初一(上)数学竞赛辅导资料(含答案)-初中6

合集下载

苏科版七上初一数学竞赛系列训练题含答案

苏科版七上初一数学竞赛系列训练题含答案

苏科版七上初一数学竞赛系列训练题含答案初一数学竞赛系列训练(12)一、多项选择题1.平面上有5个点,其中仅有3点在同一直线上,过每2点作一条直线,一共可以作直线()条a、 6b.7c.8d.92.平面上三条直线相互间的交点个数是()a、 3b。

1或3C。

1或2或3D。

不一定是1,2,33.平面上6条直线两两相交,其中仅有3条直线过一点,则截得不重叠线段共有()a.36条b.33条c.24条d.21条4.已知平面上有n个点a、B和C在一条直线上,a、D、F和E四个点也在一条直线上。

除了一些,没有三点共线或四点共线。

如果将这n个点用作一条直线,则总共可以绘制38条不同的直线。

此时,n等于()(a)9(b)10(c)11(d)125.如果平行线AB和CD与相交线EF和GH相交,形成如图所示的图形,则相同的侧内角()a.4 vs.b.8 vs.c.12 vs.d.16 vs.6。

如图所示,如果已知FD‖be,∠ 1 + ∠ 2 - ∠ 3=()a.90°b.135°c.150°D.180°each二、填空gbfa3g2b1cca1edf2dbd第5题f问题6 e问题77.如图,已知ab∥cd,∠1=∠2,则∠e与∠f的大小关系;8.平面上有5个点,每两点都连一条直线,问除了原有的5点之外这些直线最多还有交点9.平面上的三条直线最多可分为三部分。

10.如图所示,ab‖CD‖EF,PS?GH在P,∠ FRG=110°,则acser第10题lhfgpqbd∠psq=。

11.假设a和B是直线L外的两点,则AB段的垂直平分线与直线之间的交点数为。

12.平面内有4条直线,无论其关系如何,它们的交点个数不会超过个。

三、回答问题13.已知:如图,de∥cb,求证:∠aed=∠a+∠b14.已知:如图,ab∥cd,求证:∠b+∠d+∠f=∠e+∠gdaaebfecgcbd第13题第14题15.如图所示,已知CB?AB,CE∠ BCD,de∠ CDA,∠edc+∠ecd=90°,求证:da?ab16.平面上两个圆和三条直线有多少个不同的交点?17.平面上5个圆两两相交,最多有多少个不同的交点?最多将平面分成多少块区域?18.直线上5分,直线外3分。

七年级上学期数学知识竞赛试题含答案

七年级上学期数学知识竞赛试题含答案

七年级上册数学知识竞赛试题(考试时间:90分钟满分:100分)学校班级姓名一、选择题(每小题3分,共30分)1.已知,且a>b,那么a+b的值等于()A. 或B. 或C. 或D. 或2.如图,数轴上每个刻度为1个单位长,则A,B分别对应数a,b,且b-2a=7,那么数轴上原点的位置在()A. A 点B. B 点C. C 点D. D 点3.下列语句中:(1)线段AB就是A,B两点间的距离;(2)画射线AB=10cm;(3)A,B两点之间的所有连线中,最短的是A,B两点间的距离;(4)在直线上取A,B,C三点,使得AB=5cm,BC=2cm,则AC=7cm。

其中正确的有()A.1 个B.2 个C.3 个D.4 个4.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧总长y(cm)与所挂重物x(kg)之间的关系式为( )x(kg) 0 1 2 3 4 5 6y(cm) 12 12.5 13 13.5 14 14.5 15A.y=x+12B.y=0.5x+12C.y=0.5x+10D.y=x+10.55.港珠澳大桥于2018年10月24日正式通车,该工程总投资额为1269亿元,将1269亿用科学记数法表示为().A.12.69×1010B.1.269×1011C.1.269×1012D.0.1269×10136.若(m-2)x|2m-3|=6是关于x的一元一次方程,则m的值是()A. 1B. 任何数C. 2D. 1或27.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是()A. B. C. D.8.如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则( )A.乙比甲先到B.甲和乙同时到C.甲比乙先到D.无法确定9.如图,线段AB和线段CD的重合部分CB的长度是线段AB长的,M、N分别是线段AB和线段CD的中点,AB=18,MN=13,则线段AD的长为()2503.002.003.05.09.0x 4.0-=+-+x x A. 31 B. 33 C. 32 D. 3410.如图所示的立方体,如果把它展开,可以是下列图形中的( )A. B. C. D.二、填空题(每小题3分,共24分)11.数轴上表示-2的点距离3个长度单位的点所表示的数是________. 12.钟表上的时间是2时30分,此时时针与分针所成的夹角是________ 度.13.现在网购越来越多地成为人们的一种消费方式,刚刚过去的2015年的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为____ ____. 14.观察下列算式:21=2、22=4、23=8、24=16、25=32、26=64、27=128、28=256….观察后,用你所发现的规律写出223的末位数字是________. 15.已知m=,n=, 则代数式(m+2n )﹣(m ﹣2n )的值为________16.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是________.18.你会玩“二十四点”游戏吗?现有“2,-3,-4, 5,”四个数,每个数用且只用一次进行加、减、乘、除,使其结果为24,写出你的算式(只写一个即可):________=24. 17.如图,OA ⊥OC ,OB ⊥OD ,下面结论:①∠AOB=∠COD ;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC 中,正确的有________ (填序号).三、计算题(共3题;共15分)19.解方程:20. 计算:(1)×24- ×(-2.5)×(-8).(2).四、解答题(共5题;共31分)21.设B为线段AC上的一点,AB=8cm,BC=2cm,M、N分别为AB、AC的中点.求MN的长.22.已知a,b互为相反数,c,d互为倒数,m的倒数等于本身,求代数式的值.23.小李到某城市行政中心大楼办事,假定乘电梯向上一楼记为+1,向下一楼记为–1.小李从1楼出发,电梯上下楼层依次记录如下(单位:层):+5,–3,+10,–8,+12,–6,–10.(1)请你通过计算说明小李最后是否回到出发点1楼;(2)该中心大楼每层高2.8m,电梯每上或下1m需要耗电0.1度.根据小李现在所处的位置,请你算一算,当他办事时电梯需要耗电多少度?24.如图,直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.25.坟中安葬着丢番图,多么令人惊讶,他忠实地记录了所经历的道路.上帝给予的童年占六分之一,又过了十二分之一,两颊长胡,再过七分之一,点燃结婚的蜡烛,五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入坟墓,悲伤只有用数论研究去弥补,又过四年,他也走完了人生的旅途。

初一数学竞赛系列讲座(6)整式的恒等变形

初一数学竞赛系列讲座(6)整式的恒等变形

初一数学竞赛系列讲座(6)整式的恒等变形一、知识要点1、 整式的恒等变形把一个整式通过运算变换成另一个与它恒等的整式叫做整式的恒等变形2、 整式的四则运算整式的四则运算是指整式的加、减、乘、除,熟练掌握整式的四则运算,善于将一个整式变换成另一个与它恒等的整式,可以解决许多复杂的代数问题,是进一步学习数学的基础。

3、 乘法公式乘法公式是进行整式恒等变形的重要工具,最常用的乘法公式有以下几条: ① (a+b) (a-b)=a 2-b 2② (a±b)2=a 2±2ab+b 2③ (a+b) (a 2-ab+b 2)=a 3+b 3④ (a-b) (a 2+ab+b 2)=a 3-b 3⑤ (a+b+c)2= a 2+b 2+c 2+2ab+2bc+2ca⑥ (a+b+c) (a 2+b 2+c 2-ab-bc-ca)= a 3+b 3+c 3-3abc⑦ (a±b)3= a 3±3a 2b+3a b 2±b 34、 整式的整除如果一个整式除以另一个整式的余式为零,就说这个整式能被另一个整式整除,也可说除式能整除被除式。

5、 余数定理多项式()x f 除以 (x-a) 所得的余数等于()a f 。

特别地()a f =0时,多项式()x f 能被(x-a) 整除二、例题精讲例1 在数1,2,3,…,1998前添符号“+”和“-”并依次运算,所得可能的最小非负数是多少?分析 要得最小非负数,必须通过合理的添符号来产生尽可能多的“0”解 因1+2+3+…+1998=()19999992199811998⨯=+⨯是一个奇数, 又在1,2,3,…,1998前添符号“+”和“-”,并不改变其代数和的奇偶数,故所得最小非负数不会小于1。

先考虑四个连续的自然数n 、n+1、n+2、n+3之间如何添符号,使其代数和最小。

很明显 n-(n+1)-(n+2)+(n+3)=0所以我们将1,2,3,…,1998中每相邻四个分成一组,再按上述方法添符号, 即(-1+2)+(3-4-5+6)+ (7-8-9+10)+…+ (1995-1996-1997+1998)= -1+2=1故所求最小的非负数是1。

七年级上册数学竞赛题和经典题

七年级上册数学竞赛题和经典题

七年级上册数学竞赛题和经典题一、竞赛题与经典题。

1. (有理数运算)计算:( 2)^3+[26 ( 3)×2]÷4解析:先计算指数运算( 2)^3=-8。

再计算括号内的式子,[26-( 3)×2]=[26 + 6]=32。

然后进行除法运算32÷4 = 8。

最后进行加法运算-8+8 = 0。

2. (整式的加减)化简:3a + 2b 5a b解析:合并同类项,3a-5a=-2a,2b b=b。

所以化简结果为-2a + b。

3. (一元一次方程)解方程:3(x 1)-2(x + 1)=6解析:先去括号,3x-3-2x 2=6。

再移项,3x-2x=6 + 3+2。

合并同类项得x = 11。

4. (数轴相关)在数轴上,点A表示的数为-3,点B表示的数为5,求A、B两点间的距离。

解析:数轴上两点间的距离等于右边的数减去左边的数(大数减小数)。

所以AB = 5-( 3)=5 + 3 = 8。

5. (绝对值)已知| x|=3,| y| = 5,且x>y,求x + y的值。

解析:因为| x|=3,所以x=±3;因为| y| = 5,所以y=±5。

又因为x>y,当x = 3时,y=-5,此时x + y=3+( 5)=-2;当x=-3时,y=-5,此时x + y=-3+( 5)=-8。

6. (有理数的混合运算)计算:(1)/(2)×(-2)^2-((2)/(3))^2÷(2)/(9)解析:先计算指数运算,(-2)^2 = 4,((2)/(3))^2=(4)/(9)。

然后进行乘除运算,(1)/(2)×4 = 2,(4)/(9)÷(2)/(9)=(4)/(9)×(9)/(2)=2。

最后进行减法运算2-2 = 0。

7. (整式的概念)若3x^m + 5y^2与x^3y^n是同类项,则m=_ ,n=_ 。

七年级数学上竞赛试卷(含答案)

七年级数学上竞赛试卷(含答案)

数学竞赛辅导练习题、10、22一、 选择题:1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( ) (A)bc ab >(B)c b b a +>+(C)c b b a ->-(D)cb c a > 2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为( ) (A)2(B)4(C)3(D)53、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于( )(A)12(B)14(C)16(D)184、已知0≠abc ,并且p bac a c b c b a =+=+=+,那么直线p px y +=一定通过第( )象限 (A)一、二(B)二、三(C)三、四(D)一、四5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( )(A)17个(B)64个(C)72个(D)81个6、计算的值是( )。

(A )1(B )-1(C )2(D )-2。

7、△ABC 的周长是24,M 是AB 的中点,MC =MA =5,则△ABC 的面积是( )。

(A )12;(B )16;(C )24;(D )30。

8、设,将一次函数与的图象画在同一平面直角坐标系内,则有一组的取值,使得下列4个图中的一个为正确的是( )。

9、如图,在等腰梯形ABCD 中,AB∥DC,AB =998,DC =1001,AD =1999,点P 在线段AD 上,则满足条件∠BPC=90°的点P 的个数为( )。

(A )0;(B )1;(C )2;(D )不小于3的整数。

(A )0;(B )1;(C )2;(D )3。

二、填空题:6、在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF=___________。

七年级数学尖子生培优竞赛专题辅导第一讲因式分解的常用方法和技巧(含答案)

七年级数学尖子生培优竞赛专题辅导第一讲因式分解的常用方法和技巧(含答案)

第一讲因式分解的常用方法和技巧趣题引路】你知道如何分解因式^-+X9+/+/+1吗?试作一代换:若令疋= ),,贝IJ原式=h + ),3+y2 + y+l,指数为连续整数,可考虑用公式/-l = (^-l)(/ + / + / + y+l),则原式=V4 + V3 + V2 + V + 1 = —(y5 -1))‘一1x-l x2 + X + 1= (x4 + x3 +x2 +x+ l)(x8 -x7 +x5 +x3 -x + 1)一个代换,把一个复杂的问题转化为一个较简单的问题,这是数学方法之美.多项式的因式分解是数学中恒等变形的一种重要方法,它在初等数学乃至高等数学中都有广泛的应用,因式分解的方法很多,技巧性强,认真学好因式分解,不仅为以后学习分式的运算及化简、解方程和解不等式等奠定良好的基础,而且有利于思维能力的发展.知识拓展】因式分解与整式乘法的区别是:前者是把一个多项式变成几个整式的积,后者是把几个整式的积变成一个多项式,因式分解初中可在有理数域或实数域中进行,高中还可在复数域中进行.因式分解后每个因式应在指定数域中不能再分.“例如X4-A在有理数域内可分解为(X+2)(/-2),其中每个因式就不能再分,不然分解式的系数会超过有理数的范围;在实数域中,它的分解式是(X2+2)(X+>/2)(X->/2):在复数域中,它的分解式是因式分解的方法很多,除了数学教材中的提取公因式法、运用公式法、分组分解法和十字相乘法以外, 还有换元法、待定系数法、拆项添项法和因数定理法等.本讲在中学数学教材的基础上,对因式分解的方法、技巧作进一步的介绍.一、用换元法分解因式换元法是指将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来进行运算,从而使运算过程简单明了.换元法是中学数学中常用的方法之一.例1 (1999年希望杯题)分解因式(X2-1)(X +3)(X+5)+12.解析若全部展开,过于复杂,考虑局部重新组合.注意到在(x + l)(x + 3) = X + 4x + 3和(X-1)(X+5)= X2+4X-5中出现了相同部分X2+4X ,可考虑引入辅助元y = x2+4x分解(也可设y = F+4x + 3,y = x'+4x-l 等).解原式=[(x + l)(x + 3)][(A-1)(X + 5)] +12=(x2 +4x+ 3)(x2 + 4x-5)+12设y = x2 +4x f贝!I原式= (y+3)(y-5)+12= r-2y-3= (y-3)(y + l)=(x2+4x+ 3)(x2 +4x-l)点评换元法体现了数学中的整体代换思想,它是化繁为简的重要手段这里y取(x2 +4X + 3)和(x2 + 4X-1)的平均值时分解过程最为简便例2 (2001年天津初二题)分解因式(弓-1)= + (x+_ 2)(x+ > - 2xy).解析题中巧和卄y多次出现启发我们换元分解:设xy=d, x+y=b.解设xy=a, x+y=b,则,原式=(a -1): + (b - 2)(b - 2a)=cr -2a + l+br -2b-2cib+4a=a2 +b2 +l+2a-2ab-2b=(a-b+[)2注:这里用到公式a,+b2 +c2 + 2ab + 2bc + lac = (a + b +c)2.点评换元必须考虑多项式的结构特征:当代数式中出现相同、相近或相关联(如:互为相反数,互为倒数)的部分时都可以考虑换元.二、用待定系数法分解因式待定系数法是初中数学中的又一重要方法,其应用很广泛.在因式分解时,只要假定一个多项式能分解成某几个因式的乘积,而这些因式中某些系数未定,可用一些字母来表示待定的系数•根据两个多项式恒等的性质,即两边对应项的系数必相等,可列出关于待定系数的方程或方程组,解此方程(组)即可求出待定系数.这种因式分解的方法叫做待定系数法.例3 (第9届五羊杯初二题)设x3 + 3x2-2xy + kx-4y可分解为一次与二次因式之积,则k= ______________________ .解析首先确定两个因式的结构:因多项式中疋的系数是1,常数项是0,以及没有护项,所以分解所得因式可设为x+a 和x2+bx + cy,其中e b, c为待定系数.解设x3 + 3x2 - 2xy + kx-4y可分解为(x+a)(x2 +bx+cy),贝ijx3 + 3x2 -2xy + kx-4y = x3 +(a + b)x2 + cxy + abx + acy比较系数,得a+b=3 ,a +b = 3消去c,得\ab = -k ,消去a,b,解得k=-2.ab = -ka = 2ac = -4 i点评用待定系数法分解因式,关健在于确定因式分解的最终形式.三、用公式法分解因式初中教材中出现的公式有平方差公式,完全平方公式,在因式分解中还常用到下列公式:立方和公式:a3 +b3 = (a + b)(a2 -ab + b2)立方差公式:a3 -b3 =(a-b)(a2 +ab+b2)和的立方公式:(a + b)3 =a3 + 3a2b + 3ab2 + b3差的立方公式:(a - b)3 =a3 - 3crb + 3ab2 -b3三数和的平方公式:(tz + b + c)' =a2 +b2 +c2 + 2ab 4- lac + 2bc两数n 次方差公式:a” -b n =(a-b)(a n~l + a n~2b + • • • + ab"~2 + b n~l)三数立方和公式:a3 +b3+c‘ = (a + b +c)3 -3(a + b)(b + c)(a + c)在具体问题中要根据代数式的结构特征来选用适当的公式.例4 分解因式x l5+x l4+x l3+-+x2+x+l.解析对于指数成连续整数的多项式我们可以考虑公式a" - b n =(a- + a"~2b + ab"~2 + b n~l),令b=l,得a" = + a n~2 + …+ a + l).为化繁为简,及能用公式,给原式乘以x-1解原it= (x15 +x14 +X13 + - -X2 +X+1) -_ =- ---------------------- --x-l x-l=(土 + 1)(疋 + 1)(F + l)(x + 1)(— 1)=(x8 + l)(x4 + l)(x2 + l)(x + 1)点评这里原式乘以吕很必要,这种先乘以再除以(或先加上再减去)同一个式子的变形技能经常用到.例5 (昆明市初中数学竞赛题)分解因式(c-a)2-4(b-c)(a-b).解析把拾号展开后重新组合.解原式=c? 一 2ac十/ 一 4ab + 4ac — 4bc + 4b‘=c2 + lac + a2 - Aab一4bc + 4b2=(c2 + 2ac + a2)-4b(a + c) + (2b)2= (a + c- 2b)2点评欲进先退,这是为了更清楚地认识代数式的结构特征.例6 分解因式(x+2y_77),+ (3x_4y + 6zF_(4x_2y_z)B解析本题与三个数的立方和有关.联想到公式a3 + + c5 = (a + b + c)(«2 + b2 +c2 -ab-be- ca)+ 3abc , 而(x + 2y- 7z)+(3x - 4y + 6乙)+ (- 4x + 2y+ z)= 0.故原式可分解为3(x + 2y - 7z)(3x - 4y + 6乙)(-4x + 2y + z) ■四、用拆项添项法分解因式在对某些多项式分解因式时,需要对某些项作适当的变形,使其能分组分解,添项和拆项是两种重要的技巧例7分解因式:x3-9x+8.解析多项式有三项,若考虑拆项,有三种选择.注意只有让分解能继续的拆法才是可取的.若考虑添项,式中无二次项,可添加-F + F.解法1将常数项拆成一1+9,原式=/3_9大_] + 9 =疋_1_9(尤_1) = (—1)(疋+尤_8)解法2 将一次项-9兀拆成-x-3x ,原式=X3-X-3X +3=(X3-X)- 8(x-l)=x(x + l)(x-1)-8(x-1) = (x - l)(x: +x-8)解法3 将三次项/拆成9疋-8疋,原式=9X3-8X3-9X +8=(9X3-9X)+(-8X3+8)=9x(x + l)(x-1)-8(x - l)(x2 + x + l)=(X-1)(X2+ X-8)解法4添加-x2+x2,原式=x3 -x2 +x2 -9x+8= X2(X-1)+(X-8)(X-1)= (x-l)(x2 +x-8)点评一题四种解法,可谓“横看成岭侧成峰,左添右拆都成功”.拆项、添项是因式分解中技巧性最强的一种例8己知x2 + x+l = O ,试求X8 + x4 +1的值.解析设法使疋+疋+1变成含x2+x+l的式子,因x8 = (x4)2,可考虑完全平方公式,将十拆成2x4-%4.解原式=^8+2X4+1-X4=(X4+1)-(x2)2 =(x2+x + IX%2 -x + 1)因为疋+"1 = 0,所以原式的值为0.五、利用因式定理分解因式因式定理的内容:如果x=a时,多项式的值为零,即f(a) = 0 ,则/'(x)能被x-a整除,即/(兀)一定有因式x-d・运用因式定理和综合除法可以解决一些较复杂的多项式分解问题.例9 分解因式X4+2?-9X:-2X+8.解析设f(x) = x4 + 2x3-9x2-2x + 3,可知/(1) = 0, /(-1) = 0,因此/⑴有因式(x+l)(x-l),用综合除法可求另外因式.解依题意知y(l) = /(-l) = 0,故/'(x)有因式x-1, x+1,作综合除法:12-9-2811 3 -6 -813-6-80—]—1 — 2 812-80因此f(x) = (x- l)(x + l)(x2 + 2x- 8),则原式=(x- 1)(A-+l)(x一2)(A-+4) •好题妙解】佳题新题品味例1 (2001年呼和浩特市中考题)要使二次三项式x^rnx-6能在整数范围内分解因式,则加可取的整数为.解析该式可用十字相乘法分解.那么m等于一6的两个整因数之和.而—6=lx ( —6) = ( — 1) x6=2x ( —3) = ( —2) x3,因而m 可能的值为一5, 5, —1, 1. 点评本题训练逆向思维及枚举法.例2 (2003年江苏初中竞赛)若a, b, c为三角形三边,则下列关系式中正确的是()A. a2-b2-c2-2bc>QB. a2-b2-c2-2bc = QC. a2-b2-c2-2bc<0D. a2 -b2-c2-2bc<0解析因a' -b1 -c2 -2bc = a2 -(b2 +c2 + 2bc) = a2 -(b + c)1 =(a + b + c)(a-b-c)而在三角形中,a<b+c ,即a~b—c<Q,故选C.点评注意隐含条件:三角形中两边之和大于第三边中考真题欣赏例1 (武汉中考题)分解因式a2-l+b2-2ab= _________________________ .解析将a2 +b2 -2ab作一组恰为(«-b)2与1构成平方差,应填(a—b+1) (a—b—1).例2 (北京朝阳区)分解因式m3-2m2-4m+8.解析第一、二项作一组可提公因式沪,后两项作一组可提公因数4,于是m3 -2nr一4m+3 = m2(m-2)-4(m-2) = (m2一4)(m-2) = (m—2):(m+2).点评分解因式一定分解到不能再分解为止.例3 (1999年北京中考题)多项式x2 + axy + by1 -5x+ y + 6的一个因式是x+y-2,试求d+b的值.解析 利用待定系数法,设原式=(x+y-2)(x+^y-3)展开比较系数得号; 解得 a=~l, b=~2,因此 a+b=—3.竞赛样题展示例1 (江苏省第十七届初中数学竞赛)如果是ax 3+bx 2+l 的一个因式,则b 的值为()A.-2B.-lC.OD.2解析 运用待定系数法,依题可设另一因式为ax-1,比较系数可得b=—2,选A.(23 -1)(33 ~1)(43 -1) - (1003 -1)(23 +1](33 +1J43 +1)---(1003 +1)a 3 -1 _(a ~ 1)3 + a + l) _ fl-1 (a +1)3 +1 (a + 2)(a 2 4-ti + l) a + 2故呼式=(2-1X3-1)…(99-山00,-1) 収 玖 (23 +1)(3 +1X4+ 1)-(100-1)1X 2X 3X (1OO 3-1) 3367 小― (23 +1)x99x100x1015050例3设多项式与多项式F+x-a 有非常数公因式,贝仏= ______________________________ . 解析 0或6.因为(兀3-X-d ) - (F+x-d ) = x (x+l )(x-2),所以,X’-X-d 与 F +兀-4 的公因式必为 X 、兀+1、X-2中的一个.当公因式为x 或x+1时,£7=0;当公因式为X —2时,a = 6.例4 (2003年太原市初中数学竞赛)已知直角三角形的各边长为正整数,它的周长为80.则三边长分 别是 •解析涉及直角三角形问题勾股定理举足轻重! 解 30、 16、 34.设直角三角形的三边长分别为4、b 、c.由题设得a 2+b 2^c 2且a+b+c=80.将 c=SQ-a~b 代入a 2+b 2=c 2,整理得 6400—80a — 80b+ab=3200,即(80—。

人教版 初一数学上册 竞赛专题:方程的解与解方程(含答案)

人教版 初一数学上册 竞赛专题:方程的解与解方程(含答案)

人教版 初一数学上册 竞赛专题:方程的解与解方程(含答案)[例1] 已知关于x 的方程3[x -2(x -)]=4x 和-=1有相同的解,那3a 312x a +158x -么这个解是______.(北京市“迎春杯”竞赛试题)[例2] 已知a 是任意有理数,在下面各说法中(1)方程ax =0的解是x =1 (2)方程ax =a 的解是x =1(3)方程ax =1的解是x =(4)方程|a |x =a 的解是x =±11a结论正确的个数是( ).A .0B .1C .2D .3(江苏省竞赛试题)[例3] a 为何值时,方程+a =-(x -12)有无数多个解?无解?3x 2x 16[例4] 如果a ,b 为定值时,关于x 的方程=2+,无论k 为何值时,它的23kx a +6x bk -根总是1,求a ,b 的值.(2013年全国初中数学竞赛预赛试题)[例5] 已知p ,q 都是质数,并且以x 为未知数的一元一次方程px +5q =97的解是1,求代数式p 2-q 的值.(北京市“迎春杯”竞赛试题)[例6] (1)在日历中(如图①),任意圈出一竖列上相邻的三个数,设中间的一个为a ,则用含a 的代数式表示这三个数(从小到大排列)分别是______.(2)现将连续自然数1至2004按图中的方式排成一个长方形阵列,用一个正方形框出16个数(如图②).①图中框出的这16个数的和是______;②在右图中,要使一个正方形框出的16个数之和等于2000,2004,是否可能?若不可能,试说明理由;若有可能,请求出该正方形框出的16个数中的最小数和最大数.2003200419971999200020012002…… (36)37383940414219962930313233343522232425262728151617181920218910111213141234567图②(湖北省黄冈市中考试题)能力训练A 级1.若关于x 的方程(k -2)x |k -1|+5k =0是一元一次方程,则k =______;若关于x 的方程(k +2)x 2+4kx -5k =0是一元一次方程,则方程的解x =______.2.方程x -[x -(x -)]=(x -)的解是______.34143731637(广西赛区选拔赛试题)3.若有理数x ,y 满足(x +y -2)2+|x +2y |=0,则x 2+y 3=______.(“希望杯”邀请赛试题)4.若关于x 的方程a (2x +b )=12x +5有无数个解,则a =______,b =______.(“希望杯”邀请赛试题)5.已知关于x 的方程9x -3=kx =14有整数解,那么满足条件的所有整数k =______.(“五羊杯”竞赛试题)6.下列判断中正确的是( ).A .方程2x -3=1与方程x (2x -3)=x 同解B .方程2x -3=1与方程x (2x -3)=x 没有相同的解C .方程x (2x -3)=x 的解都是方程2x -3=1的解D .方程2x -3=1的解都是方程x (2x -3)=x 的解7.方程++…+=1995的解是( ).12x ⨯23x ⨯19951996x ⨯A .1995 B .1996 C .1997 D .19988.若关于x 的方程=0的解是非负数,则b 的取值范围是().21x b x --A .b >0B .b ≥0C .b ≠2D .b ≥0且b ≠2(黑龙江省竞赛试题)9.关于x 的方程a (x -a )+b (x +b )=0有无穷多个解,则( ).A .a +b =0B .a -b =0C .ab =0D .=0a b10.已知关于x 的一次方程(3a +8b )x +7=0无解,则ab 是( ).A .正数 B .非正数 C .负数 D .非负数(“希望杯”邀请赛试题)11.若关于x 的方程kx -12=3x +3k 有整数解,且k 为整数,求符合条件的k 值.(北京市“迎春杯”训练题)12.已知关于x 的方程+a =x -(x -6),当a 取何值时,(1)方程无解?(2)方程有3x ||2a 16无穷多解?(重庆市竞赛试题)B 级1.已知方程2(x +1)=3(x -1)的解为a +2,则方程2[2(x +3)-3(x -a )]=3a 的解为______.2.已知关于x 的方程=的解是x =2,其中a ≠0且b ≠0,则代数式-的2a x -33bx -b a a b 值是______.3.若k 为整数,则使得方程(k -1999)x =2001-2000x 的解也是整数的k 值有______个.(“希望杯”邀请赛试题)4.如果+++…+=,那么n =______.12161121(1)n n +20032004(江苏省竞赛试题)5.用※表示一种运算,它的含义是A ※B =+,如果2※1=,那么1A B +(1)(1)x A B ++533※4=______.(“希望杯”竞赛试题)6.如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是______克.第6题图(河北省中考试题)7.有四个关于x 的方程①x -2=-1②(x -2)+(x -1)=-1+(x -1)③x =0④x -2+=-1+11x -11x -其中同解的两个方程是( ).A .①与②B .①与③C .①与④D .②与④8.已知a 是不为0的整数,并且关于x 的方程ax =2a 3-3a 2-5a +4有整数解,则a 的值共有( ).A .1个B .3个C .6个D .9个(“希望杯”邀请赛试题)9.(1)当a 取符合na +3≠0的任意数时,式子的值都是一个定值,其中m -n =6,23ma na -+求m ,n 的值.(北京市“迎春杯”竞赛试题)(2)已知无论x 取什么值,式子必为同一定值,求的值.35ax bx ++a b b+(“华罗庚杯”香港中学竞赛试题)10.甲队原有96人,现调出16人到乙队,调出后,甲队人数是乙队人数的k (k 是不等于1的正整数)倍还多6人,问乙队原有多少人?(上海市竞赛试题)11.下图的数阵是由77个偶数排成:第11题图 (142144146148150152154)30323436384042161820222426282468101214用一平行四边形框出四个数(如图中示例).(1)小颖说四个数的和是436,你能求出这四个数吗?(2)小明说四个数的和是326,你能求出这四个数吗?参考答案例1 提示:两方程的解分别为x =a 和x =,由题意知a =,27282727221a -2727221a -得a =.从而可以得到x =a =×=.27827272782728例2 A 提示:当a =0时,各题结论都不正确.例3 提示:原方程化为0x =6a -12(1)当6a -12=0,即a =2时,原方程有无数个解.(2)当6a -12≠0,即a≠2时,原方程无解.例4 原方程整理可得:(4x +b)k =12+x -a . ∵ 无论k 为何值时,它的根总是1. ∴ x =1且k 的系数为0.∴ 4+b =0,13-2a =0.∴ ,.132a =4b =例5 提示:把x =1代入方程px +5q =97,得p +5q =97,故p 与5q 之中必有一个数是偶数(1)若p =2,则5q =95,q =19,;215p q -=-(2)若5q 是偶数,则q =2,p =87,而87不是质数,与题设矛盾,舍去;因此.215p q -=-例5 (1)a -7,a ,a +7; (2)①44×8=352;②设框出的16个数中最小的一 个数为a ,则这16个数组成的正方形方框如右图所示,因为框中每两个关于正方形的中心对称的数之和都等于2a +24,所以这16个数之和为8×(2a +24)=16a +192.当16a +192=2000时,a =113;当16a +192=2004时,a =113.25.∵a 为自然数,∴ a =113.25不合题意,则框出的16个数之和不可能等于2004,由长方形阵列的排列可知,a 只能在1,2,3,4列,则a 被7整除的余数只能是1,2,3,4.因为113=16×7+1,所以,这16个数之和等于2000是可能的.这时,方框涨最小的数是113,最大的数是113+24=137.A 级1.0;2.x =0 3.8 4.6;54565.10;26;8;-8 提示:,能被17整除,则,或179x k=-9k -91k -=±917k -=±6.D 7.B 提示:原方程化为111111199522319951996x ⎛⎫-+-++-= ⎪⎝⎭8.D 9.A10.B11.原方程的解为 ,31221333k x k k +==+-- 显然 k -3=±1,±3,±7,±21,a a +1a +2a +3a +7a +8a +9a +10a +14a +15a +16a +17a +21a +22a +23a +24即 k =4,2,6,0,-4,10,24,-18.12.提示:原方程化为()()121a x a -=-(1)当a =-1时,方程无解;(2)当a =1时,方程有无穷多解.B 级1.10.5 2. 提示:当x =2时,代入得. 712-34b a =3.16提示:为整数,2001=1×3×23×29,故k 可取±1,±3,±23,±29,20011x k =+±3×23,±3×29,±23×29,±22001共16个值.4.2003 提示:()()11111111126121122334451n n n n ++++=++++++⨯⨯⨯⨯+ =,得.1111111120031122334112004n n n -+-+-++-=-=++ 1112004n =+5.提示:,解得 x =8.1935()()152********x =+=+++※6.207.A8.C9.(1)取a =0,则;取a =1,则,2233ma na -=-+2233m n -=-+ 得 ,又,解得,.()()32230m n -++=6m n -=125m =185n =- (2)令x =0,则;令x =1,则,3355ma na +=+3355m n +=+ 得,即,故.()()5335a b +=+35a b =381155a b a b b +=+=+=10.设乙队原有x 人,则80=k(x +16)+6,解得.7416kx k-=∵x 必须为正整数且k≠1,∴ ,,得出k =2或37,7416x N k=-∈+74k 只有当k =2时,x =21人.11.(1)能,这四个数分别是100,102,116,118. (2)不能.。

七年级数学上册竞赛试题(包含答案)[2]

七年级数学上册竞赛试题(包含答案)[2]

七年级数学上册竞赛试题(包含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册竞赛试题(包含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册竞赛试题(包含答案)(word版可编辑修改)的全部内容。

一、选择题1、已知代数式3++的值是()x yx y+的值是4,则代数式261A、10B、9C、8D、不能确定【答案】2、用四舍五入得到的近似数中,含有三个有效数字的是( )A、0.5180B、0.02380C、800万D、4.0012【答案】3.某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如9∶15记为-1,10∶45记为1等等,依此类推,上午7∶45应记为()A、3B、-3C、-2.15D、-7.45【答案】4、x、y、z在数轴上的位置如图所示,则化简y+-的结果是()x-yzA、x z-C、2-B、z x+-D、以上都不对x z y【答案】5、观察下列图形,并阅读图形下面的相关文字两直线相交,最多1个交点三条直线相交最多有3个交点四条直线相交最多有6个交点像这样的十条直线相交最多的交点个数为()A、40个B、45个C、50个D、55个【答案】6、如图棋盘上有黑、白两色棋子若干,找出所有只要有三颗颜色相同的棋并且在同一直线上的直线,这样直线共有多少条?.( )A 、2条B 、3条C 、4条D 、5条 【答案】7、一台电视机成本价为a 元,销售价比成本价增加25%,因库存积压,所以就按销售价的70%出售。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学竞赛辅导资料(6)
数学符号
甲内容提要
数学符号是表达数学语言的特殊文字。

每一个符号都有确定的意义,即
当我们把它规定为某种意义后,就不再表示其他意义。

数学符号一般可分为:
1, 元素符号:通常用小写字母表示数,用大写字母表示点,用⊙和△
表示园和三角形等。

2, 关系符号:如等号,不等号,相似∽,全等≌,平行∥,垂直⊥等。

3, 运算符号:如加、减、乘、除、乘方、开方、绝对值等。

4, 逻辑符号:略
5, 约定符号和辅助符号:例如我们约定正整数a 和b 中,如果a 除
以b 的商的整数部份记作Z (
b a ),而它的余数记作R (b a ), 那么 Z (310)=3,R (3
10)=1;又如设[]x 表示不大于x 的最大整数,那么[]2.5=5,[]2.5-=-6,⎥⎦
⎤⎢⎣⎡32=0,[]3-=-3。

正确使用符号的关健是明确它所表示的意义(即定义)
对题设中临时约定的符号,一定要扣紧定义,由简到繁,由浅入深,
由具体到抽象,逐步加深理解。

在解题过程中为了简明表述,需要临时引用辅助符号时,必须先作
出明确的定义,所用符号不要与常规符号混淆。

乙例题
例1设[]Z 表示不大于Z 的最大整数,<n>为正整数n 除以3的余数 计算:
①〔4.07〕+〔-7
32
〕-〈13;〉+〈2004〉 ②〈〔14.7〕〉+〔234><〕。

解:①原式=4+(-3)-1+0=0
②原式=<14>+〔2
1〕=2+0=2 例2①求19871988的个位数
②说明19871989-19931991能被10整除的理由
解:设N (x )表示整数x 的个位数,
① N (19871988)=N (74×497)=N (74)=1
②∵N (19871989)-N (19931991)=N (74×497+1)-N (34×497+3)
=N (71)-N (33)=7-7=0
∴19871989-19931991能被10整除
由于引入辅助符号,解答问题显得简要明瞭。

例3.定义一种符号★的运算规则为:a ★b=2a+b
试计算:①5★3 ②(1★7)★4
解:①5★3=2×5+3=13
②(2×1+7)★4=9★4=2×9+4=22
例4 设a ※b=a(ab+7), 求等式3※x=2※(-8)中的x
解:由题设可知:
等式3※x=2※(-8)就是3(3x +7)=2〔2×(-8)+7〕
∴9x+21=-18
∴x=-43
1 丙练习6
1,设Q <x >表示有理数x 的整数部分,那么Q <2.15>= Q <-12.3>= Q<-0.03>= Q <51>=
2,设{n }表示不小于n 的最小整数,那么{4.3}= {-2.3}=
{-2}= {-0.3}+{0.3}=
3,设〔m 〕表示不大于m 的最大整数
①若m=2 则〔m 〕= ② 若n= -3.5则〔n 〕= ③若-1<Y <0则〔Y 〕= ④若7≤b<8 则〔b 〕=
⑤若〔x 〕=4 则__≤x <__ ⑥若 n ≤C<n +1则〔C 〕=
4,正整数a 和b 中,设a 除以b 的商的整数部分记作Z (b a )余数记作 R (b a ),a b 的个位数记作n (a b ),写出下列各数的结果:
①R (733)+R (52)= ②Z (733)+Z (52)=
③n(19891990)=
5,设n !表示自然数由1到n 的連乘积 例如5!=1×2×3×4×5=120 计算:①120÷3! ②
)!35(!3!5- 6,设=2
211
b a b a = a 1b 2-a 2b 1 计算:①21 43
= ②11- 0
1-=
7,定义一种符号#的运算法则为a #b=b
a b a ++22 那么 ① 3#2= ②2#3=
③(1#2)#3 = ④(-3)#(1#0)=
8,a,b 都是正整数,设a ⊕b 表示从a 起b 个連续正整数的和。

例如2⊕3=2+3+4 5⊕4=5+6+7+8
己知 X ⊕5=2005 求X
9. 设[x ]表示不大于x 数的最大整数且{}x =x -[x ]
求{
}{}ππ-+ 10. 设[a ]表示不大于数a 的最大整数, 例如[2]=1,[-2]=-2 那么 [3x+1]=2x-
2
1的所有的根的和是__(1987年全国初中联赛题)。

相关文档
最新文档