一次函数教1
一次函数专题课(1)

一次函数专题课(1)---利用函数图象解决实际问题【教学目标】1、能根据函数图象获取信息,发展形象思维.2、能利用函数图象解决简单的实际问题,发展学生的数学应用能力.3、初步体会方程与函数的关系,建立良好的知识联系.【教学过程】一、例题选讲:问题1、某同学将父母给的零用钱按每月相等的数额存放在储蓄罐内,准备捐给希望工程,盒内原来有40元,2个月后盒内有80元.(1)求盒内钱数y(元)与存钱月数x之间的函数关系式并写出x的取值范围;(2)在直角坐标系中的作出该函数的图象;(3)观察图象回答:按上述方法,该同学经过几个月能存够200元.问题2、一根弹簧的弹性限度是20厘米.在其弹性限度内,弹簧的长度y(cm)是所挂物体的重量x (kg)的一次函数,当所挂物体的重量为1kg时,弹簧长度是10cm;当所挂物体的重量为3kg时,弹簧长度为12cm.(1)写出y与x之间的函数关系式;(2)求不挂物体时,弹簧的长度;(3)画出该函数的图象.问题3、在抗击“非典”中,某医药研究所开发了一种预防“非典”的药品,经实验这种药品的效果得知:当成年人按规定剂量服用该药后1小时时,血液中含药量最高,达到每毫升5微克,接着逐步衰减,至8小时时血液中含药量为每毫升1.5毫克,每毫升血液中含药量y(微克)随时间x(小时)的变化如图所示,在成年人按规定剂量服药后:(1)分别求出x≤1和x>1时,y与x的函数关系式;(2)如果每毫升血液中含药量为2微克或2微克以上,问题4、某加工厂以每吨3000元的价格购进50吨原料进行加工,若进行粗加工,每吨加工费为600元,需1/3天,每吨售价4000元;若进行精加工,每吨加工费为900元,需1/2天,每吨售价4500元;现将这50吨原料全部加工完.(1)设其中粗加工x吨,获利y元,求y与x的函数关系式;(2)如果必须在20天内完成,如何安排生产才能获得最大利润?最大利润是多少?问题5、某饮料厂生产一种饮料,经测算,用1吨水生产的饮料所获利润y (元)是1吨水的价格(元)的一次函数.(1)根据下表提供的数据,求y 与x 的函数关系式.当水价为每吨10元时,10吨水生产出的饮料所获的利润是多少?(2)为节约用水,这个市规定:该厂日用水量不超过20吨时,水价为每吨4元;日用水量超过20吨时,超过部分按每吨20元收费.已知该厂日用水量不少于20吨.设该厂日用水量为t 吨,当日所获利润为W 元,求W 与t 的函数关系式.二、作业(讲义)1、一根弹簧的原长为12 cm ,它能挂的重量不能超过15 kg ,并且每挂重1kg 就伸长1/2cm 写出挂重后的弹簧长度y (cm )与挂重x (kg )之间的函数关系式是 ( )A 、y = 1/2x + 12(0<x ≤15B 、y = 1/2x + 12(0≤x <15C 、y = 1/2x + 12(0≤x ≤15)D 、y = 1/2x + 12(0<x <152、遥控赛车在“争先”杯赛中,电脑记录了速度的变化过程如图所示.能否用函数解析式表示这段记录?3、某地长途汽车客运公司规定,旅客可随身携带一定重量的行李,如果超过规定,则需要购买行李票,行李票费用y (元)是行李重量x (公斤)的一次函数,其图象如图所示.求(1)y 与x 之间的函数关系式;(2)旅客最多可免费携带行李的公斤数.4、某空军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油,在加油过程中,设运输飞机的油箱余油量为Q1吨,加油飞机的加油油箱余油量为Q2吨,加油时间为t 分钟,Q1、Q2与t 之间的函数图象如图所示,结合图象回答下列问题: 7 第2题图 行李票费用(元)行李重量(公斤) 第3题图(1)加油飞机的加油油箱中装载了多少吨油?将这些油全部加给运输飞机需要多少分钟?(2)求加油过程中,运输飞机的余油量Q1(吨)与时间t (分钟)的函数关系式? (3)运输飞机加完油后,以原速度飞行,需要10小时到达目的 地,油料是否够用?请说明理由.5、扬州火车货运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物往广州,这列货车可挂A 、B 两种不同规格的货厢50节,已知用一节A 型货厢的运费是0.5吨万元,用一节B 型货厢的运费是0.8万元.(1)设运输这批货物的总运费为y (万元),用A 型货的节数为x (节),试写出y 与x 之间的函数关系式;(2) 已知甲种货物35吨和乙种货物15吨,可装满一节A 型货厢,甲种货物25吨和乙种货物35吨吨可装满一节B 型货厢,按此要求安排A 、B 两种货厢的节数,有哪几种运输方案?请你设计出来.(3)利用函数的性质说明,在这些方案中,哪种方案总运费最少?最少运费是多少万元?6、某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A 、B 两种产品,共50件.已知生产一件A 种产品,需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B 种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元.(1)按要求安排A 、B 两种产品的生产件数,有哪几种方案?请你给设计出来;(2)设生产A 、B 两种产品获总利润为y (元),其中一种的生产件数为x ,试写出y 与x 之间的函数关系式,并利用函数的性质说明 (1)中哪种生产方案获总利润最大?最大利润是多少?7、某居民小区按照分期付款的形式福利售房,政府给予一定的贴息.小明家购得一套现价为120000元的房子,购房时首期(第一年)付款30000元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款利息的和,设剩余欠款年利率为0.4%.1)若第x (x ≥2)年小明家交付房款y 元,求年付房款y (元)与x (年)的函数关系式;2第4题图。
北师大版八年级数学上册一次函数的应用教学课件(第一课时24张)

解:(1)设使用会员卡租书金额y1(元)与租书时间x(天)之间的关系式为y1=kx+b. 从图象可知它过(0,20),可得b=20,将(10,50),代入关系式得k=3.∴y1= 3x+20.设使用租书卡租书金额y2(元)与租书时间x(天)之间的关系式为y2=mx. 它经过(10,50),代入得10m=50,m=5.∴y2=5x (2)会员卡方式每天收费(50-20)÷10=3(元),租书卡方式每天收费5元
二 确定一次函数的表达式
例2:已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函 数的表达式.
解:设一次函数的表达式为y=kx+b,根据题意得, ∴-5=2k+b,5=b, 解得b=5,k=-5. ∴一次函数的表达式为y=-5x+5.
练一练
已知直线l与直线y=-2x平行,且与y轴交于点(0,2),求直线l 的表达式.
(1)设出式子中的未知系数;
将已知数据代入 (2)
;
(3) 求出未知系数的值 ;
(4) 写出一次函数表达式 .
1.正比例函数 y=kx 的图象如右图所示,则这个函数的表达式是(B ) A.y=x B.y=-x C.y=-2x
D.y=-12x
2.如图,一次函数的图象过点A,且与正比例函数y=-x的图象交于点B, 则该一次函数的表达式为( ) B
解:由题易得一次函数为 y=x+2,当 y=0 时,x+2=0, x=-2,∴C(-2,0),∴S△AOC=12×2×4=4
11.某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用 租书卡,使用这两种卡租书,租书金额y(元)与租书时间x(天)之间的关系如下 图所示:
(1)分别写出用租书卡和会员卡租书金额y(元)与租书时间x(天)之间的关系式 ;
《一次函数》(第一课时)教材课件ppt

正比例函 数的定义
正比例函 数的图象
正比例函 数的性质
正比例函 数的应用
新课导入:
你能推测一下一次函数将 要研究了哪些问题吗?
一次函数 的定义
一次函数 的图象
一次函数 的性质
一次函数 的应用
思考:
下列问题中 , 变量之间的对应关系是函数关系吗 ? 如果是 , 请写出函 数解析式 , 这些函数解析式有哪些共同特征 ?
(2)一种计算成年人标准体重G(kg)的方法是 : 以厘米为单位 量出身高值h , 再减常数105 , 所得差是G的值 .
(2)G=h-105
思考:
(3)某城市的市内电话的月收费额y(元)包括月租费 22元和拨打电话x min的计时费(按0.1元/ min收取) .
(3)y=0.1x+22 (2)G=h-105
思考:
当 b= 0 时,y=kx+b 就变
成。了。正比。例。函数。y。=kx。。
( k≠0 ).
一次函数 y=kx+b(k≠0)中 的那b么可一以次为函零数吗与?正当比b例= 函0 数时有, y什=k么x+关b(系k呢≠?0)变成了什么函
数?
归纳:
一次函 数
特殊化 都是
正比例函 数
(1) 一次函数
(2)
正比例函数
练习题:
2.下列函数中是一次函数的有哪些 ? 并说出 k 和b的值 .
1 y 3 x;2 y 1 2;3 y 5x2 3;
8
x
4 m 2.5n 0.3;5 y 3x 31 x;6l r 7.
解 : 是一次函数的有(1) , 其中k= -
3
3
,
b=0
;
数学 7.3 一次函数(1) 教案

7.3 一次函数(1)〖教学目标〗◆1、理解正比例函数、一次函数的概念。
◆2、会根据数量关系,求正比例函数、一次函数的解析式。
◆3、会求一次函数的值。
〖教学重点与难点〗◆教学重点:一次函数、正比例函数的概念和解析式。
◆教学难点:例2的问题情境比较复杂,学生缺乏这方面的经验。
〖教学过程〗比较下列各函数,它们有哪些共同特征?,6t m = ,2x y -= ,32+=x y 9362.3+-=t Q 提示:比较所含的代数式均为整式,代数式中表示自变量的字母次数都为一次。
定义:一般地,函数)0(≠+=k b k b kx y 都为常数,且、叫做一次函数。
当0=b时,一次函数b kx y +=就成为)0(≠=k k kx y 为常数,叫做正比例函数,常数k 叫做比例系数。
强调:(1)作为一次函数的解析式b kx y +=,其中y b x k ,,,中,哪些是常量,哪些是变量?哪一个是自变量,哪一个是自变量的函数?其中b k ,符合什么条件?(2)在什么条件下,)0(≠+=k b kx y 为正比例函数?(3)对于一般的一次函数,它的自变量的取值范围是什么?做一做:下列函数中,哪些是一次函数?哪些是正比例函数?系数k 和常数项b 的值各为多少?,2r C π= ,20032+=x y ,200vt = (),32x y -= ()x x s -=50 例1:求出下列各题中x 与y 之间的关系,并判断y 是否为x 的一次函数,是否为正比例函数:(1) 某农场种植玉米,每平方米种玉米6株,玉米株数y 与种植面积)(2mx 之间的关系。
(2) 正方形周长x 与面积y 之间的关系。
(3) 假定某种储蓄的月利率是0.16%,存入1000元本金后。
本钱元)(y 与所存月数x 之间的关系。
此例是为了及时巩固一次函数、正比例函数的概念,相对比较容易,可以让学生自己完成。
解:(1)因为每平方米种玉米6株,所以x 平方米能种玉米x 6株。
北师大版数学八年级上册2《一次函数》教案1

北师大版数学八年级上册2《一次函数》教案1一. 教材分析《一次函数》是北师大版数学八年级上册第2单元的内容。
本节课主要让学生了解一次函数的定义、性质及图像,能够运用一次函数解决实际问题。
教材通过丰富的实例,引导学生探究一次函数的规律,培养学生的抽象思维能力和解决问题的能力。
二. 学情分析学生在七年级时已经学习了平面直角坐标系,对坐标系的认识较为基础。
但他们对一次函数的定义、性质及应用可能还不够清晰。
因此,在教学过程中,教师需要关注学生的认知基础,通过生动的实例和丰富的活动,激发学生的学习兴趣,引导学生主动探究一次函数的规律。
三. 教学目标1.了解一次函数的定义、性质及图像,能运用一次函数解决实际问题。
2.培养学生的抽象思维能力和解决问题的能力。
3.激发学生的学习兴趣,培养他们合作、交流的良好学习习惯。
四. 教学重难点1.一次函数的定义和性质。
2.一次函数图像的特点及其应用。
五. 教学方法1.情境教学法:通过生活实例,引导学生认识一次函数。
2.探究教学法:学生分组讨论,探究一次函数的性质。
3.直观教学法:利用多媒体展示一次函数图像,帮助学生理解一次函数的性质。
4.实践教学法:让学生运用一次函数解决实际问题,巩固所学知识。
六. 教学准备1.多媒体教学设备。
2.一次性函数的实例材料。
3.坐标纸、直尺、铅笔等学习用品。
七. 教学过程导入(5分钟)教师通过展示一些生活中的实例,如身高与年龄的关系、商品价格与销售数量的关系等,引导学生认识一次函数。
让学生思考:这些实例中存在什么规律?怎样用数学语言来描述这些规律?呈现(10分钟)教师给出一次函数的一般形式:y = kx + b(k≠0,k、b为常数),并解释一次函数的各个组成部分。
然后,通过具体的一次函数实例,让学生观察函数图像,分析一次函数的性质。
操练(10分钟)学生分组讨论,每组选择一个实例,探究一次函数的性质。
教师巡回指导,解答学生的疑问。
巩固(10分钟)教师出示一些练习题,让学生独立完成。
3一次函数应用教案1

5.4一次函数的应用(1)教案主备:徐红石审核:席美丽时间:2009年12月21日教学目标:1.能根据实际问题中变量之间的关系,确定一次函数关系式.2.能将简单的实际问题转化为数学问题(建立一次函数模型),从而解决实际问题.3.在应用—次函数解决问题的过程中,体会数学的抽象性和应用的广泛性.教学重点:一次函数图象的应用教学难点: 培养学生用“数形结合”的思想方法解决数学问题的能力.学习过程:一、自学质疑:2.自学课本157——158,思考:(1)157页的例题中s是t的函数吗?s=175相当于函数里的什么问题?可以用方程知识解决吗?(2)158页的交流可以用方程知识解决吗?二、交流展示:(1)一次函数知识解决例题:(2)交流的解法:①②三、互动探究:一次函数知识解决问题和方程知识解决有什么区别和联系?用函数知识解题:(1)依据题意设出自变量和函数;(2)列出函数关系式;(3)求相应的函数和自变量的值。
四、精讲点拨:1.某校办工厂现年产值是30万元,如果每增加1000元,投资一年可增加2500元产值。
那么总产值y (万元)与增加的投资额x (万元)之间的函数关系式为3025y x =+。
2.某饮料厂生产一种饮料,经测算,用1吨水生产的饮料所获利润y (元)是1吨水的价格(元) 的一次函数.⑴根据下表提供的数据,求y 与x 的函数关系式.当水价为每吨10元时,10吨水生产出的饮⑵为节约用水,这个市规定:该厂日用水量不超过20吨时,水价为每吨4元;日用水量超过20吨时,超过部分按每吨20元收费.已知该厂日用水量不少于20吨.设该厂日用水量为t 吨,当日所获利润为W 元,求W 与t 的函数关系式。
(1.204y x =-+;2.20020184(20)w t =??=184320t +)五、纠正反馈:⑴课本第158页练习1、2.⑵某种储蓄的月利率是0.8%,存入100元本金后,本息和y (元)与所存月数x 之间的函数关系式是1000.8y t =+;六、迁移应用:某市出租车计费标准如下: 行程不超过3千米,收费8元;超过3千米部分,按每千米1.60元计算.求车费y 元和行驶路程x 千米之间的函数关系式,并分别求出当路程为2.5千米和7千米时应付的车费。
人教版八年级下册数学《函数的图象》一次函数PPT教学课件(第1课时)

新知探究
例1:一个水库的水位在最近 5h 内持续上涨 . 表中记录了这 5h 内6个时间点的水位高度 , 其中t表示时间 , y表示水位高度 . (1)在平面直角坐标系中描出表中数据对应的点 , 这些点 是否在一条直线上 ? 由此你能发现水位变化有什么规律吗 ?
t/h 0 1 2 3 4
5
y/m 3 3.3 3.6 3.9 4.2 4.5
x … 0.5 1 1.5 2 2.5 3 3.5 4 5
y … 12 6 4 3 2.4 2
1.5
6… 1…
新知探究
例3:下图反映的过程是小明从家去食堂吃早餐 , 接着去图书馆读报 , 然后回家 . 其中x 表示时间 , y 表示小明离家的距离 , 小明家、 食堂、图书馆在同一直线上 .
y/km
500 x/分
O 10 20 30 40 50
500 x/分
O 10 20 30 40 50
A
B
C
D
课堂小测
4.1~6个月的婴儿生长发育得非常快 , 他们的体重y(克)和月龄x(月) 之间的关系可以用y=a+700x表示 , 其中a是婴儿出生时的体重 . 若 一个婴儿出生时的体重是4000克 , 请用表格表示在1~6个月内 , 这 个婴儿的体重y与x之间的关系 :
离家500米的地方吃早餐 , 吃早餐用了20分 ; 再用10分赶到
离家1000米的学校参加考试 . 下列图象中 , 能反映这一过
程的是
(D)
y/米
y/米
y/米
y/米
1500
1500
1500
1500
1000
1000
1000
1000
500
500
课件《一次函数》PPT全文课件_人教版1

(2)圆的面积S(厘米2)与它的半径r(厘米)之间的关系;
上面的两个函数关系式:
[点拨] 其中k是常数且k≠0.
当b=0时,y=kx,称y是x的正比例函数.
(3)这个水池每时增加5立方米的水,x小时后增加5x立方米的水,因而y=15+5x,y是x的一次函数,但不是x的正比例函数.
大家讨论一下,这两个函数关系式有什么关系?
分析:我们知道汽车距北京的路程随着行车时间的变化而变化,要想找出这两个变量的关系,并据此得出相应的值,显然,应该探求
这两个变量的变化规律.为此,我们设汽车在高速公路上行驶时间为t时,汽车距北京的路程为s千米,根据题意,s和t的函数关系式是
s=570-95t.
知识点一 一次函数的概念
例1 已知函数y=(m-3)x|m|-2+n-2,求符合下列条件的
2
[点拨] (1)一次函数中的“一次”是指自变量的次数是1.
3厘米,求这个函数关系式。
数,也不是r的正比例函数. 解: Q=400-36t(0≤t≤11且t为整数).
(2)此函数是正比例函数. [点拨] 其中k是常数且k≠0.
一次函数,它的关系式形如: ________(k,b是常数,且k≠0).
(3)这个水池每时增加5立方米的水,x小时后增加 函数关系式是用自变量的一次________表示的函数叫做
以挂x千克重物时,弹簧伸长0.3x厘米,又因 己和北京的距离.
特别地,当________时,一次函数y=kx(常数k≠0) 第17章 函数及其图像 (2)由|m|-2=1得m=±3.
为不挂重物时弹簧的长度为6厘米,所以挂x厘 当b=0时,y=kx,称y是x的正比例函数.
∴当m=-3,n=2时此函数是正比例函数. 若两个变量 x、y之间的关系可以表示成y=kx+b(k,b为常数,k不等于0)的形式,则称 y是x的一次函数.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数教案一次函数教案(第一课时)教学目标(一)教学知识点1.掌握一次函数解析式的特点及意义.2.知道一次函数与正比例函数关系.3.理解一次函数图象特征与解析式的联系规律.4.会用简单方法画一次函数图象.(二)能力训练要求1.通过类比的方法学习一次函数,体会数学研究方法多样性.2.进一步提高分析概括、总结归纳能力.3.利用数形结合思想,进一步分析一次函数与正比例函数的联系,从而提高比较鉴别能力.教学重点1.一次函数解析式特点.2.一次函数图象特征与解析式联系规律.3.一次函数图象的画法.教学难点1.一次函数与正比例函数关系.2.一次函数图象特征与解析式的联系规律.教学方法合作─探究,总结─归纳.教具准备多媒体演示.教学过程Ⅰ.提出问题,创设情境问题:某登山队大本营所在地的气温为15℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y•与x的关系.分析:从大本营向上当海拔每升高1km时,气温从15℃就减少6℃,那么海拔增加xkm时,气温从15℃减少6x℃.因此y与x的函数关系式为:y=15-6x (x≥0)当然,这个函数也可表示为:y=-6x+15 (x≥0)当登山队员由大本营向上登高0.5km时,他们所在位置气温就是x=0.5时函数y=-6x+15的值,即y=-6×0.5+15=12(℃).这个函数与我们上节所学的正比例函数有何不同?它的图象又具备什么特征?我们这节课将学习这些问题.Ⅱ.导入新课我们先来研究下列变量间的对应关系可用怎样的函数表示?它们又有什么共同特点?1.有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(℃)有关,即C•的值约是t 的7倍与35的差.2.一种计算成年人标准体重G(kg)的方法是,以厘米为单位量出身高值h减常数105,所得差是G的值.3.某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.01元/分收取).4.把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(cm2)随x的值而变化.这些问题的函数解析式分别为:1.C=7t-35.2.G=h-105.3.y=0.01x+22.4.y=-5x+50.它们的形式与y=-6x+15一样,函数的形式都是自变量x的k倍与一个常数的和.如果我们用b来表示这个常数的话.•这些函数形式就可以写成:y=kx+b(k≠0)一般地,形如y=kx+b(k、b是常数,k≠0•)的函数,•叫做一次函数(•linearfunction).当b=0时,y=kx+b即y=kx.所以说正比例函数是一种特殊的一次函数.练习:1.下列函数中哪些是一次函数,哪些又是正比例函数?(1)y=-8x.(2)y= .(3)y=5x2+6.(3)y=-0.5x-1.2.一个小球由静止开始在一个斜坡向下滚动,其速度每秒增加2米.(1)一个小球速度v随时间t变化的函数关系.它是一次函数吗?(2)求第2.5秒时小球的速度.3.汽车油箱中原有油50升,如果行驶中每小时用油5升,求油箱中的油量y(升)随行驶时间x(时)变化的函数关系式,并写出自变量x的取值范围.y是x的一次函数吗?解答:1.(1)(4)是一次函数;(1)又是正比例函数.2.(1)v=2t,它是一次函数.(2)当t=2.5时,v=2×2.5=5所以第2.5秒时小球速度为5米/秒.3.函数解析式:y=50-5x自变量取值范围:0≤x≤10y是x的一次函数.[活动一]活动内容设计:画出函数y=-6x与y=-6x+5的图象.并比较两个函数图象,探究它们的联系及解释原因.活动设计意图:通过活动,加深对一次函数与正比例函数关系的理解,认清一次函数图象特征与解析式联系规律.教师活动:引导学生从图象形状,倾斜程度及与y轴交点坐标上比较两个图象,•从而认识两个图象的平移关系,进而了解解析式中k、b在图象中的意义,体会数形结合在实际中的表现.学生活动:引导学生从图象形状,倾斜程度及与y轴交点坐标上比较两个图象,•从而认识两个图象的平移关系,进而了解解析式中k、b在图象中的意义,体会数形结合在实际中的表现.比较上面两个函数的图象的相同点与不同点。
结果:这两个函数的图象形状都是______,并且倾斜程度_______.函数 y=-6x的图象经过原点,函数 y=-6x+5的图象与 y轴交于点_______,即它可以看作由直线y=-6x 向_平移__个单位长度而得到.比较两个函数解析式,试解释这是为什么.猜想:一次函数y=kx+b的图象是什么形状,它与直线y=kx有什么关系?结论:一次函数y=kx+b的图象是一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移b绝对值个单位长度而得到(当b>0时,向上平移;当b< 0时,向下平移)。
画出函数y=2x-1与y=-0.5x+1的图象.过(0,-1)点与(1,1)点画出直线y=2x-1.过(0,1)点与(1,0.5)点画出直线y=-0.5x+1.[活动二]活动内容设计:画出函数y=x+1、y=-x+1、y=2x+1、y=-2x+1的图象.由它们联想:一次函数解析式y=kx+b (k、b是常数,k≠0)中,k的正负对函数图象有什么影响?活动设计意图:通过活动,熟悉一次函数图象画法.经历观察发现图象的规律,并根据它归纳总结出关于数值大小的性质.体会数形结合的探究方法在数学中的重要性,进而认识理解一次函数图象特征与解析式联系.目的:引导学生从函数图象特征入手,寻求变量数值变化规律与解析式中k•值的联系.结论:图象:规律:当k>0时,直线y=kx+b由左至右上升;当k<0时,直线y=kx+b由左至右下降.性质:当k>0时,y随x增大而增大.当k<0时,y随x增大而减小.Ⅲ.随堂练习1.直线y=2x-3与x轴交点坐标为_______,与y轴交点坐标为_________,•图象经过第________象限,y随x增大而_________.2.分别说出满足下列条件的一次函数的图象过哪几个象限?(1)k>0 b>0 (2)k>0 b<0(3)k<0 b>0 (4)k<0 b<0解答:1.(1.5,0)(0,-3)三、四、一增大2.(1)三、二、一(2)三、四、一(3)二、一、四(4)二、三、四小结本节学习了一次函数的意义,知道了其解析式、图象特征,并学会了简单方法画图象,进而利用数形结合的探究方法寻求出一次函数图象特征与解析式的联系,这使我们对一次函数知识的理解和掌握更透彻,也体会到数学思想在数学研究中的重要性.课后作业习题11.2─3、4、8题.活动与探究在同一直角坐标系中画出下列函数图象,并归纳y=kx+b(k、b是常数,k≠0)中b对函数图象的影响.1.y=x-1 y=x y=x+12.y=-2x+1 y=-2x y=-2x-1过程与结论:b决定直线y=kx+b与y轴交点的坐标(0,b).当b>0时,交点在原点上方.当b=0时,交点即原点.当b<0时,交点在原点下方.备用题:1.若函数y=mx-(4m-4)的图象过原点,则m=_______,此时函数是______•函数.若函数y=mx-(4m-4)的图象经过(1,3)点,则m=______,此时函数是______函数.2.若一次函数y=(1-2m)x+3图象经过A(x1、y1)、B(x2、y2)两点.当x1<x2时,y1>•y2,则m的取值范围是什么?答案:1.1 正比例一次2.解:∵当x1<x2时,y1>y2,∴y随x增大而减小.据一次函数性质可知:只有当k<0时,y随x增大而减小故1-2m<0∴m> .毛§11.2.2 一次函数(二)教学目标(一)教学知识点1.学会用待定系数法确定一次函数解析式.毛2.具体感知数形结合思想在一次函数中的应用(二)能力训练目标1.经历待定系数法应用过程,提高研究数学问题的技能.2.体验数形结合,逐步学习利用这一思想分析解决问题.教学重点待定系数法确定一次函数解析式.教学难点灵活运用有关知识解决相关问题.教学方法归纳─总结教具准备多媒体演示.教学过程1.提出问题,创设情境我们前面学习了有关一次函数的一些知识,掌握了其解析式的特点及图象特征,并学会了已知解析式画出其图象的方法以及分析图象特征与解析式之间的联系规律.如果反过来,告诉我们有关一次函数图象的某些特征,能否确定解析式呢?这将是我们这节课要解决的主要问题,大家可有兴趣?Ⅱ.导入新课有这样一个问题,大家来分析思考,寻求解决的办法.[活动]活动设计内容:已知一次函数图象过点(3,5)与(-4,-9),求这个一次函数的解析式.联系以前所学知识,你能总结归纳出一次函数解析式与一次函数图象之间的转化规律吗?活动设计意图:通过活动掌握待定系数法在函数中的应用,进而经历思考分析,归纳总结一次函数解析式与图象之间转化规律,增强数形结合思想在函数中重要性的理解.教师活动:引导学生分析思考解决由图象到解析式转化的方法过程,从而总结归纳两者转化的一般方法.学生活动:在教师指导下经过独立思考,研究讨论顺利完成转化过程.概括阐述一次函数解析式与图象转化的一般过程.活动过程及结论:分析:求一次函数解析式,关键是求出k、b值.因为图象经过两个点,所以这两点坐标必适合解析式.由此可列出关于k、b的二元一次方程组,解之可得.设这个一次函数解析式为y=kx+b.因为y=k+b的图象过点(3,5)与(-4,-9),所以解之,得故这个一次函数解析式为y=2x-1。
结论:像这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法.练习:1.已知一次函数y=kx+2,当x=5时y的值为4,求k值.2.已知直线y=kx+b经过点(9,0)和点(24,20),求k、b值.3. 生物学家研究表明,某种蛇的长度y (CM)是其尾长x(CM)的一次函数,当蛇的尾长为6CM时,蛇的长为45.5CM; 当蛇的尾长为14CM时, 蛇的长为105.5CM.当一条蛇的尾长为10 CM时,这条蛇的长度是多少?4.教科书第35页第6题.解答:1.当x=5时y值为4.即4=5k+2,∴k=2.由题意可知:解之得,作业: 教科书第35页第5,7题.备选题:1. 已知一次函数y=3x-b的图象经过点P(1,1),则该函数图象必经过点( )A.(-1,1)B.(2,2)C.(-2,2)D.(2,-2)2. 若一次函数y=2x+b的图像与坐标轴围成的三角形的面积是9,求 b的值.3.点M(-2,k)在直线y=2x+1上,求点M到x轴的距离d为多少?。