因式分解培优练习题及答案
初中培优竞赛 第4讲 因式分解

7.
(2 、 3) (数学、初中数学竞赛、因式分解、解答题)
若x 3 +3x2 − 3x + k 有一个因式是 x + 1, 求 k 的值 分析:因为x 3 +3x2 − 3x + k有一个因式是x + 1,那么我们分组分解,保证每一个组里都含 有因式x + 1. 详解: x 3 +3x2 − 3x + k = x 3 + x 2 +2x2 + 2x − 5x − 5 + 5 + k = x 2 x + 1 + 2x x + 1 = (x + 1)(x2 + 2x − 5) + (k + 5). 所 以 k = −5. 技巧:原式有一个因式,那么我们保证含有未知数的几组中都含有这个因式,得解.
2 3 n 2
= =
n 2n2 + 3n + 1 2
n(n+1)(2n+1) 2
.因
因为 n, n+l 是连续自然数,必有一个是偶数,所以 N 一定是整数 . (2) 当n = 3k(k 是自然数)时,N 是 3 的倍数;当n = 3k + 1(k 是自然数)时, 2n + 1 = 3(2k + 1),N 是 3 的倍数;当n = 3k + 2(k 是自然数)时, n + 1 = 3(k + 1),N 是 3 倍 数. 综上所述,对任何自然数 n , N 都是 3 的倍数 . 技巧:我们把原式因式分解,再分情况讨论,能很简便解题.
答案:B 技巧:此题我们可以先移项,再通过合并同类项从而因式分解,然后根据题意分析. 易错点:得到结果后,x、y 的结果可以互换,所以答案不能为 A.
2024年中考数学复习-因式分解的多种方法考点培优练习

因式分解的多种方法考点培优练习 考点直击 1.因式分解的常见方法:(1)提公因式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式,这种分解因式的方法叫作提公因式法.(2)运用公式法: a²−b²=(a +b )(a −b );a²±2ab +b²=(a ±b )²2.分解因式的步骤:分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公因式,然后再考虑是否能用公式法分解.3.分解因式时常见的思维误区:(1)提公因式时,其公因式应找字母指数最低的,而不是以首项为准.(2)提取公因式时,若有一项被全部提出,括号内的项“1”易漏掉.(3)分解不彻底,如保留中括号形式、还能继续分解等.4.因式分解的特殊方法:分组分解法和十字相乘法.其中,形如 x²+px +q 的二次三项式,如果常数项q 能分解为两个因数a ,b 的积,并且a+b 恰好等于一次项的系数p ,那么它就可以分解因式,即 x²+px +q =x²+(a +b )x +ab =(x+a)(x+b),这种因式分解的方法称为十字相乘法.例题精讲例 1 【例题讲解】因式分解: x³−1.∵x³−1为三次二项式,对于方程 x³−1=0,x =1是其1个解.∴ 我们可以猜想 x³−1可以分解成 (x −1)(x²+ax +b ),展开等式右边得 x³+(a −1)2 ²+(b −a )x −b.:x³−1=x³+(a −1)x²+(b −a )x −b 恒成立,∴ 等式两边多项式的同类项的对应系数相等,即 {a −1=0,b −a =0,−b =−1,解得 {a =1,b =1. ∴x³−1=(x −1)(x²+x +1).【方法归纳】设某一多项式的全部或部分系数为未知数,利用当两个多项式为恒等式时,同类项系数对应相等的原理确定这些系数,从而得到待求的值,这种方法叫待定系数法.【学以致用】(1)若 x²−mx −12=(x +3)(x −4),则 m =;(2)若 x³+3x²−3x +k 有一个因式是. x +1,,求 k 的值;(3)请判断多项式 x⁴+x²+1能否分解成两个整系数二次多项式的乘积.若能,请直接写出结果;若不能,请说明理由.【思路点拨】(1)根据题目中的待定系数法原理即可求得结果;(2)根据待定系数法原理先设另一个多项式,然后根据恒等原理即可求得结论;(3)根据待定系数原理和多项式乘多项式的规律即可求得结论.举一反三1 (北京中考)因式分解:a²−4a+4−b².举一反三2 阅读下列材料:我们知道,多项式a²+6a+9可以写成( (a+3)²的形式,这就是将多项式a²+6a+9因式分解.当一个多项式(如a²+ 6a+8)不能写成两数和(或差)的平方的形式时,我们通常采用下面的方法:a²+6a+8=(a+3)²−1=(a+2)(a+4)请仿照上面的方法,将下列各式因式分解:(1)x²-6x-27;(2)a²+3a-28;(3)x²-(2n+1)x+n²+n.举一反三3 下面是某同学对多项式( (x²−4x+2)(x²−4x+6)+4进行因式分解的过程:解:设x²−4x=y,原式=(y+2)(y+6)+4 (第一步)=y²+8y+16 (第二步)=(y+4)² (第三步)=(x²−4x+4)² (第四步)(1)该同学第二步到第三步运用了因式分解的 (填字母).A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后? (填“是”或“否”).如果否,直接写出最后的结果: .(3)请你模仿以上方法尝试对多项式(x²−2x)(x²−2x+2)+1进行因式分解.例2 (吉林中考)在下列三个整式 x²+2xy,y²+2xy,x²中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.【思路点拨】本题为开放性试题,在第一步组合过程中,考虑下一步因式分解的适当方法,可以用提取公因式法或公式法.举一反三4 (湖北中考)给出三个多项式: X =2a²+3ab +b²,Y =3a²+3ab, Z =a²+ab.请你任选两个进行加(或减)法运算,再将结果分解因式.举一反三5 阅读下列材料:利用完全平方公式,可以将多项式变形为 a (x +m )²+n 的形式,我们把这样的变形方法叫作多项式 ax²+bx +c (a ≠0)的配方法.运用多项式的配方法及平方差公式能对一些多项式进行因式分解.例如:x 2+9x −10=x 2+9x +(92)2−(92)2−10=(x +92)2−1214=(x +92+112)(x +92−112)=(x +10)(x −1)根据以上材料,解答下列问题:(1)用配方法及平方差公式把多项式 x²−7x +12进行因式分解;(2)用多项式的配方法将x²+6x−9化成a(x+m)²+n的形式,并求出多项式的最小值;(3)求证:x,y 取任何实数时,多项式x²+y²−4x+2y+6的值总为正数.例3 阅读材料:若m²−2mn+2n²−8n+16=0,求m,n 的值.解:∵m²-2mn+2n²-8n+16=0,∴ (m²-2mn+n²)+(n²-8n+16)=0, ∴(m−n)2+(n−4)2=0,∴(m−n)2=0,(n−4)2=0,∴n= 4,m=4.根据你的观察,探究下面的问题:(1) 已知x²+2xy+2y²+2y+1=0,求2x+y的值;(2)已知a−b=4,ab+c²−6c+13=0求a+b+c的值.【思路点拨】(1)根据题意,可以将题目中的式子化为材料中的形式,从而可以得到x,y的值,再求得2x+y的值;(2)根据a−b=4,ab+c²−6c+13=0,可以得到a,b,c 的值,再求得a+b+c的值.举一反三6 (南通中考)已知A=a+2,B=a²−a+5,C=a²+5a−19,其中a>2.(1) 求证: B−A>0,,并指出 A 与 B 的大小关系;(2)指出A与C哪个大?说明理由.举一反三7 (杭州中考)已知a,b,c 为. △ABC的三边,且满足a²c²−b²c²=a⁴−b⁴,试判断△ABC的形状.过关检测基础夯实1.(自贡中考)把多项式a²−4a因式分解,结果正确的是 ( )A. a(a-4)B.(a+2)(a-2)C. a(a+2)(a-2)D.(a−2)²−42.(桂林中考)因式分解a²−4的结果是( )A.(a+2)(a-2)B.(a−2)²C.(a+2)²D. a(a-2)3.(中山中考)因式分解1−4x²−4y²+8xy,正确的分组是 ( )A.(1−4x²)+(8xy−4y²)B.(1−4x²−4y²)+8xyC.(1+8xy)−(4x²+4y²)D.1−(4x²+4y²−8xy)4.(潍坊中考)下列因式分解正确的是 ( )A.3ax²−6ax=3(ax²−2ax)B.x²+y²=(−x+y)(−x−y)C.a²+2ab−4b²=(a+2b)²D.−ax²+2ax−a=−a(x−1)²5.(聊城中考)因式分解:x(x—2)—x+ 2= .6.(漳州中考)若x²+4x+4=(x+2)(x+n),则n= .7.(湖州中考)因式分解:a³−9a.8.因式分解: a²−b²+a−b.9.(北京中考)因式分解:m²−n²+2m−2n.能力拓展10.(临沂中考)多项式mx²−m与多项式x²−2x+1的公因式是 ( )A. x-1B. x+1C.x²−1D.(x−1)²11.(盘锦中考)下列等式从左到右的变形,属于因式分解的是 ( )A.x²+2x−1=(x−1)²B.(a+b)(a−b)=a²−b²C.x²+4x+4=(x+2)²D.ax²−a=a(x²−1)12.(兰州中考)因式分解: m³−6m²+ 9m= .13.(宜宾中考)因式分解:b²+c²+2bc− a²= .14.(常德中考)多项式ax²−4a与多项式x²−4x+4的公因式是 .15.(杭州中考)化简: (a−b)(a+b)²−(a+b)(a−b)²+2b(a²+b²).16.(茂名中考)因式分解:9(a+b)²−(a−b)².17.(扬州中考)(1) 计算: √9−(−1)2+(−2012)0;(2)因式分解: m³n −9mn.18.(十堰中考)已知::a+b=3, ab=2,求下列各式的值:(1)a²b +ab²;(2)a²+b².19.(济南中考)请你从下列各式中,任选两式作差,并将得到的式子进行因式分解:4a²,(x+y)²,1,9b².综合创新20.设正整数a,b,c>100,满足 c²−1=a²(b²−1),且a>1,则a/b 的最小值是 ( )A. 13B. 12 C. 2 D.3 21.求证:对任何整数x 和y ,下式的值都不会等于33.x⁵+3x⁴y −5x³y²−15x²y³+4xy⁴+12y ⁵.【例题精讲】1.(1)1 (2) -5 ( (3)x⁴+x²+1=(x²+ x +1)(x²−x +1)解析: (1)∵(x +3)(x −4)=x²−x −12,∴--m=-1,∴m=1;(2) 设另一个因式为 (x²+ax +k ),(x +1)(x²+ax +k )= x³+ax²+kx +x²+ax +k =x³+(a + 1)x²+(a +k )x +k,∴x³+(a +1). x²+(a +k )x +k =x³+3x²−3x +k,∴a+1=3,a+k=-3,解得a=2,k=-5;(3)设多项式 x⁴+x²+1能分解成 ①(x²+1)(x²+ax +b )或( ②(x²+x + (1)(x²+ax +1),①(x²+1)(x²+ax + b)=x⁴+ax³+bx²+x²+ax +b =x⁴+ ax³+(b +1)x²+ax +b,∴a =0,b +1=1,b=1,由b+1=1得b=0≠1,矛盾; ②(x²+x +1)(x²+ax +1)=x⁴+(a + 1)x³+(a +2)x²+(a +1)x +1,∴a +1=0,a+2=1,解得a=-1.即. x⁴+x²+ 1=(x²+x +1)(x²−x +1).2.方法一:( (x²+2xy )+x²=2x²+2xy =2x(x+y)方法二:( (y²+2xy )+x²=(x +y )²方法三: (x²+2xy )−(y²+2xy )=x²− y²=(x +y )(x −y )方法四: (y²+2xy )−(x²+2xy )=y²− x²=(y +x )(y −x )3.(1)1 (2)3解析: (1):x 2+2xy +2y 2+2y +1=0,∴(x²+2xy +y²)+(y²+2y +1)=0, ∴(x +y )²+(y +1)²=0,∴x +y =0,y+1=0,解得x=1,y=-1,∴2x+y=2×1+(-1)=1;(2) ∵a-b=4,∴a=b+4,∴将a=b+4代入( ab +c²−6c +13=0,得 b²+4b +c²−6c +13=0, ∴(b²+4b +4)+(c²−6c +9)=0,∴(b +2)²+(c-3)²=0,∴b+2=0,c-3=0,解得b=-2,c=3,∴a=b+4=-2+4=2,∴a+b+c=2-2+3=3.【举一反三】1. 原式: =(a²−4a +4)−b²=(a −2)²−b²=(a-2+b)(a-2-b).2.(1) 原式=x²--6x+9-36=(x-3)²-6²=(x-3-6)(x-3+6)=(x+3)(x-9)(2)原式 =a 2+3a +(32)2−(32)2−28= (a +32)2−1214=(a +32−112)(a +32+ 112)=(a −4)(a +7) (3) 原式 =x²− (2n +1)x +(n +12)2−(n +12)2+n 2+ n =[x −(n +12)]2−(12)2=(x −n − 12−12)(x −n −12+12)=(x −n −1)(x-n)3.(1) C (2) 否(x-2)⁴ (3) 原式= (x²−2x )²+2(x²−2x )+1=(x²−2x + 1)²=(x −1)⁴4.解答一: Y +Z =(3a²+3ab )+(a²+ab )= 4a²+4ab =4a (a +b )解答二: X −Z =(2a²+3ab +b²)−(a²+ ab)=a²+2ab +b²=(a +b )²解答三: Y −X =(3a²+3ab )−(2a²+ 3ab +b²)=a²−b²=(a +b )(a −b )(其他合理答案均可)5.(1) 原式 =x 2−7x +494−494+12= (x −72)2−14=(x −72+12)(x −72− 12)=(x −3)(x −4) (2) 原式 =x²+6x+9-18=(x+3)²-18,最小值为-18(3) 证明:. x²+y²−4x +2y +6=(x − 2)²+(y +1)²+1≥1>0,,则x,y 取任何实数时,多项式 x²+y²−4x +2y +6的值总为正数.6.(1) 证明: B −A =(a²−a +5)−(a + 2)=a²−2a +3=(a −1)²+2>0,所以B>A; ( (2)C −A =a²+5a −19−a −2=a²+4a-21=(a+7)(a--3),因为a>2,所以a+7>0,当2<a<3时,A>C;当a=3时,A=C;当a>3时,A<C.7.等腰三 角形或直角三 角形 解析: ∴a²c²−b²c²=a⁴−b⁴,∴c²(a²−b²)= (a²+b²)(a²−b²),∴c²=a²+b²或 a²=b²,∴△ABC 是等腰三角形或直角三角形.【过关检测】1. A2. A3. D4. D 解析:3ax²-6ax=3ax(x-2),A 错误; x²+y²无法因式分解,B 错误; a²+ 2ab −4b²无法因式分解,C 错误.5.(x--2)(x-1)6. 2 解析: ∴(x +2)(x +n )=x²+(n +2)x+2n,∴n+2=4,2n=4,解得n=2.7. a(a+3)(a-3)解析:原式 =a(a²−9)=a(a+3)(a-3).8.(a-b)(a+b+1)解析:原式 =(a²−b²)+(a-b)=(a+b)(a-b)+(a-b)=(a-b)(a+b+1).9.(m-n)(m+n+2) 解析:原式 =(m²−n²)+(2m--2n)=(m+n)(m--n)+2(m--n)=(m-n)(m+n+2).10. A 解析:mx²-m=m(x--1)(x+1), x²−2x +1=(x −1)²,多项式 mx²−m 与多项式 x²−2x +1的公因式是x-1.11. C 解析: x²+2x −1≠(x −1)²,, A 错误; a²−b²=(a +b )(a −b )不是因式分解,B 错误;( ax²−a =a (x²−1)=a (x +1)(x −1),分解不完全,D 错误.12. m(m-3)² 解析:原式; =m(m²−6m + 9)=m (m −3)².13.(b+c+a)(b+c-a) 解析:原式=(b+ c)²−a²=(b+c+a)(b+c−a).14. x--2 解析: ∴ax²−4a=a(x²−4)=a(x+2)(x−2),x²−4x+4=(x−2)²,∴多项式ax²−4a与多项式x²−4x+4的公因式是x-2.15. 4a²b 解析:( (a−b)(a+b)²−(a+b)(a−b)²+2b(a²+b²)=(a−b)(a+b).(a+b−a+b)+2b(a²+b²)=2b(a²−b²)+2b(a²+b²)=2b(a²−b²+a²+b²)=4a²b.16.4(2a+b)(a+2b) 解析: 9(a+b)²−(a−b)²=[3(a+b)]²−(a−b)²=[3(a+b)+(a-b)][3(a+b)-(a-b)]=(4a+2b)(2a+4b)=4(2a+b)(a+2b).17.(1) 3 (2) mn(m+3)(m-3)解析:(1)√9−(−1)2+(−2012)0=3−1+1=3;(2)m³n−9mn=mn(m²−9)=mn(m+3)(m-3).18.(1) 6 (2)5解析:( (1)a²b+ab²=ab(a+b)=2×3=;(2):(a+b)²=a²+2ab+b²,∴a²+( b²=(a+b)²−2ab=3²−2×2=5.19. 4a²--9b²=(2a+3b)(2a-3b) (x+y)²-1=(x+y+1)(x+y-1) (x+y)²−4a²=(x+y+2a)(x+y−2a)(x+y)²−9b²=(x+y+3b)(x+y−3b)4a²−(x+y)²=[2a+(x+y)][2a−(x+y)]=(2a+x+y)(2a−x−y)9b²−(x+y)²=[3b+(x+y)][3b−(x+y)]=(3b+x+y)(3b−x−y)1−(x+y)²=[1+(x+y)][1−(x+y)]=(1+x+y)(1-x--y)20. C 解析: ∴c²−1=a²(b²−1),正整数a,b,c>100,∴c²=a²(b²−1)+1=a²b²−a²+1<a²b²,∴c<ab,∴c≤ab--1, ∴a²b²−a²+1=c²≤(ab−1)²,化简得a2≥2ab,∴a≥2.b21. 证明:原式=(x⁵+3x⁴y)−(5x³y²+15x²y³)+(4xy⁴+12y⁵)=x⁴(x+3y)−5x²y²(x+3y)+4y⁴(x+3y)=(x+ 3y)(x⁴−5x²y²+4y⁴)=(x+3y).(x²−4y²)(x²−y²)=(x+3y)(x−2y)(x+2y)(x+y)(x-y).当y=0时,原式=x⁵≠33;;当y≠0时,x+3y,x-y,x+y,x-2y,x+2y为互不相同的整数,而33 不可能分解为5个不同因数的积. ∴x⁵+3x⁴y−5x³y²−15x²y³+4xy⁴+12y⁵的值不会等于33.。
人教版八年级数学上册14.3因式分解 (培优) 专练(含答案解析)

人教版八年级数学上册:14.3因式分解(培优)专练习题一.选择题(共12小题)1.已知a,b,c是正整数,a>b,且a2﹣ab﹣ac+bc=11,则a﹣c等于( )A.﹣1B.﹣1或﹣11C.1D.1或112.已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为( )A.25B.20C.15D.103.将a3b﹣ab进行因式分解,正确的是( )A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)4.已知:a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,请你巧妙的求出代数式a2+b2+c2﹣ab﹣bc﹣ca的值( )A.3B.2C.1D.05.已知a+b=3,ab=1,则多项式a2b+ab2﹣a﹣b的值为( )A.﹣1B.0C.3D.66.已知496﹣1可以被60到70之间的某两个整数整除,则这两个数是( )A.61,63B.63,65C.65,67D.63,647.对于算式20183﹣2018,下列说法错误的是( )A.能被2016整除B.能被2017整除C.能被2018整除D.能被2019整除8.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是( )A.0B.1C.2D.39.分解因式b2(x﹣3)+b(x﹣3)的正确结果是( )A.(x﹣3)(b2+b)B.b(x﹣3)(b+1)C.(x﹣3)(b2﹣b)D.b(x﹣3)(b﹣1)10.多项式x2+7x﹣18因式分解的结果是( )A.(x﹣1)(x+18)B.(x+2)(x+9)C.(x﹣3)(x+6)D.(x﹣2)(x+9)11.若k为任意整数,且993﹣99能被k整除,则k不可能是( )A.50B.100C.98D.9712.任何一个正整数n都可以写成两个正整数相乘的形式,我们把两个乘数的差的绝对值最小的一种分解n=p×q(p≤q)称为正整数n的最佳分解,并定义一个新运算.例如:12=1×12=2×6=3×4,则.那么以下结论中:①;②;③若n是一个完全平方数,则F(n)=1;④若n是一个完全立方数(即n=a3,a是正整数),则.正确的个数为( )A.1个B.2个C.3个D.4个二.填空题(共6小题)13.已知a=,b=,c=,则代数式2(a2+b2+c2﹣ab﹣bc﹣ac)的值是 .14.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc= .15.已知a,b,c满足a+b+c=1,a2+b2+c2=3,a3+b3+c3=5.则a4+b4+c4的值是 .16.已知ab=3,a+b=5,则a3b+2a2b2+ab3的值 .17.已知x,y,z是△ABC的三边,且满足2xy+x2=2yz+z2,则△ABC的形状是 .18.已知a2+a﹣1=0,则a3+2a2+2019= .三.解答题(共5小题)19.因式分解:a2﹣2ab+b2﹣1.20.因式分解.(1)a2(x+y)﹣4b2(x+y)(2)p2(a﹣1)+p(1﹣a)(3).21.已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.22.观察下列各式.①4×1×2+1=(1+2)2;②4×2×3+1=(2+3)2;③4×3×4+1=(3+4)2…(1)根据你观察、归纳,发现的规律,写出4×2016×2017+1可以是哪个数的平方?(2)试猜想第n个等式,并通过计算验证它是否成立.(3)利用前面的规律,将4(x2+x)(x2+x+1)+1因式分解.23.定义:若数p可以表示成P=x2+y2﹣xy(x,y为自然数)的形式,则称P为“希尔伯特”数.例如:3=22+11﹣2×1,39=72+52﹣7×5,147=132+112﹣13×11…所以3,39,147是“希尔伯特”数.(1)请写出两个10以内的“希尔伯特”数.(2)像39,147这样的“希尔伯特”数都是可以用连续两个奇数按定义给出的运算表达出来,试说明所有用连续两个奇数表达出的“希尔伯特”数一定被4除余3.(3)已知两个“希尔伯特”数,它们都可以用连续两个奇数按定义给出的运算表达出来,且它们的差是224,求这两个“希尔伯特”数.人教版八年级数学上册14.3因式分解培优专练习题参考答案与试题解析一.选择题(共12小题)1.已知a,b,c是正整数,a>b,且a2﹣ab﹣ac+bc=11,则a﹣c等于( )A.﹣1B.﹣1或﹣11C.1D.1或11【解答】解:a2﹣ab﹣ac+bc=11(a2﹣ab)﹣(ac﹣bc)=11a(a﹣b)﹣c(a﹣b)=11(a﹣b)(a﹣c)=11∵a>b,∴a﹣b>0,a,b,c是正整数,∴a﹣b=1或11,a﹣c=11或1.故选:D.2.已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为( )A.25B.20C.15D.10【解答】解法一:∵x2﹣2x﹣5=0,∴x2=2x+5,∴d=x4﹣2x3+x2﹣12x﹣5,=(2x+5)2﹣2x(2x+5)+x2﹣12x﹣5=4x2+20x+25﹣4x2﹣10x+x2﹣12x﹣5=x2﹣2x﹣5+25=25.解法二:∵x2﹣2x﹣5=0,∴x2﹣2x=5,∴d=x4﹣2x3+x2﹣12x﹣5=x2(x2﹣2x+1)﹣12x﹣5=6x2﹣12x﹣5=6(x2﹣2x)﹣5=6×5﹣5=25.故选:A.3.将a3b﹣ab进行因式分解,正确的是( )A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)【解答】解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1),故选:C.4.已知:a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,请你巧妙的求出代数式a2+b2+c2﹣ab﹣bc﹣ca的值( )A.3B.2C.1D.0【解答】解:∵a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,∴a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,∴a2+b2+c2﹣ab﹣bc﹣ca======3,故选:A.5.已知a+b=3,ab=1,则多项式a2b+ab2﹣a﹣b的值为( )A.﹣1B.0C.3D.6【解答】解:a2b+ab2﹣a﹣b=(a2b﹣a)+(ab2﹣b)=a(ab﹣1)+b(ab﹣1)=(ab﹣1)(a+b)将a+b=3,ab=1代入,得原式=0.故选:B.6.已知496﹣1可以被60到70之间的某两个整数整除,则这两个数是( )A.61,63B.63,65C.65,67D.63,64【解答】解:利用平方式公式进行分解该数字:496﹣1=(448+1)(448﹣1)=(448+1)(424+1)(424﹣1)=(448+1)(424+1)(412+1)(46+1)(43+1)(43﹣1)=(448+1)(424+1)(412+1)(46+1)×65×63故选:B.7.对于算式20183﹣2018,下列说法错误的是( )A.能被2016整除B.能被2017整除C.能被2018整除D.能被2019整除【解答】解:20183﹣2018=2018(20182﹣1)=2018×(2018+1)(2018﹣1)=2018×2019×20172018×2019×2017能被2017、2018、2019整除,不能被2016整除.故选:A.8.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是( )A.0B.1C.2D.3【解答】解:∵a=2018x+2018,b=2018x+2019,c=2018x+2020,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,∴a2+b2+c2﹣ab﹣ac﹣bc=====3,故选:D.9.分解因式b2(x﹣3)+b(x﹣3)的正确结果是( )A.(x﹣3)(b2+b)B.b(x﹣3)(b+1)C.(x﹣3)(b2﹣b)D.b(x﹣3)(b﹣1)【解答】解:b2(x﹣3)+b(x﹣3),=b(x﹣3)(b+1).故选:B.10.多项式x2+7x﹣18因式分解的结果是( )A.(x﹣1)(x+18)B.(x+2)(x+9)C.(x﹣3)(x+6)D.(x﹣2)(x+9)【解答】解:原式=(x﹣2)(x+9).故选:D.11.若k为任意整数,且993﹣99能被k整除,则k不可能是( )A.50B.100C.98D.97【解答】解:∵993﹣99=99×(992﹣1)=99×(99+1)×(99﹣1)=99×100×98,∴k可能是99、100、98或50,故选:D.12.任何一个正整数n都可以写成两个正整数相乘的形式,我们把两个乘数的差的绝对值最小的一种分解n=p×q(p≤q)称为正整数n的最佳分解,并定义一个新运算.例如:12=1×12=2×6=3×4,则.那么以下结论中:①;②;③若n是一个完全平方数,则F(n)=1;④若n是一个完全立方数(即n=a3,a是正整数),则.正确的个数为( )A.1个B.2个C.3个D.4个【解答】解:依据新运算可得①2=1×2,则,正确;②24=1×24=2×12=3×8=4×6,则,正确;③若n是一个完全平方数,则F(n)=1,正确;④若n是一个完全立方数(即n=a3,a是正整数),如64=43=8×8,则F(n)不一定等于,故错误.故选:C.二.填空题(共6小题)13.已知a=,b=,c=,则代数式2(a2+b2+c2﹣ab﹣bc﹣ac)的值是 6 .【解答】解:a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,2(a2+b2+c2﹣ab﹣bc﹣ac)=2a2+2b2+2c2﹣2ab﹣2bc﹣2ac=(a﹣b)2+(a﹣c)2+(b﹣c)2=(﹣1)2+(﹣4)2+(﹣1)2=1+4+1=6故答案为6.14.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc= 3 .【解答】解:∵a=2005x+2006,b=2005x+2007,c=2005x+2008,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,则原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=3.故答案为:3.15.已知a,b,c满足a+b+c=1,a2+b2+c2=3,a3+b3+c3=5.则a4+b4+c4的值是 .【解答】解:∵(a+b+c)2=a2+b2+c2+2(ab+bc+ac),a+b+c=1,a2+b2+c2=3,∴1=3+2(ab+bc+ac),∴ab+bc+ac=﹣1,∵a3+b3+c3﹣3abc=(a+b+c)(a2+b2+c2﹣ab﹣bc﹣ac),a3+b3+c3=5∴5﹣3abc=3+1∴abc=,∵(ab+bc+ac)2=a2b2+b2c2+a2c2+2abc(a+b+c)∴1=a2b2+b2c2+a2c2+∴a2b2+b2c2+a2c2=∵(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2)∴9=a4+b4+c4+∴a4+b4+c4=.故答案为:.16.已知ab=3,a+b=5,则a3b+2a2b2+ab3的值 75 .【解答】解:∵a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2又已知ab=3,a+b=5,∴原式=3×52=75故答案为:75.17.已知x,y,z是△ABC的三边,且满足2xy+x2=2yz+z2,则△ABC的形状是 等腰三角形 .【解答】解:∵2xy+x2=2yz+z2,∴2xy+x2﹣2yz﹣z2=0,因式分解得:(x﹣z)(x+z+2y)=0,∵x,y,z是△ABC的三边,∴x+z+2y≠0,∴x﹣z=0,∴x=z,∴△ABC是等腰三角形;故答案为:等腰三角形.18.已知a2+a﹣1=0,则a3+2a2+2019= 2020 .【解答】解:∵a2+a﹣1=0∴a2+a=1∴a3+a2=a又∵a3+2a2+2019=a3+a2+a2+2019=a+a2+2019=1+2019=2020∴a3+2a2+2019=2020三.解答题(共5小题)19.因式分解:a2﹣2ab+b2﹣1.【解答】解:a2﹣2ab+b2﹣1,=(a﹣b)2﹣1,=(a﹣b+1)(a﹣b﹣1).20.因式分解.(1)a2(x+y)﹣4b2(x+y)(2)p2(a﹣1)+p(1﹣a)(3).【解答】解:(1)原式=(x+y)(a2﹣4b2)=(x+y)(a+2b)(a﹣2b);(2)原式=(a﹣1)(p2﹣p)=p(a﹣1)(p﹣1);(3)原式===.21.已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.【解答】解:∵a2c2﹣b2c2=a4﹣b4,∴a4﹣b4﹣a2c2+b2c2=0,∴(a4﹣b4)﹣(a2c2﹣b2c2)=0,∴(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=0,∴(a2+b2﹣c2)(a2﹣b2)=0得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,即△ABC为直角三角形或等腰三角形或等腰直角三角形.22.观察下列各式.①4×1×2+1=(1+2)2;②4×2×3+1=(2+3)2;③4×3×4+1=(3+4)2…(1)根据你观察、归纳,发现的规律,写出4×2016×2017+1可以是哪个数的平方?(2)试猜想第n个等式,并通过计算验证它是否成立.(3)利用前面的规律,将4(x2+x)(x2+x+1)+1因式分解.【解答】解:(1)根据观察、归纳、发现的规律,得到4×2016×2017+1=(2016+2017)2=40332;(2)猜想第n个等式为4n(n+1)+1=(2n+1)2,理由如下:∵左边=4n(n+1)+1=4n2+4n+1,右边=(2n+1)2=4n2+4n+1,∴左边=右边,∴4n(n+1)+1=(2n+1)2;(3)利用前面的规律,可知4(x2+x)(x2+x+1)+1=(x2+x+x2+x+1)2=(x2+2x+1)2=(x+1)4.23.定义:若数p可以表示成P=x2+y2﹣xy(x,y为自然数)的形式,则称P为“希尔伯特”数.例如:3=22+11﹣2×1,39=72+52﹣7×5,147=132+112﹣13×11…所以3,39,147是“希尔伯特”数.(1)请写出两个10以内的“希尔伯特”数.(2)像39,147这样的“希尔伯特”数都是可以用连续两个奇数按定义给出的运算表达出来,试说明所有用连续两个奇数表达出的“希尔伯特”数一定被4除余3.(3)已知两个“希尔伯特”数,它们都可以用连续两个奇数按定义给出的运算表达出来,且它们的差是224,求这两个“希尔伯特”数.【解答】解:(1)∵0=02+02×0,1=12+02﹣1×0,3=22+11﹣2×1,4=22+02﹣2×0,7=22+32﹣2×3,9=32+02﹣3×0,∴10以内的“希尔伯特”数有0,1,3,4,7,9;(2)设“希尔伯特”数为(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1).(n为自然数)∵(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1)=4n2+3,∵4n2能被4整除,∴所有用连续两个奇数表达出的“希尔伯特”数一定被4除余3.(3)设两个“希尔伯特”数分别为:(2m+1)2+(2m﹣1)2﹣(2m+1)(2m﹣1)和(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1).(m,n为自然数).由题意:(2m+1)2+(2m﹣1)2﹣(2m+1)(2m﹣1)﹣[(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1)]=224,∴m2﹣n2=56,∴(m+n)(m﹣n)=56,可得整数解:或,∴这两个“希尔伯特”数分别为:327和103或903和679.。
苏科版九年级数学上册 因式分解法解一元二次方程- 培优训练【含答案】

2、下列一元二次方程最适合用分解因式法来解的是( )
A.(x+1)(x-3)=2
B.2(x-2)2=x2-4
C.x2+3x-1=0
D.5(2-x)2=3
[解析] A,C,D 项不适合用分解因式法解方程,B 项最适合用分解因式法解方程.故选 B.
3、下列方程能用因式分解法求解的有( )
① x2 x ;
A.x=k
B.x=±k
C.x=k 或 x=﹣k﹣1
D.x=k 或 x=﹣k+1
10、定义一种新运算:a♣b=a(a-b).例如,4♣3=4×(4-3)=4.若 x♣2=3,则 x 的值是( )
A.x=3 二、填空题
B.x=-1 C.x1=3,x2=1 D.x1=3,x2=-1
11、用因式分解法解方程 5(x+3)-2x(x+3)=0,可将其化为两个一元一次方程:
2
0
,故②能用分解因式法求解;
方程 x x2 3 0 不能用因式分解法求解;
方程 (3x 2)2 16 可变形为 3x 2 43x 2 4 0 ,即 3x 23x 6 0 ,故④能用
分解因式法求解.
综上,能用因式分解法求解的方程有 3 个,故选:C.
4、用因式分解法解方程 3x(2x-1)=4x-2,则原方程应变形为( ) A.2x-1=0 B.3x=2 C.(3x-2)(2x-1)=0 D.6x2-7x+2=0 [解析] 3x(2x-1)=4x-2,3x(2x-1)-(4x-2)=0,3x(2x-1)-2(2x-1)=0,(2x-1)(3x-2)=0. 故选 C.
B.函数思想 C.数形结合思想 D.公理化思想
2、下列一元二次方程最适合用分解因式法来解的是( )
A.(x+1)(x-3)=2
(完整版)整式乘除与因式分解培优精练专题答案.docx

整式乘除与因式分解培优精练专题答案一.选择题(共 9 小题)1.( 2014?台湾)算式 2 2 2之值的十位数字为何?()99903 +88805 +77707 A .1B . 2C . 6D . 8分析: 分别得出 999032、888052、 777072的后两位数,再相加即可得到答案.2解答: 解: 99903 的后两位数为 09,288805 的后两位数为 25,277707 的后两位数为 49,09+25+49=83 ,所以十位数字为 8, 故选: D .2.( 2014?盘锦)计算(2a 2) 3? a 正确的结果是( )A .3a7B . 4a7C . a7D . 4a6分析: 根据幂的乘方与积的乘方、单项式与单项式相乘及同底数幂的乘法法则进行计算即可.解答:解:原式 ==4a 7,故选: B .3.( 2014?遵义)若 a+b=2 , ab=2,则 a 2+b 2的值为( )A .6B . 4C . 3D . 2分析: 利用 a 2+b 2=( a+b ) 2﹣2ab 代入数值求解.解答: 解: a 2+b 2=( a+b ) 2﹣ 2ab=8﹣ 4=4,故选: B .4.( 2014?拱墅区二模)如果 ax 2+2x+ =(2x+) 2+m ,则 a , m 的值分别是()A . 2,0B . 4, 0C .2,D . 4,运用完全平方公式把等号右边展开,然后根据对应项的系数相等列式求解即可.解答:22+m ,解: ∵ax +2x+ =4x +2x+∴ ,解得 .故选 D.5.( 2014?江阴市模拟)如图,设(a>b>0),则有()A .B.C. 1<k< 2D. k>2解答:解:甲图中阴影部分的面积=a 2﹣ b2,乙图中阴影部分的面积=a( a﹣ b),=,∵a> b> 0,∴,∴1< k<2.故选: C.6.( 2012?鄂州三月调考)已知,则的值为()A .B.C. D .无法确定解答:解:∵a+ =,∴两边平方得:( a+ )2=10 ,展开得: a 2+2a? +=10 ,∴a 2+=10 ﹣ 2=8 ,∴( a﹣)2=a2﹣2a?+=a2+﹣2=8﹣2=6,∴a﹣=±,故 C.7.已知,代数式的等于()A .B.C.D.分析:先判断 a 是正数,然后利用完全平方公式把两平方并整理成的平方的形式,开方即可求解.解答:解:∵,∴a> 0,且2+a 2=1,∴+2+a 2=5,即(+|a|)2=5,开平方得,+|a|=.故 C.8.( 2012?州)求1+2+2 2+23+⋯+22012的,可令S=1+2+22+23+⋯+22012,2S=2+22+23+24+⋯+22013,因此 2S S=220131.仿照以上推理,算出1+5+5 2+53+⋯+52012的()A .520121B. 520131C.D.分析:根据目提供的信息,S=1+5+5 2+53+⋯+52012,用 5S S 整理即可得解.解答:解: S=1+5+52320125S=5+52342013 +5 +⋯+5,+5 +5 +⋯+5,因此, 5S S=520131,S=.故 C.9.( 2004?州)已知 a=x+20 ,b=x+19 , c=x+21 ,那么代数式 a 2+b2+c2ab bcac 的是()A .4B. 3C. 2D. 1:.分析:已知条件中的几个式子有中间变量 x ,三个式子消去 x 即可得到: a ﹣b=1 ,a ﹣ c=﹣ 1,b ﹣ c=﹣ 2,用这三个式子表示出已知的式子,即可求值.解答:解:法一: a 2+b 2+c 2﹣ ab ﹣ bc ﹣ ac , =a ( a ﹣ b ) +b ( b ﹣c ) +c ( c ﹣ a ),又由 a= x+20, b= x+19, c=x+21 ,得( a ﹣b ) = x+20 ﹣x ﹣ 19=1,同理得:( b ﹣ c )=﹣ 2,( c ﹣ a ) =1 , 所以原式 =a ﹣ 2b+c= x+20 ﹣ 2(x+19 ) + x+21=3 .故选 B .法二: a 2+b 2+c 2﹣ ab ﹣ bc ﹣ ac ,= ( 2a 2+2b 2+2c 2﹣ 2ab ﹣2bc ﹣ 2ac ),22 2 2 2 2= [( a ﹣ 2ab+b )+( a ﹣ 2ac+c ) +( b ﹣2bc+c ) ],= [( a ﹣ b ) 2+(a ﹣ c ) 2+( b ﹣ c ) 2] ,= ×( 1+1+4) =3. 故选 B .二.填空题(共 9 小题)x+5 )( x+n ) =x 2+mx ﹣ 5,则 m+n= 3 .10.( 2014?江西样卷)已知(分析: 把式子展开,根据对应项系数相等,列式求解即可得到m 、 n 的值.解答: 解:展开( x+5 )(x+n ) =x 2+( 5+n ) x+5n∵( x+5 )( x+n ) =x 2+mx ﹣5,∴5+n=m , 5n= ﹣5,∴n=﹣ 1, m=4 .∴m+n=4 ﹣ 1=3 .故答案为: 311.(2014?徐州一模)已知 x ﹣ =1,则 x 2+ = 3 .分析:首先将 x ﹣ =1 的两边分别平方,可得(x ﹣ )2=1,然后利用完全平方公式展开,解答:变形后即可求得 x 2+的值.或者首先把 x 2+凑成完全平方式 x 2+ =( x ﹣ )2+2,然后将 x ﹣ =1 代入,即可求得 x 2+的值.解:方法一: ∵x ﹣ =1,∴( x ﹣ ) 2=1,即 x 2+ ﹣ 2=1,∴x 2+=3.方法二: ∵x ﹣ =1 ,2 2,∴x + =( x ﹣ ) +2 =1 2+2, =3 .故答案为: 3.12.( 2011?平谷区二模)已知2 2.,那么 x +y = 6分析:首先根据完全平方公式将( x+y ) 2用( x+y )与 xy 的代数式表示,然后把x+y , xy的值整体代入求值.解答:解: ∵x+y=, xy=2 ,∴( x+y ) 2=x 2+y 2+2xy ,∴10=x 2+y 2+4,∴x 2+y 2=6.故答案是: 6.点评:本题主要考查完全平方公式的变形,熟记公式结构是解题的关键.完全平方公式:( a ±b )2=a 2±2ab+b 2.13.( 2010?贺州)已知 10m =2, 10n =3,则 103m+2n= 72 .解答: 解: 103m+2n =103m 102n =( 10m ) 3( 10n ) 2=23?32=8×9=72.点评: 本题利用了同底数幂相乘的性质的逆运算和幂的乘方的性质的逆运算.同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘.14.( 2005?宁波)已知 a ﹣ b=b ﹣ c= , a 2+b 2+c 2=1,则 ab+bc+ca 的值等于 ﹣.分析:先求出 a ﹣ c 的值,再利用完全平方公式求出(a ﹣b ),( b ﹣c ),( a ﹣ c )的平方和,然后代入数据计算即可求解.解答: 解: ∵a ﹣ b=b ﹣ c= ,∴( a ﹣ b )2= ,( b ﹣ c )2=, a ﹣ c= ,22﹣ 2ab= 2 2﹣ 2bc= 22,∴a +b , b +c , a +c ﹣ 2ac=∴2( a 2+b 2+c 2)﹣ 2( ab+bc+ca ) = ++= ,∴2﹣ 2( ab+bc+ca ) = ,∴1﹣( ab+bc+ca ) = ,∴ab+bc+ca=﹣ =﹣ .故答案为:﹣.点评:a ﹣ b=b ﹣ c= ,得到 a ﹣ c= ,然后对 a本题考查了完全平方公式,解题的关键是要由﹣ b= , b ﹣ c= , a ﹣ c= 三个式子两边平方后相加,化简求解.15.( 2014?厦门)设 a=192×918, b=8882﹣ 302, c=10532﹣ 7472,则数 a , b , c 按从小到大的顺序排列,结果是 a < c < b .考点 :因式分解的应用.分析:运用平方差公式进行变形,把其中一个因数化为 918,再比较另一个因数,另一个因数大的这个数就大.解答:解: a=192×918=361×918,b=888 2﹣302=( 888﹣ 30) ×(888+30 )=858×918,c=1053 2﹣7472=( 1053+747 )×( 1053﹣ 747)=1800×306=600×918,所以 a <c < b . 故答案为: a < c < b .16.( 1999?杭州)如果 a+b+ ,那么 a+2b ﹣ 3c= 0 .分析:先移项,然后将等号左边的式子配成两个完全平方式,从而得到三个非负数的和为0,根据非负数的性质求出a 、b 、c 的值后,再代值计算.解答:解:原等式可变形为:a ﹣ 2+b+1+|﹣ 1|=4+2﹣ 5( a ﹣ 2)+( b+1 )+|﹣ 1|﹣ 4﹣ 2 +5=0( a ﹣ 2)﹣ 4+4+ ( b+1 )﹣ 2+1+|﹣1|=0( ﹣ 2) 2+(﹣ 1)2+| ﹣ 1|=0;即:﹣ 2=0,﹣ 1=0,﹣ 1=0 ,∴=2, =1, =1,∴a ﹣ 2=4 ,b+1=1 , c ﹣1=1,解得: a=6, b=0 ,c=2;∴a+2b ﹣ 3c=6+0﹣ 3×2=0.17.已知 x ﹣ =1,则 = .分析:2的值,再把所求算式整理成 的形式, 然把 x ﹣ =1 两边平方求出x + 后代入数据计算即可.解答:解: ∵x ﹣ =1,∴x 2+﹣2=1 ,∴x 2+=1+2=3 ,= = = .故应填:.18.已知( 2008﹣ a )2+( 2007 ﹣a ) 2=1,则( 2008﹣a ) ?( 2007﹣ a ) = 0.解答:解: ∵( 2008﹣ a ) 2+(2007﹣ a )2=1,22﹣ 2( 2008﹣ a)( 2007﹣ a),∴(2008 ﹣ a)﹣ 2(2008 ﹣ a)( 2007﹣ a)+( 2007﹣ a) =1即( 2008﹣ a﹣ 2007+a)2=1﹣ 2( 2008﹣a)( 2007﹣a),整理得﹣ 2( 2008﹣a)(2007﹣ a) =0,∴( 2008 ﹣a)( 2007﹣ a) =0.三.解答题(共8 小题)22是一个完全平方式,那么k= 4 或﹣ 2 .19.如果 a ﹣2( k﹣ 1) ab+9b解答:解:∵a 2﹣2(k﹣1)ab+9b2=a2﹣2(k﹣1)ab+(3b)2,∴﹣ 2( k﹣1) ab=±2×a×3b,∴k﹣ 1=3 或 k﹣ 1=﹣ 3,解得 k=4 或 k= ﹣ 2.即k=4 或﹣ 2.故答案为: 4 或﹣ 2.点评:本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.x x+320.已知 3 =8,求 3.解答:解: 3x+3=3x?33=8 ×27=216 .点评:本题考查了同底数幂的乘法,底数不变指数相加.n﹣5n+1 3m﹣22n﹣ 1 m﹣233m+221.计算: a ( a b) +( a b)(﹣ b)分析:先利用积的乘方,去掉括号,再利用同底数幂的乘法计算,最后合并同类项即可.解答:解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣ 3b6m﹣4+a3n﹣ 3(﹣b6m﹣ 4),3n﹣ 36m﹣43n﹣ 36m﹣4,=a b﹣ a b=0 .点评:本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.22.已知 n 是正整数, 1++是一个有理式 A 的平方,那么,A=±.解答:解: 1++=,分子: n 2( n+1 )2+(n+1 )2+n2=n2( n+1 )2+n2+2n+1+n2,22=n ( n+1) +2n( n+1) +1,2=[n ( n+1 )+1] ,∴分子分母都是完全平方的形式,∴A= ±.故答案为:±.23.已知 2008=,其中 x,y 为正整数,求 x+y 的最大值和最小值.分析:首先根据 2008=可知 xy=2009 ,再根据 x,y 为正整数,确定 x、y 可能的取值.根据 xy 的乘积的个位是 9,确定 x、 y 的个位可能是1、3、 7、 9.通过 x、y 都具有同等的地位,那么x 取过的值, y 也有可能,故只取x 即可, x 的十位数最大不会超过 5.因而就x 取值可能是 1、 11、 13、 17、 19、 21、 23、 27、 29、 31、 33、 37、 39、 41、 43、47、 49.就这几种情况讨论即可.解答:解:∵2008=2008=xy ﹣ 1∴2009=xy∵x, y 为正整数,并且乘积是2009 的个位数是9因而 x、y 的个位可能是1、 3、 7、 9①当 x 的个位是 1 时,x=1 , y=2009 显然成立,x=11 , y 不存在,x=21 , y 不存在,x=31 , y 不存在,x=41 , y=49,②当 x 的个位是 3 时x=3 , y 不存在,x=13 , y 不存在,x=23 , y 不存在,x=33 , y 不存在,x=43 , y 不存在;③当的个位是7 时x=7 , y=287x=17 , y 不存在x=27 , y 不存在x=37 , y 不存在x=47 , y 不存在;④当 x 的个位是9 时x=9 , y 不存在 x=19 , y 不存在 x=29 , y 不存在 x=39 , y 不存在 x=49 , y=41. 故可能的情况是① x=1 , y=2009 或 x=2009 , y=1, x+y=2010 ② x=7 , y=287 或 x=287 , y=7, x+y=7+287=394 ③ x=41 , y=49 或 x=49, y=41, x+y=41+49=90故 x+y 的最大值是 2010,最小值是 9024.( 2000?内蒙古)计算:解答: 解:由题意可设字母 n=12346,那么 12345=n ﹣1, 12347=n+1 ,于是分母变为 n 2﹣( n ﹣ 1)(n+1 ).应用平方差公式化简得22222n ﹣( n ﹣1 ) =n ﹣ n +1=1 ,所以原式 =24690 .25.设 a 2+2a ﹣1=0 , b 4 ﹣2b 2﹣ 1=0 ,且 1﹣ ab 2≠0,求的值.分析:解法一:根据 1﹣ab 2≠0 的题设条件求得 b 2=﹣ a ,代入所求的分式化简求值.解法二:根据a 2+2a ﹣ 1=0 ,解得 a=﹣ 1+ 或 a=﹣ 1﹣,由 b 4﹣2b 2﹣ 1=0 ,解得:2b = +1,把所求的分式化简后即可求解.解答:解法一:解: ∵a 2+2a ﹣ 1=0 , b 4﹣2b 2﹣ 1=0∴( a 2+2a ﹣1)﹣( b 4﹣ 2b 2﹣ 1)=0化简之后得到: (a+b 2)( a ﹣ b 2+2) =0若 a ﹣ b 2+2=0 ,即 b 2=a+2,则 1﹣ ab 2=1﹣ a ( a+2) =1﹣ a 2﹣ 2a=0,与题设矛盾,所以a ﹣ b 2+2≠0因此 a+b 2=0,即 b 2=﹣ a∴===(﹣ 1) 2003=﹣ 1解法二: 解: a 2+2a ﹣ 1=0(已知),解得 a=﹣ 1+ 或 a=﹣1﹣ , 由 b 4﹣ 2b 2﹣ 1=0 ,解得: b 2= +1 , ∴ =b 2+ ﹣ 2+= +1﹣ 2+ ,当 a= ﹣ 1 时,原式 = +1﹣ 2+4+3 =4 +3 ,∵1﹣ ab 2≠0, ∴a= ﹣ 1 舍去;当 a=﹣ ﹣ 1 时,原式 = +1﹣2﹣ =﹣ 1,∴(﹣ 1) 2003=﹣ 1,即 =﹣ 1. 点评:本题考查了因式分解、根与系数的关系及根的判别式,解题关键是注意 1﹣ab 2≠0 的运用. 26.已知3|2x ﹣ 1|+ +( z ﹣1) 2=0,求 x 2+y 2+z 2+2xy+2xz+2yz 值. 分析:首先利用非负数的性质求得 x 、 y 、 z 的值,然后代入代数式求解即可. 解答:解: ∵3|2x ﹣1|+ +( z ﹣ 1) 2=0,∴2x ﹣ 1=0, 3y ﹣ 1=0, z ﹣ 1=0 ∴x= , y= , z=1 ∴x 2+y 2+z 2+2xy+2xz+2yz= ( )2+( ) 2+12+2× × +2× ×1+2 × ×1=点评: 本题考查了因式分解的应用及非负数的性质,解题的关键是求得未知数的值.。
因式分解专项训练(附答案)

因式分解专项训练(附答案)(1)18(a-b)3-12b(b-a)2 (2)(2a+b)(2a-3b)-3a(2a+b)(3)x(x+y)(x-y)-x(x+y)2 (4)3a2(x-y)3-4b2(y-x)2(5)a3-ab2-a2+b2 (6)4x2-4xy+8xz(7)6x4-4x3+2x28、已知非零实数a,b满足a+b=3,ab=2,求代数式a2b+ab2的值9、已知ab=-2,a-3b=5,求a3b-6a2b2+9ab310 、先阅读下列材料,再解答问题,材料:因式分解:(x+y)2+2(x+y)+1解: 讲“x+y”看成整体,设x+y=m,则原式=m2+2m+1=(m+1)2再将x+y=m代入,得原式=(x+y+1)2。
上述解题用到的是整体思想,整体思想是数学解题过程中常用的一种思想方法,请你写出下列因式分解的结果(1)1-2(x-y)+(x-y)2 =(2)25(a-1)2 -10(a-1)+1(3)(y2-4y)(y2-4y+8)+16答案1.6(3a-5b)(a-b)22.-(2a+b)(a+3b)3.-2xy(x+y)4.(x-y)2{3a2(x-y)-4b2}5.(a-b)2(a+b)6.4x(x-y+2z)7.2x2(3x2-2x+1)8. 69.原式=ab(a2-6ab+9b2)=ab(a-3b)2原式=-2*52 =-5010.(1)(1-x+y)2(2)(5a-6)2(3)(y-2)4因式分解专项训练1、9-12a+4a22、2mx2- 4mx+2m3、ab4- 4ab3+4ab23、-x2y+6y2x-9y3 5、(x2-1)2+6(1-x2)+9 6、x2(x-y)+y2(y-x)7、(x-2y)(x+3y)-(x-2y)2 8、(-2)2021+(-2)20229、a=602*2022-602*2021,b=4042-2020*2+301,c=2018*2019-2016*2021,则a,b,c的大小关系是()10、已知a-b=1,ab=2,则a2b-ab2的值为()11、先分解因式,在求值;4a2(b-7)-2(b-7),其中a=-1,b=2.12、在实数范围内分解因式;9a4 - 4b4。
初中数学因式分解的应用培优练习题3(附答案详解)

根据阅读材料用配方法解决下列问题:
(1)分解因式:m2-4m-5=
.
(2)当 a,b 为何值时,多项式 a2+b2-4a+6b+18 有最小值,并求出这个最小值.
(3)当 a,b 为何值时,多项式 a2-2ab+2b2-2a-4b+27 有最小值,并求出这个最小值.
22.阅读理解:
把两个相同的数连接在一起就得到一个新数,我们把它称为“连接数”,例如:234234,
若 F(n)仍然为“言唯一数”,求所有满足条件的四位“言唯一数”n.
19.已知一个三位自然数,若满足百位数字等于十位数字与个位数字的和,则称这个数
为“和数”,若满足百位数字等于十位数字与个位数字的平方差,则称这个数为“谐数”.如
果一个数即是“和数”,又是“谐数”,则称这个数为“和谐数”.例如 321, 3 2 1,
数”,例如在自然数 12321 中,3=2+1,则 12321 是一个“对称数”. 同时规定:若该“对称 数”的前两位数与后两位数的平方差被 693 的奇数倍,则称该“对称数”为“智慧对称数”.
如在“对称数”43734 中, 432 342 693,则 43734 是一个“智慧对称数”.
(1)将一个“对称数”的个位上与十位上的数字交换位置,同时,将千位上与万位上的
小丽发现通过用两种不同的方法计算同一几何体体积,就可以得到一个恒等式.如图是
边长为(a+b)的正方体,被如图所示的分割线分成 8 块.
(3)用不同的方法计算这个正方体的体积,就可以得到一个等式,这个等式为:
;
(4)已知 a+b=4,ab=2,利用上面的规律求 a3+b3 的值. 11.一个四位正整数 m 各个数位上的数字互不相同且都不为 0,四位数 m 的前两位数 字之和为 5,后两位数字之和为 11,称这样的四位数 m 为“半期数”;把四位数 m 的各
初中数学因式分解的应用培优练习题2(附答案详解)

初中数学因式分解的应用培优练习题2(附答案详解)1.已知243m -m-10m -m -m 2=+,则计算:的结果为( ). A .3B .-3C .5D .-52.如果一个三角形的三边a 、b 、c ,满足2ab bc b ac +=+,那么这个三角形一定是( )A .等边三角形 B .等腰三角形C .不等边三角形D .直角三角形3.阅读材料:若22228160m mn n n -+-+=,求m 、n 的值. 解: 22228160m mn n n -+-+=Q ,222(2)(816)0m mn n n n ∴-++-+= 22()(4)0m n n ∴-+-=,0,40m n n ∴-=-=, 4,4n m ∴==.根据你的观察,探究下面的问题:(1)己知2222210x xy y y ++++=,求x y -的值.(2)已知△ABC 的三边长a 、b 、c 都是正整数,且满足2268250a b a b +--+=,求边c 的最大值.(3) 若己知24,6130a b ab c c -=+-+=,求a b c -+的值.4.若一个整数能表示成22a b +(a ,b 是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”,因为22521=+.再如,()222222M x xy y x y y =++=++(x ,y 是整数),所以M 也是“完美数”.(1)请你再写一个小于10的“完美数”,并判断29是否为“完美数”;(2)已知224412S x y x y k =++-+(x ,y 是整数,是常数),要使S 为“完美数”,试求出符合条件的一个2200-0=值,并说明理由.(3)如果数m ,n 都是“完美数”,试说明mn 也是“完美数”.. 5.阅读理解:添项法是代数变形中非常重要的一种方法,在整式运算和因式分解中使用添项法往往会起到意想不到的作用,例如:例1:计算(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)解:原式=(3﹣1)(3+1)(32+1)(34+1)(38+1)(316+1)(332+1) =(32﹣1)(32+1)(34+1)(38+1)(316+1)(332+1) =(34﹣1)(34+1)(38+1)(316+1)(332+1) …… =例2:因式分解:x 4+x 2+1 解:原式=x 4+x 2+1=x 4+2x 2+1﹣x 2 =(x 2+1)2﹣x 2 =(x 2+1+x)(x 2+1﹣x) 根据材料解决下列问题: (1)计算:;(2)小明在作业中遇到了这样一个问题,计算,通过思考,他发现计算式中的式子可以用代数式之x 4+4来表示,所以他决定先对x 4+4先进行因式分解,最后果然发现了规律;轻松解决了这个计算问题.请你根据小明的思路解答下列问题:①分解因式:x 4+4; ②计算:.6.已知xy 15=,满足()()22x y xyx y 28---=(1)利用因式分解求x y -的值;(2)求22x y ,x y ++的值7.用双十字相乘法分解因式 例:20x 2+9xy-18y 2-18x+33y-14。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解专题过关
1.将下列各式分解因式
22+8x+8 2x2)((1)3p﹣6pq
2.将下列各式分解因式
3322.﹣6a b+3ab2 ()3a )(1x y﹣xy
.分解因式32
22222)﹣4x y)﹣)1()a(x﹣y+16(yx)(2(x+y
4.分解因式:22( 2 2x(1)﹣x )16x﹣1
3 2 2 2
()yx+9yx4+12﹣﹣6xy3()9xyy4)(﹣)(﹣
5.因式分解:2
223﹣2am1()8a y+xy+4x4x)2(
.将下列各式分解因式:6.
322222
yx﹣+y4x)(2)(1()3x﹣12x
223 22 y﹣2xy)+y﹣2)(x+2y(7.因式分解:(1)xy
8.对下列代数式分解因式:
2(m﹣2)﹣n(2﹣m)(2)(x﹣1)((1)nx﹣3)+1
2222﹣ba2a+1 ﹣a10﹣4a+4﹣b.分解因式:.分解因式:9
11.把下列各式分解因式:
42422
a﹣2)x+2ax+1+x (x﹣7x +1 (1)
22242432+2x+1 x+3x+2x (4(1﹣y+x))(1﹣y)1+y(3)()2x﹣
12.把下列各式分解因式:
32222224445+x+1;x ) b +2ac(+2bc3﹣a﹣b﹣c ;2a2 ;4x1()﹣31x+15 ()
32432.a+2﹣6a﹣a﹣2a)5(;9﹣+3x+5xx)4(.
2﹣6pq=3p(p﹣2q1)3p),解答:解:(222.(x+2x)+4x+4),=2(2)2x+8x+8,=2(
2.将下列各式分解因式
3322.6a (2)3ab+3ab﹣(1)x y﹣xy
分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;
(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.
2﹣1)=xy(x+1)(x﹣解:(1)原式=xy(x1);解答:222.﹣b))=3a((2)原式=3a(aa﹣2ab+b 3.分解因式
222222.)y﹣(2)(x4x+y﹣y)+16(y﹣x);(1)a (x
22﹣16),=(x﹣y)(a+4)(a﹣4()+16y﹣x),=(x﹣y)(a);解答:解:(1)a (x﹣y22222222222.)(x﹣2xy+y),﹣4x=y(,=(xx+y+2xy+y))((2)(xx+yy)﹣
4.分解因式:
222232.)(x﹣y4+12(x﹣)6xyy﹣9x)y﹣y+9;(4(1)2x16x﹣x;(2))﹣1;(3
2﹣x=x(2x﹣1(1)2x);解答:解:2﹣1=(4x+1)(16x4x﹣1);(2)223222;﹣y),)=﹣yy,=﹣y(9x(﹣6xy+y(3)6xy3x﹣9xy﹣222.﹣3y+2),=(3x﹣y)﹣,=[2+3(xy)]((4)4+12x﹣y)+9(x
5.因式分解:
2322 y+xy+4x (2)4x (1)2am ﹣8a;
22﹣4)=2a(m+2)(8a=2a(mm﹣2);解答:解:(1)2am﹣322222.),=x4x,=x((+4xy+y (2)4x2x+y+4x)y+xy
6.将下列各式分解因式:
322222.y(x﹣+y4x)(2)(1)3x﹣12x
32)=3x(1+2x)(1﹣2x)1()3x﹣12x;=3x(1﹣4x 解答:解:22222222222.)y (x+y﹣﹣2xy)(x)+y)=﹣4x(y(=xx+y+yx+2xy)()(2
7.因式分解:
22322.﹣y(2)(x+2y)(1)xy﹣2xy+y ;
8.对下列代数式分解因式:
2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3n1())+1.
22222a+1
﹣b﹣a.分解因式:10 .b﹣4a+4﹣a.分解因式:9.
11.把下列各式分解因式:
42422﹣+xa (2)x+2ax+1 (1)x ﹣7x +1;
22242432+2x+1+2x+3x (4)+x)(1﹣y)x3()(1+y)﹣2x (1﹣y
4242222222﹣3x+1x)(x;=(x+3x+1+1))解答:解:(1)x﹣(﹣7x3x+1=x)+2x(+1﹣9x=424222222+1+xx=()﹣(xx﹣+2ax﹣aa=((2)xx+x)+2ax+1﹣a=x+1+2x+1﹣2+1﹣x+a);a)(x ﹣22242224+x)(1+y (1﹣y)y=(1+y(3)(1+y))﹣2x﹣(1﹣y2x)+x)(1﹣222222(1)﹣]x=[(1+y)+[x1+y(1﹣(1﹣y)y=(1+y))﹣2x)(1﹣y(2222)1+y﹣xy﹣y)]+x=(432432322222+x+1)(x+x+x+1(4)x+x+x+2x)+3x+x+1=x+2x+1=x+x+x(+xx++x222.+x+1+x+1=(x+x)
12.把下列各式分解因式:
3222222444;c﹣+2bbc (2)2a﹣ba+2a﹣c(1)4x ﹣31x+15;
532+3x﹣9+5x;(4)x 3()x +x+1;
432﹣a+2.﹣5)2a6a﹣a (
33﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1解答:解:(1)4x)﹣31x+15=4x2+1﹣15)=(2x﹣1)((2x2x﹣5)(x+3);
22222244422444222222)=+bcc+c+2bcc+2a﹣a﹣﹣bb﹣c=4a2bb﹣﹣((2)2aab+2a2a22222222222)=
(ba+b+c+c)()﹣(a2ab+b﹣﹣ca))=(2ab+a﹣+b﹣c(2ab(a+b﹣c)(c+a﹣b)(c﹣a+b);552223222+x+1)+)()=xx(+x+x+1=xx(x﹣﹣1)+(x(3)x+x+1=x1﹣x+x+12232+1)x;+x+1)(x (x=+x+1)(x﹣323222(x﹣1)+6x(x﹣)+(9x﹣9)(4)x=x+5x﹣+3x9=(x1﹣x)+(6x)﹣6x2;)1)(x+3)(x﹣1=(x﹣+943233﹣3a﹣2a﹣1)())﹣1)(2a﹣1)(3a+2=(2a(5)2a﹣a﹣6a﹣a+2=a2a(﹣3222(a+1)﹣a(1﹣)[aa+1)﹣2=)(=2a﹣1(a+a2a﹣a﹣a﹣﹣2)(2a2(a ﹣2)()()﹣﹣(a+1)﹣()(a+1]=2a1()a2a2=a+12a﹣1).。