七年级数学上册第一二章测试题

合集下载

2019-2020学年苏科版七年级数学上册第一、二章单元测试卷及答案

2019-2020学年苏科版七年级数学上册第一、二章单元测试卷及答案

2019-2020学年七年级数学上册第一、二章测试卷满分:130分 时间:90分钟一、选择题 (每题3分,共30分)1.如果水位升高6 m 时水位变化记作+6 m ,那么水位下降6 m 时水位变化记作 ( )A .-3 mB .3 mC .6 mD .-6 m2.一张正方形纸片经过两次对折,并在如图所示的位置上剪去一个小正方形,打开后的图形是 ( )3.在-3 ,3.1415,0,-0.333…,- 227,-0.15,2.010010001 (相邻两个1之间依次多一个0) …中,有理数的个数是 ( )A .2B .3C .4D .5 4.若某地某天的最高气温是8℃,最低气温是-2℃,则该地这一天的温差是 ( ) A .-10℃ B .-6℃ C .6℃ D .10℃ 5.若a ,b 是有理数,则下列结论一定正确的是 ( ) A .若a <b ,则a <b B .若a >b ,则a >b C .若a =b ,则a =b D .若a ≠b ,则a ≠b6.“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”于2016年3月3日在北京胜利召开.截止到2016年3月14日,在百度上搜索关键词“两会”,显示的搜索结果约为96500000条.将96500000用科学记数法表示应为 ( ) A .96.5×107 B .9.65×107 C .9.65×108 D .0.965×1097.如图,一只蚂蚁从“1”处爬到“4”处 (只能向上、向右爬行),爬行路线共有 ( ) A .3条 B .4条C .5条D .6条8.在某校七年级新生的军训活动中,共有393名学生参加.如果 将这393名学生排成一列,按1,2,3,4,3,2,1,2,3,4,3,2,1,…的规律报数,那么最后一名学生所报的数是 ( )A .1B .2C .3D .49.如图,数轴上有一个质点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,质点落在表示数3的点上(允许重复过此点),则质点的不同运动方案共有()A.2种B.3种C.4种D.5种10.观察下列图形中点的个数,若按其规律再画下去,可以得到第5个图形中所有点的个数为( )A.16个B.25个C.36个D.49个二、填空题(每题3分,共30分)11.李老师的身份证号码是××××××196807124917[其中前六位数字为此人所属的省(市、自治区)、市、县(市、区)的编码],根据这个身份证号,可以看出李老师在年出生.12.若用16 m长的篱笆围成长方形的生物园来饲养动物,则生物园的最大面积为.13.35的相反数与-25的绝对值的和是14.数轴上,若A,B表示互为相反数的两个数且A在B的右侧,并且这两点的距离为10,则点B表示的数是.15.已知有理数-1,-8,+11,-2,请你通过有理数加减混合运算,使运算结果最大,则列式为16.国家森林城市的创建极大地促进了森林资源的增长,美化了城市环境,提升了市民的生活质量.截至2014年,全国已有21个省、自治区、直辖市的75个城市获得了“国家森林城市”称号.永州市也正在积极创建“国家森林城市”,据统计近两年全市投入“创森”资金约为365000000元.365000000用科学记数法表示为.17.若x=4,y2=4且y<0,则x + y=18.一跳蚤在一直线上从O点开始,第1次向右跳1个单位长度,紧接着第2次向左跳2个单位长度,第3次向右跳3个单位长度,第4次向左跳4个单位长度,…,依此规律跳下去,当它跳第100次落下时,落点处离O点的距离是个单位长度.19.定义:a是不为1的有理数,我们把11a-称为a的差倒数,如:2的差倒数是112-=-1,-1的差倒数是11(1)--=12.已知a1=-12,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,以此类推,则a2016= .20.将正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2017个正方形,则需要操作次数.三、解答题(共76分)21.(本题8分) 按要求把下列各数填入相应的括号里:2.5,-0.5252252225…(每两个5之间依次增加一个2),-102,-5,0,13,3.6,-23-(-10),2π-6.(1) 非负数集合:{ …};(2) 非负整数集合:{ …};(3) 有理数集合:{ …};(4) 无理数集合:{ …}.22.(本题16分)计算下列各题:(1) 12+(-23)-(-13)+(+14);(2) 45-+(-71)+5-+(-9);(3) -989×81;(4) (-2)3×8-8×(12)3+8÷18;(5) -15+(-2)2×(16-13)-12÷3;(6)113⨯+135⨯+…+120112013⨯+120132015⨯(7) (12-13)÷(-16)+(-2)2×(-14);(8)[32×(-13)2-0.8]÷(-525).23.(本题5分) 把下列各数及它们的相反数在数轴上表示出来,并用“<”号把它们连接起来.-3,-(-4),0, 2.5 ,-112.24.(本题8分) 写出符合下列条件的数: (1) 大于-3且小于2的所有整数;(2) 绝对值大于2且小于5的所有负整数,(3)在数轴上,与表示-1的点的距离为2的所有数;(4)不超过(-53)3的最大整数.25.(本题5分) 已知a =3,b =2,且a <b ,求a +b 的值.26.(本题6分) 检查5个篮球的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查的结果如下表:(1) 最接近标准质量的是几号篮球?(2) 质量最大的篮球比质量最小的篮球重多少克?27.(本题6分) 现有10盒火柴,以每盒100根为标准,超过的根数记作正数,不足的根数记作负数.每盒数据记录如下:+3,-2,-1,0,+2,-1,+4,-2,-3,+1.回答下列问题:(1) 这10盒火柴中火柴根数最多的有 根,最少的有 根; (2) 这10盒火柴一共有多少根?28.(本题8分) 一只蚂蚁从原点出发来回爬行,爬行的各段路程依次为:×5,-3,+10,-8,-9,+12,-10,请在数轴上画出爬行过程.回答下列问题:(1) 蚂蚁最后是否回到出发点?(2) 在爬行过程中,若每爬一个单位长度奖励2粒芝麻,则蚂蚁一共得到多少粒芝麻?29.(本题8分) 某工艺品厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况 (超产记为正,减产记为负):(1) 写出该厂星期一生产工艺品的数量.(2) 本周产量最多的一天比最少的一天多生产多少个工艺品? (3) 请求出该工艺品厂在本周实际生产工艺品的数量.(4) 已知该厂实行每周计件工资制,每生产一个工艺品可得60元,若超额完成任务,则超过部分每个可得50元,少生产一个扣80元.试求该工艺厂在这一周应付出的工资总额.30.(本题8分)探索性问题:已知点A 、B 在数轴上分别表示m 、n .(1) 填写下表:(2) 若A 、B 两点的距离为d ,则d 与m 、n 有何数量关系. (3) 在数轴上标出所有符合条件的整数点...P ,使它到3和-3的距离之和为6,并求出所 有这些整数的和.(4) 若点C 表示的数为x ,当C 在什么位置时,2x ++3x -取得值最小,最小值是多少?参考答案一、选择题1.D 2.D 3.D 4.D 5.C 6.B 7.A 8.C(提示:由题意可找出规律,以“1,2,3,4,3,2”6个数为一个循环,所以最后一名学生报的数是3) 9.D 10.C 二、填空题11.1968 12.16 m 2 13.-1514.-5 15.+11-[(-1)+(-8)+(-2)]16.3.65×108 17.2或-6 18.50 19.3(提示:由题意可找出规律,a 1=-12,a 2=23,a 3=3,a 4=-12,a 5=23,a 6=3,…3个为一个循环,所以a 2016=3) 20.504 三、解答题21.(1) 非负数集合:{2.5,0,13,3.6,-23-(-10),2π-6,…} (2) 非负整数集合:{0,-23-(-10),…} (3) 有理数集合:(2.5,-102,-5,0,13,3.6,-23-(-10),…) (4) 无理数集合:{-0.5252252225…(每两个5之间依次增加一个2),2π-6,…)22.(1) 原式=512(2) 原式=-30 (3) 原式=-801 (4) 原式=-l (5) 原式=-116 (6) 原式=10072015 (7) 原式=-57 (8) 原式=1323.在数轴上表示略,-4<-3<- 2.5-<-112<0<-(-112)< 2.5-<-(-3)<-(-4)24.(1) -2,-1,0,1 (2) -3,-4 (3) 1或-3 (4) -525.由题意可以得到a =3或-3,b =2或-2,又因为a <b ,所以a =-3,b =2或a =-3,b =-2,所以a +b 的值为-1或-526.(1) 3号篮球最接近标准质量 (2) 质量最大的篮球比质量最小的篮球重17 g 27.(1) 104 97 (2) 3-2-1+0+2-1+4-2-3+1=1(根),100×10+1=1001(根).答:这10盒火柴一共有1001根28.画图略 (1) 不回到出发点,因为0+5-3+10-8-9+12-10=-3(2) (5++3- +10++8-+9-+12++10-)×2=114(粒)29.(1) 星期一的产量为300+5=305(个) (2) 由表格可知:星期六产量最高,为300+(+16)=316(个),星期五产量最低,为300+(-10)=290(个),则产量最多的一天比产量最少的一天多生产316-290=26(个) (3) 根据题意得一周生产的工艺品数量为300×7+[(+5)+(-2)+(-5)+(+15)+(-10)+(+16)+(-9)]=2100+10=2110(套) (4) (+5)+(-2)+(-5)+(+15)+(-10)+(+16)+(-9)=10(个),根据题意得该厂工人一周的工资总额为2110×60+50×10=127100(元) 30.(1) 2;5;10;2;12 (2) d m n =- (3) 数轴略 所有这些整数的和为0 (4) 2x ++3x - 数轴上表示-2到3的距离和所以,当-2≤x ≤3时,2x ++3x -的值最小,最小值为5。

人教版数学七年级上册 第1---2章基础测试题含答案

人教版数学七年级上册 第1---2章基础测试题含答案

人教版数学七年级上册第1章基础测试题含答案1.1正数和负数一.选择题1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入80元记作+80元,则﹣50元表示()A.收入50元B.收入30元C.支出50元D.支出30元2.质检员抽查4袋方便面,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的产品是()A.﹣2B.﹣1C.0.5D.1.33.某种食品保存的温度是﹣10±2℃,以下几个温度中,不适合储存这种食品的是()A.﹣6℃B.﹣8℃C.﹣10℃D.﹣12℃4.大米包装袋上(25±0.1)kg的标识表示此袋大米的重量为()A.24.9kg﹣25.1kg B.24.9kgC.25.1kg D.25kg5.向东行进﹣100m表示的意义是()A.向东行进100m B.向南行进100mC.向北行进100m D.向西行进100m6.下列各数是负整数的是()A.﹣1B.2C.5D.7.某药品包装盒上标注着“贮藏温度:1℃±2℃”,以下是几个保存柜的温度,适合贮藏这种药品的温度是()A.﹣4℃B.0℃C.4℃D.5℃8.如果收入25元记作+25元,那么支出30元记作()元.A.+5B.+30C.﹣5D.﹣309.宁波市江北区慈城的年糕闻名遐迩.若每包标准质量定为300g,实际质量与标准质量相比,超出部分记作正数,不足部分记作负数.则下面4个包装中,实际质量最接近标准质量的是()A.B.C.D.10.某年,一些国家的服务出口额比上年的增长率如表:美国德国英国中国﹣3.4%﹣0.9%﹣5.3% 2.8%上述四国中哪国增长率最低?()A.美国B.德国C.英国D.中国二.填空题11.如表列出了国外两个城市与北京的时差,如果现在是北京时间是上午10:00,那么现在的巴黎时间是.城市时差/h巴黎﹣7东京+112.若节约9m3水记作+9m3,则浪费6m3水记作m3.13.甲船向东航行120km,记作+120km,乙船向西航行50km记作km.14.在一次军事训练中,一架直升机“停”在离海面80m的低空,一艘潜水艇潜在水下50m.若直升机的高度记作+80m则潜水艇的高度记作.15.如果把105分记作+5分,那么96分的成绩记作分,如此记分法,甲生的成绩记作﹣9分,那么他的实际成绩是分.三.解答题16.“地摊经济”刺激了经济的复苏.今年国庆周期间,小王用2000元购进了一批商品,在夜市摆地摊售卖8天,全部销售完毕.每天的收入以300元为标准,超过的钱数记作正数,不足的钱数记作负数,8天的收入记录如下:+62,+40,﹣60,﹣38,0,+34,+8,﹣54.收入最多的一天比最少的一天多多少钱?(2)小王这8天的地摊收入是盈利还是亏损?盈利或亏损多少钱?17.张先生今年7月份第一个星期的星期五以每股(份)25元的价格买进某种金融理财产品共2000股(买入时免收手续费),该理财产品在第二个星期的五个交易日中,每股的涨跌情况如下表(表格中数据表示比前一交易日涨或跌多少元)(单位:元):星期一二三四五﹣0.2+0.6﹣0.5﹣0.8+1.2每股涨跌额(1)写出第二个星期每日每股理财产品的收盘价(即每日最后时刻的成交价);(2)已知理财产品卖出时,交易所需收取千分之三的手续费,如果张先生在第二个星期的星期五交易结束前将全部产品卖出,他的收益情况如何?18.对某校男生进行“引体向上”项目的测试,规定能做10个及以上为达到标准.测试结果记法如下:超过10个的部分用正数表示,不足10个的部分用负数表示.已知8名男生引体向上的测试结果如下:+2,﹣5,0,﹣2,+4,﹣1,﹣1,+3.(1)这8名男生有百分之几达到标准?(2)这8名男生共做了多少个引体向上?(3)若该校有208名男生,则该校还有多少名男生“引体向上”项目未能达标?19.长春市地铁1号线,北起北环站,南至红咀子站共设15个地下车站2017年6月3日开通运营,标志着吉林省正式迈进“地铁时代”,15个站点如图所示,某天,王红从人民广场站开始乘坐地铁,在地铁各站点做志愿者服务,到A站下车时,本次志愿者服务活动结束,约定向红咀子站方向为正,当天的乘车记录如下(单位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8(1)请通过计算说明A站是哪一站?(2)相邻两站之间的距离为13千米,求这次王红志愿服务期间乘坐地铁行进的路程是多少千米?参考答案与试题解析一.选择题1.【解答】解:根据题意,若收入80元记作+80元,则﹣50元表示支出50元.故选:C.2.【解答】解:∵|0.5|<|﹣1|<|1.2|<|﹣2|,∴0.5最接近标准,故选:C.3.【解答】解:∵﹣10﹣2=﹣12(℃),﹣10+2=﹣8(℃),∴适合储存这种食品的温度范围是:﹣8℃至﹣12℃,故A符合题意;B、C、D均不符合题意;故选:A.4.【解答】解:∵25﹣0.1=24.9,25+0.1=25.1,∴质量合格的取值范围是24.9kg~25.1kg.故选:A.5.【解答】解:因为向东走为正,所以﹣100m表示的意义是向西走了100米.故选:D.6.【解答】解:负整数是﹣1,故选:A.7.【解答】解:∵1﹣2=﹣1(℃),1+2=3(℃),∴适合储存这种食品的温度范围是:﹣1℃至3℃,故B符合题意;A、C、D均不符合题意;故选:B.8.【解答】解:收入25元记作+25元,那么支出30元记作﹣30元,故选:D.9.【解答】解:根据题意得:|﹣0.7|<|+0.8|<|+2.1|<|﹣3.4|,则实际质量最接近标准质量的是﹣0.7g,故选:D.10.【解答】解:因为﹣5.3%<﹣3.4%<﹣0.9%<2.8%,故选:C.二.填空题(共5小题)11.【解答】解:由表可知,巴黎时间比北京时间晚7小时,∴10+(﹣7)=3,故答案为:凌晨3:00.12.【解答】解:∵“正”和“负”相对,∴如果节约9m3水记作+9m3,那么浪费6m3水记作﹣6m3.故答案为:﹣6.13.【解答】解:根据题意可知:乙船向西航行50km记作﹣50km,故答案为:﹣50km.14.【解答】解:直升机“停”在离海面80m的低空,直升机的高度记作+80m,则一艘潜水艇潜在水下50m,潜水艇的高度记作﹣50m,故答案为:﹣50m.15.【解答】解:∵把105分的成绩记为+5分,∴100分为基准点,故96的成绩记为﹣4分,甲生的实际成绩为91分.故答案为:﹣4、91.三.解答题(共4小题)16.【解答】解:(1)+62﹣(﹣60)=122(元),答:收入最多的一天比最少的一天多122元;(2)62+40﹣60﹣38+0+34+8﹣54=﹣8(元),总收入为300×8﹣8=2392(元),2392﹣2000=392(元),答:小王这8天的地摊收入是盈利了,盈利392元.17.【解答】解:(1)第二个星期每日每股理财产品的收盘价依次是24.8元,25.4元,24.9元,24.1元,25.3元;(2),答:理财产品全部卖出,他赚了448.2元.18.【解答】解:(1)∵规定能做10个及以上为达到标准∴达到标准的有4个∴4÷8×100%=50%答:这8名男生有50%达到标准.2)2﹣5+0﹣2+4﹣1﹣1+3=010×8=80答:这8名男生共做了80个引体向上.(3)208×(1﹣50%)=104答:该校还有104名男生“引体向上”项目未能达标.19.【解答】解:(1)+5﹣2﹣6+8+3﹣4﹣9+8=3.答:A站是工农广场站1.2有理数一.选择题1.已知:有理数a,b,c满足abc≠0,则的值不可能为()A.3B.﹣3C.1D.22.下列哪个分数不能化成有限小数()A.B.C.D.3.已知a是一个正整数,记G(x)=a﹣x+|x﹣a|.若G(1)+G(2)+G(3)+…+G(2019)+G(2020)=90,则a的值为()A.11B.10C.9D.84.如图,a,b是数轴上的两个有理数,则下列结论正确的是()A.﹣a﹣b>0B.a+b>0C.﹣>D.a+2b>0 5.若|a﹣6|=|a|+|﹣6|,则a的值是()A.任意有理数B.任意一个非负数C.任意一个非正数D.任意一个负数6.下列各组数中,互为相反数的一组是()A.|﹣3|和﹣3B.3和C.﹣3和D.|﹣3|和3 7.的绝对值和相反数分别是()A.,B.,C.,D.,8.如图,数轴上蚂蚁所在点表示的数可能为()A.3B.0C.﹣1D.﹣29.下面的说法正确的是()A.正有理数和负有理数统称有理数B.整数和分数统称有理数C.正整数和负整数统称整数D.有理数包括整数、自然数、零、负数和分数10.下列各数:﹣,1.010010001,,0,﹣π,﹣2.626626662…(每两个2之间多一个6),0.1,其中有理数的个数是()A.3B.4C.5D.6二.填空题11.8的相反数是,﹣4的绝对值是.12.在7,0.15,﹣,﹣301.3,﹣,﹣3001中,整数为.13.已知a是一个正整数,记G(x)=a﹣x+|x﹣a|,若G(1)+G (2)+G(3)+G(4)+…+G(2020)=90,则a=.14.一质点P从距原点1个单位的A点处向原点方向跳动,第一次跳动到OA的中点A处,第二次从A1点跳动到OA1的中点A2处,第三次从A2点跳动到OA2的中点A3处,如此不断跳动下去,则第6次跳动后,该质点到原点O的距离为.15.已知有理数a,b,c在数轴上对应位置如图所示,化简:|a+b|﹣|c﹣b|+|a﹣c|=.三.解答题16.请把下列各数填在相应的集合内:+4,﹣1,,﹣,0,2.5,﹣1.22,10%.正分数集合:{};整数集合:{};负数集合:{}.17.有理数a,b,c在数轴上的位置如图所示,化简:|a+b|﹣|b﹣2|+|a﹣c|﹣|2﹣c|.18.分别用a,b,c,d表示有理数,a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是数轴上到原点距离为5的点表示的数,求|3a﹣b+2c﹣d|的值.19.为了创建“全国文明城市”,我校志愿者小组成员从学校出发,在学校门口东西方向的道路上进行义务保洁.规定向东行为正,向西行为负,已知某志愿者一个下午的七次行走记录如下表所示(单位:千米):第一次第二次第三次第四次第五次第六次第七次+1﹣1.5+2+0.5﹣1+1.5﹣3.5(1)该志愿者保洁结束时是否回到出发地点?如果没有,那么距离出发点多少千米?(2)在第次保洁时离出发地点最远;(3)若每千米平均用时15分钟,则该志愿者完成这次保洁任务一共用时多少小时?参考答案与试题解析一.选择题1.【解答】解:当a、b、c没有负数时,原式=1+1=1=3;当a、b、c有一个负数时,原式=﹣1+1=1=1;当a、b、c有两个负数时,原式=﹣1﹣1+1=﹣1;当a、b、c有三个负数时,原式=﹣1﹣1﹣1=﹣3.故选:D.2.【解答】解:A、,是最简分数,分母中只含有质因数2,能化成有限小数,故本选项不合题意;B、是最简分数,分母中只含有质因数2,能化成有限小数,故本选项不合题意;C、是最简分数,分母中只含有质因数5,能化成有限小数,故本选项不合题意;D、,是最简分数,分母中只含有质因数3,不能化成有限小数,故本选项符合题意.故选:D.3.【解答】解:当x≥a时,则|x﹣a|=x﹣a,∴G(x)=a﹣x+x﹣a=0;当x<a时,则|x﹣a|=﹣(x﹣a)=﹣x+a,∴G(x)=a﹣x﹣x+a=2a﹣2x,∵G(1)+G(2)+G(3)+G(4)+…+G(2020)=90,∴设第n个数时,即x=n,G(x)开始为0,即x=a=n,∴G(n)=2n﹣2n=0,∴G(1)+G(2)+G(3)+G(4)+…+G(2020)=2n﹣2+2n﹣4+2n﹣6+…+2n﹣2n+0+0+…+0=2n×n﹣2(1+2+3+…+n)=2n2﹣2×=n2﹣n,即n2﹣n=90,解得n1=10,n2=﹣9(舍去).故选:B.4.【解答】解:由有理数a、b在数轴上的位置可知,b<0<a,且|b|>|a|,所以,a+b<0,﹣a﹣b>0,a+b+b<0,﹣<,因此选项A符合题意,选项B、C、D均不符合题意,故选:A.5.【解答】解:∵|a﹣6|=|a|+|﹣6|,∴a的值是任意一个非正数.故选:C.6.【解答】解:|﹣3|=3,3与﹣3互为相反数.3和互为倒数,﹣3与互为负倒数,|﹣3|与3是相等的数.故选:A.7.【解答】解:∵||=,的相反数是﹣.故选:D.8.【解答】解:由数轴可知,蚂蚁在原点的右侧,故数轴上蚂蚁所在点表示的数为正数,故选:A.9.【解答】解:A、正有理数、0和负有理数统称有理数,故本选项错误;B、整数和分数统称为有理数,故本选项正确;C、整数还包括0,故本选项错误;D、零属于自然数的范围,这样的表达不正确,故本选项错误.故选:B.10.【解答】解:﹣,1.010010001,,0,﹣π,﹣2.626626662…(每两个2之间多一个6),0.1,其中有理数有:﹣,1.010010001,,0,0.1,个数是5.故选:C.二.填空题(共5小题)11.【解答】解:8的相反数是﹣8,﹣4的绝对值是4.故答案为﹣8;4.12.【解答】解:在7,0.15,﹣,﹣301.3,﹣,﹣3001中,整数为7,﹣3001.故答案为:7,﹣3001.13.【解答】解:当x≥a时,则|x﹣a|=x﹣a,∴G(x)=a﹣x+x﹣a=0;当x<a时,则|x﹣a|=﹣(x﹣a)=﹣x+a,∴G(x)=a﹣x﹣x+a=2a﹣2x,∵G(1)+G(2)+G(3)+G(4)+…+G(2020)=90,∴设第n个数时,即x=n,G(x)开始为0,即x=a=n,∴G(n)=2n﹣2n=0,∴G(1)+G(2)+G(3)+G(4)+…+G(2020)=2n﹣2+2n﹣4+2n﹣6+…+2n﹣2n+0+0+…+0=2n×n﹣2(1+2+3+…+n)=2n2﹣2×=n2﹣n,即n2﹣n=90,解得n1=10,n2=﹣9(舍去).故答案为10.14.【解答】解:第一次跳动到OA的中点A1处,即在离原点的处,第二次从A1点跳动到A2处,即在离原点的()2处,…则跳动n次后,即跳到了离原点处,则第6次跳动后,该质点到原点O的距离为.故答案为:.15.【解答】解:由题意得:a<b<0<c,∴|a+b|﹣|c﹣b|+|a﹣c|=﹣a﹣b﹣(c﹣b)+c﹣a=0,故答案为:0.三.解答题(共4小题)16.【解答】解:正分数集合:{,2.5,10%};整数集合:{+4,﹣1,0};负数集合:{﹣1,﹣,﹣1.22}.故答案为:,2.5,10%;+4,﹣1,0;﹣1,﹣,﹣1.22.17.【解答】解:由数轴可知,c<b<0<a,|a|<|b|,∴a+b<0,b﹣2<0,a﹣c>0,2﹣c>0,∴|a+b|﹣|b﹣2|+|a﹣c|﹣|2﹣c|=﹣a﹣b+b﹣2+a﹣c﹣2+c=﹣4.18.【解答】解:最小的正整数是1,则a=1,最大的负整数,则b=﹣1,绝对值最小的有理数是0,则c=0,数轴上到原点距离为5的点表示的数是±5,则d=±5,当a=1,b=﹣1,c=0,d=5时,原式=|3×1﹣(﹣1)+2×0﹣5|=1,当a=1,b=﹣1,c=0,d=﹣5时,原式=|3×1﹣(﹣1)+2×0+5|=9,综上所述,|3a﹣b+2c﹣d|的值为1或9.19.【解答】解:(1)1﹣1.5+2+0.5﹣1+1.5﹣3.5=﹣1,答:该志愿者保洁结束时没有回到出发地点,距离出发点1千米;(2)各次离A地的距离分别为:第一次:1;第二次:1.5﹣1=0.5;第三次:2﹣0.5=1.5;第四次:1.5+0.5=2;第五次:2﹣1=1;第六次:1+1.5=2.5;第七次:3.5﹣2.5=11.3有理数的加减法一.选择题1.比﹣6大2的数是()A.﹣8B.﹣4C.4D.82.下列各式中,计算结果为正的是()A.C.﹣4+9D.0+(﹣2)3.计算﹣﹣1的结果等于()A.B.C.D.4.下列省略加号和括号的形式中,正确的是()A.+(﹣5)+(﹣2)=﹣7++6+﹣5+﹣2B.+(﹣5)+(﹣2)=﹣7+6﹣5﹣2C.+(﹣5)+(﹣2)=﹣7+6+5+2D.+(﹣5)+(﹣2)=﹣7+6﹣5+25.小红家的冰箱冷藏室温度是3℃,冷冻室的温度是﹣1℃,则她家的冰箱冷藏室比冷冻室温度高()A.4℃B.﹣4℃C.2℃D.﹣2℃6.下面结论正确的有()①0是最小的整数;②在数轴上7与9之间的有理数只有8;③若a+b=0,则a、b互为相反数;④有理数相减,差不一定小于被减数;⑤1是绝对值最小的正数;⑥有理数分为正有理数和负有理数.A.1个B.2个C.3个D.4个7.已知:|x|=3,|y|=2,且x<y,则x+y的值为()A.﹣5B.﹣1C.5或1D.﹣5或﹣1 8.下列算式中:①2﹣(﹣2)=0;②(﹣3)﹣(+3)=0;③(﹣3)﹣|﹣3|=0;④0﹣(﹣1)=1.其中正确的有()A.1个B.2个C.3个D.4个9.随着时间的变迁,三溪的气候变得与过去大不一样,今年夏天的最高气温是39℃,而冬天的最低气温是﹣5℃,那么三溪今年气候的最大温差是()℃.A.44B.34C.﹣44D.﹣34 10.将1,2,3,4,…,12,13这13个整数分为两组,使得一组中所有数的和比另一组中所有数的和大10,这样的分组方法()A.只有一种B.恰有两种C.多于三种D.不存在二.填空题11.某运动员在东西走向的公路上练习跑步,跑步情况记录如下:(向东为正,单位:米)1000,﹣1200,1100,﹣800,1400,该运动员共跑的路程为米.12.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是分钟.13.已知|x|=6,y2=9,且|x﹣y|=y﹣x,则x﹣y=.14.符号“f”表示种运算,它对一些数的运算结果如下:(1)f(l)=0,f(2)=1,f(3)=2,f(4)=3,…(2)f()=2,f()=3,f()=4,f()=5,…利用以上:规律计算f()﹣f(2019)=.15.某一游戏规则如下:将﹣1,3,﹣5,7,﹣9,11,﹣13,15分别填入图中圆圈内,使横、竖以及内外两圈上的4个数字之和都相等.部分已填入,则图中a﹣(b+c)的值为.三.解答题16.已知a﹣b=5且a>4,b<6,求|a﹣4|+|b﹣6|﹣5的值.17.计算(1)﹣(2)12﹣(﹣18)+(﹣7)(3)16﹣(﹣8)﹣4(4)18.若,…,照此规律试求:(1)=;(2)计算;(3)计算.19.平移和翻折是初中数学两种重要的图形变化.(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是A.=+5;B.=+1;C.=﹣5;D.=﹣1②一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,……,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是.(2)翻折变换①若折叠纸条,表示﹣1的点与表示3的点重合,则表示2019的点与表示的点重合;②若数轴上A、B两点之间的距离为2019(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示B 点表示.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为.(用含有a,b的式子表示)参考答案与试题解析一.选择题1.【解答】解:﹣6+2=﹣(6﹣2)=﹣4,故选:B.2.【解答】解:A、(﹣7)+4=﹣3,故此选项错误;B、2.7+(﹣3.5)=﹣(3.5﹣2.7)=﹣0.8,故此选项错误;C、﹣4+9=5,故此选项正确;D、0+9﹣2)=﹣2,故此选项错误;故选:C.3.【解答】解:﹣﹣1=﹣,故选:D.4.【解答】解:A、原式=﹣7+6﹣5﹣2,错误;B、原式=﹣7+6﹣5﹣2,正确;C、原式=﹣7+6﹣5﹣2,错误;D、原式=﹣7+6﹣5﹣2,错误,故选:B.5.【解答】解:3﹣(﹣1)=3+1=4℃.故选:A.6.【解答】解:①0是最小的整数,错误;②在数轴上7与9之间的有理数只有8,错误;③若a+b=0,则a、b互为相反数,正确;④有理数相减,差不一定小于被减数,正确;⑤1是绝对值最小的正数,错误;⑥有理数分为正有理数和负有理数,错误.综上所述,结论正确的③共1个.故选:B.7.【解答】解:∵|x|=3,|y|=2,且x<y,∴x=﹣3,y=2或﹣2,∴x+y=﹣3+2=﹣1,x+y=﹣3+(﹣2)=﹣5.故选:D.8.【解答】解:①2﹣(﹣2)=2+2=4,故本小题错误;②(﹣3)﹣(+3)=﹣3﹣3=﹣6,故本小题错误;③(﹣3)﹣|﹣3|=﹣3﹣3=﹣6,故本小题错误;④0﹣(﹣1)=0+1=1,故本小题正确;综上所述,正确的有④共1个.故选:A.9.【解答】解:39﹣(﹣5)=39+5=44℃.故选:A.10.【解答】解:1+2+…+13=91,分为两组,一组的和为x,另一组的和为x﹣10,x+x﹣10=91,x=,∵x为整数,∴没法分,故选:D.二.填空题(共5小题)11.【解答】解:各个数的绝对值的和:1000+1200+1100+800+1400=5500千米,则该运动员共跑的路程为5500米.12.【解答】解:设车的速度是a,人的速度是b,每隔t分发一班车.二辆车之间的距离是:at车从背后超过是一个追及问题,人与车之间的距离也是:at那么:at=6(a﹣b)①车从前面来是相遇问题,那么:at=3(a+b)②①﹣②,得:a=3b所以:at=4at=4即车是每隔4分钟发一班.13.【解答】解:∵|x|=6,y2=9,∴x=±6,y=±3,又∵|x﹣y|=y﹣x,即x﹣y<0,也就是x<y,∴x=﹣6,y=3或x=﹣6,y=﹣3,当x=﹣6,y=3时,x﹣y=﹣6﹣3=﹣9,,当x=﹣6,y=﹣3时,x﹣y=﹣6﹣(﹣3)=﹣3,故答案为:﹣9或﹣3.14.【解答】解:根据题意,可得:f(a)=a﹣1,f()=a(其中a是正整数),∴f()﹣f(2019)=2019﹣2018=1.故答案为:1.15.【解答】解:﹣1+3﹣5+7﹣9+11﹣13+15=8,∵横、竖以及内外两圈上的8个数字之和都相等,∴两个圈的和是4,横、竖的和也是4,∴4﹣(﹣13+11+15)=﹣9,a=4﹣(11+7﹣9)=﹣5,b+c=4﹣(﹣13+15)=2,∴a﹣(b+c)=﹣5﹣2=﹣7.故答案为:﹣7.三.解答题(共4小题)16.【解答】解:∵a﹣b=5且a>4,b<6,∴|a﹣4|+|b﹣6|﹣5=a﹣4+6﹣b﹣5=a﹣b﹣3=5﹣3=2.17.【解答】解:(1)原式==;(2)原式=12+18﹣7=23;(3)原式=16+()=16+=;(4)原式==﹣7+3=﹣4.18.【解答】解:(1)=.故答案为:;(2)原式===;(3)原式===.19.【解答】解:(1)①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示的数为=﹣1.故选:D.②一机器人从数轴原点处O开始,第1次向负方向跳一个单位,紧接着第2次向正方向跳2个单位,第3次向负方向跳3个单位,第4次向正方向跳4个单位,…,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是﹣1010.故答案为:﹣1010.(2)①∵对称中心是1,∴表示2019的点与表示﹣2017的点重合;②∵对称中心是1,AB=2019,∴则A点表示﹣1008.5,B点表示1010.5人教版数学七年级上册2章基础测试题(含答案)2.1整式一、选择题1. 多项式的项数和次数分别为A. ,B. ,C. ,D. ,2. 在代数式,,,,,,中,单项式有A. 个B. 个C. 个D. 个3. 下列说法中正确的是A. 单项式的系数和次数都是零B. 是次单项式C. 的系数是D. 是单项式4. 下列式子中,整式的个数为,,,,A. 个B. 个C. 个D. 个5. 下列关于多项式的说法中,正确的是A. 它是三次三项式B. 它是四次两项式C. 它的最高次项是D. 它的常数项是二、填空题6. 单项式的系数是,次数是.多项式的常数项是,一次项是,二次项的系数是.7. 多项式的最高次项是,最高次项的系数是.8. 下列等式中,从左到右的变形,哪些是因式分解(是的在括号内打“”,不是的打“”)?(1).()(2).()(3).()(4).()9. 若是五次单项式,则.10. 多项式中,每个单项式叫做多项式的.三、解答题11. 某商场的一种彩电标价为元/台.节日期间,商场按九折的优惠价出售,商场销售台彩电共得多少元?你所得到的单项式的系数和次数分别是多少?12. 说出下列各单项式的系数和次数.(1);(2);(3);(4);(5).13. 若与的和仍是一个单项式,求、的值.14. 甲、乙两地相距,某人从甲地到乙地要走.(1)他的平均速度是多少(只列出式子即可)?(2)该式是整式还是分式?(3)当时,求他的速度.答案第一部分1. A2. B3. D【解析】单项式的系数和次数都是;是次单项式;的系数是.4. A5. C第二部分6. ,,,,7. ,8. ,,,9.10. 项第三部分11. 共得元,单项式的系数是,次数是.12. (1)的系数是,次数是.(2)的系数是,次数是.(3)的系数是,次数是.(4)的系数是,即,次数是.(5)的系数是,次数是.13. 根据题意可知,与是同类项,所以.14. (1).(2)分式.(3)当时,,即他的速度为.2.2整式的加减一、选择题1.若,则式子的值为A. B. C. 11 D. 12.化简,正确的结果是.A. B. C. D.3.下列各组单项式中,不是同类项的一组是A. 和B. 和3C. 3xy和D.和4.计算的结果是A. 3B. 3xC.D.5.下列运算正确的是A. B.C. D.6.一个多项式减去等于,则这个多项式为A. B. C. D.7.若与是同类项,则的值为A. 1B. 2C. 3D. 48.多项式与单项式的和等于A. 3aB.C.D.9.下列各式,成立的是A. B.C. D.10.下列各式中运算正确的是A. B.C. D.11.如果整式是关于x的三次三项式,那么n等于A. 3B. 4C. 5D. 612.在下列代数式,,,0,,中,单项式有A. 3个B. 4个C. 5个D. 6个二、填空题13.飞机的无风飞行航速为a千米时,风速为20千米时.则飞机顺风飞行4小时的行程是__________千米;飞机逆风飞行3小时的行程是__________千米.14.计算的结果是______.15.已知单项式与是同类项,则______.16.若关于x、y的多项式与的差不含二次项,则______.三、计算题17.化简:.18.计算:19.计算,其中.答案和解析1.B解:原式,,,,则原式,2.C解:,故选C.这个式子的运算是合并同类项的问题,根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.3.A解:A、相同字母的指数不同不是同类项,故A错误;B、所含字母相同且相同字母的指数也相同,故B正确;C、所含字母相同且相同字母的指数也相同,故C正确;D、所含字母相同且相同字母的指数也相同,故D正确;4.C解:原式.5.D解:A、,故此选项错误;B、,故此选项错误;C 、,故此选项错误;D、,故此选项正确.6.A解:,7.C解:和是同类项,,,,8.B解:原式.9.A解:A、,故本选项正确;B、,故本选项错误;C、8a和不是同类项,不能合并,故本选项错误;D、,故本选项错误;10.C解:原式,故A错误;原式,故B错误;与不是同类项,不能进行合并,故D错误;11.D解:整式是关于x的三次三项式,,解得:.12.B解:在这一组代数式中,只有代数式:,,,0是单项式,共4个;分母中含有字母,故不是单项式.13.;解:由题意得:飞机顺风的速度为千米时,逆风的速度为千米时,则顺风飞行4小时的行程千米;逆风飞行3小时的行程千米;故答案为:,14.解:.故答案为:.根据合并同类项法则计算即可.本题主要考查的是合并同类项,掌握合并同类项法则是解题的关键.15.2解:由与是同类项,得,故答案为:2.根据同类项是字母项相同且相同字母的指数也相同,可得a的值.16.2解:,差不含二次项,,即,故答案为:2.先由,再根据差不含二次项可得,即.17.解:原式;原式;原式.18.解:原式;原式.19.解:原式,当时,原式.。

人教版七年级上册数学 第一章+第二章+第三章 共3个单元测试卷(Word版,含答案)

人教版七年级上册数学 第一章+第二章+第三章 共3个单元测试卷(Word版,含答案)

人教版七年级上册数学 第一章 有理数 单元测试卷(满分 120分)一、选择题(每题3分,共30分)1. 如图,表示正确的数轴的是( )A. B.C.D.2. -1的相反数是( )A . 1B . -1C . 0D . -123. 下列四个数中,最小的数是( )A . -12B . 0C . -1D . 14. 据统计,近十年中国累积节能1 570 000万吨标准煤,1 570 000这个数用科学记数法表示为( )A . 0.157×107B . 1.57×106C . 1.57×107D . 1.57×1085. 下列说法不正确的是( )A . 最大的负整数为-1B . 最小的正整数为1C . 最小的整数是0D . 相反数等于它本身的数是06. 某旅游景点11月5日的最低气温为-2 ℃,最高气温为8 ℃,那么该景点这天的温差是( )A . 4 ℃B . 6 ℃C . 8 ℃D . 10 ℃7. 某校小卖铺一周的盈亏情况如下表所示(每天固定成本200元,其中“+”表示盈利,“-”表示亏损):则这个周共盈利( )A .715元B .630元C .635元D .605元8. 如果一对有理数a ,b 使等式a -b =a ·b +1成立,那么这对有理数a ,b 叫做“共生有理数对”,记为(a ,b ).根据上述定义,下列四对有理数中不是“共生有理数对”的是( )A .3,12B .2,13C .5,23D .-2,-139. 有理数m ,n 在数轴上的对应点的位置如图所示,则正确的结论是( )A .m +n <0B .m -n >0C .mn >0D .m n<010. 细胞分裂按照一分为二,二分为四,四分为八……如此规律进行.例如:1个细胞分裂10次可以得到细胞的个数为210=1 024个,估计1个细胞分裂40次所得细胞的个数为( )A .七位数B .十二位数C .十三位数D .十四位数二、填空题(每题4分,共28分)11.||-2 022的倒数是________. 12. 如果||a -1+(b +2)2=0,那么(a +b )2 021的值是________.13. 放学静校,值周班的小明同学负责一条东西走向楼道巡视工作.记向东为正,小明巡视过程如下:+5,-3,-1,+7,-9,+4(单位:米),则小明这次巡视共走了________米.14. 如图是一个计算程序,若输入a 的值为-1,则输出的结果应为________.15. 某高山上的温度从山脚处开始每升高100米,就降低0.6 ℃.若山脚处温度是28 ℃,则山上500米处的温度是______℃.16. 已知||a =5,||b =3,则(a +b )(a -b )=________.17. 有一组数据:25,47,811,1619,3235,….请你根据此规律,写出第n 个数是________.三、解答题(一)(每题6分,共18分)18.计算:(1)-14-||1-0.5×13×[2-(-3)2];(2)(-34-56+712)÷124.19. 把下列各数先在数轴上表示出来,再按照从小到大的顺序用“<”号连接起来:-(+6),0,-(-4),+(-52),-||-2.20. 某地发生特大山洪泥石流灾害,消防总队迅速出动支援灾区.在抢险救灾中,消防官兵的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+4,-9,+8,-7,+13,-6,+10,-5.(1)B地在A地的何处?(2)救灾过程中,最远处离出发点A有多远?(3)若冲锋舟每千米耗0.5升,油箱里原有油20升,求途中还需补充多少升油.四、解答题(每题8分,共24分)21. 某洗衣粉厂上月生产了30 000袋洗衣粉,每袋标准重量450克,质量检测部门从中抽出了20袋进行检测,超过或不足标准重量的部分分别记为“+”和“-”,记录如下:(1)通过计算估计本厂上月生产的洗衣粉平均每袋多少克?(2)厂家规定超过或不足的部分大于5克时,不能出厂销售,若每袋洗衣粉的定价为2.30元,试估计本厂上月生产的洗衣粉销售的总金额为多少元?22. 小明有5张写着不同数的卡片,请你分别按要求抽出卡片,写出符合要求的算式:(1)从中取出2张卡片,使这2张卡片上的数的乘积最大;(2)从中取出2张卡片,使这2张卡片上的数相除的商最小;(3)从中取出2张卡片,使这2张卡片上的数通过有理数的运算后得到的结果最大;(4)从中取出4张卡片,使这4张卡片通过有理数的运算后得到的结果为24(写出一种即可).23. 有规律的一列数:2,4,6,8,10,12,…,它的每一项可用2n(n为正整数)来表示.现在解决另外有规律排列的一列数:1,-2,3,-4,5,-6,7,-8,….(1)它的第100个数是多少?(2)请用n(n为正整数)表示它的第n个数;(3)计算前2 022个数的和.五、解答题(每题10分,共20分)24. 随着手机的普及,微信的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了来的销售模式,实行了网上销售.刚大学华业的夏明把自家的冬枣产品放到网上销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超出的量记为正数,不足的量记为负数.单位:斤,1斤=500克)(1)根据记录的数据可知,前三天卖出________斤;(2)根据记录的数据可知,销售量最多的一天比销售量最少的一天多销售________斤;(3)本周实际销售总量达到了计划销售量吗?(4)若冬枣每斤按8元出售,每斤冬枣的运费平均为3元,那么夏明这一周一共收入多少元?25. 在数轴上依次有A ,B ,C 三点,其中点A ,C 表示的数分别为-2,5,且BC =6AB .(1)在数轴上表示出A ,B ,C 三点;(2)若甲、乙、丙三个动点分别从A 、B 、C 三点同时出发,沿数轴负方向运动,它们的速度分别是14,12,2(单位长度/秒),当丙追上甲时,甲乙相距多少个单位长度? (3)在数轴上是否存在点P ,使P 到A 、B 、C 的距离和等于10?若存在,结合数轴,写出点P 对应的数;若不存在,请说明理由.参考答案1.D 2.A 3.C 4.B 5.C 6.D 7.D 8.D 9.D 10.C11.12 022 12.-1 13.29 14.-5 15.25 16.16 17.2n3+2n18.解:(1)原式=-1-0.5×13×[2-9]=-1-0.5×13×(-7)=-1-16×(-7)=-1+76=16(2)原式=(-34-56+712)×24=-34×24-56×24+712×24=-18-20+14 =-2419.解:在数轴上表示各数如下:-(+6)<+⎝ ⎛⎭⎪⎫-52<-||-2<0<-(-4)20.解:(1)∵4-9+8-7+13-6+10-5=8, ∴B 地在A 地的东边8千米(2)∵路程记录中各点离出发点的距离分别为: 4千米||4-9=5千米; ||4-9+8=3千米; ||4-9+8-7=4千米; ||4-9+8-7+13=9千米; ||4-9+8-7+13-6=3千米; ||4-9+8-7+13-6+10=13千米;||4-9+8-7+13-6+10-5=8千米.∴最远处离出发点13千米; (3)这一天走的总程为:4+||-9+8+||-7+13+||-6+10+||-5=62(千米), 应耗油62×0.5=31(升),故途中还需补充的油量为:31-20=11(升).21.解:(1)450+(-6×1-3×1-2×1+0×6+1×5+4×2+5×4)÷20=450+1.1=451.1(克) 答:上月生产的洗衣粉平均每袋451.1克.(2)2.30×⎝ ⎛⎭⎪⎫30 000-30 000×120=2.30×28 500=65 550(元). 答:本厂上月生产的洗衣粉销售的总金额为65 550元. 22.解:(1)(-3)×(-5)=15; (2)-5÷3=-53;(3)(-5)4=625;(4)[(-3)-(-5)]×(3×4)=2×12=24 23.解:(1)它的第100个数是:-100 (2)它的第n 个数是:(-1)n +1n(3)(1-2)+(3-4)+…+(2 021-2 022) =(-1)×2 022÷2 =-1 01124.解:(1)4-3-5+300=296(斤) 故答案为296. (2)21+8=29(斤) 故答案为29.(3)+4-3-5+14-8+21-6=17>0 故本周实际销售总量达到了计划销售量. (4)(17+100×7)×(8-3)=717×5 =3 585(元)答:小明本周一共收入3 585元. 25.解:(1)设B 点表示的数为x ,∵点A ,C 表示的数分别为-2,5,且BC =6AB ,∴5-x =6[x -(-2)], 解得:x =-1所以点B 表示的数为-1,(2)7÷⎝ ⎛⎭⎪⎫2-14=4(秒) 4×⎝ ⎛⎭⎪⎫12-14-1=0 答:丙追上甲时,甲乙相距0个单位长度. (3)设P 点表示的数x ,依题意得||x +2+||x +1+||x -5=10,结合数轴得x =-83,2,∴P 点表示的数为-83或2.人教版七年级上册数学 第二章 整式的加减 单元测试卷(满分 120分)一、选择题(每题3分,共30分)1. 单项式-2ab 4c23的系数与次数分别是( )A .-23,6B .-23,7C .23,6D .23,72. 下列各组数是同类项的是( )A .x 2y 和xy 2B .3ab 和-abcC .x 2和12D .0和-53. 下列计算正确的是( )A .7a +a =7a 2B .5y -3y =2C .3x 2y -2x 2y =x 2yD .3a +2b =5ab4. 某商品的原价为每件x 元,后来店主将每件加价10元,再降价25%销售,则现在的单价是() A .(25%x +10)元 B .[(1-25%)x +10]元C .25%(x +10)元D .(1-25%)(x +10)元5. 整式x 2-3x 的值是4,则3x 2-9x +8的值是( )A .20B .4C .16D .-46. 化简a -[-2a -(a -b )]等于( )A .-2aB .2aC .4a -bD .2a -2b7. 如图,阴影部分的面积可表示为( )A .ab -r 2B .12ab -r 2C .12ab -πr 2D .ab8. 观察如图所示的图形,则第n个图形中三角形的个数是( )A.2n+2 B.4n+4 C.4n D.4n-49. 如图,两个六边形的面积分别为16和9,两个阴影部分的面积分别为a,b(a<b),则b-a的值为( )A.4 B.5 C.6 D.710. 如图①是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图②),下列表示a,b,c,d之间关系的式子中不正确的是( )A.a-b=b-c B.a+c+2=b+dC.a+b+14=c+d D.a+d=b+c二、填空题(每题4分,共28分)11. “比x的2倍大5的数”用式子表示是________.12. 若单项式x4y n与-2x m y3的和仍为单项式,则这个和为________.13. 一根铁丝的长为5a+4b,剪下一部分围成一个长为a,宽为b的长方形,则这根铁丝还剩下________.14. 某城市按以下规定收取每月的煤气费:用气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分每立米按1.2元收费.已知某户用煤气x立方米(x>60),则该户应交煤气费________元.15. 按如图所示的程序计算,若开始输入的值为x =3,则最后输出的结果为________.16. 如图所示的每幅图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n (n >1)盆花,每个图案花盆的总数是s 盆.按此规律推断,s 与n 之间的数量关系可以表示为s =________.17. 已知a ,b ,c 在数轴上的位置如图所示,化简:||a -b +||b +c +||c -a =________.三、解答题(一)(每题6分,共18分)18. 合并同类项4a 2-3b 2+2ab -4a 2-3b 2+5ba .19. 先化简,再求值:2(x 2y +xy )-3(x 2y -xy )-4x 2y ,其中x =2,y =-14.20. 先化简,再求值:3m +4n -[2m +(5m -2n )-3n ],其中m =1n=2.四、解答题(二)(每题8分,共24分)21. 李叔叔买了一套新房,他准备将地面全铺上地板砖,这套新房的平面图如图所示,请解答下列问题:(1)用含x的式子表示这套新房的面积;(2)若每铺1 m2地板砖的费用为120元,当x=6时,求这套新房铺地板砖所需的总费用.22. 已知A =2a 2-a ,B =-5a +1.(1)化简:3A -2B +2;(2)当a =-12时,求3A -2B +2的值.23. 暑假期间,学校组织学生去某景点游玩,甲旅行社说:“如果带队的一名老师购买全票,则学生享受半价优惠.”乙旅行社说:“所有人按全票价的六折优惠.”已知全票为a 元,学生有x 人,带队老师有1人.(1)试用含a 和x 的式子表示甲、乙旅行社的收费情况;(2)若有30名学生参加本次活动,请你为他们选择一家更优惠的旅行社.五、解答题(三)(每题10分,共20分)24. 如下数表,是由从1开始的连续自然数组成的,观察规律完成下列各题的解答.12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36(1)表中第7行的最后一个数是________,它是自然数________的平方,第7行共有________个数;(2)用含n的代数式表示:第n行的第一个数是________,最后一个数是________,第n行共有________个数;(3)若将每行最中间的数取出,得到新的一列数1,3,7,13,21,31…,则第n个数与第(n-1)个数的差是多少?其中有两个相邻的数的差是24,那么这两个数分别在原数表的第几行?25. 某商场销某款西装和领带,西装每套定价1 000元,领带每条定价200元.国庆节期间商场计划开展促销活动,活动期间向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现一位客户要到该商场购买西装20套,领带x 条(x >20).(1)若该客户按方案一购买,需付款________________元(用含x 的式子表示),若该客户按方案二购买,需付款________________元(用含x 的式子表示);(2)当x =30时,通过计算说明此时按哪种方案购买较为合算;(3)当x =30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案.参考答案1.B 2.D 3.C 4.D 5.A 6.C7.C 8.C 9.D 10.A11.2x +5 12.-x 4y 3 13.3a +2b14.1.2x -24 15.231 16.n (n +1)217.-2a18.解:4a 2-3b 2+2ab -4a 2-3b 2+5ba=-6b 2+7ab19.解:2(x 2y +xy )-3(x 2y -xy )-4x 2y=2x 2y +2xy -3x 2y +3xy -4x 2y=-5x 2y +5xy当x =2,y =-14时 原式=-5×22×(-14)+5×2×(-14) =5-52=5220.解:3m +4n -[2m +(5m -2n )-3n ]=3m +4n -(2m +5m -2n -3n )=3m +4n -7m +5n=-4m +9n ,把m =1n=2,n =0.5,代入代数式得 原式=-8+4.5=-3.521.解:(1)这套新房的面积为2x +x 2+4×3+2×3=x 2+2x +12+6=x 2+2x +18(m 2).(2)当x =6时,这套新房的面积是 x 2+2x +18=62+2×6+18=36+12+18=66(m 2).66×120=7 920(元).故这套新房铺地板砖所需的总费用为7 920元.22.解:(1)3A -2B +2=3(2a 2-a )-2(-5a +1)+2=6a 2-3a +10a -2+2=6a 2+7a ;(2)当a =-12时, 3A -2B +2=6×⎝ ⎛⎭⎪⎫-122+7×⎝ ⎛⎭⎪⎫-12 =-2,23.解:(1)由题意可得:甲:a +12ax ,乙:0.6a (x +1); (2)当x =30时,甲所需费用:16a 元;乙所需费用:0.6a (x +1)=18.6a 元因为18.6a >16a ,所以到甲旅行社更优惠.24.解:(1)每行数的个数为1,3,5,…的奇数列,由题意最后一个数是该行数的平方即得49,其他也随之解得:7,13;故答案为49;7;13.(2)由(1)知第n 行最后一数为n 2,则第一个数为n 2-2n +2,每行数由题意知每行数的个数为1,3,5,…的奇数列,故个数为2n -1;故答案为n 2-2n +2;n 2;2n -1.(3)第n 个和第(n -1)个数的差是2(n -1);2(n -1)=24 n -1=12n =13这两个数分别在原数表的第12行和第13行.25.解:(1)方案一:20×1 000+(x -20)×200=200x +16 000方案二:1 000×20×0.9+0.9×200x =180x +18 000故答案为200x +16 000;180x +18 000.(2)方案一:当x =30时,200x +16 000=200×30+16 000=22 000(元)方案二:当x =30时,180x +18 000=180×30+18 000=23 400(元),而22 000<23 400∴按方案一购买较合算.(3)先按方案一购买20套西装获赠送20条领带,再按方案二购买10条领带,此时共花费:20×1 000+10×200×0.9=21 800(元),∵21 800<22 000,∴先按方案一购买20套西装获赠送20条领带,再按方案二购买10条领带最便宜.人教版七年级上册数学 第三章 一元一次方程 单元测试卷(满分 120分)一、选择题(每题3分,共30分)1. 如果方程(m -1)x +2=0是关于x 的一元一次方程,那么m 的取值范围是( ) A . m ≠0 B . m ≠1 C . m =-1 D . m =02. 下列方程的解是x =0的是( )A . 2x +3=x -3B . 3x =xC . x -9+4=5D . x +1=-13. 设x ,y ,c 是有理数,则下列结论正确的是( )A . 若x =y ,则x +c =y -cB . 若x =y ,则xc =ycC . 若x =y ,则x c =y cD . 若x 2c =y 3c,则2x =3y4. 方程x -x -53=1去分母,得( ) A . 3x -2x +10=1 B . x -(x -5)=3C . 3x -(x -5)=3D . 3x -2x +10=65. 如果x =-8是方程3x +8=-a 的解,则a 的值为( )A . -14B . 16C . 32D . -306. 下列两个方程的解相同的是( )A . 方程5x +3=6与方程2x =4B . 方程3x =x +1与方程2x =4x -1C . 方程x +12=0与方程x +12=0 D . 方程6x -3(5x -2)=5与6x -15x =37. 解方程4.5(x +0.7)=9x ,最简便的方法是首先( )A . 去括号B . 在方程两边同时乘10C . 移项D . 在方程两边同时除以4.58. 某车间有工人85人,平均每人每天加工大齿轮16个或小齿轮10个,又知2个大齿轮与3个小齿轮配成一套,若有x 人生产大齿轮,则可列方程为( )A . 2×16x =3×10(85-x )B . 2×10x =3×16(85-x )C . 3×16x =2×10(85-x )D . 3×10x =2×10(85-x )9. 学校食堂提供两种午餐:已知12月份盈盈在学校共吃了22次午餐,每次吃一份,刚好把妈妈给的300元午餐费全部用完,则盈盈这个月的午餐吃自助餐( )A . 6次B . 10次C . 12次D . 16次10. 一商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则商店卖这两件商品总的盈亏情况是( )A . 亏损20元B . 盈利30元C . 亏损50元D . 不盈不亏二、填空题(每题4分,共28分)11. 若代数式3x +7的值为-2,则x =________.12. 若代数式x -5的值与2x -4的值互为相反数,则x =________. 13. 若-0.2a3x +4b 3与12ab y 是同类项,则xy =________.14. 在某年全国足球超级联赛前15场比赛中,某队保持连续不败,共积37分,按比赛规则,胜一场得3分,平一场得1分,则该队共胜了________场.15. 如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息,可知买5束鲜花和5个礼盒的总价为________元.16. 如图,是某年6月份的月历,用一个圈竖着圈3个数,若被圈住的三个数的和为39,则这三个数中最大的一个为________.17. 对于实数p 、q ,我们用符号min {p ,q }表示p ,q 两数中较小的数,如min {1,2}=1,若min {4x +12,1}=x,则x=________.三、解答题(一)(每题6分,共18分)18. 解方程x-3(1-2x)=11.19. 解方程x+53-x-32=1.20. 某校组织学生种植芽苗菜,三个年级共种植909盆,初二年级种植的数量比初一年级的2倍少3盆,初三年级种植的数量比初二年级多25盆.初一、初二、初三年级各种植多少盆?四、解答题(二)(每题8分,共24分)21. 下面是马小哈同学做的一道题: 解方程:2x -13=1-x +24.解:①去分母,得4(2x -1)=1-3(x +2), ②去括号,得8x -4=1-3x -6, ③移项,得8x +3x =1-6+4, ④合并同类项,得11x =-1, ⑤系数化为1,得x =-111.(1)上面的解题过程中最早出现错误的步骤是________;(填代号) (2)请正确地解方程:x -x -12=2-x +24.22. 某学校举行排球赛,积分榜部分情况如下:(1)分析积分榜,平一场比负一场多得________分;(2)若胜一场得3分,七(6)班也比赛了6场,胜场是平场的一半且共积了14分,则七(6)班胜几场?23. 列方程解应用题:某人从家里骑自行车到学校,若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;从家里到学校的路程有多少千米?五、解答题(三)(每题10分,共20分)24. 某公园的门票价格规定如下表:某校七年级甲、乙两班共103人(其中甲班人数多于乙班人数,且甲班人数不超过100)去该公园游玩.如果两班都以班级为单位分别购票,那么一共需付486元.(1)如果两班联合起来作为一个团体购票,那么可以节约多少钱?(2)甲、乙两班各有多少人?25. 某商店5月1日当天举行优惠促销活动,当天到该商店购买商品有两种优惠方案:方案1:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的八折优惠;方案2:若不购买会员卡,则购买商店内任何商品,一律按商品价格的九五折优惠.已知小红5月1日前不是该商店的会员.(1)若小红不购买会员卡,所购买商品的总价格为120元,则实际应支付多少元?(2)请问购买商品的总价格是多少时,两种方案的优惠情况相同?(3)你认为哪种方案更合算?(直接写出答案) 参考答案1.B 2.B 3.B 4.C 5.B 6.B 7.D 8.C 9.D 10.A 11.-3 12.3 13.-3 14.11 15.440 16.20 17.-12或118.解:x -3(1-2x )=11x -3+6x =117x =14x =219.解:x +53-x -32=1方程两边同时乘6得, 6×x +53-6×x -32=62(x +5)-3(x -3)=6 2x +10-3x +9=6 -x =6-10-9=-13x =1320.解:设初一年级种植x 盆, 依题意得:x +(2x -3)+(2x -3+25)=909,解得x =178. ∴2x -3=353 2x -3+25=378.答:初一、初二、初三年级各种植178盆、353盆、378盆. 21.解:(1)①. (2)去分母,得4x -2(x -1)=8-(x +2), 去括号,得4x -2x +2=8-x -2, 移项,得4x -2x +x =8-2-2, 合并同类项,得3x =4, 系数化为1,得x =43.22.解:(1)17-16=1;故答案为1. (2)设负1场得x 分. 根据题意得:3×5+x =16. 解得:x =1.∴负1场得1分,平一场得2分. 设七(6)胜y 场,则平2y 场,负6-3y 场. 根据题意得:3y +2×2y +6-3y =14.解得:y =2答:七(6)班胜2场.23.解:设从家到学校有x 千米,15分钟=14小时,依题意得:x 15+14=x 9-14,12x +45=20x -45, 8x =90x =11.25,答:从家里到学校的路程有11.25千米. 24.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元) 可节省486-412=74(元)答:如果两班联合起来,作为一个团体购票,则可以节约74元钱. (2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班一定大于50人.,又甲班人数不超过100人,则甲班票价按每人4.5元计算.下面就乙班人数分析:①若乙班少于或等于50人,设乙班有x 人,则甲班有(103-x )人,依题意,得 5x +4.5(103-x )=486 解得x =45, ∴103-45=58(人)即甲班有58人,乙班有45人. ②若乙班此时也大于50人,而 103×4.5=463.5<486.应舍去. 答:甲班有58人,乙班有45人. 25.解:(1)120×0.95=114 (元),若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付114元. (2)设购买商品的价格是x 元, 根据题意,得0.8x +168=0.95x , 解得x =1 120,所以所购买商品的价格是1 120元时,两种方案的优惠情况相同. (3)当不购买会员卡,实际应支付的钱数=购买会员卡应支付的钱数时,则0.8x+168=0.95x,解得:x=1 120,当不购买会员卡,实际应支付的钱数>购买会员卡应支付的钱数时,则0.8x+168>0.95x解得:x<1 120 ,当不购买会员卡,实际应支付的钱数<购买会员卡应支付的钱数时,则0.8x+168<0.95x,解得:x>1 120.所以当购买商品的价格等于1 120元时,两种方案同样合算,当购买商品的价格在1 120元以上时,采用方案一更合算,当购买商品的价格在1 120元以下时,采用方案二合算.。

七年级上册数学第1、2章练习题

七年级上册数学第1、2章练习题

第一、二章数学练习题一、填空1、321-的倒数是 ,321-的相反数是 ,321-的绝对值是 , 已知|a|=4,那么a = 。

2、最小的正整数是____,绝对值最小的有理数是__ __,绝对值等于3的数是__ __, 绝对值等于本身的数是 。

3、绝对值大于1而不大于3的整数有 ,它们的和是 。

4、有理数-3,0,20,-1.25,143, -12- ,-(-5) 中,正整数是 ,负整数是 ,正分数是 ,非负数是 。

5. 化简: -=+-)21(____________,()[]2+--=_______________. 6、观察下面一列数,根据规律写出横线上的数, -11;21;-31;41; ; ;……;第2003个数是 。

7、32b a -系数是___________,次数是___________。

8、已知x n y 2和21x 2y m-1是同类项,则m=_________,n=_________. 9、如果3x n -(m-1)x+1是关于x 的三次二项式,则-m+n 2=________.10、已知x 2+3x 的值为2,则3x 2+9x-6的值为_________________.11、个位数字是a ,十位数是b ,百分数字是c 的三位数可表示为_________________.12、三个连续奇数,中间一个是n ,则这三个数的和为 .13、a=3,|b|=10,且|b-a|=-(b-a ),则a-b=____14、a ,b 互为相反数,c 与d 互为倒数,则2a-3dc+2b=__ __ 15、若0|1|232=-+b a ,则a=____,b=____16、近似数2.58万,精确到__ __位,有____ 个有效数字。

17、如果多项式3x 2+2xy n +y 2是个三次多项式,那么n= 。

18、观察单项式-x,2x 2,-3x 3,4x 4,…,-19x 19,20x 20,…则第2007个单项式为________.19、已知多项式ax 5+bx 3+cx ,当x=1时值为5,那么该多项式当x=-1时的值为 。

第一、二章学业质量评价测试卷+2024—2025学年人教版数学七年级上册

第一、二章学业质量评价测试卷+2024—2025学年人教版数学七年级上册

第一、二章学业质量评价测试卷满分:120分 时间:100分钟 得分:一、选择题(每小题3分,共30分)1.当 A 地高于海平面152米时,海拔记作“+152米”,那么B 地低于海平面23米时,海拔记作 ( ) A.23 米 B.-23米 C.175米 D.129米2.下列各数中,比-2021小的数是 ( ) A.-2022 B.0 C.2021 D.20223.基础教育“双减”工作监测平台数据显示,截至 9 月 22日,全国有10.8万所义务教育学校已填报课后服务信息,用科学记数法表示 10.8万正确的是 ( )A.10.8×10⁴B.1.08×10⁴C.10.8×10⁵D.1.08×10⁵4.下列各组数中,相等的一组是 ( ) A.--(--1)与--|--1| B.-3² 与(-3)² C.(-4)³ 与--4³ D.2 23与. (23)25.下列运算正确的是 ( ) A.(--5)--|-5|=0 B.34×(−43)=1 C.−(+12)−(−13)=−16 D.−3÷(−3)2=136.如图,数轴上每两个相邻刻度之间的距离均为1个单位长度,点Q ,R 所表示的数的绝对值相等,则点 P 表示的数为 ( )A.0B.3C.5D.77.下列说法正确的有 ( )①有理数与数轴上的点一一对应;②若a ,b 互为相反数,则 ab =−1;③如果一个数的绝对值是它本身,那么这个数是正数;④近似数 7.30 所对应的准确数的范围是大于或等于7.295,而小于7.305.A.1 个B.2个C.3个D.4 个8.已知a,b 是不为0的有理数,且|a|=-a,|b|=b,|a|>|b|,那么用数轴上的点来表示a ,b 时,正确的是 ( )9.已知a 是最大的负整数,b 是绝对值最小的整数,c 是最小的正整数,则|a+b+c|等于 ( )A.--1B.0C.1D.210.若ab≠0,则|a|a +|b|b的值不可能是( )A.0B.1C.2D.-2二、填空题(每小题3分,共24分)11.−711的倒数是.12.绝对值大于3而小于8的所有整数之和是.13.把210400精确到万位是.14.已知甲、乙两个水库开始时水位一样高,甲水库的水位每天升高1cm,乙水库的水位每天下降2cm,四天后甲、乙水库的水位相差cm.15.在纸上画一条数轴,将这张纸对折后,若该数轴上表示4的点与表示-1的点恰好重合,则此时与表示-3的点重合的点表示的数是.16.已知a,b互为相反数,m,n互为倒数,x 的绝对值为2,则−2mn+a+bm−n −x2=¯.17.已知|x|=3,|y|=5,且xy<0,则x+y= .18.填在下面各正方形中的四个数之间都有一定的规律,据此规律得出a+b+c= .三、解答题(共66分)19.(6分)将下列各数在如图所示的数轴上表示出来,并用“>”把这些数连接起来:−112,0,2,−|−3|,−(−3.5).20.(6分)计算: −23+6÷3×23.圆圆同学的计算过程如下:解:原式=−6+6÷2=0÷2=0.请你判断圆圆的计算过程是否正确.若不正确,请你写出正确的计算过程.21.(16分)计算:(1)5×(−2)+(−8)÷(−2);(2)[2−5×(−12)2]÷(−14);(3)(−24)×(12−123−38);(4)−14−(1−0×4)÷13×[(−2)2−6].22.(8分)小华某天早晨跑步,他从自己家出发,向东跑了1.5千米到达中心公园,又向西跑了2.3 千米到达新华书店,接着又向东跑了1千米到早点铺买了早饭,最后向西跑返回自己家.(1)求新华书店与小华家之间的距离;(2)如果小华跑步的速度是每分钟 200米,那么小华跑步一共用了多长时间?23.(8分)定义新运算: axb=(a−b)ᵇ,如2×3=(2−3)³=(−1)³=−1.(1)求(−1)∗3的值;(2)若b=2,且a∗b+|c+3|=0,求c×a的值.24.(10分)煤矿井下A 点的海拔为-164.5米,已知从A到B 的水平距离是120米,每经过水平距离10 米上升0.4米,已知B 点在A 点的上方.(1)求B 点的海拔;(2)若C 点海拔为-98.8米,每垂直升高10 米用30秒,求从A 点到C点所用的时间.25.(12 分)下面是按规律排列的一列算式: 第 1个算式: 1−(1+−12);第 2个算式: 2−(1+−12)[1+(−1)23][1+(−1)34];第3个算式: 3−(1+−12)[1+(−1)23][1+(−1)34][1+ (−1)45][1+(−1)56];………(1)分别计算出这三个算式的结果(直接写出答案);(2)写出第2021个算式的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果.1. B2. A3. D4. C5. C6. C7. A8. C9. B 10. B11.−117 12.0 13.21万(或2.1×10⁵)14.12 15.6 16.—6 17.2 或—218.110 解析:找规律可得c=6+3=9,a=6+4=10,b=ac+1=91,所以a+b+c=110. 19.解:在数轴上表示如图所示.(3分)由数轴可知 −(−3.5)>2>0>−112>一|-3|.(6分)20.解:圆圆的计算过程不正确.(2分)正确的计算过程为:原式 =−8+43=−203.(6分) 21.解:(1)原式=-10+4=-6.(4分)(2)原式 =(2−54)×(−4)=−8+5=−3.(8分) (3)原式=-12+40+9=37.(12分) (4)原式=-1-1×3×(-2)=-1+6=5.(16 分)22.解:(1)2.3—1.5=0.8(千米).故新华书店与小华家之间的距离为0.8千米.(4分) (2)1—0.8=0.2(千米),1.5+2.3+1+0.2=5(千米),5千米=5000米,5000÷200=25(分钟). 答:小华跑步一共用了 25 分钟.(8分)23.解:(1)原式 =(−1−3)³=(−4)³=−64.(3分)(2)因为b=2,且a*b+|c+3|=0,所以 (a −2)²+|c +3|=0..又因为( (a −2)²≥0,|c+3|≥0,所以a-2=0,c+3=0,解得a=2,c=--3.所以c*a=(--3) *2= (−3−2)²=(−5)²=25.(8分)24.解:(1)根据题意得—164.5+(120÷10)×0.4 = — 159.7(米),即 B 点 的海拔为—159.7米.(5分) (2)[--98.8--(--164.5)]÷10×30=197.1(秒),即从 A 点到C 点所用的时间为 197.1秒.(10分) 25.解:(1)三个算式的结果分别是 12: 32,, 52(6分) (2)第 2 021 个算式: 2021−(1+−12)× [1+(−1)23][1+(−1)34]×⋯×[1+(−1)40404041][1+(−1)40414042]=2021−12×43×34×⋯×40424041×40414042=2021−12= 202012.(12分)。

人教版七年级数学上册期末复习第1-2章基础必刷题 含答案

人教版七年级数学上册期末复习第1-2章基础必刷题    含答案

人教版七年级数学上册期末复习第1-2章基础必刷题一.选择题1.﹣的倒数是()A.﹣B.﹣C.D.2.﹣是一个数的相反数,则这个数是()A.﹣B.﹣7C.D.73.﹣的绝对值是()A.﹣2020B.﹣C.D.20204.在四个数0,﹣2,﹣3,2中,最小的数是()A.0B.﹣2C.﹣3D.25.在1、﹣2、﹣5.6、﹣0、、﹣、π中负数有()A.3个B.4个C.5个D.6个6.2018年7月份,我国居民消费价格同比上涨2.1%,记作+2.1%,其中水产品价格下降0.4%,应记作()A.0.4%B.﹣0.4%C.0.4D.﹣0.47.下列计算正确的是()A.(﹣3)﹣(﹣3)=﹣6B.(﹣18)﹣(+9)=﹣9C.|5﹣2|=﹣(5﹣2)D.0﹣(﹣7)=78.据统计,某城市去年接待旅游人数约为89 000 000人,89 000 000这个数据用科学记数法表示为()A.8.9×106B.8.9×105C.8.9×107D.8.9×108 9.按括号内的要求用四舍五入法取近似数,下列正确的是()A.403.53≈403(精确到个位)B.2.604≈2.60(精确到十分位)C.0.0234≈0.02(精确到0.01)D.0.0136≈0.014(精确到0.0001)10.下列说法中,正确的为()A.两数之差一定小于被减数B.对任意有理数,若a+b=0,则|a|=|b|C.若两个有理数的和是负数,则这两个有理数都是负数D.0减去任何一个数,都得负数11.数a,b在数轴上的位置如图所示,下列式子中错误的是()A.a<b B.﹣a<b C.a+b<0D.b﹣a>0 12.单项式﹣3πa2的系数是()A.3B.﹣3C.3πD.﹣3π13.下列各项是同类项的是()A.1与﹣2B.xy与2y C.ab2与a2b D.5ab与6ab2 14.下列运算正确的是()A.2a﹣a=1B.2a+b=3abC.2a+3a=5a D.3a2+2a2=5a415.下列说法中正确的是()A.单项式πx2的系数是,次数是3B.多项式x2﹣2x﹣1的项是x2,2x,1 C.单项式的系数是﹣2D.多项式y﹣x2y+5xy2是三次三项式16.下列计算正确的是()A.43=4×3B.﹣=﹣C.4﹣4÷2=4﹣2=2D.32÷6×=9×1=917.下面去括号正确的是()A.2n+(﹣m﹣n)=2n+m﹣n B.a﹣2(3a﹣5)=a﹣6a+10C.n﹣(﹣m﹣n)=n+m﹣n D.x2+2(﹣x+y)=x2﹣2x+y18.现规定一种新运算“*”:a*b=4ab﹣(a+b),如6*2=4×6×2﹣(6+2)=48﹣8=40,则(﹣4)*(﹣2)=()A.﹣8B.C.38D.19.若代数式x2+ax﹣(bx2﹣x﹣3)的值与字母x无关,则a﹣b的值为()A.0B.﹣2C.2D.120.如图,把半径为0.5的圆放到数轴上,圆上一点A与表示1的点重合,圆沿着数轴滚动一周,此时点A表示的数是()A.0.5+π或0.5﹣πB.0.25+π或0.25﹣πC.1+π或1﹣πD.2+π或2﹣π二.填空题21.2020年12月9日世卫组织公布,全球新冠肺炎确诊病例超6810万例,请用科学记数法表示6810万例为例.22.1﹣|﹣2|=.23.比较大小:﹣﹣.(填“>”或“<”)24.计算(﹣48)÷÷(﹣12)×的结果是.25.数轴上的A点表示的数是2,则距A点5个单位的B点表示的数是.26.用四舍五入法把1.8049精确到0.01为.27.去括号:﹣3(a+3b)=.28.代数式系数为;多项式3x2y﹣7x4y2﹣xy4的最高次项是.29.若整式a2+a的值为7,则整式a2+a﹣3的值为.30.12a x﹣1b3与﹣5a5b y+1是同类项,则x y=.31.若关于x的多项式x3﹣4x2﹣2与2x3+mx2﹣3的和不含二次项,则m=.32.已知|x|=3,|y|=5,且x>y,则2x+y的值为.三.解答题33.把下列各数填在相应的表示集合的括号内.﹣1,,﹣|﹣3|,0,,﹣0.3,1.7,﹣(﹣2).整数:{…};非负整数:{…};非正数:{…};有理数:{…}.34.计算:(1)(+3)﹣(﹣9)+(﹣4)﹣(+2)(2)22﹣5×+|﹣2|;(3)﹣22×÷(﹣)2×(﹣2)3 (4)(﹣1)100×5+(﹣2)4÷4.35.把下列各数在数轴上表示出来,并用“<”号连接起来:3,﹣(+2),﹣|﹣4|,0,1.5,(﹣1)336.先去括号,再合并同类项.(1)3a﹣(4b﹣2a+1)(2)2(5a﹣3b)﹣3(a2﹣2b).37.(1)已知a<b<0<c,化简|a﹣b|+|a+b|﹣|c﹣a|.(2)若|a|=21,|b|=27,且|a+b|=a+b,求a﹣b的值.38.先化简,再求值:2(3a2b﹣ab2)﹣3(2a2b+4ab2),其中a=﹣1,b=.39.x,y表示两个数,规定新运算“※”及“△”如下:x※y=6x+5y,x△y=3xy,那么(﹣2※3)△(﹣4)是多少?40.已知a、b互为相反数,x、y互为倒数,m到原点距离2个单位.(1)根据题意,m=;(2)求m2++(﹣xy)2020的值.41.已知:A+B=﹣3x2﹣5x﹣1,A﹣C=﹣2x+3x2﹣5.求:(1)B+C;(2)当x=﹣1时,求B+C的值?42.仓库现有100袋小麦出售,从中随机抽取10袋小麦,以90kg为标准,超过的质量记为正数,不足的质量记为负数,称得的结果记录如下:+1,+1,+1.5,﹣1,+1.2,+1.3,﹣1.3,﹣1.2,+1.8,+1.1.(1)这10袋小麦总计超过或不足多少千克?(2)若每千克小麦的售价为25元,估计这100袋小麦总销售额是多少元?参考答案一.选择题1.解:的倒数是.故选:A.2.解:∵﹣是一个数的相反数,∴这个数是:.故选:C.3.解:|﹣|=.故选:C.4.解:因为﹣3<﹣2<0<2,所以在四个数0,﹣2,﹣3,2中,最小的数是﹣3.故选:C.5.解:在1、﹣2、﹣5.6、﹣0、、﹣、π中负数有﹣2、﹣5.6、﹣共3个,故选:A.6.解:若上涨记作“+”,那么下降就记作“﹣”.所以下降0.4%应记作“﹣0.4%”.故选:B.7.解:A、(﹣3)﹣(﹣3)=﹣3+3=0,故本选项不合题意;B、(﹣18)+(﹣9)=﹣27,故本选项不合题意;C、|5﹣2|=5﹣2,故本选项不合题意;D、0﹣(﹣7)=7,故本选项符号题意;故选:D.8.解:89 000 000这个数据用科学记数法表示为8.9×107.故选:C.9.解:A、403.53≈404(精确到个位),所以A选项错误;B、2.604≈2.6(精确到十分位),所以B选项错误;C、0.0234≈0.02(精确到0.01),所以C选项正确;D、0.0136≈0.0136(精确到0.0001),所以D选项错误.故选:C.10.解:A、两数之差不一定小于被减数,如1﹣(﹣1)=2,所以原说法错误,故本选项不合题意;B、对任意有理数,若a+b=0,则|a|=|b|,说法正确,故本选项符合题意;C、若两个有理数的和是负数,则这两个有理数不一定都是负数,如(﹣2)+1=﹣1,所以原说法错误,故本选项不合题意;D、0减去任何一个数,不一定都得负数,如0﹣(﹣1)=1,所以原说法错误,故本选项不合题意;故选:B.11.解:由数轴可得,a<0<b,|a|>|b|,则a<b,﹣a>b,a+b<0,b﹣a>0,错误的是B.故选:B.12.解:单项式﹣3πa2的系数是:﹣3π.故选:D.13.解:A、1和2是同类项,故本选项符合题意;B、xy与2y,所含字母不尽相同,不是同类项,故本选项不合题意;C、ab2与a2b,所含字母相同,但相同字母的指数不相同,不是同类项,故本选项不合题意;D、5ab与6ab2,所含字母相同,但相同字母的指数不尽相同,不是同类项,故本选项不合题意;故选:A.14.解:A、2a﹣a=a,故本选项不合题意;B、2a与b不是同类项,所以不能合并,故本选项不合题意;C、2a+3a=5a,故本选项符合题意;D、3a2+2a2=5a2,故本选项不合题意;故选:C.15.解:A.单项式x2的系数是,次数是2,故本选项不符合题意;B.多项式x2﹣2x﹣1的项是x2,﹣2x,﹣1,故本选项不符合题意;C.单项式﹣的系数是﹣,故本选项不符合题意;D.多项式y﹣x2y+5xy2是三次三项式,故本选项符合题意;故选:D.16.解:43=4×4×4,故选项A错误;=﹣,故选项B错误;4﹣4÷2=4﹣2=2,故选项C正确;32÷6×=9×=,故选项D错误;故选:C.17.解:2n+(﹣m﹣n)=2n﹣m﹣n,因此选项A不符合题意;a﹣2(3a﹣5)=a﹣6a+10,因此选项B符合题意;n﹣(﹣m﹣n)=n+m+n,因此选项C不符合题意;x2+2(﹣x+y)=x2﹣2x+2y,因此选项D不符合题意;故选:B.18.解:∵a*b=4ab﹣(a+b),∴(﹣4)*(﹣2)=4×(﹣4)×(﹣2)﹣[(﹣4)+(﹣2)]=32﹣(﹣6)=38.故选:C.19.解:∵x2+ax﹣(bx2﹣x﹣3)=x2+ax﹣bx2+x+3=(1﹣b)x2+(a+1)x+3,且代数式的值与字母x无关,∴1﹣b=0,a+1=0,解得:a=﹣1,b=1,则a﹣b=﹣1﹣1=﹣2,故选:B.20.解:∵半径为0.5的圆从数轴上表示1的点沿着数轴滚动一周到达A点,∴A点与1之间的距离是:2×π×0.5=π,当A点在1的左边时表示的数是1﹣π,当A点在1的右边时表示的数是1+π,故选:C.二.填空题21.解:6810万=68100000=6.81×107.故选:6.81×107.22.解:1﹣|﹣2|=1﹣2=1+(﹣2)=﹣1.故答案为:﹣1.23.解:∵|﹣|==,||==,,∴.故答案为:>.24.解:原式=(﹣48)×=4.故答案为:4.25.解:当B点在A点的左边时,点B表示的数为2﹣5=﹣3,当B点在A点的右边时,点B表示的数为2+5=7.故点B表示的数为7或﹣3.故答案为:7或﹣3.26.解:用四舍五入法把1.8049精确到0.01为1.80.故答案为:1.80.27.解:﹣3(a+3b)=﹣3a﹣9b.故答案为:﹣3a﹣9b.28.解:系数为﹣;多项式3x2y﹣7x4y2﹣xy4的最高次项是﹣7x4y2.故答案为:,﹣7x4y2.29.解:∵a2+a=7,∴a2+a﹣3=7﹣3=4.故答案为:4.30.解:根据题意得:x﹣1=5,y+1=3,解得x=6,y=2,∴x y=62=36.故答案是:36.31.解:x3﹣4x2﹣2+2x3+mx2﹣3=3x3+(m﹣4)x2﹣5,∵关于x的多项式x3﹣4x2﹣2与2x3+mx2﹣3的和不含二次项,∴m﹣4=0.解得,m=4.故答案为:4.32.解:∵|x|=3,|y|=5,∴x=±3,y=±5,∵x>y,∴y必小于0,y=﹣5.当x=3或﹣3时,均大于y.所以当x=3时,y=﹣5,代入2x+y=2×3﹣5=1.当x=﹣3时,y=﹣5,代入2x+y=2×(﹣3)﹣5=﹣11.所以2x+y=1或﹣11.故答案为:1或﹣11.三.解答题33.解:整数:{﹣1,﹣|﹣3|,0,﹣(﹣2)…};非负整数:{0,﹣(﹣2)…};非正数:{﹣1,﹣,﹣|﹣3|,0,﹣0.3…};有理数:{﹣1,﹣,﹣|﹣3|,0,,﹣0.3,1.7,﹣(﹣2)…}.故答案为:﹣1,﹣|﹣3|,0,﹣(﹣2);0,﹣(﹣2);﹣1,﹣,﹣|﹣3|,0,﹣0.3;﹣1,﹣,﹣|﹣3|,0,,﹣0.3,1.7,﹣(﹣2).34.解:(1)原式=3+9﹣4﹣2=12﹣6=6;(2)原式=4﹣1+2=5;(3)原式=﹣4××4×(﹣8)=32;(4)原式=1×5+16÷4=5+4=9.35.解:如图所示:,﹣|﹣4|<﹣(+2)<(﹣1)3.36.解:(1)原式=3a﹣4b+2a﹣1=5a﹣4b﹣1;(2)原式=10a﹣6b﹣3a2+6b=10a﹣3a2.37.解:(1)∵a<b<0<c,∴a﹣b<0,a+b<0,c﹣a>0,|a﹣b|+|a+b|﹣|c﹣a|=b﹣a﹣a﹣b﹣c+a=﹣a﹣c;(2)∵|﹣a|=21,|+b|=27,∴a=±21,b=±27,∵|a+b|=a+b,∴a+b≥0,∴①a=﹣21,b=27,则a﹣b=﹣21﹣27=﹣49;②a=21,b=﹣27,则a﹣b=21+27=49;③a=21,b=27,则a﹣b=21﹣27=﹣6.故a﹣b的值为﹣49或49或﹣6.38.解:原式=6a2b﹣2ab2﹣6a2b﹣12ab2=﹣14ab2,当a=﹣1,b=时,原式=﹣14ab2=﹣14×(﹣1)×()2=14×=.39.解:∵x※y=6x+5y,x△y=3xy,∴(﹣2※3)△(﹣4)=[6×(﹣2)+5×3]△(﹣4)=[(﹣12)+15]△(﹣4)=3△(﹣4)=3×3×(﹣4)=﹣36.40.解:(1)∵m到原点距离2个单位,∴m=2或﹣2,故答案为:2或﹣2;(2)根据题意知a+b=0,xy=1,m=2或﹣2,当m=2时,原式=22+0+(﹣1)2020=4+1=5;当m=﹣2时,原式=(﹣2)2+0+(﹣1)2020=4+1=5;综上,m2++(﹣xy)2020的值为5.41.解:(1)∵A+B=﹣3x2﹣5x﹣1,A﹣C=﹣2x+3x2﹣5,∴A+B﹣(A﹣C)=﹣3x2﹣5x﹣1﹣(﹣2x+3x2﹣5),∴B+C=﹣3x2﹣5x﹣1+2x﹣3x2+5,∴B+C=﹣6x2﹣3x+4,(2)把x=﹣1代入﹣6x2﹣3x+4,得,B+C=﹣6×1﹣3×(﹣1)+4=1.42.解:(1)+1+1+1.5+(﹣1)+1.2+1.3+(﹣1.3)+(﹣1.2)+1.8+1.1=5.4(千克).答:这10袋小麦总计超过5.4千克;(2)总质量:(90+5.4÷10)×100=9054(千克),9054×25=226350(元).答:这100袋小麦总销售额是226350元.。

人教版数学七年级上册第一、二章 综合测试题

人教版数学七年级上册第一、二章 综合测试题

七年级数学第一、二章测试题一、选择题(每小题3分,共30分).1、在|,7|),4(,)5(,)3(32------32-,|)1(1|---中,负数的个数为( )A 、1 个B 、2 个C 、3个D 、4个 2、320 000这个数用科学计数法表示,结果正确的是( )A 、61032.0⨯B 、4102.3⨯C 、5102.3⨯D 、41032⨯3、计算 |-8|-8 的值为( )A 、0 B 、8 C 、-8 D 、±84、下列为同类项的一组是( )A 、ab 与a 7B 、2xy -与241yx C 、3x 与32D 、7与31-5、用四舍五入法按要求对1022.0099分别取近似植,其中错误的是( )A 、1022.01(精确到0.01)B 、1.0×103(精确到百位)C 、1020 (精确到十位)D 、1022.010(精确到千分位) 6、多项式1212---x x 的各项分别是( ) A 、2x -,x 21,1 B 、2x -,x 21-,1- C 、2x ,x 21,1 D 、2x ,x 21-,1-7、下列运算正确的是( )A 、ab b a 523=+B 、y x y x y x 22245=- C 、53243x x x =+ D 、32533=-x x8、如图,数轴上的两个点A 、B 所表示的数分别是a 、b ,在b a +,b a -,ab ,||||b a -中,是正数的有( )A 、1 个B 、2 个C 、3个D 、4个 9、下面是小明做的一道多项式的加减运算题,但他不小心把一滴墨水滴在了上面。

2222221)23421()213(x y xy x y xy x -=-+---+-●2y +,黑点处即为被墨迹弄污的部分,那么被墨汁遮住的一项应是( )A 、xy -B 、xy +C 、xy 7-D 、xy 7+10、若代数式7322++x x 的值为8,则代数式9642-+x x 的值为( )A 、2B 、-17C 、-7D 、7二、填空题(每小题3分,共15分)11、已知单项式3252y x 的次数是12、若31<<a ,则化简|3||1|a a -+-的结果为13、单项式322ba -的系数是14、若a 、b 互为相反数,c 、d 互为倒数,且m 的绝对值为2,则=+-+)(31b a cd m 15、若0|1|)2(2=+++b a ,则多项式3ab 2-(4ab 2-2a 2b)=三、计算题(本大题共4小题,每小题5分,共20分)16、计算下列各小题 (1))15(|23|)17(32-+----- (2))834121(1641)2(143+-⨯-⨯---17、(1)425322+---+x x x x(2))283(4)125(22a a a a +---+四、解答题(本大题共55分)18、(6分)多项式332275y x y x -+与另一个多项式的和为323y y x -,求另一个多项式。

初一上册数学第一章和第二章测试题

初一上册数学第一章和第二章测试题

初一上册数学第一章和第二章测试题以下是初一上册数学第一章和第二章的测试题:第一章《有理数》测试题一、填空题(每题3分,共30分)1.如果盈利20元记作+20元,那么亏损15元记作______元。

2.数轴上表示-3的点在原点的______侧,距离原点______个单位长度。

3.绝对值等于5的数是______。

4.比较大小:-2______-3(填“>”或“<”)。

5.某天的最高气温为6℃,最低气温为-2℃,则这天的温差是______℃。

6.一个数的倒数是它本身,这个数是______。

7.化简:-(-3)=______。

8.在有理数中,最小的正整数是______,最大的负整数是______。

9.若|a| = 3,|b| = 5,且a、b异号,则a - b =______。

10.观察下列数:-2,4,-8,16,-32,…,按照规律,第6个数是______。

二、选择题(每题3分,共30分)1.下列各数中,是负数的是()A. 0B. 2023C. -(-3)D. -22.下列说法正确的是()A.有理数分为正数和负数B.一个数的绝对值一定是正数C.0是最小的有理数D.最大的负整数是-13.在数轴上,与表示-1的点距离为3的点表示的数是()A. 2B. -4C. 2或-4D. 4或-24.若|x| = -x,则x一定是()A. 正数B. 负数C. 非正数D. 非负数5.下列运算结果为正数的是()A. -2 + 3B. -2 - 3C. -2×3D. (-2)÷36.一个数加上-12等于-5,则这个数是()A. 17B. 7C. -17D. -77.计算(-2)×3的结果是()A. 6B. -6C. 5D. -58.下列各对数中,互为相反数的是()A.-(+3)与+(-3)B. -(-4)与| -4|B.-2.5与-(+2.5) D. -(-2)与+(+2)9.已知a、b互为相反数,c、d互为倒数,m的绝对值是2,则(a + b)/m + cd + m的值为()A. 3B. -1C. 3或-1D. ±3或±110.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25 ±0.1)kg、(25 ±0.2)kg、(25 ±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A. 0.8kgB. 0.6kgC. 0.5kgD. 0.4kg三、解答题(共40分)1.(8分)把下列各数填入相应的集合中:-2.5,3,0,-1/2,-0.6,+5,1/3,-3.14,π正数集合:{ …}负数集合:{ …}整数集合:{ …}分数集合:{ …}2.(8分)计算:(1)12 -(-18)+(-7)- 15(2)(-2)×(-3)÷(-4)3.(8分)在数轴上表示下列各数,并比较它们的大小,用“<”连接起来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册第一二章测试题
一、选择题(每题2分,共16分)
1、下面图形经过折叠不能围成棱柱的是( )。

2、据媒体报道,我国因环境污染造成的巨大经济损失每年高达680 000 000 元。

将680 000 000用科学计数法表示正确的是( )。

A 、68×107
B 、6.8×108
C 、6.8×107
D 、6.8×106 3、用一个平面去截一个正方体,截面不可能是( )。

A 、梯形 B 、五边形 C 、六边形 D 、圆
4、一个几何体从三个方向看到的形状图完全相同,则它可以是( )。

A 、圆柱 B 、圆锥 C 、球体 D 、长方体
5、已知5=x 、2=y ,则xy 的值等于( )。

A 、10和-10
B 、10
C 、-10
D 、以上答案都不对 6、如果向北走10米记做+10米,那么-6米表示( )。

A 、向东走6米
B 、向西走6米
C 、向南走6米
D 、向北走6米 7、绝对值等于它本身的数有 ( )
A 、0个
B 、1个
C 、2个
D 、无数个 8、在下面的图形中,( )是正方体的表面展开图。

二、填空题(每题2分,共16分)
9、圆柱的侧面展开图是__________,圆锥的侧面展开图是_________。

10、5
2
-的相反数是 ,倒数是 。

11、已知|x+2|+(y -3)2 =0,则x = ;y =_______。

12、已知,m 、n 互为相反数,则=++n m 3 。

13、一防洪大堤所标的警戒水位是37米,规定在记录每天水位时,高于警戒水位的部分记为正数,低于警戒水位的部分记为负数.若冬季某一天,水位记录为-7米,则这天的实际水位为 米。

14、若|x|=4,则x=________。

15、已知一不透明的正方体的六个面上分别写着1至6六个数字,如图是我们能看到的三种情况,那么1和5的对面数字分别是____和_____。

(图形如下)
16、下边是两种立体图形的展开图.请分别写出 这两个立体图形的名称:________,________。

三、解答题
17、画一条数轴,并在数轴上表示:3.5 , 0 , 2.5 , -1 , -3 ,-2
1 ,并把这些数由小到大用“<”号连接起来。

(6分)
18、如图所示是一个用5个小立方体搭成的几何体,请画出它的三视图。

(6分)
(从正面看)
19、计算(每题6分,共30分)
(1) (2) (121-41-8
1
)×(-24)
(3) (4)100()()222
-+-÷⎪⎭
⎫ ⎝⎛-÷32
(5)
20.某检修小组乘汽车检修公路道路。

向东记为正,向西记为负。

某天自A 地出发。

所走路程(单位:千米)为:+22,-3,+4,-2,-8,-17,-2,+12,+7,-5;(8分)问: 1、最后他们是否回到出发点?若没有,则在A 地的什么地方?距离A 地多远?
2、每千米耗油0.05升,则今天共耗油多少升?
21. 某股民于2011年7月4日买进某公司股票1000股,每股87元,下表为
本月内每日股票的涨跌情况(“+”为涨“-”为跌)回答下面问题:(8分)
(2)这5日内最高股价是多少元?最低股价是多少元?
22.下表记录的是流花河今年某一周内的水位变化情况,上周末(星期六)的水位已达到警戒水位33米。

(正号表示水位比前一天上升,负号表示水位比前一天下降)(10分)
⑴本周哪一天河流的水位最高?哪一天河流的水位最低?它们位于警戒水位之上还是之下?
⑵与上周末相比,本周末河流的水位是上升了还是下降了?
⑶以警戒水位作为零点,用折线统计图表示本周的水位情况。

解:
1。

相关文档
最新文档