进贤县高中2018-2019学年高二上学期数学期末模拟试卷含解析(1)

合集下载

进贤县二中2018-2019学年高二上学期数学期末模拟试卷含解析

进贤县二中2018-2019学年高二上学期数学期末模拟试卷含解析

进贤县二中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知定义在R 上的函数f (x )满足f (x )=,且f (x )=f (x+2),g (x )=,则方程g (x )=f (x )﹣g (x )在区间[﹣3,7]上的所有零点之和为( ) A .12 B .11C .10D .92. 如图,空间四边形OABC 中,,,,点M 在OA 上,且,点N 为BC 中点,则等于( )A .B .C .D .3. “x ≠0”是“x >0”是的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4. 若直线l 的方向向量为=(1,0,2),平面α的法向量为=(﹣2,0,﹣4),则( ) A .l ∥α B .l ⊥αC .l ⊂αD .l 与α相交但不垂直 5. 已知集合23111{1,(),,}122i A i i i i -=-+-+(其中为虚数单位),2{1}B x x =<,则A B =( ) A .{1}- B .{1} C .{1,}2- D .{}26. 如图,程序框图的运算结果为( )A .6B .24C .20D .1207. 方程1x -=表示的曲线是( )A .一个圆B . 两个半圆C .两个圆D .半圆8. 已知集合{}{2|5,x |y ,A y y x B A B ==-+===( )A .[)1,+∞B .[]1,3C .(]3,5D .[]3,5【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力.9. 已知幂函数y=f (x )的图象过点(,),则f (2)的值为( )A .B .﹣C .2D .﹣210.在区域内任意取一点P (x ,y ),则x 2+y 2<1的概率是( )A .0B .C .D .11.函数y=f ′(x )是函数y=f (x )的导函数,且函数y=f (x )在点p (x 0,f (x 0))处的切线为l :y=g (x )=f ′(x 0)(x ﹣x 0)+f (x 0),F (x )=f (x )﹣g (x ),如果函数y=f (x )在区间[a ,b]上的图象如图所示,且a <x 0<b ,那么( )A .F ′(x 0)=0,x=x 0是F (x )的极大值点B .F ′(x 0)=0,x=x 0是F (x )的极小值点C .F ′(x 0)≠0,x=x 0不是F (x )极值点D .F ′(x 0)≠0,x=x 0是F (x )极值点12.已知函数f (x )=,则的值为( )A .B .C .﹣2D .3二、填空题13.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同.三个房间的粉刷面积和三种颜色的涂料费用如下表:那么在所有不同的粉刷方案中,最低的涂料总费用是 _______元.14.设f (x )是(x 2+)6展开式的中间项,若f (x )≤mx 在区间[,]上恒成立,则实数m 的取值范围是 .15.S n =++…+= .16.已知圆22240C x y x y m +-++=:,则其圆心坐标是_________,m 的取值范围是________. 【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力.17.【泰州中学2018届高三10月月考】设函数()f x '是奇函数()f x 的导函数,()10f -=,当0x >时,()()0xf x f x -<',则使得()0f x >成立的x 的取值范围是__________.18.已知i 是虚数单位,复数的模为 .三、解答题19.如图,已知椭圆C :+y 2=1,点B 坐标为(0,﹣1),过点B 的直线与椭圆C 另外一个交点为A ,且线段AB 的中点E 在直线y=x 上 (Ⅰ)求直线AB 的方程(Ⅱ)若点P 为椭圆C 上异于A ,B 的任意一点,直线AP ,BP 分别交直线y=x 于点M ,N ,证明:OM •ON 为定值.20.已知{}n a 是等差数列,{}n b 是等比数列,n S 为数列{}n a 的前项和,111a b ==,且3336b S =,228b S =(*n N ∈).(1)求n a 和n b ; (2)若1n n a a +<,求数列11n n a a +⎧⎫⎨⎬⎩⎭的前项和n T .21.已知函数f (x )=ax 2+2x ﹣lnx (a ∈R ). (Ⅰ)若a=4,求函数f (x )的极值;(Ⅱ)若f ′(x )在(0,1)有唯一的零点x 0,求a 的取值范围;(Ⅲ)若a ∈(﹣,0),设g (x )=a (1﹣x )2﹣2x ﹣1﹣ln (1﹣x ),求证:g (x )在(0,1)内有唯一的零点x 1,且对(Ⅱ)中的x 0,满足x 0+x 1>1.22.在等比数列{a n}中,a3=﹣12,前3项和S3=﹣9,求公比q.23.已知函数f(x)=ax2+bx+c,满足f(1)=﹣,且3a>2c>2b.(1)求证:a>0时,的取值范围;(2)证明函数f(x)在区间(0,2)内至少有一个零点;(3)设x1,x2是函数f(x)的两个零点,求|x1﹣x2|的取值范围.24.甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获胜4场就结束比赛.现已比赛了4场,且甲篮球队胜3场.已知甲球队第5,6场获胜的概率均为,但由于体力原因,第7场获胜的概率为.(Ⅰ)求甲队分别以4:2,4:3获胜的概率;(Ⅱ)设X表示决出冠军时比赛的场数,求X的分布列及数学期望.进贤县二中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】解:∵f(x)=f(x+2),∴函数f(x)为周期为2的周期函数,函数g(x)=,其图象关于点(2,3)对称,如图,函数f(x)的图象也关于点(2,3)对称,函数f(x)与g(x)在[﹣3,7]上的交点也关于(2,3)对称,设A,B,C,D的横坐标分别为a,b,c,d,则a+d=4,b+c=4,由图象知另一交点横坐标为3,故两图象在[﹣3,7]上的交点的横坐标之和为4+4+3=11,即函数y=f(x)﹣g(x)在[﹣3,7]上的所有零点之和为11.故选:B.【点评】本题考查函数的周期性,函数的零点的概念,以及数形结合的思想方法.属于中档题.2.【答案】B【解析】解:===;又,,,∴.故选B.【点评】本题考查了向量加法的几何意义,是基础题.3. 【答案】B【解析】解:当x=﹣1时,满足x ≠0,但x >0不成立. 当x >0时,一定有x ≠0成立, ∴“x ≠0”是“x >0”是的必要不充分条件. 故选:B .4. 【答案】B【解析】解:∵ =(1,0,2),=(﹣2,0,4),∴=﹣2,∴∥, 因此l ⊥α. 故选:B .5. 【答案】D 【解析】考点:1.复数的相关概念;2.集合的运算 6. 【答案】 B【解析】解:∵循环体中S=S ×n 可知程序的功能是: 计算并输出循环变量n 的累乘值,∵循环变量n 的初值为1,终值为4,累乘器S 的初值为1, 故输出S=1×2×3×4=24, 故选:B .【点评】本题考查的知识点是程序框图,其中根据已知分析出程序的功能是解答的关键.7. 【答案】A 【解析】试题分析:由方程()2111x y -=-+()2221(11)x y -=-+,即22(1)(1)1x y -++=,所以方程表示的轨迹为一个圆,故选A.考点:曲线的方程. 8. 【答案】D【解析】{}{{}|5,||3,A y y B x y x x =≤===≥[]3,5A B ∴=,故选D.9. 【答案】A【解析】解:设幂函数y=f (x )=x α,把点(,)代入可得=α,∴α=,即f (x )=,故f (2)==,故选:A .10.【答案】C【解析】解:根据题意,如图,设O (0,0)、A (1,0)、B (1,1)、C (0,1),分析可得区域表示的区域为以正方形OABC 的内部及边界,其面积为1;x 2+y 2<1表示圆心在原点,半径为1的圆,在正方形OABC 的内部的面积为=,由几何概型的计算公式,可得点P (x ,y )满足x 2+y 2<1的概率是=;故选C .【点评】本题考查几何概型的计算,解题的关键是将不等式(组)转化为平面直角坐标系下的图形的面积,进而由其公式计算.11.【答案】 B【解析】解:∵F (x )=f (x )﹣g (x )=f (x )﹣f ′(x 0)(x ﹣x 0)﹣f (x 0),∴F'(x)=f'(x)﹣f′(x0)∴F'(x0)=0,又由a<x0<b,得出当a<x<x0时,f'(x)<f′(x0),F'(x)<0,当x0<x<b时,f'(x)<f′(x0),F'(x)>0,∴x=x0是F(x)的极小值点故选B.【点评】本题主要考查函数的极值与其导函数的关系,即当函数取到极值时导函数一定等于0,反之当导函数等于0时还要判断原函数的单调性才能确定是否有极值.12.【答案】A【解析】解:∵函数f(x)=,∴f()==﹣2,=f(﹣2)=3﹣2=.故选:A.二、填空题13.【答案】1464【解析】【知识点】函数模型及其应用【试题解析】显然,面积大的房间用费用低的涂料,所以房间A用涂料1,房间B用涂料3,房间C用涂料2,即最低的涂料总费用是元。

2019-2020学年江西省南昌市进贤一中2018级高二上学期期末考试数学(理)试卷及解析

2019-2020学年江西省南昌市进贤一中2018级高二上学期期末考试数学(理)试卷及解析

2019-2020学年江西省南昌市进贤一中2018级高二上学期期末考试数学(理)试卷★祝考试顺利★(解析版)一、单选题(每小题5 分,共60分). 1.131i i+=-( ) A. 24i --B. 24i -+C. 12i -+D. 12i --【答案】C 分析:求131i i+-,将其分子、分母同乘以分母的共轭复数1i +,可得(13)(1)(1)(1)i i i i ++-+,转化为两个复数相乘可得221331i i i i+++-,化简可得242i -+,即12i -+. 详解: 2213(13)(1)133133241(1)(1)122i i i i i i i i i i i i i ++++++++--+====--+- 12i =-+ .故选C .2.命题“2,x x R e x ∀∈>”的否定是( )A. 2,x x R e x ∀∈≤B. 0200,x x R e x ∃∈>C. 0200,x x R e x ∃∈≤D. 2,x x R e x ∀∈<【答案】C【解析】根据全称命题的否定的性质进行求解即可.【详解】命题“2,x x R e x ∀∈>”的否定是0200,x x R e x ∃∈≤.故选:C3.“1c =”是“直线0x y c ++=与圆()()22212x y -++=”相切( )A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】 根据直线与圆相切,求得1c =或3c =,结合充分条件和必要条件的判定,即可求解.【详解】由题意,圆()()22212x y -++=的圆心坐标为(2,1)-,,当直线0x y c ++=与圆()()22212x y -++=相切,可得d r =,即d ==,整理得12c +=,解得1c =或3c =,所以“1c =”是“直线0x y c ++=与圆()()22212x y -++=”相切的充分不必要条件.故选B.4.直线y x =与曲线y = ) A. 52 B. 32 C. 23 D. 16【答案】D【解析】利用定积分的几何意义,首先利用定积分表示面积,然后计算即可.【详解】y x =与曲线y =3121200211)()|326S x dx x x ==-=⎰. 故选D .5.观察下列各式:若112213a b a b ==+,+,334447a b a b ==+,+,5511a b =⋯+,,则77a b +等于( )A. 18B. 29C. 47D. 15 【答案】B【解析】找出规律:从第三项开始,每项等于前两项之和,计算得到答案.【详解】找出规律:从第三项开始,每项等于前两项之和6671118a b =+=+。

进贤县高中2018-2019学年上学期高二数学12月月考试题含解析

进贤县高中2018-2019学年上学期高二数学12月月考试题含解析

【解析】解:设球的半径为 R,圆锥底面的半径为 r,则 πr2= ×4πR2=
,∴r= .
∴球心到圆锥底面的距离为
= .∴圆锥的高分别为 和 .
∴两个圆锥的体积比为 :
故选:D. 7. 【答案】 D
=1:3.
第 7 页,共 16 页
【解析】解:①∵x∈[0, ],∴fn(x)=sinnx+cosnx≤sinx+cosx=
12.(2011 辽宁)设 sin( +θ)= ,则 sin2θ=( )
A.﹣
B.﹣
C.
D.
二、填空题
13.曲线 y=x+ex 在点 A(0,1)处的切线方程是 .
14.若点 p(1,1)为圆(x﹣3)2+y2=9 的弦 MN 的中点,则弦 MN 所在直线方程为
15.在△ABC 中,
,,
【解析】解:①命题“若 x2﹣x=0,则 x=1”的逆否命题为“若 x≠1,则 x2﹣x≠0”,①正确; ②若“¬p 或 q”是假命题,则¬p、q 均为假命题,∴p、¬q 均为真命题,“p 且¬q”是真命题,②正确; ③由 p:x(x﹣2)≤0,得 0≤x≤2, 由 q:log2x≤1,得 0<x≤2,则 p 是 q 的必要不充分条件,③错误; ④若命题 p:存在 x∈R,使得 2x<x2,则¬p:任意 x∈R,均有 2x≥x2,④正确. ∴正确的命题有 3 个. 故选:C. 12.【答案】A
而由其公式计算. 5. 【答案】B
【解析】解:①绘制频率分布直方图时,各小长方形的面积等于相应各组的频率,故①错; ②线性回归直线一定经过样本中心点( , ),故②正确;
③设随机变量 ξ 服从正态分布 N(1,32)则 p(ξ<1)= ,正确;

进贤县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析

进贤县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析

进贤县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设函数y=x 3与y=()x 的图象的交点为(x 0,y 0),则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4) 2. 命题“若a >b ,则a ﹣8>b ﹣8”的逆否命题是( )A .若a <b ,则a ﹣8<b ﹣8B .若a ﹣8>b ﹣8,则a >bC .若a ≤b ,则a ﹣8≤b ﹣8D .若a ﹣8≤b ﹣8,则a ≤b3. 已知直线l的参数方程为1cos sin x t y t αα=+⎧⎪⎨=⎪⎩(t 为参数,α为直线l 的倾斜角),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()3πρθ=+,直线l 与圆C 的两个交点为,A B ,当||AB 最小时,α的值为( )A .4πα=B .3πα=C .34πα=D .23πα=4. 函数()f x 在定义域R 上的导函数是'()f x ,若()(2)f x f x =-,且当(,1)x ∈-∞时,'(1)()0x f x -<,设(0)a f =,b f =,2(log 8)c f =,则( )A .a b c <<B .a b c >>C .c a b <<D .a c b <<5. 设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( )A .2013B .2014 C .2015 D .20161111] 6. 奇函数()f x 满足()10f =,且()f x 在()0+∞,上是单调递减,则()()210x f x f x -<--的解集为( ) A .()11-, B .()()11-∞-+∞,,C .()1-∞-,D .()1+∞,7. 下列说法正确的是( ) A .类比推理是由特殊到一般的推理 B .演绎推理是特殊到一般的推理 C .归纳推理是个别到一般的推理 D .合情推理可以作为证明的步骤8. 设a=0.5,b=0.8,c=log 20.5,则a 、b 、c 的大小关系是( )A .c <b <aB .c <a <bC .a <b <cD .b <a <c9. 已知双曲线的方程为﹣=1,则双曲线的离心率为( )A .B .C .或D .或10.设实数,则a 、b 、c 的大小关系为( )A .a <c <bB .c <b <aC .b <a <cD .a <b <c 11.已知函数f (x )=3cos (2x ﹣),则下列结论正确的是( )A .导函数为B .函数f (x )的图象关于直线对称C .函数f (x )在区间(﹣,)上是增函数D .函数f (x )的图象可由函数y=3co s2x 的图象向右平移个单位长度得到12.已知三棱柱111ABC A B C - 的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点, 则异面直线AB 与1CC 所成的角的余弦值为( )A .4 B .4 C.4D .34二、填空题13.已知向量(1,),(1,1),a x b x ==-若(2)a b a -⊥,则|2|a b -=( )A .2B .3C .2D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.14.如图,正方形''''O A B C 的边长为1cm ,它是水平放置的一个平面图形的直观图,则原图的 周长为 .1111]15.阅读下图所示的程序框图,运行相应的程序,输出的n的值等于_________.满足线性约束条件.三、解答题19.(本小题满分10分)已知圆P过点)0,1(A,)0,4(B.(1)若圆P还过点)2,6(-C,求圆P的方程;(2)若圆心P的纵坐标为,求圆P的方程.20.已知椭圆C1:+x2=1(a>1)与抛物线C:x2=4y有相同焦点F1.S(Ⅰ)求椭圆C1的标准方程;(Ⅱ)已知直线l1过椭圆C1的另一焦点F2,且与抛物线C2相切于第一象限的点A,设平行l1的直线l交椭圆C1于B,C两点,当△OBC面积最大时,求直线l的方程.21.22.已知命题p:不等式|x﹣1|>m﹣1的解集为R,命题q:f(x)=﹣(5﹣2m)x是减函数,若p或q为真命题,p且q为假命题,求实数m的取值范围.23.已知向量=(x,y),=(1,0),且(+)•(﹣)=0.(1)求点Q(x,y)的轨迹C的方程;(2)设曲线C与直线y=kx+m相交于不同的两点M、N,又点A(0,﹣1),当|AM|=|AN|时,求实数m的取值范围.24X(I)求该运动员两次都命中7环的概率;(Ⅱ)求ξ的数学期望Eξ.进贤县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】A【解析】解:令f (x )=x 3﹣,∵f ′(x )=3x 2﹣ln =3x 2+ln2>0,∴f (x )=x 3﹣在R 上单调递增;又f (1)=1﹣=>0, f (0)=0﹣1=﹣1<0,∴f (x )=x 3﹣的零点在(0,1),∵函数y=x 3与y=()x的图象的交点为(x 0,y 0),∴x 0所在的区间是(0,1). 故答案为:A .2. 【答案】D【解析】解:根据逆否命题和原命题之间的关系可得命题“若a >b ,则a ﹣8>b ﹣8”的逆否命题是:若a ﹣8≤b﹣8,则a ≤b . 故选D .【点评】本题主要考查逆否命题和原命题之间的关系,要求熟练掌握四种命题之间的关系.比较基础.3. 【答案】A【解析】解析:本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系.在直角坐标系中,圆C的方程为22((1)4x y +-=,直线l 的普通方程为tan (1)y x α=-,直线l 过定点M ,∵||2MC <,∴点M 在圆C 的内部.当||AB 最小时,直线l ⊥直线MC ,1MC k =-,∴直线l 的斜率为1,∴4πα=,选A .4. 【答案】C 【解析】考点:函数的对称性,导数与单调性.【名师点睛】函数的图象是研究函数性质的一个重要工具,通过函数的图象研究问题是数形结合思想应用的不可或缺的重要一环,因此掌握函数的图象的性质是我们在平常学习中要重点注意的,如函数()f x 满足:()()f a x f a x +=-或()(2)f x f a x =-,则其图象关于直线x a =对称,如满足(2)2()f m x n f x -=-,则其图象关于点(,)m n 对称. 5. 【答案】D 【解析】1120142201520161...2201720172017201720172017f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()12201620162=⨯⨯=,故选D. 1 考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.【方法点睛】本题通过 “三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ”这一探索性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出()311533212f x x x x =-+-的对称中心后再利用对称性和的.第Ⅱ卷(非选择题共90分)6. 【答案】B试题分析:由()()()()()212102102x x x f x f x f x f x --<⇒⇒-<--,即整式21x -的值与函数()f x 的值符号相反,当0x >时,210x ->;当0x <时,210x -<,结合图象即得()()11-∞-+∞,,.考点:1、函数的单调性;2、函数的奇偶性;3、不等式. 7. 【答案】C【解析】解:因为归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤,故选C .【点评】本题考查合情推理与演绎推理,考查学生分析解决问题的能力,属于基础题.8. 【答案】B【解析】解:∵a=0.5,b=0.8,∴0<a <b , ∵c=log 20.5<0, ∴c <a <b , 故选B .【点评】本题主要考查了对数值、指数值大小的比较,常常与中间值进行比较,属于基础题.9. 【答案】C【解析】解:双曲线的方程为﹣=1,焦点坐标在x 轴时,a 2=m ,b 2=2m ,c 2=3m ,离心率e=.焦点坐标在y 轴时,a 2=﹣2m ,b 2=﹣m ,c 2=﹣3m ,离心率e==.故选:C .【点评】本题考查双曲线的离心率的求法,注意实轴所在轴的易错点.10.【答案】A【解析】解:∵,b=20.1>20=1,0<<0.90=1.∴a <c <b .11.【答案】B【解析】解:对于A,函数f′(x)=﹣3sin(2x﹣)•2=﹣6sin(2x﹣),A错误;对于B,当x=时,f()=3cos(2×﹣)=﹣3取得最小值,所以函数f(x)的图象关于直线对称,B正确;对于C,当x∈(﹣,)时,2x﹣∈(﹣,),函数f(x)=3cos(2x﹣)不是单调函数,C错误;对于D,函数y=3co s2x的图象向右平移个单位长度,得到函数y=3co s2(x﹣)=3co s(2x﹣)的图象,这不是函数f(x)的图象,D错误.故选:B.【点评】本题考查了余弦函数的图象与性质的应用问题,是基础题目.12.【答案】D【解析】考点:异面直线所成的角.二、填空题13.【答案】A【解析】14.【答案】8cm考点:平面图形的直观图. 15.【答案】6【解析】解析:本题考查程序框图中的循环结构.第1次运行后,9,2,2,S T n S T ===>;第2次运行后,13,4,3,S T n S T ===>;第3次运行后,17,8,4,S T n S T ===>;第4次运行后,21,16,5,S T n S T ===>;第5次运行后,25,32,6,S T n S T ===<,此时跳出循环,输出结果6n =程序结束.16.【答案】 5 .【解析】解:P (1,4)为抛物线C :y 2=mx 上一点,即有42=m ,即m=16, 抛物线的方程为y 2=16x ,焦点为(4,0),即有|PF|==5.故答案为:5.【点评】本题考查抛物线的方程和性质,考查两点的距离公式,及运算能力,属于基础题.17.【答案】 38 .【解析】解:作出不等式组对应的平面区域如图:由z=2x+4y 得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点A 时,直线y=﹣x+的截距最大,此时z 最大,由,解得,即A (3,8),此时z=2×3+4×8=6+32=32, 故答案为:3818.【答案】 y=﹣1.7t+68.7【解析】解: =, ==63.6.=(﹣2)×4.4+(﹣1)×1.4+0+1×(﹣1.6)+2×(﹣2.6)=﹣17.=4+1+0+1+2=10.∴=﹣=﹣1.7.=63.6+1.7×3=68.7.∴y 关于t 的线性回归方程为y=﹣1.7t+68.7. 故答案为y=﹣1.7t+68.7.【点评】本题考查了线性回归方程的解法,属于基础题.三、解答题19.【答案】(1)047522=++-+y x y x ;(2)425)2()25(22=-+-y x . 【解析】试题分析:(1)当题设给出圆上三点时,求圆的方程,此时设圆的一般方程022=++++F Ey Dx y x ,将三点代入,求解圆的方程;(2)AB 的垂直平分线过圆心,所以圆心的横坐标为25,圆心与圆上任一点连线段为半径,根据圆心与半径求圆的标准方程.试题解析:(1)设圆P 的方程是022=++++F Ey Dx y x ,则由已知得⎪⎩⎪⎨⎧=+-+-+=++++=++++026)2(6004040001222222F E D F D F D ,解得⎪⎩⎪⎨⎧==-=475F E D . 故圆P 的方程为047522=++-+y x y x .(2)由圆的对称性可知,圆心P 的横坐标为25241=+,故圆心)2,25(P , 故圆P 的半径25)20()251(||22=-+-==AP r ,故圆P 的标准方程为425)2()25(22=-+-y x .考点:圆的方程 20.【答案】【解析】解:(Ⅰ)∵抛物线x 2=4y 的焦点为F 1(0,1), ∴c=1,又b 2=1,∴∴椭圆方程为:+x 2=1. …(Ⅱ)F 2(0,﹣1),由已知可知直线l 1的斜率必存在,设直线l 1:y=kx ﹣1由消去y 并化简得x 2﹣4kx+4=0∵直线l 1与抛物线C 2相切于点A .∴△=(﹣4k )2﹣4×4=0,得k=±1.…∵切点A 在第一象限. ∴k=1… ∵l ∥l 1∴设直线l 的方程为y=x+m由,消去y整理得3x2+2mx+m2﹣2=0,…△=(2m)2﹣12(m2﹣2)>0,解得.设B(x1,y1),C(x2,y2),则,.…又直线l交y轴于D(0,m)∴…=当,即时,.…所以,所求直线l的方程为.…【点评】本题主要考查椭圆、抛物线的有关计算、性质,考查直线与圆锥曲线的位置关系,考查运算求解能力及数形结合和化归与转化思想.21.【答案】一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图),(1)求a的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X,求X的分布列和数学期望.(以直方图中的频率作为概率)【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差.【专题】概率与统计.【分析】(1)求解得a=0.03,由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20 根据平均数值公式求解即可.(2)X ~B (3,),根据二项分布求解P (X=0),P (X=1),P (X=2)=,P (X=3),列出分布列,求解数学期望即可.【解析】解:(1)由题意得,(0.02+0.032+a+0.018)×10=1 解得a=0.03;又由最高矩形中点的横坐标为20, 可估计盒子中小球重量的众数约为20, 而50个样本小球重量的平均值为:=0.2×10+0.32×20+0.3×30+0.18×40=24.6(克) 故估计盒子中小球重量的平均值约为24.6克.(2)利用样本估计总体,该盒子中小球的重量在[5,15]内的0.2;则X ~B (3,), X=0,1,2,3;P (X=0)=×()3=;P (X=1)=×()2×=;P (X=2)=×()×()2=;P (X=3)=×()3=,∴X 的分布列为: 0 123即E (X )=0×=.【点评】本题考查了离散型的随机变量及概率分布列,数学期望的求解,注意阅读题意,得出随机变量的数值,准确求解概率,难度不大,需要很好的计算能力22.【答案】【解析】解:不等式|x ﹣1|>m ﹣1的解集为R ,须m ﹣1<0,即p 是真 命题,m <1 f (x )=﹣(5﹣2m )x 是减函数,须5﹣2m >1即q 是真命题,m <2, 由于p 或q 为真命题,p 且q 为假命题,故p 、q 中一个真,另一个为假命题 因此,1≤m <2.【点评】本题考查在数轴上理解绝对值的几何意义,指数函数的单调性与特殊点,分类讨论思想,化简这两个命题是解题的关键.属中档题.23.【答案】【解析】解:(1)由题意向量=(x,y),=(1,0),且(+)•(﹣)=0,∴,化简得,∴Q点的轨迹C的方程为.…(2)由得(3k2+1)x2+6mkx+3(m2﹣1)=0,由于直线与椭圆有两个不同的交点,∴△>0,即m2<3k2+1.①…(i)当k≠0时,设弦MN的中点为P(x P,y P),x M、x N分别为点M、N的横坐标,则,从而,,…又|AM|=|AN|,∴AP⊥MN.则,即2m=3k2+1,②将②代入①得2m>m2,解得0<m<2,由②得,解得,故所求的m的取值范围是(,2).…(ii)当k=0时,|AM|=|AN|,∴AP⊥MN,m2<3k2+1,解得﹣1<m<1.…综上,当k≠0时,m的取值范围是(,2),当k=0时,m的取值范围是(﹣1,1).…【点评】本题考查轨迹方程,考查直线与椭圆的位置关系,考查小时分析解决问题的能力,属于中档题.24.【答案】【解析】解:(1)设A=“该运动员两次都命中7环”,则P(A)=0.2×0.2=0.04.(2)依题意ξ在可能取值为:7、8、9、10且P(ξ=7)=0.04,P(ξ=8)=2×0.2×0.3+0.32=0.21,P(ξ=9)=2×0.2×0.3+2×0.3×0.3×0.32=0.39,P(ξ=10)=2×0.2×0.2+2×0.3×0.2+2×0.3×0.2+0.22=0.36,∴ξ的分布列为:ξ7 8 9 10P 0.04 0.21 0.39 0.36ξ的期望为Eξ=7×0.04+8×0.21+9×0.39+10×0.36=9.07.【点评】本题考查概率的求法,考查离散型随机变量的数学期望的求法,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.。

进贤县三中2018-2019学年上学期高二数学12月月考试题含解析

进贤县三中2018-2019学年上学期高二数学12月月考试题含解析

进贤县三中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知函数⎩⎨⎧≤>=)0(||)0(log )(2x x x x x f ,函数)(x g 满足以下三点条件:①定义域为R ;②对任意R x ∈,有1()(2)2g x g x =+;③当]1,1[-∈x 时,()g x 则函数)()(x g x f y -=在区间]4,4[-上零点的个数为( )A .7B .6C .5D .4【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大.2. 若a <b <0,则下列不等式不成立是( )A .>B .>C .|a|>|b|D .a 2>b 23. 设变量x ,y 满足约束条件,则目标函数z=4x+2y 的最大值为( )A .12B .10C .8D .24. 已知11xyi i=-+,其中,x y 是实数,是虚数单位,则x yi +的共轭复数为 A 、12i + B 、12i - C 、2i + D 、2i -5. 圆心为(1,1)且过原点的圆的方程是( )A .2=1B .2=1C .2=2D .2=26. 已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}的元素个数为( ) A .4 B .5 C .6 D .9 7. 在△ABC 中,b=,c=3,B=30°,则a=( )A .B .2C .或2D .28. 下列函数中,为奇函数的是( )A .y=x+1B .y=x 2C .y=2xD .y=x|x|9. 设b ,c 表示两条直线,α,β表示两个平面,则下列命题是真命题的是( ) A .若b ⊂α,c ∥α,则b ∥cB .若c ∥α,α⊥β,则c ⊥β C .若b ⊂α,b ∥c ,则c ∥α D .若c ∥α,c ⊥β,则α⊥β10.设函数()()21x f x e x ax a =--+,其中1a <,若存在唯一的整数,使得()0f t <,则的 取值范围是( ) A .3,12e ⎡⎫-⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭1111]11.若a >0,b >0,a+b=1,则y=+的最小值是( )A .2B .3C .4D .512.已知△ABC 是锐角三角形,则点P (cosC ﹣sinA ,sinA ﹣cosB )在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限二、填空题13.在下列给出的命题中,所有正确命题的序号为 . ①函数y=2x 3+3x ﹣1的图象关于点(0,1)成中心对称; ②对∀x ,y ∈R .若x+y ≠0,则x ≠1或y ≠﹣1;③若实数x ,y 满足x 2+y 2=1,则的最大值为;④若△ABC 为锐角三角形,则sinA <cosB .⑤在△ABC 中,BC=5,G ,O 分别为△ABC 的重心和外心,且•=5,则△ABC 的形状是直角三角形.14.已知集合{}|03,A x x x R =<∈≤,{}|12,B x x x R =-∈≤≤,则A ∪B = ▲ . 15.若命题“∃x ∈R ,x 2﹣2x+m ≤0”是假命题,则m 的取值范围是 .16.对于集合M ,定义函数对于两个集合A ,B ,定义集合A △B={x|f A (x )f B (x )=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A △B 的结果为 .17.已知函数y=f (x ),x ∈I ,若存在x 0∈I ,使得f (x 0)=x 0,则称x 0为函数y=f (x )的不动点;若存在x 0∈I ,使得f (f (x 0))=x 0,则称x 0为函数y=f (x )的稳定点.则下列结论中正确的是 .(填上所有正确结论的序号)①﹣,1是函数g (x )=2x 2﹣1有两个不动点;②若x 0为函数y=f (x )的不动点,则x 0必为函数y=f (x )的稳定点; ③若x 0为函数y=f (x )的稳定点,则x 0必为函数y=f (x )的不动点; ④函数g (x )=2x 2﹣1共有三个稳定点;⑤若函数y=f (x )在定义域I 上单调递增,则它的不动点与稳定点是完全相同.18.等比数列{a n }的前n 项和为S n ,已知S 3=a 1+3a 2,则公比q= .三、解答题19.本小题满分12分某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元. Ⅰ若商店一天购进该商品10件,求当天的利润y 单位:元关于当天需求量n 单位:件,n ∈N 的函数解析式; ,整理得下表:,求这50天的日利润单位:元的平均数;②若该店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间[400,550]内的概率.20.已知函数f (x )=log 2(x ﹣3), (1)求f (51)﹣f (6)的值; (2)若f (x )≤0,求x 的取值范围.21.【海安县2018届高三上学期第一次学业质量测试】已知函数()()2xf x x ax a e =++,其中a R ∈,e 是自然对数的底数.(1)当1a =时,求曲线()y f x =在0x =处的切线方程;(2)求函数()f x 的单调减区间;(3)若()4f x ≤在[]4,0-恒成立,求a 的取值范围.22.已知函数f (x )=lnx ﹣ax ﹣b (a ,b ∈R )(Ⅰ)若函数f (x )在x=1处取得极值1,求a ,b 的值 (Ⅱ)讨论函数f (x )在区间(1,+∞)上的单调性(Ⅲ)对于函数f (x )图象上任意两点A (x 1,y 1),B (x 2,y 2)(x 1<x 2),不等式f ′(x 0)<k 恒成立,其中k 为直线AB 的斜率,x 0=λx 1+(1﹣λ)x 2,0<λ<1,求λ的取值范围.23.如图所示,一动圆与圆x 2+y 2+6x+5=0外切,同时与圆x 2+y 2﹣6x ﹣91=0内切,求动圆圆心M 的轨迹方程,并说明它是什么样的曲线.24.(本小题满分13分)在四棱锥P ABCD -中,底面ABCD 是梯形,//AB DC ,2ABD π∠=,AD =22AB DC ==,F为PA 的中点.(Ⅰ)在棱PB 上确定一点E ,使得//CE 平面PAD ;(Ⅱ)若PA PB PD ===P BDF -的体积.ABCDPF进贤县三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D第Ⅱ卷(共100分)[.Com]2.【答案】A【解析】解:∵a<b<0,∴﹣a>﹣b>0,∴|a|>|b|,a2>b2,即,可知:B,C,D都正确,因此A不正确.故选:A.【点评】本题考查了不等式的基本性质,属于基础题.3.【答案】B【解析】解:本题主要考查目标函数最值的求法,属于容易题,做出可行域,由图可知,当目标函数过直线y=1与x+y=3的交点(2,1)时,z取得最大值10.4. 【答案】D【解析】1()1,2,1,12x x xi yi x y i =-=-∴==+故选D 5. 【答案】D【解析】解:由题意知圆半径r=,∴圆的方程为2=2.故选:D .【点评】本题考查圆的方程的求法,解题时要认真审题,注意圆的方程的求法,是基础题.6. 【答案】B【解析】解:①x=0时,y=0,1,2,∴x ﹣y=0,﹣1,﹣2; ②x=1时,y=0,1,2,∴x ﹣y=1,0,﹣1; ③x=2时,y=0,1,2,∴x ﹣y=2,1,0; ∴B={0,﹣1,﹣2,1,2},共5个元素. 故选:B .7. 【答案】C 【解析】解:∵b=,c=3,B=30°,∴由余弦定理b 2=a 2+c 2﹣2accosB ,可得:3=9+a 2﹣3,整理可得:a 2﹣3a+6=0,∴解得:a=或2.故选:C .8. 【答案】D【解析】解:由于y=x+1为非奇非偶函数,故排除A ; 由于y=x 2为偶函数,故排除B ;由于y=2x为非奇非偶函数,故排除C ; 由于y=x|x|是奇函数,满足条件, 故选:D .【点评】本题主要考查函数的奇偶性的判断,属于基础题.9. 【答案】D【解析】解:对于A ,设正方体的上底面为α,下底面为β,直线c 是平面β内一条直线 因为α∥β,c ⊂β,可得c ∥α,而正方体上底面为α内的任意直线b 不一定与直线c 平行 故b ⊂α,c ∥α,不能推出b ∥c .得A 项不正确;对于B ,因为α⊥β,设α∩β=b ,若直线c ∥b ,则满足c ∥α,α⊥β, 但此时直线c ⊂β或c ∥β,推不出c ⊥β,故B 项不正确; 对于C ,当b ⊂α,c ⊄α且b ∥c 时,可推出c ∥α. 但是条件中缺少“c ⊄α”这一条,故C 项不正确;对于D ,因为c ∥α,设经过c 的平面γ交平面α于b ,则有c ∥b 结合c ⊥β得b ⊥β,由b ⊂α可得α⊥β,故D 项是真命题 故选:D【点评】本题给出空间位置关系的几个命题,要我们找出其中的真命题,着重考查了线面平行、线面垂直的判定与性质,面面垂直的判定与性质等知识,属于中档题.10.【答案】D 【解析】考点:函数导数与不等式.1 【思路点晴】本题主要考查导数的运用,涉及划归与转化的数学思想方法.首先令()0f x =将函数变为两个函数()()()21,xg x ex h x ax a =-=-,将题意中的“存在唯一整数,使得()g t 在直线()h x 的下方”,转化为存在唯一的整数,使得()g t 在直线()h x ax a =-的下方.利用导数可求得函数的极值,由此可求得m 的取值范围.11.【答案】C【解析】解:∵a >0,b >0,a+b=1,∴y=+=(a+b )=2+=4,当且仅当a=b=时取等号.∴y=+的最小值是4. 故选:C .【点评】本题考查了“乘1法”与基本不等式的性质,属于基础题.12.【答案】B【解析】解:∵△ABC 是锐角三角形,∴A+B >,∴A >﹣B ,∴sinA >sin (﹣B )=cosB ,∴sinA ﹣cosB >0, 同理可得sinA ﹣cosC >0, ∴点P 在第二象限. 故选:B二、填空题13.【答案】 :①②③【解析】解:对于①函数y=2x 3﹣3x+1=的图象关于点(0,1)成中心对称,假设点(x 0,y 0)在函数图象上,则其关于①点(0,1)的对称点为(﹣x 0,2﹣y 0)也满足函数的解析式,则①正确; 对于②对∀x ,y ∈R ,若x+y ≠0,对应的是直线y=﹣x 以外的点,则x ≠1,或y ≠﹣1,②正确;对于③若实数x ,y 满足x 2+y 2=1,则=,可以看作是圆x 2+y 2=1上的点与点(﹣2,0)连线的斜率,其最大值为,③正确;对于④若△ABC 为锐角三角形,则A ,B ,π﹣A ﹣B 都是锐角,即π﹣A ﹣B <,即A+B >,B >﹣A ,则cosB <cos (﹣A ),即cosB <sinA ,故④不正确.对于⑤在△ABC 中,G ,O 分别为△ABC 的重心和外心,取BC 的中点为D ,连接AD 、OD 、GD ,如图:则OD ⊥BC ,GD=AD ,∵=|,由则,即则又BC=5则有由余弦定理可得cosC <0, 即有C 为钝角.则三角形ABC 为钝角三角形;⑤不正确. 故答案为:①②③ 14.【答案】1-1,3] 【解析】试题分析:A ∪B ={}{}|03,|12,x x x R x x x R <∈-∈≤≤≤=1-1,3]考点:集合运算 【方法点睛】1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍. 15.【答案】 m >1 .【解析】解:若命题“∃x ∈R ,x 2﹣2x+m ≤0”是假命题,则命题“∀x ∈R ,x 2﹣2x+m >0”是真命题,即判别式△=4﹣4m <0, 解得m >1,故答案为:m>116.【答案】{1,6,10,12}.【解析】解:要使f A(x)f B(x)=﹣1,必有x∈{x|x∈A且x∉B}∪{x|x∈B且x∉A}={6,10}∪{1,12}={1,6,10,12,},所以A△B={1,6,10,12}.故答案为{1,6,10,12}.【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题.17.【答案】①②⑤【解析】解:对于①,令g(x)=x,可得x=或x=1,故①正确;对于②,因为f(x0)=x0,所以f(f(x0))=f(x0)=x0,即f(f(x0))=x0,故x0也是函数y=f(x)的稳定点,故②正确;对于③④,g(x)=2x2﹣1,令2(2x2﹣1)2﹣1=x,因为不动点必为稳定点,所以该方程一定有两解x=﹣,1,由此因式分解,可得(x﹣1)(2x+1)(4x2+2x﹣1)=0还有另外两解,故函数g(x)的稳定点有﹣,1,,其中是稳定点,但不是不动点,故③④错误;对于⑤,若函数y=f(x)有不动点x0,显然它也有稳定点x0;若函数y=f(x)有稳定点x0,即f(f(x0))=x0,设f(x0)=y0,则f(y0)=x0即(x0,y0)和(y0,x0)都在函数y=f(x)的图象上,假设x0>y0,因为y=f(x)是增函数,则f(x0)>f(y0),即y0>x0,与假设矛盾;假设x0<y0,因为y=f(x)是增函数,则f(x0)<f(y0),即y0<x0,与假设矛盾;故x0=y0,即f(x0)=x0,y=f(x)有不动点x0,故⑤正确.故答案为:①②⑤.【点评】本题考查命题的真假的判断,新定义的应用,考查分析问题解决问题的能力.18.【答案】2.【解析】解:设等比数列的公比为q,由S 3=a 1+3a 2,当q=1时,上式显然不成立;当q ≠1时,得,即q 2﹣3q+2=0,解得:q=2.故答案为:2.【点评】本题考查了等比数列的前n 项和,考查了等比数列的通项公式,是基础的计算题.三、解答题19.【答案】【解析】:Ⅰ当日需求量10n ≥时,利润为5010(10)3030200y n n =⨯+-⨯=+; 当需求量10n <时,利润50(10)1060100y n n n =⨯--⨯=-. 所以利润y 与日需求量n 的函数关系式为:30200,10,60100,10,n n n Ny n n n N+≥∈⎧=⎨-<∈⎩Ⅱ50天内有9天获得的利润380元,有11天获得的利润为440元,有15天获得利润为500元,有10天获得的利润为530元,有5天获得的利润为560元.①38094401150015530105605477.250⨯+⨯+⨯+⨯+⨯= ② 若利润在区间[400,550]内的概率为111510185025P ++==20.【答案】【解析】解:(1)∵函数f (x )=log 2(x ﹣3),∴f (51)﹣f (6)=log 248﹣log 23=log 216=4; (2)若f (x )≤0,则0<x ﹣3≤1,解得:x ∈(3,4]【点评】本题考查的知识点是对数函数的图象和性质,对数的运算性质,解答时要时时注意真数大于0,以免出错.21.【答案】(1)210x y -+=(2)当2a =时,()f x 无单调减区间;当2a <时,()f x 的单调减区间是()2,a --;当2a >时,()f x 的单调减区间是(),2a --.(3)244,4e ⎡⎤-⎣⎦【解析】试题分析:(1)先对函数解析式进行求导,再借助导数的几何意义求出切线的斜率,运用点斜式求出切线方程;(2)先对函数的解析式进行求导,然后借助导函数的值的符号与函数单调性之间的关系进行分类分析探求;(3)先不等式()4f x ≤进行等价转化,然后运用导数知识及分类整合的数学思想探求函数的极值与最值,进而分析推证不等式的成立求出参数的取值范围。

2018-2019学年高二上学期期末考试数学试题 (答案+解析)

2018-2019学年高二上学期期末考试数学试题 (答案+解析)

2018-2019学年高二上学期期末考试一、单选题1.与圆224630x y x y +-++=同圆心,且过()1,1-的圆的方程是( )A .224680x y x y +-+-=B .224680x y x y +-++= C .224680x y x y ++--= D .224680x y x y ++-+= 2.下列说法中正确的是( ) A .命题“若,则方程有实数根”的逆否命题为“若方程无实数根,则” B .命题“,”的否定“,”C .若为假命题,则,均为假命题D .“”是“直线:与直线:平行”的充要条件 3.已知双曲线的一个焦点坐标为,渐近线方程为,则双曲线的标准方程是( )A .B .C .D .4.如图所示的程序框图的算法思路来源于“欧几里得算法”.图中的“”表示除以的余数,若输入的值分别为和,则执行该程序输出的结果为( )A .B .C .D .5.已知抛物线上一点到抛物线焦点的距离等于,则直线的斜率为( )A .B .C .D .6.将一颗质地均匀的骰子先后抛掷次,则出现向上的点数之和小于的概率是( )A .B .C .D .7.已知12,F F 是椭圆221169x y +=的两焦点,过点2F 的直线交椭圆于,A B 两点,在1AF B ∆中,若有两边之和是10,则第三边的长度为( )A .3B .4C .5D .6 8.在直三棱柱中,底面边长和侧棱长都相等,则异面直线与所成角的余弦值为( )A .B .C .D . 9.在棱长为的正方体中,分别为棱、的中点,为棱上的一点,且,则点到平面的距离为( )A .B .C .D .10.已知圆1C :22(1)(1)1x y -++=,圆2C :22(4)(5)9x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,P 为x 轴上的动点,则||||PN PM -的最大值是( ) A .254+ B .9 C .7 D .252+点,若,则实数的值为()A.B.C.2 D.312.已知双曲线22221x ya b-=的左、右顶点分别为,A B,P为双曲线左支上一点,ABP∆为等腰三角形且外接圆的半径为5a,则双曲线的离心率为()A.155B.154C.153D.152二、填空题13.某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段:,,…,后得到频率分布直方图(如下图所示),则分数在内的人数是__________.14.过点作斜率为的直线与椭圆C:相交于两点,若是线段的中点,则椭圆C的离心率等于______.15.三棱锥中,已知平面,是边长为的正三角形,为的中点,若直线与平面所成角的正弦值为,则的长为_____.三、解答题16.设命题:函数的定义域为;命题:不等式对一切均成立.(1)如果是真命题,求实数的取值范围;17.为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某校课外兴趣小组记录了组昼夜温差与颗种子发芽数,得到如下资料:组号 1 2 3 4 5温差()10 11 13 12 8发芽数(颗)23 25 30 26 16经分析,这组数据具有较强的线性相关关系,因此该小组确定的研究方案是:先从这五组数据中选取组数据求出线性回归方程,再用没选取的组数据进行检验.(1)若选取的是第组的数据,求出关于的线性回归方程;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?(参考公式:,)18.在一次商贸交易会上,某商家在柜台前开展促销抽奖活动,甲、乙两人相约同一天上午去该柜台参与抽奖. 抽奖规则是:从一个装有个红球和个白球的袋中无放回地取出个球,当三个球同色时则中奖.每人只能抽奖一次.(1)求甲乙恰有一人中奖的概率;(2)若甲计划在之间赶到,乙计划在之间赶到,求甲比乙提前到达的概率.19.已知圆与圆关于直线+1对称.(1)求圆的方程;(2)过点的直线与圆交与两点,若,求直线的方程.20.如图,四边形ABCD与BDEF均为菱形,设AC与BD相交于点O,若∠DAB=∠DBF=60°,且FA=FC.(1)求证:FC∥平面EAD;(2)求二面角A-FC-B的余弦值.21.已知椭圆的右焦点为,为椭圆的上顶点,为坐标原点,且是等腰直角三角形.(1)求椭圆的方程; (2)是否存在直线交椭圆于两点,且使为的垂心(垂心:三角形三条高的交点)?若存在,求出直线的方程;若不存在,请说明理由.参考答案一、单选题1.与圆224630x y x y +-++=同圆心,且过()1,1-的圆的方程是( )A .224680x y x y +-+-=B .224680x y x y +-++= C .224680x y x y ++--= D .224680x y x y ++-+= 【答案】B【解析】试题分析:把原圆的方程写成标准方程为()()222310x y -++=,由于两圆共圆心,可设另一个圆方程为:()()22223x y r -++=,把1,1x y ==-代入所设方程,得:()()22221213,5r r -+-+=∴=,所以所求的圆的方程为()()22235x y -++=,化简为:22-4680x y x y +++=,故选B.【考点】1、圆的一般式方程;2、圆的标准方程的. 2.下列说法中正确的是( ) A .命题“若,则方程有实数根”的逆否命题为“若方程无实B.命题“,”的否定“,”C.若为假命题,则,均为假命题D.“”是“直线:与直线:平行”的充要条件【答案】A【解析】根据命题的条件、结论及逆否命题的定义判断;根据特称命题的否定是全称命题判断,根据复合命题的真值表判断;根据平行线的性质判断.【详解】否定“若,则方程有实数根”条件与结论,再将否定后的条件与结论互换可得其逆否命题为“若方程无实数根,则”,正确;命题“,”的否定“,”,不正确;若为假命题,则至少有一个是假命题,不正确;“直线:与直线:平行”的充要条件是“或”,不正确,故选A.【点睛】本题通过对多个命题真假的判断,综合考查逆否命题的定义、特称命题的否定、复合命题的真值表、平行线的性质,属于中档题.这种题型综合性较强,也是高考的命题热点,做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.3.已知双曲线的一个焦点坐标为,渐近线方程为,则双曲线的标准方程是( )A.B.C.D.【答案】C【解析】根据焦点坐标求得、双曲线的渐近线方程,结合,利用待定系数法进行求解即可.【详解】对应的双曲线方程为,双曲线的一个焦点是,且,则,则,则,则,即双曲线的方程为,故选C.【点睛】本题主要考查双曲线方程的求解,属于基础题. 求解双曲线方程的题型一般步骤:(1)判断焦点位置;(2)设方程;(3)列方程组求参数;(4)得结论.4.如图所示的程序框图的算法思路来源于“欧几里得算法”.图中的“”表示除以的余数,若输入的值分别为和,则执行该程序输出的结果为( )A.B.C.D.【答案】A【解析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输.【详解】若输入的值分别为,则,不满足条件,循环;,余数为13 ,即,不满足条件,循环;,余数为0 ,即,满足条件,输出,故选A.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可. 5.已知抛物线上一点到抛物线焦点的距离等于,则直线的斜率为( )A.B.C.D.【答案】A【解析】根据抛物线的定义可求出的横坐标,代入抛物线方程解出的纵坐标,代入斜率公式计算斜率.【详解】抛物线的焦点为,准线方程为,点到焦点的距离等于到准线的距离,所以,代入抛物线方程解得,,故选A.【点睛】本题主要考查抛物线的定义和几何性质,斜率公式的应用,属于中档题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决..6.将一颗质地均匀的骰子先后抛掷次,则出现向上的点数之和小于的概率是()A.B.C.D.【答案】D【解析】出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,利用对立事件概率计算公式,结合古典概型概率公式能求出向上的点数之和小于10的概率.【详解】将一颗质地均匀的骰子(一种各个面上分别标有个点的正方体玩具)先后抛掷2次,基本事件总数为,出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,出现向上的点数之和不小于10包含的基本事件有:共6个,出现向上的点数之和小于10的概率为,故选D.【点睛】本题考查古典概型概率公式的应用以及对立事件概率计算公式的应用,属于中档题. 在求解有关古典概型概率的问题时,首先求出样本空间中基本事件的总数,其次求出概率事件中含有多少个基本事件,然后根据公式求得概率.1AF B ∆中,若有两边之和是10,则第三边的长度为( )A .3B .4C .5D .6 【答案】D【解析】由椭圆的定义得12128{8AF AF BF BF +=+=两式相加得|AB|+|AF 2|+|BF 2|=16,又因为在△AF 1B 中,有两边之和是10, 所以第三边的长度为:16-10=6 故选D . 8.在直三棱柱中,底面边长和侧棱长都相等,则异面直线与所成角的余弦值为( )A .B .C .D .【答案】C 【解析】【详解】延长到点,使得,连接,则是平行四边形,可得,根据异面直线所成角的概念可知,所成的锐角即为所求的异面直线所成的角, 设三棱柱的棱长为1,则,在中,根据余弦定理可得,所以异面直线与所成角的余弦值为,故选C.【点睛】本题主要考查异面直线所成的角,属于中档题.求异面直线所成的角先要利用三角形中位线定理以及平行四边形找到异面直线所成的角,然后利用直角三角形的性质及余弦定理求解,如果利用余弦定理求余弦,因为异面直线所成的角是直角或锐角,所以最后结果一定要取绝对值.9.在棱长为的正方体中,分别为棱、的中点,为棱上的一点,且,则点到平面的距离为( )A.B.C.D.【答案】D【解析】以为原点,为轴、为轴、为轴,建立空间直角坐标系,利用向量法能求出点到平面的距离 .【详解】以为原点,为轴、为轴、为轴,建立空间直角坐标系,则,,设平面的法向量,则,取,得,点到平面的距离为,故选D.【点睛】本题主要考查利用空间向量求点到平面的距离,是中档题. 空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.10.已知圆1C :22(1)(1)1x y -++=,圆2C :22(4)(5)9x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,P 为x 轴上的动点,则||||PN PM -的最大值是( ) A .254+ B .9 C .7 D .252+ 【答案】B【解析】试题分析:圆()()221111C x y -++=:的圆心1(1)E -,,半径为1,圆()()222459C x y -+-=:的圆心5(4)F ,,半径是3.要使PN PM -最大,需PN 最大,且PM 最小,PN 最大值为3,PF PM +的最小值为1PE -,故PN PM -最大值是()()314PF PE PF PE +--=-+;5(4)F ,关于x 轴的对称点)5(4F '-,,2241515()()PF PE PF PE EF -='-≤'=-+-+=,故4PF PE -+ 的最大值为549+= ,故选:B .【考点】圆与圆的位置关系及其判定.【思路点睛】先根据两圆的方程求出圆心和半径,要使|PN PM -最大,需PN 最大,且PM 最小,PN 最大值为3,PF PM +的最小值为1PE -,故PN PM -最大值是()()314PF PE PF PE +--=-+,再利用对称性,求出所求式子的最大值. 11.已知抛物线的焦点为,直线与C 交于A 、B (A 在轴上方)两点,若,则实数的值为( )A .B .C .2D .3【答案】D【解析】试题分析:由得或,即,,又,所以,,显然,即.故选D .【考点】直线与抛物线的位置关系,向量的数乘.【名师点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式AB =x 1+x 2+p ,若不过焦点,则必须用一般弦长公式. (3)直线与抛物线相交问题,如果含有参数,一般采用“设而不求”方法,但象本题则是直接把直线方程与抛物线方程联立方程组解得交点坐标,再进行相减的运算.12.已知双曲线22221x y a b-=的左、右顶点分别为,A B , P 为双曲线左支上一点,ABP ∆为等腰三角形且外接圆的半径为5a ,则双曲线的离心率为( )A .155 B .154 C .153 D .152【答案】C【解析】由题意知等腰ABP ∆中, ||2AB AP a ==,设ABP APB θ∠=∠=,则12F AP θ∠=,其中θ必为锐角.∵ABP ∆外接圆的半径为5a , ∴225sin aa θ=, ∴5sin 5θ=, 25cos 5θ=, ∴25254253sin22,cos22155555θθ⎛⎫=⨯⨯==⨯-= ⎪ ⎪⎝⎭. 设点P 的坐标为(),x y ,则118cos2,sin255a ax a AP y AP θθ=+===, 故点P 的坐标为118,55a a ⎛⎫⎪⎝⎭.由点P在椭圆上得2222118551a aa b⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭-=,整理得2223ba=,∴221513c bea a==+=.选C .点睛:本题将解三角形和双曲线的性质结合在一起考查,综合性较强,解题时要抓住问题的关键和要点,从所要求的离心率出发,寻找双曲线中,a c之间的数量关系,其中通过解三角形得到点P的坐标是解题的突破口.在得到点P的坐标后根据点在椭圆上可得,a b间的关系,最后根据离心率的定义可得所求.二、填空题13.某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段:,,…,后得到频率分布直方图(如下图所示),则分数在内的人数是__________.【答案】30【解析】由频率分布直方图得,分数在内的频率为:,分数在内的人数为:,故答案为.14.过点作斜率为的直线与椭圆C:相交于两点,若是线段的中点,则椭圆C的离心率等于______.【答案】【解析】利用点差法,结合是线段的中点,斜率为,可得,结合即可求出椭圆的离心率.【详解】设,则①,②,是线段的中点,,直线的斜率是,所以,①②两式相减可得,即,,,故答案为.【点睛】本题考查椭圆的离心率,以及“点差法”的应用,属于中档题. 对于有关弦中点问题常用“ 点差法”,其解题步骤为:①设点(即设出弦的两端点坐标);②代入(即代入圆锥曲线方程);③作差(即两式相减,再用平方差公式分解因式);④整理(即转化为斜率与中点坐标的关系式),然后求解.15.三棱锥中,已知平面,是边长为的正三角形,为的中点,若直线与平面所成角的正弦值为,则的长为_____.【答案】2或【解析】设是的中点,连接,在平面内作,则,可证明平面,连接,则是与平面所成的角,设,利用平面所成的角的正弦值为,列方程求解即可.【详解】设是的中点,连接,平面,,为正三角形,,平面,在平面内作,则,平面,连接,则是与平面所成的角,设,在直角三角形中,,求得,,平面所成的角的正弦值为,,解得或,即的长为2或,故答案为2或.【点睛】本题主要考查线面垂直的判定定理与性质,以及直线与平面所成的角,属于难题. 解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理.三、解答题16.设命题:函数的定义域为;命题:不等式对一切均成立.(1)如果是真命题,求实数的取值范围;(2)如果命题“”为真命题,“”为假命题,求实数的取值范围.【答案】(1)(2)或【解析】(1)利用的判别式小于零即可得结果;(2)化简命题可得,化简命题可得,由为真命题,为假命题,可得一真一假,分两种情况讨论,对于真假以及假真分别列不等式组,分别解不等式组,然后求并集即可求得实数的取值范围.【详解】(1)命题是真命题,则若,,的取值范.(2)若命题是真命题,设,令,,当时取最大值,,又因为“”为真命题,“”为假命题,所以一真一假.①若真假,,且,则得;②若假真,则得,且,得.综上,实数的取值范围为或.【点睛】本题通过判断或命题、且命题的真假,综合考查函数的定义域、值域以及不等式恒成立问题,属于中档题.解答非命题、且命题与或命题真假有关的题型时,应注意:(1)原命题与其非命题真假相反;(2)或命题“一真则真”;(3)且命题“一假则假”.17.为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某校课外兴趣小组记录了组昼夜温差与颗种子发芽数,得到如下资料:组号 1 2 3 4 5温差()10 11 13 12 8发芽数(颗)23 25 30 26 16经分析,这组数据具有较强的线性相关关系,因此该小组确定的研究方案是:先从这五组数据中选取组数据求出线性回归方程,再用没选取的组数据进行检验.(1)若选取的是第组的数据,求出关于的线性回归方程;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?(参考公式:,)【答案】(1)(2)可靠【解析】(1)根据所给的数据,先做出的平均数,即做出本组数据的样本中心点,根据最小二乘法求出线性回归方程的系数,写出线性回归方程;(2)根据估计数据与所选出的检验数据的误差均不超过2颗,就认为得到的线性回归方程是可靠的,根据求得的结果和所给的数据进行比较,得到所求的方程是可靠的.【详解】(1)由题意:,,.,故回归直线方程为:.(2)当时,,当时,,所以(1)中所得的回归直线方程是可靠的. 【点睛】本题主要考查线性回归方程的求解与应用,属于中档题.求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.18.在一次商贸交易会上,某商家在柜台前开展促销抽奖活动,甲、乙两人相约同一天上午去该柜台参与抽奖. 抽奖规则是:从一个装有个红球和个白球的袋中无放回地取出个球,当三个球同色时则中奖.每人只能抽奖一次.(1)求甲乙恰有一人中奖的概率;(2)若甲计划在之间赶到,乙计划在之间赶到,求甲比乙提前到达的概率.【答案】(1)(2)【解析】(1)利用古典概型概率公式分别求出甲中奖与乙中奖的概率,利用对立事件的概率公式求出甲不中奖与乙不中奖的概率,然后利用独立事件概率公式、互斥事件的概率公式求解即可;(2)设甲乙到达时间分别为9:00起第小时,则.甲乙到达时间为正方形区域,甲比乙先到则需满足,利用线性规划以及几何概型概率公式可得结果.【详解】(1)记“甲取得三个球同色”为事件A,“乙取得三个球同色”为事件B,“甲乙恰有一人中奖”为事件C.所以A与B相互独立,记两红球为1,2号,四个白球分别为3,4,5,6号,从6个球中抽取3个的所有可能情况有个基本事件.其中事件A包括个基本事件故,所以所以.(2)设甲乙到达时间分别为9:00起第x,y小时,则0≤x≤,≤y≤1.甲乙到达时间(x,y)为图中正方形区域,甲比乙先到则需满足x<y,为图中阴影部分区域.设甲比乙先到为事件B,则P(B)=1-=.【点睛】本题主要考查古典概型、“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时, 忽视验证事件是否等可能性导致错误.19.已知圆与圆关于直线+1对称.(1)求圆的方程;(2)过点的直线与圆交与两点,若,求直线的方程.【答案】(1);(2)或.【解析】(1)将圆化为标准方程,求出其圆心和半径,并求出圆心关于直线+1对称点的坐标,从而可得结果;(2)先验证斜率不存在时,直线符合题意;斜率存在时,由可求得的夹角,可得圆心到直线的距离,利用点到直线的距离公式列方程可得到直线的斜率,由点斜式可得结果.【详解】(1)圆的标准方程为(x﹣2)2+y2=4,圆心C1(2,0),半径r1=2,设圆的标准方程为,∵圆C1与圆C2关于直线y=x+1对称,所以,解得.故圆的方程为.(2),所以易得点到直线的距离为,当的斜率不存在时,的方程为,符合要求;当的斜率存在时,设的方程为,由得,故的方程为;综上,的方程为或.【点睛】本题主要圆的方程,直线的点斜式方程的应用,属于中档题.在解题过程中需要用“点斜式”、“斜截式”设直线方程时,一定不要忘记讨论直线斜率不存在的情况,这是解析几何解题过程中容易出错的地方.20.如图,四边形ABCD与BDEF均为菱形,设AC与BD相交于点O,若∠DAB=∠DBF=60°,且FA=FC.(1)求证:FC∥平面EAD;(2)求二面角A-FC-B的余弦值.【答案】(1)见解析(2)【解析】(1)先证明平面FBC∥平面EAD,即证明FC∥平面EAD.(2)利用向量法求二面角A-FC-B的余弦值.【详解】(1)证明:∵四边形ABCD与BDEF均为菱形,∴AD∥BC,DE∥BF.∵AD⊄平面FBC,DE⊄平面FBC,∴AD∥平面FBC,DE∥平面FBC,又AD∩DE=D,AD⊂平面EAD,DE⊂平面EAD,∴平面FBC∥平面EAD,又FC⊂平面FBC,∴FC∥平面EAD.(2)连接FO、FD,∵四边形BDEF为菱形,且∠DBF=60°,∴△DBF为等边三角形,∵O为BD中点.所以FO⊥BD,O为AC中点,且F A=FC,∴AC⊥FO,又AC∩BD=O,∴FO⊥平面ABCD,∴OA、OB、OF两两垂直,建立如图所示的空间直角坐标系O-xyz,设AB=2,因为四边形ABCD为菱形,∠DAB=60°,则BD=2,OB=1,OA=OF=,∴O(0,0,0),A(,0,0),B(0,1,0),C(-,0,0),F(0,0,),∴=(,0,),=(,1,0),设平面BFC的一个法向量为n=(x,y,z),则有∴令x=1,则n=(1,-,-1),∵BD⊥平面AFC,∴平面AFC的一个法向量为=(0,1,0).∵二面角A-FC-B为锐二面角,设二面角的平面角为θ,∴cosθ=|cos〈n,〉|===,∴二面角A-FC-B的余弦值为.【点睛】(1)本题主要考查空间位置关系的证明,考查二面角的计算,意在考查学生对这些知识的掌握水平和空间想象分析推理计算能力.(2) 二面角的求法方法一:(几何法)找作(定义法、三垂线法、垂面法)证(定义)指求(解三角形).方法二:(向量法)首先求出两个平面的法向量;再代入公式(其中分别是两个平面的法向量,是二面角的平面角.)求解.(注意先通过观察二面角的大小选择“”号)21.已知椭圆的右焦点为,为椭圆的上顶点,为坐标原点,且是等腰直角三角形.(1)求椭圆的方程;(2)是否存在直线交椭圆于两点,且使为的垂心(垂心:三角形三条高的交点)?若存在,求出直线的方程;若不存在,请说明理由.【答案】(1)(2)【解析】试题分析:(1)由题意可求得b=1,a =,则椭圆方程为;(2)假设直线存在,设出直线的斜截式方程,联立直线与椭圆的方程,结合题意和韦达定理可得满足题意的直线存在,直线方程为.试题解析:(1)由△OMF是等腰直角三角形得b=1,a =故椭圆方程为(2)假设存在直线l交椭圆于P,Q两点,且使F为△PQM的垂心设P(,),Q(,)因为M(0,1),F(1,0),故,故直线l的斜率于是设直线l的方程为由得由题意知△>0,即<3,且由题意应有,又故解得或经检验,当时,△PQM不存在,故舍去;当时,所求直线满足题意综上,存在直线l,且直线l的方程为点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.。

进贤县高级中学2018-2019学年上学期高二数学12月月考试题含解析

进贤县高级中学2018-2019学年上学期高二数学12月月考试题含解析

进贤县高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.函数f(x)=Asin(ωx+φ)(A>0,ω>0,)的部分图象如图所示,则函数y=f(x)对应的解析式为()A.B. C.D.2.已知△ABC中,a=1,b=,B=45°,则角A等于()A.150°B.90°C.60°D.30°3.已知A,B是以O为圆心的单位圆上的动点,且||=,则•=()A.﹣1 B.1 C.﹣D.4.已知a>b>0,那么下列不等式成立的是()A.﹣a>﹣b B.a+c<b+c C.(﹣a)2>(﹣b)2D.5.已知数列{a n}是等比数列前n项和是S n,若a2=2,a3=﹣4,则S5等于()A.8 B.﹣8 C.11 D.﹣116.设集合A={x|﹣2<x<4},B={﹣2,1,2,4},则A∩B=()A.{1,2} B.{﹣1,4} C.{﹣1,2} D.{2,4}7.O为坐标原点,F为抛物线的焦点,P是抛物线C上一点,若|PF|=4,则△POF的面积为()A.1 B.C.D.28.设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为()A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x9.设偶函数f(x)在(0,+∞)上为减函数,且f(2)=0,则不等式>0的解集为()A.(﹣2,0)∪(2,+∞)B.(﹣∞,﹣2)∪(0,2)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣2,0)∪(0,2)10.设a=sin145°,b=cos52°,c=tan47°,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <b <a C .b <a <c D .a <c <b 11.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(acosB+bcosA )=2csinC ,a+b=8,且△ABC 的面积的最大值为4,则此时△ABC 的形状为( )A .等腰三角形B .正三角形C .直角三角形D .钝角三角形12.将函数)63sin(2)(π+=x x f 的图象向左平移4π个单位,再向上平移3个单位,得到函数)(x g 的图象, 则)(x g 的解析式为( )A .3)43sin(2)(--=πx x g B .3)43sin(2)(++=πx x g C .3)123sin(2)(+-=πx x g D .3)123sin(2)(--=πx x g【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度.二、填空题13.设直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π),对于下列四个命题:A .M 中所有直线均经过一个定点B .存在定点P 不在M 中的任一条直线上C .对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上D .M 中的直线所能围成的正三角形面积都相等其中真命题的代号是 (写出所有真命题的代号).14.等比数列{a n }的前n 项和为S n ,已知S 3=a 1+3a 2,则公比q= .15.【盐城中学2018届高三上第一次阶段性考试】函数f (x )=x ﹣lnx 的单调减区间为 . 16.正六棱台的两底面边长分别为1cm ,2cm ,高是1cm ,它的侧面积为 .17.若函数()ln f x a x x =-在区间(1,2)上单调递增,则实数的取值范围是__________. 所示的框图,输入,则输出的数等于三、解答题19.已知f(x)=|﹣x|﹣|+x|(Ⅰ)关于x的不等式f(x)≥a2﹣3a恒成立,求实数a的取值范围;(Ⅱ)若f(m)+f(n)=4,且m<n,求m+n的取值范围.20.如图,四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD为正方形,BC=PD=2,E为PC的中点,.求证:PC⊥BC;(Ⅱ)求三棱锥C﹣DEG的体积;(Ⅲ)AD边上是否存在一点M,使得PA∥平面MEG.若存在,求AM的长;否则,说明理由.21.(本小题满分12分)设椭圆2222:1(0)x y C a b a b+=>>的离心率12e =,圆22127x y +=与直线1x y a b +=相切,O 为坐标原点.(1)求椭圆C 的方程;(2)过点(4,0)Q -任作一直线交椭圆C 于,M N 两点,记MQ QN λ=,若在线段MN 上取一点R ,使 得MR RN λ=-,试判断当直线运动时,点R 是否在某一定直一上运动?若是,请求出该定直线的方 程;若不是,请说明理由.22.设f (x )=ax 2﹣(a+1)x+1 (1)解关于x 的不等式f (x )>0;(2)若对任意的a ∈[﹣1,1],不等式f (x )>0恒成立,求x 的取值范围.23.已知和均为给定的大于1的自然数,设集合,,,...,,集合..。

进贤县外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析

进贤县外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析

进贤县外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在同一个球面上.若圆锥底面面积是球面面积的,则这两个圆锥的体积之比为()A .2:1B .5:2C .1:4D .3:12. 已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误 的是( )A .若m ∥β,则m ∥lB .若m ∥l ,则m ∥βC .若m ⊥β,则m ⊥lD .若m ⊥l ,则m ⊥β3. 某班级有6名同学去报名参加校学生会的4项社团活动,若甲、乙两位同学不参加同一社团,每个社团都有人参加,每人只参加一个社团,则不同的报名方案数为( )A .4320B .2400C .2160D .13204. 执行如图所示的程序框图,若输入的分别为0,1,则输出的( )A .4B .16C .27D .365. 已知数列为等差数列,为前项和,公差为,若,则的值为( ){}n a n S d 201717100201717S S -=d A .B .C .D .12011010206. 某个几何体的三视图如图所示,其中正(主)视图中的圆弧是半径为2的半圆,则该几何体的表面积为()A .B .C .D .π1492+π1482+π2492+π2482+【命题意图】本题考查三视图的还原以及特殊几何体的面积度量.重点考查空间想象能力及对基本面积公式的运用,难度中等.7. 已知 m 、n 是两条不重合的直线,α、β、γ是三个互不重合的平面,则下列命题中 正确的是( )A .若 m ∥α,n ∥α,则 m ∥nB .若α⊥γ,β⊥γ,则 α∥βC .若m ⊥α,n ⊥α,则 m ∥nD .若 m ∥α,m ∥β,则 α∥β8. 已知双曲线kx 2﹣y 2=1(k >0)的一条渐近线与直线2x+y ﹣3=0垂直,则双曲线的离心率是( )A .B .C .4D .9. 已知f (x )在R 上是奇函数,且f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=( )A .﹣2B .2C .﹣98D .9810.已知全集为,集合,,则()R {}|23A x x x =<->或{}2,0,2,4B =-()R A B = ðA . B . C .D .{}2,0,2-{}2,2,4-{}2,0,3-{}0,2,411.已知P (x ,y )为区域内的任意一点,当该区域的面积为4时,z=2x ﹣y 的最大值是( )A .6B .0C .2D .212.在△ABC 中,已知a=2,b=6,A=30°,则B=()A .60°B .120°C .120°或60°D .45°二、填空题13.幂函数在区间上是增函数,则.1222)33)(+-+-=m m x m m x f (()+∞,0=m14.【泰州中学2018届高三10月月考】设函数是奇函数的导函数,,当时,()f x '()f x ()10f -=0x >,则使得成立的的取值范围是__________.()()0xf x f x -<'()0f x >x 15.已知正方体ABCD ﹣A 1B 1C 1D 1的一个面A 1B 1C 1D 1在半径为的半球底面上,A 、B 、C 、D 四个顶点都在此半球面上,则正方体ABCD ﹣A 1B 1C 1D 1的体积为 .16.函数f (x )=(x >3)的最小值为 .17.设向量a =(1,-1),b =(0,t ),若(2a +b )·a =2,则t =________.18.已知,则不等式的解集为________.,0()1,0x e x f x x ì³ï=í<ïî2(2)()f x f x ->【命题意图】本题考查分段函数、一元二次不等式等基础知识,意在考查分类讨论思想和基本运算能力.三、解答题19.设a >0,是R 上的偶函数.(Ⅰ)求a 的值;(Ⅱ)证明:f (x )在(0,+∞)上是增函数.20.如图,直四棱柱ABCD ﹣A 1B 1C 1D 1的底面是等腰梯形,AB=CD=AD=1,BC=2,E ,M ,N 分别是所在棱的中点.(1)证明:平面MNE ⊥平面D 1DE ;(2)证明:MN ∥平面D 1DE .21..已知定义域为R 的函数f (x )=是奇函数.(1)求a 的值;(2)判断f (x )在(﹣∞,+∞)上的单调性.(直接写出答案,不用证明);(3)若对于任意t ∈R ,不等式f (t 2﹣2t )+f (2t 2﹣k )<0恒成立,求k 的取值范围.22.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=ax 2+lnx (a ∈R ).(1)当a=时,求f (x )在区间[1,e]上的最大值和最小值;12(2)如果函数g (x ),f 1(x ),f 2(x ),在公共定义域D 上,满足f 1(x )<g (x )<f 2(x ),那么就称g (x)为f 1(x),f 2(x)的“活动函数”.已知函数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17.已知 tanβ= ,tan(α﹣β)= ,其中 α,β 均为锐角,则 α= . 18.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱 AA1= 角的正切值为( A. ) B. C. D. ,M 为 A1B1 的中点,则 AM 与平面 AA1C1C 所成
三、解答题
19.在△ABC 中,内角 A,B,C 的对边分别为 a、b、c,且 bsinA= (1)求 B; (2)若 b=2,求△ABC 面积的最大值. acosB.
数,排除 B,D,令 x 0.1 时 y 0 ,故选 A. 1 考点:1、函数的图象及性质;2、选择题“特殊值”法. 7. 【答案】A 【解析】
考 点:棱锥的结构特征. 8. 【答案】A 【解析】解:画出满足条件的平面区域,如图示:

由图象得 P(3,0)到平面区域的最短距离 dmin= ∴(x﹣3)2+y2 的最小值是: 故选:A. .
第 9 页,共 17 页
第 2 页,共 17 页
②对∀x,y∈R.若 x+y≠0,则 x≠1 或 y≠﹣1; ③若实数 x,y 满足 x2+y2=1,则 的最大值为 ;
④若△ABC 为锐角三角形,则 sinA<cosB. ⑤在△ABC 中,BC=5,G,O 分别为△ABC 的重心和外心,且 • =5,则△ABC 的形状是直角三角形. 15.设直线系 M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π),对于下列四个命题: A.M 中所有直线均经过一个定点 B.存在定点 P 不在 M 中的任一条直线上 C.对于任意整数 n(n≥3),存在正 n 边形,其所有边均在 M 中的直线上 D.M 中的直线所能围成的正三角形面积都相等 其中真命题的代号是 (写出所有真命题的代号). 16.平面向量 , 满足|2 ﹣ |=1,| ﹣2 |=1,则 的取值范围 .
1 1 恒成立,求 a 的最小值; g ( x2 ) g ( x1 )
(3)设 a 2 ,若对任意给定的 x0 (0, e] ,在区间 (0, e] 上总存在 t1 , t2 (t1 t2 ) ,使得 f (t1 ) f (t2 ) g ( x0 ) 成立, 求 m 的取值范围. 6 分
二、填空题
13.【答案】 6 .
第 8 页,共 17 页
【解析】解:双曲线的方程为 4x2﹣9y2=36,即为: ﹣ =1,
可得 a=3, 则双曲线的实轴长为 2a=6. 故答案为:6. 【点评】本题考查双曲线的实轴长,注意将双曲线方程化为标准方程,考查运算能力,属于基础题. 14.【答案】 :①②③ 【解析】解:对于①函数 y=2x3﹣3x+1=的图象关于点(0,1)成中心对称,假设点(x0,y0)在函数图象上, 则其关于①点(0,1)的对称点为(﹣x0,2﹣y0)也满足函数的解析式,则①正确; 对于②对∀x,y∈R,若 x+y≠0,对应的是直线 y=﹣x 以外的点,则 x≠1,或 y≠﹣1,②正确; 对于③若实数 x,y 满足 x2+y2=1,则 斜率,其最大值为 ,③正确; = ,可以看作是圆 x2+y2=1 上的点与点(﹣2,0)连线的
C.
D.
7. 棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积 C. S 2 S1 S3 D. S 2 S1 S3
第 1 页,共 17 页
8. 若实数 x,y 满足 A. B.8 C.20
,则(x﹣3)2+y2 的最小值是( D.2

2 2 9. 已知向量 a ( m, 2) , b ( 1, n) ( n 0 ),且 a b 0 ,点 P ( m, n) 在圆 x y 5 上,则 ) | 2a b | (
第 5 页,共 17 页
进贤县高中 2018-2019 学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
1. 【答案】D 【解析】 A y | y 5 , B x | y 2. 【答案】B 【解析】解:根据 y=sinx 图象知该函数在(0,+∞)不具有单调性; y=lg2x=xlg2,所以该函数是奇函数,且在(0,+∞)上单调递增,所以选项 B 正确; 根据 y=lnx 的图象,该函数非奇非偶; 根据单调性定义知 y=﹣x3 在(0,+∞)上单调递减. 故选 B. 【点评】考查正弦函数的单调性,对数的运算,以及一次函数的单调性,对数函数的图象,奇偶函数图象的对 称性,函数单调性的定义. 3. 【答案】B 【解析】 试题分析:因为 a (1, 2) , b (1, 0) ,所以 ( a b) 1 , 2 ,又因为 ( a b) / / c ,所以
B.
6. 设曲线 f ( x) x 1 在点 ( x, f ( x)) 处的切线的斜率为 g ( x) ,则函数 y g ( x) cos x 的部分图象 可以为( )
A. 为 S1 、 S 2 、 S3 ,则( A. S1 S 2 S3
B. ) B. S1 S 2 S3
进贤县高中 2018-2019 学年高二上学期数学期末模拟试卷含解析 班级__________ 一、选择题
A. 1,
座号_____
姓名__________
分数__________

1. 已知集合 A y | y x 5 , B x | y
2


B. 1,3
C. 3,5
(1)求{an}的通项公式;
第 4 页,共 17 页
(2)设 bn=
,求数列{bn}的前 n 项和 Tn。
24.(14 分)已知函数 f ( x) mx a ln x m , g ( x) (1)求 g ( x) 的极值; 3 分
x e
x 1
,其中 m,a 均为实数.
(2)设 m 1, a 0 ,若对任意的 x1 , x2 [3, 4] ( x1 x2 ) , f ( x2 ) f ( x1 ) 5分

x 3 x | x 3 , A B 3,5 ,故选 D.








4 1 6 0,
4. 【答案】B
1 ,故选 B. 2
考点:1、向量的坐标运算;2、向量平行的性质. 【解析】解:因为 B={0,1,2,3},C={0,2,4},且 A⊆B,A⊆C; ∴A⊆B∩C={0,2} ∴集合 A 可能为{0,2},即最多有 2 个元素, 故最多有 4 个子集. 故选:B. 5. 【答案】C 【解析】解:sin45°sin105°+sin45°sin15° =cos45°cos15°+sin45°sin15° =cos(45°﹣15°) =cos30° = .
A. 34 A.(2,+∞) B. B.(0,2) C.(4,+∞) C. 4 2 ) ) D.(0,4) D. 3 2 10.若方程 x2﹣mx+3=0 的两根满足一根大于 1,一根小于 1,则 m 的取值范围是( 11.某几何体的三视图如图所示,且该几何体的体积是 ,则正视图中的 x 的值是(
A.2

22.已知数列{an}和{bn}满足 a1•a2•a3…an=2 (1)求 an 和 bn; (2)设 cn=
(n∈N*),若{an}为等比数列,且 a1=2,b3=3+b2.
(n∈N*),记数列{cn}的前 n 项和为 Sn,求 Sn.
23.等差数列{an}的前 n 项和为 Sn,已知 a1=10,a2 为整数,且 Sn≤S4。
故选:C.
第 6 页,共 17 页
【点评】本题主要考查了诱导公式,两角差的余弦函数公式,特殊角的三角函数值在三角函数化简求值中的应 用,考查了转化思想,属于基础题. 6. 【答案】A 【解析】
cos x 2 xAcos x, g x g x , cos x cos x , y g x cos x 为奇函 试题分析: g x 2 x, g x A
20.(本小题满分 12 分)
设 0 , ,满足 6 sin 2 cos 3 . 3 (1)求 cos 的值; 6
第 3 页,共 17 页
(2)求 cos 2 的值. 12
21.等差数列{an} 中,a1=1,前 n 项和 Sn 满足条件 (Ⅰ)求数列{an} 的通项公式和 Sn; (Ⅱ)记 bn=an2n﹣1,求数列{bn}的前 n 项和 Tn.






) D.2
1 4

B.
1 2
C.1
4. 已知集合 A,B,C 中,A⊆B,A⊆C,若 B={0,1,2,3},C={0,2,4},则 A 的子集最多有 ( A.2 个 B.4 个 C.6 个 D.8 个 5. sin45°sin105°+sin45°sin15°=( A.0
2
) C. D.1

【点评】本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题. 9. 【答案】A 【解析】
第 7 页,共 17 页
考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系. 10.【答案】C 【解析】解:令 f(x)=x2﹣mx+3, 若方程 x2﹣mx+3=0 的两根满足一根大于 1,一根小于 1, 则 f(1)=1﹣m+3<0, 解得:m∈(4,+∞), 故选:C. 【点评】本题考查的知识点是方程的根与函数零点的关系,二次函数的图象和性质,难度中档. 11.【答案】C 解析:由三视图可知:原几何体是一个四棱锥,其中底面是一个上、下、高分别为 1、2、2 的直角梯形,一条 长为 x 的侧棱垂直于底面. 则体积为 故选:C. 12.【答案】C 【解析】解:模拟执行程序框图,可得 S=2,i=0 不满足条件,S=5,i=1 不满足条件,S=8,i=3 不满足条件,S=11,i=7 不满足条件,S=14,i=15 由题意,此时退出循环,输出 S 的值即为 14, 结合选项可知判断框内应填的条件是:i≥15? 故选:C. 【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的 S,i 的值是解题的关键,属于基本知识 的考查. = ,解得 x= .
相关文档
最新文档