初中数学竞赛辅导资料
初中数学竞赛辅导

初中数学竞赛辅导资料3质数 合数甲内容提要1 正整数的一种分类: 质数的定义:如果一个大于1的正整数,只能被1和它本身整除,那么这个正整数叫做质数质数也称素数.合数的定义:一个正整数除了能被1和本身整除外,还能被其他的正整数整除,这样的正整数叫做合数.2 根椐质数定义可知① 质数只有1和本身两个正约数,② 质数中只有一个偶数2如果两个质数的和或差是奇数那么其中必有一个是2,如果两个质数的积是偶数那么其中也必有一个是2,3任何合数都可以分解为几个质数的积.能写成几个质数的积的正整数就是合数.乙例题例1两个质数的和等于奇数a a ≥5.求这两个数解:∵两个质数的和等于奇数∴必有一个是2所求的两个质数是2和a -2.例2己知两个整数的积等于质数m, 求这两个数解:∵质数m 只含两个正约数1和m,又∵-1-m=m∴所求的两个整数是1和m 或者-1和-m.例3己知三个质数a,b,c 它们的积等于30求适合条件的a,b,c 的值解:分解质因数:30=2×3×5适合条件的值共有: ⎪⎩⎪⎨⎧===532c b a ⎪⎩⎪⎨⎧===352c b a ⎪⎩⎪⎨⎧===523c b a ⎪⎩⎪⎨⎧===253c b a ⎪⎩⎪⎨⎧===325c b a ⎪⎩⎪⎨⎧===235c b a 应注意上述六组值的书写排列顺序,本题如果改为4个质数a,b,c,d 它们的积等于210,即abcd=2×3×5×7那么适合条件的a,b,c,d 值共有24组,试把它写出来.例4试写出4个连续正整数,使它们个个都是合数.解:本题答案不是唯一的设N 是不大于5的所有质数的积,即N =2×3×5那么N +2,N +3,N +4,N +5就是适合条件的四个合数即32,33,34,35就是所求的一组数.本题可推广到n 个.令N 等于不大于n+1的所有质数的积,那么N +2, N +3,N +4,……N +n+1就是所求的合数.丙练习31, 小于100的质数共___个,它们是__________________________________ 2, 己知质数P 与奇数Q 的和是11,则P =__,Q =__3, 己知两个素数的差是41,那么它们分别是_____4, 如果两个自然数的积等于19,那么这两个数是___如果两个整数的积等于73,那么它们是____如果两个质数的积等于15,则它们是_____5, 两个质数x 和y,己知 xy=91,那么x=__,y=__,或x=__,y=__. 6, 三个质数a,b,c 它们的积等于1990.那么 ⎪⎩⎪⎨⎧===c b a7, 能整除311+513的最小质数是__8,己知两个质数A 和B 适合等式A +B =99,AB =M.求M 及B A +AB 的值 9,试写出6个连续正整数,使它们个个都是合数.10,具备什么条件的最简正分数可化为有限小数11,求适合下列三个条件的最小整数:① 大于1 ②没有小于10的质因数 ③不是质数12,某质数加上6或减去6都仍是质数,且这三个质数均在30到50之间,那么这个质数是___13,一个质数加上10或减去14都仍是质数,这个质数是__.。
奥数初中辅导书推荐

奥数初中辅导书推荐1、《初中奥数入门练习》(华文出版社)2、《初中奥数全面提升》(中国教育出版社)3、《中考奥数题解析》(清华大学出版社)4、《初中数学奥数练习》(人民教育出版社)5、《初中数学奥数思维》(高等教育出版社)6、《初中数学奥数解题技巧》(高等教育出版社)7、《初中数学奥数精讲》(中国科学技术出版社)8、《初中数学奥数题型解析》(中国科学技术出版社)9、《初中数学奥数精练》(中国科学技术出版社)10、《初中数学奥数精讲精练》(中国科学技术出版社)1. 奥数初中辅导书类型及推荐奥数初中辅导书类型一般有:一般练习题集、奥数竞赛书、奥数模拟试卷、奥数训练指南等。
在选择辅导书时,应根据孩子的实际情况来选择,对于初学者,建议选择一般练习题集,书中的练习题可以帮助孩子掌握基础知识;对于有一定基础的孩子,可以选择奥数竞赛书,书中包含了一些比较复杂的题目,可以帮助孩子提高解题能力;对于想参加奥数竞赛的孩子,可以选择奥数模拟试卷,书中的试题可以让孩子熟悉考试题型,从而更好地参加考试。
推荐几本好的奥数辅导书:1、《初中数学联赛练习册》:适合初学者,书中包含了大量的练习题,可以帮助孩子掌握基础知识;2、《初中数学竞赛与训练指南》:适合有一定基础的孩子,书中包含了大量的竞赛题,可以帮助孩子提高解题能力;3、《奥数模拟试卷》:适合想参加奥数竞赛的孩子,书中包含了大量的模拟试题,可以让孩子熟悉考试题型,从而更好地参加考试。
2. 关于奥数初中辅导书的特点奥数初中辅导书一般都是以奥数竞赛为主要目标,所以它们特别注重学生的思维能力和技巧的训练。
它们更注重对学生的思维训练,而不是死记硬背,更加强调学生的解题能力。
它们的训练练习和练习题型也比较多样,从简单的基础知识到复杂的高级技巧,都有涵盖。
此外,它们还会提供一些关于解题技巧的指导,这些技巧可以帮助学生更快地解决问题。
3. 奥数初中辅导书的选择要点1、选择的书籍要符合学生的学习水平,不要过于简单或者过于复杂;2、选择的书籍要有适当的练习内容,有利于学生掌握知识点;3、选择的书籍要有清晰的解题思路,有助于学生掌握解题技巧;4、选择的书籍要有明确的答案解析,有助于学生掌握解题思路;5、选择的书籍要有丰富的题目,有助于学生提高解题能力。
初中数学竞赛辅导资料

初中数学竞赛辅导资料(41)线段的比、积、幂甲内容提要一.有关线段的比、积、幂的主要定理 1. 比例的基本性质:dcb a =bc ad =⇔ 合比,等比定理(略) 2.DE ∥BC ECAEDB AD =⇔a ∥b ⎪⎪⎩⎪⎪⎨⎧===1111111OB OBOA OA OB OB C B BC BA AB3. 相似多边形性质:对应线段成比例,面积比等于相似比的平方4. 直角三角形中成比例线段定理(射影定理)⎪⎪⎩⎪⎪⎨⎧⋅⋅⋅⋅⋅⇒⎭⎬⎫⊥∠∠BC AC CD AB ABBD BC ABAD AC BDAD CD AB CD R ACB 222=====t 5. 三角形内(外)角平分线性质在△ABC 中 ∠1=∠2ACABDC BD =⇔6. 若ABCD 四点共圆,AB 、CD 交于P , 则PA ×PB =PC ×PD=PT 2 (PT 切圆于T )7. 三角形、平行四边形面积公式(略)CD E B A B C DB8.正弦定理:在△ABC 中,SinCcSinB b SinA a == 二.要运用相似三角形证明线段的积、幂,一般应把积、幂先化为比例式,然后由它来找相似三角形。
有时还要用等线段或等比代换。
乙例题例1. 过四边形ABCD 的对角线交点O 画CD 的平行线,分别与边BC ,AD 及AB 的延长线交于E ,F ,G 求证:GO 2=GEGF证明:设DC ,AB 的延长线相交于H , ∵FG ∥DH , 从过点B 的线束被平行线截得HD HCGO GE =从过点A 的线束被平行线截得HDHCGF GO = ∴GFGOGO GE = 即GO 2=GEGF 例2.已知:CD 是Rt △ABC 斜边上的高,角平分线AE 交CD 于F 求证:CE 2=DF ×BE分析:要CE 2=DF ×BE 成立,应证DF CECE BE = 可证CE =CF (等角对等边)根据角平分线性质可得AC AB CE BE =,ADACDF CF = 只要AC 2=ABAD 这符合直角三角形中成比例线段定理 证明 (略)例3.已知:△ABC 中最大角A 是最小角C 的2倍,三边长是连续整数 求:△ABC 的各边长解:设AC 为x, 则AB 是x-1,BC 为x+1 延长CA 到D 使AD=AB ,连结BD ,BA 则∠D =∠1 ∵∠BAC =∠1+∠D =2∠D , ∵∠BAC =2∠C , ∴∠1=∠D =∠C∴等腰△ABD ∽等腰△BCDCD BD BC AB =,1111+++=+-x x x x x ,解得x=5, ∴三边长分别为4,5,6 ( 本题也可作∠BAC 的平分线AE ,证明△EAB ∽△ACB)例4. 已知:⊙O 和⊙O 1相交于P ,外公切线AB ,A ,B 是切点,AP 交⊙OH B于C ,BP 交⊙O 1于D ,CE 和⊙O 1切于点E 求证:CE =CB证明:过点P 作两圆公切线PQ 交AB 于Q 由切线长定理,得QP =QA =QB ∴△APB 是Rt △,∠APB =Rt ∠ ∴BC 是⊙O 的直径,BC ⊥AB根据射影定理,得BC 2=CP ×CA∵CE 切⊙O 1于E ,根据圆幂定理,得CE 2=CP ×CA∴CE =CB例5.正方形OPQR 内接于△ABC ,已知△AOR ,△BOP ,△CRQ 面积是 S 1=1,S 2=3,S 3=1。
关于初中数学竞赛的书籍

关于初中数学竞赛的书籍
初中数学竞赛是许多学生热衷的学科,以下是一些相关的书籍推荐:
1.《初中数学竞赛全解析》——这本书提供了各种数学竞赛题目的详细解析和解题思路,适合准备竞赛的学生查阅。
2. 《初中数学竞赛习题集》——该书汇集了大量经典数学竞赛题目,按照题型和难易程度进行分类,帮助学生巩固知识并提高解题能力。
3. 《初中数学竞赛冲刺指南》——这本书介绍了常见竞赛的出题规律和解题技巧,通过精选的例题和训练题,帮助学生提高应试能力。
4. 《初中数学竞赛辅导教材》——该教材系统地介绍了数学竞赛中常见的知识点和题型,并提供了大量的例题和习题供学生练习。
5. 《初中数学竞赛秘籍》——这本书总结了数学竞赛中常见的解题技巧和方法,通过实例讲解帮助学生理解和掌握。
这些书籍都可以在学校教材供应店或者在线书店购买到。
希望这些书籍能够帮助到对数学竞赛感兴趣的同学们。
初中数学竞赛辅导材料目录

初中数学竞赛辅导材料目录一、初中数学竞赛基础知识1.数集及其运算-自然数、整数、有理数、实数、复数的概念及运算性质-数集的表示方法与运算法则2.代数式与方程-一元一次方程与一元一次不等式的解法及应用-一次函数的定义、性质与图像-一元二次方程的解法及应用3.几何基本概念-点、线、面、角的定义与性质-直线、射线、线段、平行线、垂直线的概念与判定-多边形、三角形、四边形的性质4.图形的相似与投影-图形的相似判定条件及相似比的计算-平面图形在对称、旋转、平移、投影中的性质与运用5.数据的整理与表示-数据的收集、整理、描述和分析方法-列联表的制作与应用-分组频数统计图的制作与读图6.立体几何-空间图形的基本概念及性质-空间图形的展开与剖析-空间图形的体积与表面积计算方法二、初中数学竞赛解题技巧与方法1.快速计算技巧-快速计算小技巧的应用(如乘法口诀、整数加减乘除的计算等)-快速计算较大数的方法(如分解因数、整理计算顺序等)2.思维训练与问题解决-近似计算与估算的方法与应用-分析解题条件与利用信息求解问题-数学问题的逻辑和推理方法3.策略与技巧-消元法与代入法的使用-枚举与特例法的应用-逆向思维与反证法的运用4.考试技巧与应试心理-数学竞赛常见题型的解题思路-如何正确阅读题目与审题技巧-考试时间分配与答题顺序规划-心理调适与压力应对方法三、数学竞赛真题及解析1.真题分析与解题方法讲解-分析数学竞赛真题的特点与难点-理解题目要求、辅助线的作法、巧用条件等解题技巧-真题解析与解题思路讲解2.解题思路总结与题型归纳-简述各种常见数学竞赛题型的解题思路-总结解题中常用的技巧与方法-提供大量的练习题目,以加强学生对各类题型的掌握以上为初中数学竞赛辅导材料的目录,通过系统的学习与实践,相信学生们可以提升数学竞赛的能力,取得更好的成绩。
祝学习愉快!。
初中数学竞赛辅导资料

初中数学竞赛专题选讲识图一、内容提要1.几何学是研究物体形状、大小、位置的学科。
2.几何图形就是点,线,面,体的集合。
点是组成几何图形的基本元素。
《平面几何学》只研究在同一平面内的图形的形状、大小和相互位置。
3.几何里的点、线、面、体实际上是不能脱离物体而单独存在的。
因此单独研究点、线、面、体,要靠正确的想像点:只表示位置,没有大小,不可再分。
线:只有长短,没有粗细。
线是由无数多点组成的,即“点动成线”。
面:只有长、宽,没有厚薄。
面是由无数多线组成的,“线动成面”。
4.因为任何复杂的图形,都是由若干基本图形组合而成的,所以识别图形的组合关系是学好几何的重要基础。
识别图形包括静止状态的数一数,量一量,比一比,算一算;运动状态中的位置、数量的变化,图形的旋转,摺叠,割补,并合,比较等。
还要注意一般图形和特殊图形的差别。
二、例题例1.数一数甲图中有几个角(小于平角)?乙图中有几个等腰三角形?丙图中有几全等三角形?丁图中有几对等边三角形?E解:甲图中有10个角:∠AOB, ∠AOC,∠BOC,∠BOD,∠COD,∠COE,∠DOE,∠DOA,∠EOA,∠EOB.如果OA和OC成一直线,则少一个∠AOC,余类推。
乙图中有5个等腰三角形:△ABC,△ABD,△BDC,△BDE,△DEC 丙图中有全等三角形4对:(设AC和DB相交于O)△AOB≌△COD,△AOD≌△BOC,△ABC≌△CDA,△BCD≌△DAB。
丁图中共有等边三角形48个:边长1个单位:顶点在上▲的个数有 1+2+3+4+5=15顶点在下▼的个数有 1+2+3+4=10边长2个单位:顶点在上▲的个数有 1+2+3+4=10顶点在下▼的个数有 1+2=3边长3个单位:顶点在上▲的个数有 1+2+3=6边长4个单位:顶点在上▲的个数有 1+2=3边长5个单位:顶点在上▲的个数有 1以上要注意数一数的规律例2.设平面内有6个点A 1,A 2,A 3,A 4,A 5,A 6,其中任意3个点都不在同一直线上,如果每两点都连成一条线,那么共有线段几条?如果要使图形不出现有4个点的两两连线,那么最多可连成几条线段?试画出图形。
初中数学竞赛辅导讲义全

初中数学竞赛辅导讲义(初三)第一讲 分式的运算[知识点击]1、 分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。
2、 综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。
3、 分式运算:实质就是分式的通分与约分。
[例题选讲]例1.化简2312++x x + 6512++x x + 12712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + )4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 41+x =)4)(1(3++x x 例2. 已知 z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。
解:易知:z y x + = y z x + = x z y + =k 则⎪⎩⎪⎨⎧=+=+=+)3()2()1(kx z y ky z x kz y x (1)+(2)+(3)得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 若k=2则原式= k 3 = 8 若 x+y+z=0,则原式= k 3 =-1例3.设 12+-mx x x =1,求 12242+-x m x x 的值。
解:显然X 0≠,由已知x mx x 12+- =1 ,则 x +x 1 = m + 1 ∴ 22241x x m x +- = x2 + 21x - m2= (x +x1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=121-m 例4.已知多项式3x 3 +ax 2 +3x +1 能被x 2+1整除,求a的值。
解:13313232+++++x ax x X ax1- a=0 ∴ a=1例5:设n为正整数,求证311⨯ + 511⨯ + …… +)12)(12(1+-n n < 21 证:左边=21(1 - 31 + 31 - 51 + …… + 121-n - 121+n ) aaax ax xO x -++++1133223=21(1- 121+n ) ∵n 为正整数,∴121+n < 1 ∴1- 121+n < 1 故左边< 21[小结归纳]1、部分分式的通用公式:)(1k x x + = k 1 (x 1 - kx +1) 2、参数法是解决比例问题特别是连比问题时非常有效的方法,其优点在于设连比值为K ,将连等式化为若干个等式,把各字母用同一字母的解析式表示,从而给解题带来方便。
初中数学竞赛辅导资料课件.doc

初中数学竞赛辅导资料一元一次方程解的讨论甲内容提要1, 方程的解的定义:能使方程左右两边的值相等的未知数的值叫做方程的解。
一元方程的解也叫做根。
例如:方程 2x +6=0, x (x-1)=0, |x|=6, 0x=0, 0x=2的解分别是: x=-3, x=0或x=1, x=±6, 所有的数,无解。
2, 关于x 的一元一次方程的解(根)的情况:化为最简方程ax=b 后,讨论它的解:当a ≠0时,有唯一的解 x=ab ; 当a=0且b ≠0时,无解;当a=0且b =0时,有无数多解。
(∵不论x 取什么值,0x =0都成立)3, 求方程ax=b(a ≠0)的整数解、正整数解、正数解当a |b 时,方程有整数解;当a |b ,且a 、b 同号时,方程有正整数解;当a 、b 同号时,方程的解是正数。
综上所述,讨论一元一次方程的解,一般应先化为最简方程ax=b乙例题例1 a 取什么值时,方程a(a -2)x=4(a -2) ①有唯一的解?②无解?③有无数多解?④是正数解?解:①当a ≠0且a ≠2 时,方程有唯一的解,x=a 4 ②当a=0时,原方程就是0x= -8,无解;③当a=2时,原方程就是0x=0有无数多解④由①可知当a ≠0且a ≠2时,方程的解是x=a4,∴只要a 与4同号, 即当a>0且a ≠2时,方程的解是正数。
例2 k 取什么整数值时,方程①k(x+1)=k -2(x -2)的解是整数?②(1-x )k=6的解是负整数?解:①化为最简方程(k +2)x=4当k+2能整除4,即k+2=±1,±2,±4时,方程的解是整数∴k=-1,-3,0,-4,2,-6时方程的解是整数。
②化为最简方程kx=k -6,当k ≠0时x=k k 6 =1-k6, 只要k 能整除6, 即 k=±1,±2,±3,±6时,x 就是整数当 k=1,2,3时,方程的解是负整数-5,-2,-1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竞赛专题选讲
识图
一、内容提要
1.几何学是研究物体形状、大小、位置的学科。
2.几何图形就是点,线,面,体的集合。
点是组成几何图形的基本元素。
《平面几何学》只研究在同一平面内的图形的形状、大小和相互位置。
3.几何里的点、线、面、体实际上是不能脱离物体而单独存在的。
因此单独研究点、线、面、体,要靠正确的想像
点:只表示位置,没有大小,不可再分。
线:只有长短,没有粗细。
线是由无数多点组成的,即“点动成线”。
面:只有长、宽,没有厚薄。
面是由无数多线组成的,“线动成面”。
4.因为任何复杂的图形,都是由若干基本图形组合而成的,所以识别图形的组合关系是学好几何的重要基础。
识别图形包括静止状态的数一数,量一量,比一比,算一算;运动状态中的位置、数量的变化,图形的旋转,摺叠,割补,并合,比较等。
还要注意一般图形和特殊图形的差别。
二、例题
例1.数一数甲图中有几个角(小于平角)?乙图中有几个等腰三角形?丙图中有几全等三角形?丁图中有几对等边三角形?
E
解:甲图中有10个角:∠AOB, ∠AOC,∠BOC,∠BOD,∠COD,∠COE,∠DOE,∠DOA,∠EOA,∠EOB.如果OA和OC成一直线,则少一个∠AOC,余类推。
乙图中有5个等腰三角形:△ABC,△ABD,△BDC,△BDE,△DEC 丙图中有全等三角形4对:(设AC和DB相交于O)
△AOB≌△COD,△AOD≌△BOC,△ABC≌△CDA,△BCD≌△DAB。
丁图中共有等边三角形48个:
边长1个单位:顶点在上▲的个数有 1+2+3+4+5=15
顶点在下▼的个数有 1+2+3+4=10
边长2个单位:顶点在上▲的个数有 1+2+3+4=10
顶点在下▼的个数有 1+2=3
边长3个单位:顶点在上▲的个数有 1+2+3=6
边长4个单位:顶点在上▲的个数有 1+2=3
边长5个单位:顶点在上▲的个数有 1
以上要注意数一数的规律
例2.设平面内有6个点A 1,A 2,A 3,A 4,A 5,A 6,其中任意3个点都不在同一
直线上,如果每两点都连成一条线,那么共有线段几条?如果要使图形不出
现有4个点的两两连线,那么最多可连成几条线段?试画出图形。
(1989年全国初中数学联赛题)
解:从点A 1与其他5点连线有5条,从点A 2与其他4点(A 1除外)连线
有4条,从A 3与其他3点连线有3条(A 1,A 2除外)……以此类推,6个
点两两连线共有线段1+2+3+4+5=15(条),或用每点都与其他5点连
线共5×6再除以2(因重复计算)。
要使图形不出现有4个点的两两连线,那么每点只能与其他4个点连线,
共有(6×4)÷2=12(条)如下图:其中有3对点不连线:A 1A 4,A 2A 5,
A 3A 6
A 3
A 1 A 2
例3.如图水平线与铅垂线相交于O ,某甲沿水平线,某乙铅垂线同时匀速前
进,当甲在O 点时,乙离点O 为500米,2分钟后,甲、乙离点O 相等;
又过8分钟,甲、乙再次离点O 相等。
求甲和乙的速度比。
解:如图设甲0,乙0为开始位置,甲1,乙1为前进2分钟后位置,甲2,乙2
乙2 为再前进8分钟的位置。
再设甲,乙的速度分别为每分钟x,y
米,根据题意得 ⎩⎨⎧-=-=500
101025002y x y x 甲 O 甲1 甲2 解得12x=8y
乙1 ∴x ∶y=2∶3
乙0 答甲和乙的速度比是2比3。
例4.在三角形内(不在边上)有3个点,连同原三角形三个顶点,共6个
点,以这6个点为顶点,作出所有不重迭的三角形共有几个?
(1989年全国初中数学联赛题)
解:如图△ABC 中一个点D ,与A ,B ,C 各点连结可得3个不重迭的三角
形;再增加1个点E ,这时可连结不重迭的三角形共5个,再增加1个点F ,
又可增加2个不重迭的三角形,共有7个。
一般规律是每增加1个点,可增加不重迭的三角形2个 A A
A
F
D E E
B C D D
B C B C
三、练习
1. 数一数:甲图中有直角三角形__个,乙图中有等腰直角三角__个,
丙图中有全等三角形__对。
C
甲 乙 2. 平面上有5个点A ,B ,C ,D ,E ,其中A ,B ,C 三点在同一直线上,
那么以这5个点为端点的线段共有___条,记作___________
______________________________
3. 以O 为端点画6条射线OA ,OB ,OC ,OD ,OE,OF,那么可组成的角(小
于平角)最多是__个,最少是___个,试分别画出草图。
4. 在三角形内有n 个点(n 为整数)与原三角形3个顶点共n +3个点,以
这些点为顶点可连成不重迭的三角形最多有____个。
5. 下图中三角形___个其中等腰三角形__个,直角三角形___个,
全等的等腰三角形__组,每组__个,
全等的直角三角形___组,每组__个。
6. 如图长方形ABCD 中,E ,F ,G 分别在边 BC ,CD ,DA 上,以A 为一个顶点,其他两点
在B ,C ,D ,E ,F ,G 中任选,总共可组成的 三角形的个数是__(1987年泉州市初二数学双基赛题)
7. 平面上有6个点A ,B ,C ,D ,E ,F 其中任意3个点都不在同一直线
上,如果不使图形出现有3个点两两连线,那么最多可连接线段几条?
试画出草图.
8.
OC ⊥AB 于O ,OD ⊥OE 于O ,写出图中 相等的角:______________ 互余的角:_______________ 互补的角:_______________
C
如图长方形ABCD 中,AB =5,BC =4,
AE =BF =1,CG =DH =2 F 那么四边形EFGH 的面积是__(平方单位)
10.如图A ,B ,C ,D 四点在同一直线上,到A ,B ,C ,D 各点距离之和为
最小值的点在什么位置?有几个符合条件的点?距离之和的最小值可用
哪些线段的长度来表示?(1987年全国初中数学联赛题)
A B C D
11.正方形的边长为a ,以四条边长为直径,向形内作4个半圆,求这四个
半圆相交所成的菊花形面积。
12.下列四图,都是由全等正方形组成的图形,其中哪一个能围成正方体?
答:( )
(D)
13. 甲,乙两人沿着圆周同时匀速前进,开始他们位于一条直径的两端,相
向而行,第一次相遇时,乙走了100米,第二次相遇时,甲还差60米
走完一圈。
求这个圆的周长。
提示:可设 圆周长为x 米,并引入参数V 甲,V 乙 列方程组解之
14.正方形ABCD 边长为a ,在点A 处有个质点P , 在点B 处有个质点 Q , 两个质点同时依反时针方向,沿正方形的边线作匀速的运动,过4秒钟,
P 在C 处追上Q 。
那么 B P A
① 再过 __秒钟, P 在_处第二次追上Q ② 出发6秒钟时,P ,Q 这间相距__a
D
O
15.有长3cm,宽2cm的长方形纸片1991张,将它们按照下图所示的方法,摆在平面上,那么这1991张纸片覆盖的面积是()
(1991年泉州市初二数学双基赛题)(A)3982(B)3986(C)3990(D)3999
16.一条线段(与圆相交)可把一个圆分成两部分,问四条线段最多可把圆分成____部分。
(1991年泉州市初二数学双基赛题)
17.把一个矩形分成6个正方形(如图),其中最小的一个面积是1(单位平
方)那么这个矩形的面积是___(单位平方)
练习题参考答案
1.5,8,4
2. 10
3. 15, 12
4. 1+2n
5. 16,8,8 .4,2.2,4
6. 14
7. 9
9. 11
10. 有无数多个点,在线段BC 上(包括端点),和是AD +BC
11. ()12-π
a 2
12. (A)
13. 480
14. ① 16,C ② 0.5a
15.(B)
16. 11
17. 4。