y cm,且满足(x﹣y)2﹣2x+2y+1=0,则该长方形的面积为()cm2.A.B.C.15 D.16评卷人得分二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请将正确答案填写在横线上)11.(2分)(2022春•洪泽区期中)一个长、宽分别为m、n的长方形的周长为16,面积为6,则m2n+mn2的值为.12.(2分)(2023春•盐都区期中)4a2b2c,6ab3的公因式为.13.(2分)(2023春•姜堰区期末)如果x2﹣y2=8,x﹣y=2,那么代数式x2+y2的值是.14.(2分)(2023春•姜堰区期末)已知a+b=﹣3,ab=﹣10,则a2b+ab2的值是.15.(2分)(2023春•泗洪县期末)已知x+y=2,x2﹣y2=4,则x2023﹣y2023=.16.(2分)(2023春•高新区期中)刘徽是我国魏晋时期伟大的数学家,他在《九章算术注》中指出:“勾、股幂合为弦幂,明矣.”也就是说,图1中直角三角形的三边a、b、c存在a2+b2=c2的关系.他在书中构造了一些基本图形来解决问题.如图2,分别将以a为边长的正方形和b为边长的正方形置于以c为边长的大正方形的左下角和右上角,若(c﹣a)(c﹣b)=18,则a+b﹣c=.17.(2分)(2022春•兴化市月考)若a+b=3,ab=﹣1,则代数式a3b+2a2b2+ab3的值为.18.(2分)(2022春•海州区校级期末)若m2=n+2022,n2=m+2022(m≠n),那么代数式m3﹣2mn+n3的值.19.(2分)(2023春•梁溪区校级期中)已知a,b,c是△ABC的三边,b2+2ab=c2+2ac,则△ABC的形状是.(2分)(2023春•鼓楼区校级月考)n为自然数,若9n2+5n﹣26为两个连续自然数之积,则n的值是.20.评卷人得分三、解答题(本大题共8小题,共60分.解答时应写出文字说明、证明过程或演算步骤)21.(6分)(2023春•秦淮区校级月考)分解因式(1)9a2(2x﹣y)+(y﹣2x);(2)(y2﹣y)2+14(y﹣y2)+24.22.(6分)(2023春•宿豫区期末)若一个四位数M的个位数字与十位数字的平方和恰好是M去掉个位与十位数字后得到的两位数,则称这个四数M为“勾股和数”.例如:M=2543,∵32+42=25,∴2543是“勾股和数”;又如:M=4325,∵52+22=29,29≠43,∴4325不是“勾股和数”.(1)判断2023、5055是否是“勾股和数”,并说明理由;(2)请你写出一个此题中没有出现过的“勾股和数”;(3)一个“勾股和数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记.当G(M)是整数,且P(M)=3时,求出所有满足条件的M.23.(8分)(2023春•新吴区期中)小刚同学动手剪了如图①所示的正方形与长方形纸片若干张.(1)他用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是;(2)如果要拼成一个长为(a+2b),宽为(a+b)的大长方形,则需要2号卡片张,3号卡片张;(3)当他拼成如图③所示的长方形,根据6张小纸片的面积和等于大长方形的面积可以把多项式a2+3ab+2b2分解因式,其结果是;(4)小刚又选取了2张1号卡片,3张2号卡片和7张3号卡片拼成了一个长方形,请你画出示意图,并根据该图写出对应的乘法公式.24.(8分)(2023春•泗洪县期中)小明同学动手剪了如图①所示的正方形与长方形纸片若干张,分别标上记号.(1)他用1张1号、1张2号和2张3号纸片拼出一个新的图形(如图②).根据这个拼图的面积关系写出一个恒等式:;当他拼成如图③所示的一个大长方形时,其长为(a+2b),宽为(a+b),仔细观察图形,可以完成因式分解:a2+3ab+2b2=.(2)请你利用1张1号纸片,6张2号纸片和5张3号纸片,拼出一个长方形,在下面虚线区域画出图形并仿图③标出边长.(3)根据所画的图形,写出一个恒等式:.25.(8分)(2023春•鼓楼区校级期中)我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如图①可以得到(a+2b)(a+b)=a2+3ab+2b2.请回答下列问题:(1)写出图②中所表示的数学等式;(2)猜测(a+b+c+d)2=.(3)利用(1)中得到的结论,解决下面的问题:已知a+b+c=12,ab+bc+ca=48,求a2+b2+c2的值;(4)在(3)的条件下,若a、b、c分别是一个三角形的三边长,请判断该三角形的形状,并说明理由.26.(8分)(2023春•江都区期中)先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.如:①ax+by+bx+ay=(ax+bx)+(ay+by)=x(a+b)+y(a+b)=(a+b)(x+y)②2xy+y2﹣1+x2=x2+2xy+y2﹣1=(x+y)2﹣1=(x+y+1)(x+y﹣1)(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣22=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:a2﹣b2+a﹣b;(2)分解因式:a2+4ab﹣5b2;(3)多项式x2﹣6x+1有最小值吗?如果有,当它取最小值时x的值为多少?27.(8分)(2023春•新吴区期中)阅读材料:利用公式法,可以将一些形如ax2+bx+c(a≠0)的多项式变形为a(x+m)2+n的形式,我们把这样的变形方法叫做多项式ax2+bx+c(a≠0)的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解例如x2+4x﹣5=x2+4x+()2﹣()2﹣5=(x+2)2﹣9=(x+2+3)(x+2﹣3)=(x+3)(x ﹣1).根据以上材料,解答下列问题.(1)分解因式(利用公式法):x2+2x﹣8;(2)求多项式x2+4x﹣3的最小值;(3)已知a,b,c是△ABC的三边长,且满足a2+b2+c2+50=6a+8b+10c,求△ABC的周长.28.(8分)(2022春•高新区月考)【教材呈现】以下是华师大版教材第50页16题:已知M是含字母x的单项式,要使多项式4x2+M+1是某个多项式的平方,求M.【自主解答】解:根据两个数和或差的平方公式,分两种情况:当M为含字母x的一次单项式时,原式可以表示为关于x的二项式的平方,∵4x2+M+1=(2x)2+M+12=(2x±1)2,∴M=±2×2x*1=±4x;当M为含字母x的四次单项式时,原式可以表示为关于x2的二项式的平方,∵4x2+M+1=M+2×2x2•1+12=(2x2+1)2,。
2022-2023学年初一数学第二学期培优专题训练24 公式法因式分解的3个类型

专题24 公式综合应用因式分解三个类型类型一 先平方差公式再完全平方公式1.因式分解:(x 2+9)2﹣36x 2.2.分解因式:(a 2+1)2-4a 23.分解因式:(x 2+4)2﹣16x 2.4.因式分解(x 2+4y 2)2﹣16x 2y 2类型二 先完全平方公式再平方差公式5.因式分解:()2221x y xy ++-6.因式分解:a 2﹣(x 2﹣2xy +y 2).7.22414x xy y --+8.x 2﹣4x +4﹣y 29.因式分解:22496m n mn ---.10.2221a ab b -+-11.2212--+x y y .12.分解因式a 2-b 2-2b-1类型三 综合提公因式和公式法因式分解13.分解因式:(1)48ab b -;(2)2363x x -+.14.因式分解:(1)42ab b -(2)221218a a -+15.因式分解:(1)326a ab +(2)2255x y -(3)22363x xy y -+-16.分解因式 (1)32484xy xy xy ++(2)22-5105a ab b +-17.因式分解:①3x -12x 3;②-2a 3+12a 2-18a18.因式分解: (1)29x y y -;(2)322288x x y xy -+.19.分解因式:(1)2348m -(2)22344x y xy x --20.把下列各式因式分解 (1)4x 2-16;(2)(x -y )2+4xy .21.因式分解 ①-2x 2+8;②3222x x y xy -+;③222(4)16x x +-.22.因式分解:(1)a 3﹣4a(2)m 3n ﹣2m 2n+mn专题24 公式综合应用因式分解三个类型类型一 先平方差公式再完全平方公式2.因式分解:(x 2+9)2﹣36x 2.解:()222936x x +- ()()229696x x x x =+++-()()2233x x =+-. 2.分解因式:(a 2+1)2-4a 2解:原式=2222222(1)(2)(21)(21)(1)(1)a a a a a a a a +-=++-+=+-.3.分解因式:(x 2+4)2﹣16x 2.解:原式=(x 2+4+4x )(x 2+4﹣4x )=(x +2)2(x ﹣2)2.4.因式分解(x 2+4y 2)2﹣16x 2y 2解:原式=(x 2+4y 2)2﹣(4xy )2=(x 2+4y 2﹣4xy )(x 2+4y 2+4xy )=(x ﹣2y )2(x +2y )2. 类型二 先完全平方公式再平方差公式5.因式分解:()2221x y xy ++-解:(x 2+y 2+2xy )-1=(x+y )2-1=(x+y-1)(x+y+1).6.因式分解:a 2﹣(x 2﹣2xy +y 2).解:原式=a 2﹣(x ﹣y )2=(a +x ﹣y )(a ﹣x +y ).7.22414x xy y --+解:22414x xy y --+()224=41x xy y -+-()2=x-2y -1()()=x 2121y x y -+--. 8.x 2﹣4x +4﹣y 2解:原式=(x ﹣2)2﹣y 2=(x ﹣2+y )(x ﹣2﹣y ).9.因式分解:22496m n mn ---.解:原式224(96)m n mn =-++222(3)m n =-+(23)(23)m n m n =++--.10.2221a ab b -+-解:()()()22221111a ab b a b a b a b -+-=--=-+--11.2212--+x y y .解:2212--+x y y =()221x y --=()()11x y x y -++-. 12.分解因式a 2-b 2-2b-1原式()()()()222221111.a b b a b a b a b =-++=-+=++-- 类型三 综合提公因式和公式法因式分解13.分解因式:(1)48ab b -;(2)2363x x -+.(1)解:48ab b -()42b a =-;(2)解:2363x x -+()2321x x =-+()231x =-. 14.因式分解:(1)42ab b -(2)221218a a -+(1)解:42ab b -()221b a =-;(2)解:221218a a -+()2269a a =-+()223a =-. 15.因式分解:(1)326a ab +(2)2255x y -(3)22363x xy y -+-(1)解:326a ab +=2a (a 2+3b );(2)解:(2)原式=5(x 2﹣y 2)=5(x +y )(x ﹣y );(3)解:(3)原式=﹣3(x 2﹣2xy +y 2)=﹣3(x ﹣y )2. 16.分解因式 (1)32484xy xy xy ++(2)22-5105a ab b +-(1)32484xy xy xy ++()2421xy y y =++ =4xy (y +1)2;(2)22-5105a ab b +-()2252a ab b =--+ =-5(a -b )2. 17.因式分解:①3x -12x 3;②-2a 3+12a 2-18a解:①原式=()2314x x -=()()31212x x x +-; ②原式=22(69)a a a --+=22(3)a a --.18.因式分解: (1)29x y y -;(2)322288x x y xy -+.解:(1)29x y y -()29y x =-()()33y x x =-+;(2)322288x x y xy -+()22244x x xy y =-+()222x x y =-. 19.分解因式:(1)2348m -(2)22344x y xy x --.解:(1)原式()2316m =-()()344m m =+-;(2)原式()2244x xy y x =--++()22x x y =--. 20.把下列各式因式分解 (1)4x 2-16;(2)(x -y )2+4xy .解:(1)4x 2-16=24(4)4(2)(2)x x x -=+-;(2)22222()4242x y xy x xy y xy x xy y -+=-++=++=2()x y +. 21.因式分解 ①-2x 2+8;②3222x x y xy -+;③222(4)16x x +-.①228x -+()224x =--()()222x x =-+-; ②3222x x y xy -+22(2)x x xy y =-+2()x x y =-;③222(4)16x x +-22(44)(44)x x x x =+++-22(2)(2)x x =+-. 22.因式分解:(1)a 3﹣4a(2)m 3n ﹣2m 2n+mn解:(1)a 3﹣4a =a (a 2﹣4)=a (a +2)(a −2);(2)m 3n ﹣2m 2n +mn =mn (m 2﹣2m +1)=mn (m ﹣1)2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
培优因式分解小结【知识精读】因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初中代数中占有重要的地位和作用,在其它学科中也有广泛应用,学习本章知识时,应注意以下几点。
1. 因式分解的对象是多项式;2. 因式分解的结果一定是整式乘积的形式;3. 分解因式,必须进行到每一个因式都不能再分解为止;4. 公式中的字母可以表示单项式,也可以表示多项式;5. 结果如有相同因式,应写成幂的形式;6. 题目中没有指定数的范围,一般指在有理数范围内分解;7. 因式分解的一般步骤是:(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。
即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;下面我们一起来回顾本章所学的内容。
【分类解析】1. 通过基本思路达到分解多项式的目的 例1. 分解因式x x x x x 54321-+-+-分析:这是一个六项式,很显然要先进行分组,此题可把x x x x x 54321-+-+-和分别看成一组,此时六项式变成二项式,提取公因式后,再进一步分解;也可把x x 54-,x x 32-,x -1分别看成一组,此时的六项式变成三项式,提取公因式后再进行分解。
解一:原式=-+--+()()x x x x x 54321=-+--+=--+=--+++x x x x x x x x x x x x x 32232221111111()()()()()()()解二:原式=()()()x x x x x 54321-+-+-=-+-+-=-++=-++-=--+++2x x x x x x x x x x x x x x x x x 4244222211111121111()()()()()()[()]()()()2. 通过变形达到分解的目的 例1. 分解因式x x 3234+- 解一:将32x 拆成222x x +,则有原式=++-=+++-=++-=-+x x x x x x x x x x x x 322222242222212()()()()()()()()解二:将常数-4拆成--13,则有原式=-+-=-+++-+=-++=-+x x x x x x x x x x x x 322221331113314412()()()()()()()()()3. 在证明题中的应用例:求证:多项式()()x x x 2241021100--++的值一定是非负数分析:现阶段我们学习了两个非负数,它们是完全平方数、绝对值。
本题要证明这个多项式是非负数,需要变形成完全平方数。
证明:()()x x x 2241021100--++=+---+=+---+=---++()()()()()()()()()()x x x x x x x x x x x x 223710027231005145610022设y x x =-25,则原式无论取何值都有的值一定是非负数=-++=-+=--≥∴--++()()()()()()y y y y y y y x x x 14610081644041021100222224. 因式分解中的转化思想例:分解因式:()()()a b c a b b c ++-+-+2333分析:本题若直接用公式法分解,过程很复杂,观察a+b ,b+c 与a+2b+c 的关系,努力寻找一种代换的方法。
解:设a+b=A ,b+c=B ,a+2b+c=A+B∴=+--=+++--=+=+=++++原式()()()()()A B A B A A B AB B A B A B AB AB A B a b b c a b c 333322333223333332说明:在分解因式时,灵活运用公式,对原式进行“代换”是很重要的。
中考点拨:例1.在∆ABC 中,三边a,b,c 满足a b c ab bc 222166100--++= 求证:a c b +=2证明: a b c ab bc 222166100--++=∴++-+-=+--=+--+=+>∴+>+->-+=+=a ab b c bc b a b c b a b c a b c a b ca b c a b c a b c a c b2222226910250350820880202即,即于是有即()()()()说明:此题是代数、几何的综合题,难度不大,学生应掌握这类题不能丢分。
例2. 已知:x x x x +=+=12133,则__________ 解:x xx x x x 3321111+=+-+()()=++--=⨯=()[()]x x x x11212122说明:利用x xx x 222112+=+-()等式化繁为易。
题型展示:1. 若x 为任意整数,求证:()()()7342---x x x 的值不大于100。
解:100)4)(3)(7(2----x x x=--+---=----+-=----+=---≤∴---≤()()()()()()[()()]()()()()x x x x x x x x x x x x x x x x x 723210051456100585165407341002222222说明:代数证明问题在初二是较为困难的问题。
一个多项式的值不大于100,即要求它们的差小于零,把它们的差用因式分解等方法恒等变形成完全平方是一种常用的方法。
2. 将a a a a 222222216742++++++()()分解因式,并用分解结果计算。
解:a a a a 22221++++()()=+++++=++++=++a a a a a a a a a a a 22222222221211()()()()∴++=++==6742366143184922222() 说明:利用因式分解简化有理数的计算。
【实战模拟】 1. 分解因式:()()131083108233315543222x x x x x a a a a ---+++-++-()()()()323352476223x xy y x y x x --+-+-+2. 已知:x y xy x y +==-+6133,,求:的值。
3. 矩形的周长是28cm ,两边x,y 使x x y xy y 32230+--=,求矩形的面积。
4. 求证:n n 35+是6的倍数。
(其中n 为整数)5. 已知:a 、b 、c 是非零实数,且a b c a b c b c a c a b22211111113++=+++++=-,()()(),求a+b+c的值。
6. 已知:a 、b 、c 为三角形的三边,比较a b c a b 222224+-和的大小。
【试题答案】1. (1)解:)8103()8103(223-----=x x x x x 原式=---=-++-+()()()()()()x x x x x x x x 3221310811432(2)解:原式=+-++-[()][()]a a a a 2233315=+-+-=+-++=+-++()()()()()()()()a a a a a a a a a a a a 22222323834324112(3)解:原式=-++-+()()x y x y x y 3352 =-+++()()x y x y 312x-3y 1x+y 2(4)解:原式=---767633x x x=---=---=+---++=-+---=-+-=-+-776671617116111776661613233232222x x x x x x x x x x x x x x x x x x x x x x x ()()()()()()()()()()()()()2. 解: x y x y xy 2222+=+-()=+=36238∴+=+-+=⨯+=x y x y x xy y 33226381234()()()3. 解: x x y xy y 32230+--=∴-+-=+-=∴-=+=∴==∴()()()()x y xy x y x y x y x y x y x y cm 332200014749即又面积为4. 证明:n n 35+=-+=+-+n n n n n n n36116()()当为整数时,是的倍数。
是的倍数n n n n n n ()()-+∴+1165635. 解: abc ≠0,用abc 乘以第二个条件等式的两边,得:11)(10)(2)()(000))((0)()()(322222222222222±=++∴=++∴=++=++=++-++=++=++=++=++++∴=++++++++-=+++++c b a c b a c b a ac bc ab c b a c b a ac bc ab ac bc ab c b a ac bc ab c b a abc abc abc c a ac c b bc b a ab abcac bc c b ab b a c a 则若或则即说明:因式分解与配方法是代数式化简与求值中常用的方法和手段,应当熟练掌握。
6. 分析:比较两式大小最基本的方法是作差看它们与零的大小。
解: ()a b c a b 2222224+--=+-++--=+---=+++--+--()()[()][()]()()()()a b c ab a b c ab a b c a b c a b c a b c a b c a b c 222222222222a b c a b c a b c a b c a b c a b c a b a b c a b ,,()为三角形三边,且由三角形两边之和大于第三边可知,,,++>+->-+>--<∴+--<∴+-<00004042222222222。