第9章 多边形单元练习一

合集下载

华师大七年级下册《第9章多边形》单元测试卷(含答案)

华师大七年级下册《第9章多边形》单元测试卷(含答案)

2022年春华师版数学七年级下册单元测试卷班级姓名第9章多边形[时间:90分钟分值:120分]一、选择题(每题3分,共30分)1.[2022·黔东南]如图,∠ACD=120°,∠B=20°,则∠A 的度数是()A.120°B.90°C.100°D.30°2.[2022·乌鲁木齐]如果正n边形每一个内角等于与它相邻外角的2倍,则n的值是()A.4B.5C.6D.73.如图,张明同学设计了四种正多边形的瓷砖图案,在这四种瓷砖图案中,不能铺满地面的是()A B C D4.在下列条件中:①∠A+∠B=∠C;②∠A∶∠B∶∠C=1∶2∶3;③∠A=12∠B=13∠C;④∠A=∠B=2∠C;⑤∠A=∠B=12∠C.能确定△ABC为直角三角形的条件有()A.5个B.4个C.3个D.2个5.已知三角形的三边长分别为3、x、14.若x为正整数,则这样的三角形共有()A.2个B.3个C.5个D.7个6.如图,在△ABC中,点D在边BA的延长线上,∠ABC 的平分线和∠DAC的平分线相交于点M.若∠BAC=80°,∠C =60°,则∠M的大小为()A.20°B.25°C.30°D.35°7.如图,点P是△ABC三条角平分线的交点.若∠BPC =108°,则下列结论中正确的是()A.∠BAC=54°B.∠BAC=36°C.∠ABC+∠ACB=108°D.∠ABC+∠ACB=72°8.[2021·郴州校级期中]如图,在△ABC中,∠A=∠ACB,CD是△ABC的角平分线,CE是△ABC的高.若∠DCE=48°,则∠ACB的度数为()A.∠ACB=28°B.∠ACB=29°C.∠ACB=30°D.∠ACB=31°9.[2021·无棣模拟]如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)10. 如图,AB∥CD,∠A=30°,则∠A+∠B+∠C+∠D +∠E=()A. 240°B. 270°C. 300°D.360°二、填空题(每题4分,共24分)11.已知三角形的三边长分别为2、a-1、4,那么a的取值范围是________.13.如图,以CD为高的三角形的个数是____.14.一个n边形的每个内角为108°,那么n=____.15.[2021春·单县期末]将一副三角板如图放置,使点A 在DE上,BC∥DE,∠C=45°,∠D=30°,则∠ABD的度数为______.16.如图,在△ABC中,∠A=42°,∠ABC和∠ACB 的三等分线分别交于点D、E,则∠BDC=____.17.(8分)[2021春·迁安市期末]如图,把一副三角板摆放在△ABC中,点E在BC上,点D、F在AB上.(1)CD与EF平行吗?请说明理由;(2)如果∠GDC=∠FEB,且∠B=30°,∠A=45°,求∠AGD的度数.18.(8分)已知三角形的三条边为互不相等的整数,且有两边长分别为7和9,另一条边长为偶数.(1)请写出一个三角形,符合上述条件的第三边长;(2)若符合上述条件的三角形共有a个,求a的值.19.(8分)如图,在锐角△ABC中,若∠ABC=40°,∠ACB =70°,点D、E在边AB、AC上,CD与BE交于点H.(1)若BE⊥AC,CD⊥AB,求∠BHC的度数;(2)若BE,CD平分∠ABC和∠ACB,求∠BHC的度数.20.(8分)[2021春·兴化市期末]如图,点D在AB上,点E在AC上,BE、CD相交于点O.(1)若∠A=50°,∠BOD=70°,∠C=30°,求∠B的度数;(2)试猜想∠BOC与∠A+∠B+∠C之间的关系,并证明你猜想的正确性.21.(10分)[2021春·灵石县期末]如图,△ABC中,AD 平分∠BAC交BC于点D,AE⊥BC,垂足为E,CF∥AD.(1)若∠B=30°,∠ACB=70°,求∠CFE的度数;(2)若(1)中的∠B=α,∠ACB=β,求∠CFE的度数.(用α、β表示)22.(12分)如图,BE与CD相交于点A,CF为∠BCD 的平分线,EF为∠BED的平分线.(1)试探求∠F与∠B、∠D之间的关系;(2)若∠B∶∠D∶∠F=2∶4∶x,求x的值.23.(12分)(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.在△ABC中,∠A=30°,求∠ABC+∠ACB、∠XBC +∠XCB的值.(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ 的两条直角边XY、XZ仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.图1图2参考答案1.C2.C【解析】设该正多边形的外角为x°,则相邻的内角为2x°.根据“外角与相邻的内角互补”,得x+2x=180,解得x=60.根据多边形的外角和是360°,有n=36060=6.3.C【解析】用一种正多边形瓷砖铺满地面的条件是:正多边形的一个内角是360°的约数.由此可判断正五边形瓷砖不能铺满地面.4.B5.C【解析】由题可得11<x<17.∵x为正整数,∴x的可能取值是12、13、14、15、16,共5个,故这样的三角形共有5个.6.C【解析】∵∠BAC=80°,∠C=60°,∴∠ABC=40°.∵∠ABC的平分线和∠DAC的平分线相交于点M,∴∠ABM=20°,∠CAM=12×(180°-80°)=50°,∴∠M=180°-20°-50°-80°=30°.7.B【解析】设∠A为2x,则∠ACB=2x,∠ACD=x,∴∠CBE=∠A+∠ACB=4x,∠CDB=∠A+∠ACD=3x,∴∠CDB=3∠DCB.∵∠DCE=48°,∴∠CDB=90°-48°=42°,∴∠DCB=14°,∴∠ACB=28°.9.B【解析】2∠A=∠1+∠2.理由:∵在四边形ADA′E中,∠A+∠A′+∠ADA′+∠AEA′=360°,则2∠A+180°-∠2+180°-∠1=360°,∴2∠A=∠1+∠2.10. A【解析】如答图,∵AB∥CD,∠A=30°,∴∠C=∠A =30°,∠B=∠1.又∵∠1+∠D+∠E=180°,∴∠A+∠B +∠C+∠D+∠E=30°+30°+180°=240°.11.3<a<7【解析】根据三角形的三边关系,有4-2<a-1<4+2,解得3<a<7.12.270°【解析】CD分别是△ABC,△CEB,△CDB,△ADC,△CED,△AEC的高,共6个三角形.14.5【解析】根据多边形的内角和公式可知(n-2)×180°=108°n,解得n=5.15.15°【解析】∵Rt△ABC中,∠C=45°,∴∠ABC=45°.∵BC∥DE,∠D=30°,∴∠DBC=30°,∴∠ABD=45°-30°=15°.16.88°【解析】∵∠A=42°,∴∠ABC+∠ACB=180°-42°=138°,∴∠DBC+∠DCB=23×138°=92°,∴∠BDC=180°-92°=88°.17.解:(1)CD∥EF.理由:∵∠CDF=∠EFB=90°,∴CD∥EF.(2)∵∠B=30°,∠A=45°,∴∠FEB=60°,∠ACD=45°.∵∠GDC=∠FEB,∴∠GDC=60°.∵∠AGD=∠GDC+∠ACD,∴∠AGD=60°+45°=105°.18.解:两边长分别为9和7,设第三边是n,则9-7<n<7+9,即2<n<16.(1)第三边长是4(答案不唯一).(2)∵2<n<16,且n为偶数,∴n的值为4、6、8、10、12、14,共6个,∴a=6. 19.解:(1)∵BE⊥AC,∠ACB=70°,∴∠EBC=90°-70°=20°.∵CD⊥AB,∠ABC=40°,∴∠DCB=90°-40°=50°,∴∠BHC=180°-20°-50°=110°.(2)∵BE平分∠ABC,∠ABC=40°,∴∠EBC=20°.∵DC平分∠ACB,∠ACB=70°,∴∠DCB=35°,∴∠BHC=180°-20°-35°=125°. 20.解:(1)∵∠A=50°,∠C=30°,∴∠BDO=∠A+∠C=80°.∵∠BOD=70°,∴∠B=180°-∠BDO-∠BOD=30°. (2)∠BOC=∠A+∠B+∠C.证明:∵∠BEC=∠A+∠B,∴∠BOC=∠BEC+∠C=∠A+∠B+∠C. 21.解:(1)∵∠B=30°,∠ACB=70°,∴∠BAC=180°-∠B-∠ACB=80°.∵AD平分∠BAC,∴∠BAD=40°.∵AE⊥BC,∴∠AEB=90°,∴∠BAE=60°,∴∠DAE =∠BAE -∠BAD =60°-40°=20°. ∵CF ∥AD ,∴∠CFE =∠DAE =20°,(2)∵∠BAE =90°-∠B ,∠BAD =12∠BAC =12(180°-∠B -∠BCA ),∴∠CFE =∠DAE =∠BAE -∠BAD =90°-∠B -12(180°-∠B -∠BCA )=12(∠BCA -∠B )=12β-12α. 22.解:(1)如答图,∵CF 为∠BCD 的平分线, EF 为∠BED 的平分线,∴∠1=∠2,∠3=∠4.∵∠D +∠1=∠F +∠3,∠B +∠4=∠F +∠2,∴∠B +∠D +∠1+∠4=2∠F +∠3+∠2,∴∠F=12(∠B+∠D).(2)当∠B∶∠D∶∠F=2∶4∶x时,设∠B=2a(a≠0),则∠D=4a,∠F=ax.∵2∠F=∠B+∠D,∴2ax=2a+4a,∴2x=2+4,∴x=3.23.解:(1)∵∠A=30°,∴∠ABC+∠ACB=150°.∵∠X=90°,∴∠XBC+∠XCB=90°.(2)不变化.∵∠A=30°,∴∠ABC+∠ACB=150°.∵∠X=90°,∴∠XBC+∠XCB=90°,∴∠ABX+∠ACX=(∠ABC-∠XBC)+(∠ACB-∠XCB)=(∠ABC+∠ACB)-(∠XBC+∠XCB)=150°-90°=60°.。

【教育资料】七年级数学下册第9章多边形单元测试题学习专用

【教育资料】七年级数学下册第9章多边形单元测试题学习专用

七年级数学下册第9章多边形单元测试题一.耐心填一填:(每小题3分,共30分)1.一个三角形的内角中,至少有()A、一个锐角B、两个锐角 C 、一个钝角 D、一个直角2.三角形中,最大角α的取值范围是()A、0°<α<90°B、60°<α<180°C、60°≤α<90°D、60°≤α<180°3.下列长度的各组线段中,能作为一个三角形三边的是()A、1、2、3 B、2、4、4、 C、2、2、4 D、a, a-1,a+1 (a是自然数)4.已知4条线段的长度分别为2、3、4、5,若三条线段可以组成一个三角形,则这四条线段可以组成( )个三角形A、1 B、2 C、3 D、45.已知ac0,则以a、b、c为三边组成三角形的条件是()A、b+c B、a+c C、a+b D、以上都不对6.下列正多边形的组合中,能够铺满地面不留缝隙的是()A、正八边形和正三角形; B、正五边形和正八边形;C、正六边形和正三角形;D、正六边形和正五边形7.如果三角形的一个外角小于与它相邻的内角,那么这个三角形一定是()A、锐角三角形B、直角三角形C、钝角三角形D、任意三角形8.下面的说法正确的是()A.三角形的角平分线、中线和高都在三角形内 B.直角三角形的高只有一条C.三角形的高至少有一条在三角形内 D.钝角三角形的三条高都在三角形外9.如果一个多边形的边数增加1倍,它的内角和是2160 o,那么原来多边形的边数是()A、5B、6C、7D、810.用一种正多边形能进行平面图形铺设的条件是()A、内角都是整数度数 B、边数是3的整数倍 C、内角整除360 o D、内角整除180 o二,精心选一选:(每题3分,共30分)11, 等腰?ABC 的周长为10cm,底边长为 y cm,腰长为x cm,则腰长x 的取值范围是。

12.n边形有一个外角是600,其它各外角都是750,则n= 。

华东师大版七年级下册第9章《多边形》单元测试卷(解析版)

华东师大版七年级下册第9章《多边形》单元测试卷(解析版)

华东师大版七年级下册第9章《多边形》单元测试卷本试卷三个大题共22个小题,全卷满分120分,考试时间120分钟。

题号 一 二 三全卷总分总分人 17 18 19 20 21 22 得分注意事项:1、答题前,请考生务必将自己姓名、考号、班级等写在试卷相应的位置上;2、选择题选出答案后,用钢笔或黑色水笔把答案标号填写在选择题答题卡的相应号上。

一、选择题(本大题共12个小题,每小题4分,共48分.) 1、只用同一种正多边形铺满地面,不可以选择( B ) A 、正六边形 B 、正五边形C 、正四边形D 、正三角形2、如图,AD ,AE ,AF 分别是ABC ∆的中线,角平分线,高,下列各式中错误的是( D ) A 、CD BC 2=B 、BAC BAE ∠=∠21C 、︒=∠90AFBD 、CE AE =3、如图,D 、E 、F 分别为BC 、AD 、BE 的中点,若BFD ∆的面积为6,则ABC ∆的面积等于( C )A 、36B 、18C 、48D 、244、如图,在ABC ∆中,AD 是高,AE 是中线,若3=AD ,12=∆ABC S ,则BE 的长为( D ) A 、1B 、23C 、2D 、45、把一块直尺与一块三角板如图放置,若︒=∠1342,则1∠的度数为( B ) A 、34° B 、44° C 、54° D 、64°6、有三根小棒,它们长度分别如下,以下列各组小棒的长度为边,能构成三角形的是( A ) A 、10cm ,10cm ,8cm B 、5cm ,6cm ,14cm C 、4cm ,8cm ,12cm D 、3cm ,9cm ,5cm21第5题图DB EAC第7题图ADE第8题图DF第2题图 BE ACF第3题图E E 第4题图BDAC7、如图,DE AB //,︒=∠80ABC ,︒=∠140CDE ,则BCD ∠的度数为( B ) A 、30° B 、40° C 、60°D 、80°8、如图,在ABC ∆中,E 为BC 延长线上一点,ABC ∠与ACE ∠的平分线相交于点D ,︒=∠15D ,则A ∠的度数为( A )A 、30°B 、45°C 、20°D 、22.5°9、如图,在ABC ∆中,α=∠+∠C B ,按图进行翻折,使BC G C D B ////'',FG E B //',则FEC '∠的度数是(D )A 、2αB 、290α−︒ C 、︒−90α D 、︒−1802α10、如图,︒=∠70A ,︒=∠40B ,︒=∠20C ,则=∠BOC ( A ) A 、130° B 、120° C 、110° D 、100° 11、从正多边形一个顶点出发共有7条对角线,则这个正多边形每个外角的度数为( A ) A 、36° B 、40°C 、45°D 、60°12、如图,ACB ABC ∠=∠,BD 、CD 、AD 分别平分ABC ∆的内角ABC ∠,外角ACF ∠,外角EAC ∠,以下结论:①BC AD //;②ADB ACB ∠=∠;③BAC BDC ∠=∠21;④︒=∠+∠90ABD ADC .其中正确的结论有( C )A 、1个B 、2个C 、3个D 、4个二、填空题(本大题共4个小题,每小题4分,共16分)13、已知三角形的三边长分别为1,1−a ,3,则化简|5||3|−+−a a 的结果为 ; 【答案】214、如图,1BA 和1CA 分别是ABC ∆的内角平分线和外角平分线,2BA 是BD A 1∠的角平分线,2CA 是CD A 1∠的角平分线,3BA 是BD A 2∠的角平分线,3CA 是CD A 2∠的角平分线,若α=∠1A ,则2021A ∠为 ;【答案】α20202115、如图,将ABC ∆纸片沿DE 折叠,使点A 落在点A '处,且A B '平分ABC ∠,A C '平分ACB ∠,A 3D第14题图B AC A 1A 2 EF第16题图 A CB DA ′ 21 第15题图B ACED C′ B ′ G FA D BEC第9题图ABOC第10题图FADBEC 第12题图若︒='∠115C A B ,则21∠+∠的度数为 ;【答案】100°16、如图,F E D C B A ∠+∠+∠+∠+∠+∠的度数是 . 【答案】360° 三、解答题(本大题6个小题,共56分。

华东师大版数学七年级下册第9章 单元综合复习《多边形》单元测试1

华东师大版数学七年级下册第9章 单元综合复习《多边形》单元测试1

第九章多边形单元测试一.选择题〔每题3分,共30分〕1.一个三角形的内角中,至少有〔〕A.一个锐角B.两个锐角 C .一个钝角 D.一个直角2.三角形中,最大角α的取值范围是〔〕A.0°<α<90°B.60°<α<180°C.60°≤α<90°D.60°≤α<180°3.以下长度的各组线段中,能作为一个三角形三边的是〔〕A.1、2、3B.2、4、4C.2、2、4D.a、a-1、a+1 〔a是自然数〕4.4条线段的长度分别为2、3、4、5,假设三条线段可以组成一个三角形,那么这四条线段可以组成〔〕个三角形A.1B.2C.3D.45.a>b>c>0,那么以a、b、c为三边组成三角形的条件是〔〕A.b+c>aB.a+c>bC.a+b>cD.以上都不对6.以下正多边形的组合中,能够铺满地面不留缝隙的是〔〕A.正八边形和正三角形B.正五边形和正八边形C.正六边形和正三角形D.正六边形和正五边形7.如果三角形的一个外角小于与它相邻的内角,那么这个三角形一定是〔〕A.锐角三角形 B.直角三角形 C.钝角三角形 D.任意三角形8.下面的说法正确的选项是〔〕A.三角形的角平分线.中线和高都在三角形内B.直角三角形的高只有一条C.三角形的高至少有一条在三角形内D.钝角三角形的三条高都在三角形外9.如果一个多边形的边数增加1倍,它的内角和是2160 o,那么原来多边形的边数是〔〕A.5B.6C.7D.810.用一种正多边形能进展平面图形铺设的条件是〔〕A.内角都是整数度数B.边数是3的整数倍C.内角整除360 oD.内角整除180 o二.填空题〔每空2分,共60分〕11.等腰 ABC 的周长为10cm , 底边长为 y cm , 腰长为x cm ,那么腰长x 的取值范围是 。

12.n 边形有一个外角是600,其它各外角都是750,那么n= 。

七年级数学下册 第9章 多边形精选练习华东师大版 试题

七年级数学下册 第9章 多边形精选练习华东师大版 试题

币仍仅州斤爪反市希望学校第9章多边形精选练习1.以下列图形都是由同样大小的正方形和正三角形按一定的规律组成,其中,第①个图形中一共有5个正多边形,第②个图形中一共有13个正多边形,第③个图形中一共有26个正多边形,……,那么第⑥个图形中正多边形的个数为〔 〕A 、90B 、91C 、115D 、1162.如下列图,①中多边形〔边数为12〕是由正三角形“扩展〞而来的,②中多边形是由正方形“扩展〞而来的,…,依此类推,那么由正八边形“扩展〞而来的多边形的边数为〔 〕.A. 32B. 40C. 72D. 643.正方形ABCD 边长为a ,点E 、F 分别是对角线BD 上的两点,过点E 、F 分别作AD 、AB 的平行线,如下列图,那么图中阴影局部的面积之和等于 .4.把一张矩形纸片〔矩形ABCD 〕按如图方式折叠,使顶点B 和点D 重合,折痕为EF .假设AB = 3 cm ,BC = 5 cm ,那么重叠局部△DEF 的面积是 cm 2. 5.如图,点A 1、B 1、C 1分别是△ABC 的三边BC 、AC 、AB 的中点,点A 2、B 2、C 2分别是△A 1B 1C 1的边B 1C 1、A 1C 1、A 1B 1的中点,依此 类推,那么△A n B n C n 与△ABC 的面积比为6.如图8中图①,两个等边△ABD ,△CBD 的边长均为1,将△ABD 沿AC 方向向右平移到△A ′B ′D ′的位置得到图②,那么阴影局部的周长为_________7.:点P 为正方形ABCD 内部一点,且∠BPC=90°,过点P 的直线分别交边AB 、边CD 于点E 、点F .当PC=PB 时,那么S △PBE 、S △PCF 、S △BPC 之间的数量关系为 _________ ;8.提出问题:如图,有一块分布均匀的等腰三角形蛋糕〔BC AB =,且AC BC ≠〕,在蛋糕的边缘均匀分布着巧克力,小明和小华决定只切一刀将这块蛋糕平分〔要求分得的蛋糕和巧克力质量都一样〕. 背景介绍:这条分割直线..即平分了三角形的面积,又平分了三角形的周长,我们称这条线为三角形的“等分积周线〞.尝试解决:〔1〕小明很快就想到了一条分割直线.请你帮小明在图1中画出这条“等分积周线〞,从而平分蛋糕.〔2〕小华觉得小明的方法很好,所以自己模仿着在图1中过点C画了一条直线CD交AB于点D.你觉得小华会成功吗?如能成功,说出确定的方法;如不能成功,请说明理由.9.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使得△AMN周长最小时,那么∠AMN+∠ANM的度数为〔〕A.100° B.110° C.120° D.130°10.在等边△ABC所在平面内找出一个点,使它与三角形中的任意两个顶点所组成的三角形都是等腰三角形。

2020年华师大版七年级数学下册 第9章《多边形》单元测试卷 含详解

2020年华师大版七年级数学下册 第9章《多边形》单元测试卷  含详解

2020年华师大版第9章《多边形》单元测试卷一.选择题(共10小题,满分30分,每小题3分)1.下面四个图形中,线段BD是△ABC的高的图形是()A.B.C.D.2.如果线段AM和线段AN分别是△ABC边BC上的中线和高,那么下列判断正确的是()A.AM>AN B.AM≥AN C.AM<AN D.AM≤AN3.如果三角形的两边长分别为7和9.那么第三边的长可能是下列数据中的()A.2B.13C.16D.184.从十二边形的一个顶点出发,可引出对角线()条.A.9条B.10条C.11条D.12条5.用一批完全相同的正多边形能镶嵌成一个平面图案的是()A.正五边形B.正六边形C.正七边形D.正八边形6.如图,已知∠ACD=130°,∠B=20°,则∠A的度数是()A.110°B.30°C.150°D.90°7.一个多边形的边数每增加一条,这个多边形的()A.内角和增加360°B.外角和增加360°C.内角和增加180°D.对角线增加一条8.如图,点E在四边形ABCD的CD边的延长线上,若∠ADE=120°,则∠A+∠B+∠C 的度数为()A.240°B.260°C.300°D.320°9.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=76°,∠C=64°,则∠DAE的度数是()A.10°B.12°C.15°D.18°10.如图,多边形ABCDEFG中,∠E=∠F=∠G=108°,∠C=∠D=72°,则∠A+∠B 的值为()A.108°B.72°C.54°D.36°二.填空题(共8小题,满分24分,每小题3分)11.三角形三条中线的交点叫做三角形的.12.赵师傅在做完门框后,为防止变形,如图中所示的那样在门上钉上两条斜拉的木条(即图中的AB,CD两根木条),这其中的数学原理是.13.如图,点D在线段BC上,AC⊥BC,AB=8cm,AD=6cm,AC=4cm,则在△ABD中,BD边上的高是cm.14.如图,AD、CE、BF是△ABC的高,AB=5,BC=4,AD=3,则CE=.15.如图,小华从A点出发,沿直线前进5m后左转24°,再沿直线前进5m,又向左转24°,……照这样走下去,当他第一次回到出发地A点时,一共走过的路程是.16.已知三角形三边长为整数,其中两边的差为5,且周长为奇数,则第三边长的最小值为.17.如图,已知BD为△ABC中∠ABC的平分线,CD为△ABC的外角∠ACE的平分线,与BD交于点D,若∠D=28°,则∠A=.18.如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,…,依此递推,则第6层中含有正三角形个数是,第n层中含有正三角形个数是.三.解答题(共7小题,满分64分)19.若一个多边形的外角和比它的内角和的少90°,求多边形的边数.20.正八边形地板砖,能铺满地面,既不留下一丝空白,又不相互重叠吗?请说明理由.21.如图,五边形ABCDE的每个内角都相等,已知EF⊥BC,求证:EF平分∠AED.22.我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案?问题解决:猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?验证1:在镶嵌平面时,设围绕某一点有x个正方形和y个正八边形的内角可以拼成一个周角.根据题意,可得方程:90x+y=360,整理得:2x+3y=8,我们可以找到方程的正整数解为.结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.23.如图1,AD、BC交于点O,得到的数学基本图形我们称之为‘8’字形ABCD.(1)试说明:∠A+∠B=∠C+∠D;(2)如图2,∠ABC和∠ADC的平分线相交于E,尝试用(1)中的数学基本图形和结论,猜想∠E与∠A、∠C之间的数量关系并说明理由.24.“转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.(1)请你根据已经学过的知识求出下面星形图(1)中∠A+∠B+∠C+∠D+∠E的度数;(2)若对图(1)中星形截去一个角,如图(2),请你求出∠A+∠B+∠C+∠D+∠E+∠F 的度数;(3)若再对图(2)中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?只要写出结论,不需要写出解题过程)25.∠MON=90°,点A,B分别在OM、ON上运动(不与点O重合).(1)如图①,AE、BE分别是∠BAO和∠ABO的平分线,随着点A、点B的运动,∠AEB=°;(2)如图②,若BC是∠ABN的平分线,BC的反向延长线与∠OAB的平分线交于点D.①若∠BAO=60°,则∠D=°;②随着点A,B的运动,∠D的大小会变吗?如果不会,求∠D的度数;如果会,请说明理由;(3)如图③,延长MO至Q,延长BA至G,已知∠BAO,∠OAG的平分线与∠BOQ 的平分线及其延长线相交于点E、F,在△AEF中,如果有一个角是另一个角的3倍,求∠ABO的度数.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:由三角形的高的定义可知,如果线段BD是△ABC的高,那么BD⊥AC,垂足是点D.四个选项中,只有D选项中BD⊥AC.故选:D.2.解:∵线段AN是△ABC边BC上的高,∴AD⊥BC,由垂线段最短可知,AM≥AN,故选:B.3.解:∵三角形的两边长分别为7和9,∴9﹣7<第三边的长<9+7,即2<第三边的长<16,选项中只有,13符合题意.故选:B.4.解:12﹣3=9,十二边形从一个顶点出发可引出9条对角线.故选:A.5.解:根据密铺的条件可知3个正六边形能密铺,故选:B.6.解:∵∠ACD是△ABC的一个外角,∴∠A=∠ACD﹣∠B=130°﹣20°=110°,故选:A.7.解:根据n边形的内角和可以表示成(n﹣2)•180°,可以得到增加一条边时,边数变为n+1,则内角和是(n﹣1)•180°,因而内角和增加:(n﹣1)•180°﹣(n﹣2)•180°=180°.故选:C.8.解:因为∠ADE=120°,∠ADE+∠ADC=180°,所以∠ADC=180°﹣∠ADE=180°﹣120°=60°,因为∠ADC+∠A+∠B+∠C=360°,所以∠A+∠B+∠C=360°﹣∠ADC=360°﹣60°=300°,故选:C.9.解:∵AE平分∠BAC,∴∠CAE=∠CAB=×76°=38°,∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°﹣∠C=90°﹣64°=26°,∴∠DAE=∠EAC﹣∠ACD=38°﹣26°=12°,故选:B.10.解:连接CD,五边形CDEFG的内角和为:(5﹣2)×180°=540°,∴∠CDE+∠DCG=540°﹣(∠E+∠F+∠G)=540°﹣108°×3=216°,∴∠ADC+∠BCD=∠CDE+∠DCG﹣(∠BCG+∠ADE)=216°﹣72°×2=72°,∴∠A+∠B=∠ADC+∠BCD=72°,故选:B.二.填空题(共8小题,满分24分,每小题3分)11.解:三角形三条中线的交点叫做三角形的重心.故答案为:重心.12.解:赵师傅这样做是运用了三角形的稳定性.故答案为:三角形的稳定性.13.解:如图,∵AC⊥BC,∴BD边上的高为线段AC.又∵AC=4cm,∴BD边上的高是4cm.故答案是:4.14.解:∵,∴,故答案为:.15.解:由题意可知,当小华回到出发地A点时,行走的路线是正多边形,∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走的路程:15×5=75,故答案为:75m.16.解:∵三角形三边中某两条边长之差为5,∴设其中一边为x,则另一边为x+5,第三边为y,∴此三角形的周长为:x+x+5+y=2x+y+5,∵三角形周长为奇数,∴y是偶数,∵5<y<x+x+5,∴y的最小值为6.故答案为:6.17.解:∵BD为∠ABC的平分线,CD为∠ACE的平分线,∴∠DBC=∠ABC,∠DCE=∠ACE,∵∠DCE=∠DBC+∠D,∠ACE=∠ABC+∠A,∴∠DBC+∠D=(∠ABC+∠A),∴∠D=∠A,∴∠A=2∠D=2×28°=56°.故答案为56°.18.解:第1层包括6个正三角形,第2层包括18个正三角形,…,每一层比上一层多12个,故第6层中含有正三角形的个数是6+12×5=66(个),第n层中含有正三角形个数是6+12(n﹣1)=12n﹣6,故答案为:66,12n﹣6.三.解答题(共7小题)19.解:设这个多边形是n边形,,解得:n=2,答:这个多边形是12边形.20.解:不能.∵正八边形每个内角是=135°,不能整除360°,∴不能密铺.21.证明:∵五边形内角和为(5﹣2)×180°=540°且五边形ABCDE的5个内角都相等,∴.∵EF⊥BC,∴∠3=90°.又∵四边形的内角和为360°,∴在四边形ABFE中,∠1=360°﹣(108°+108°+90°=54°,又∵∠AED=108°,∴∠1=∠2=54,∴EF平分∠AED.22.解:在镶嵌平面时,设围绕某一点有a个正三角形和b个正六边形的内角可以拼成一个周角,根据题意,可得方程:60a+120b=360.整理得:a+2b=6,方程的正整数解为,.所以可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌,在一个顶点周围围绕2个正三角形和2个正六边形或者围绕着4个正三角形和1个正六边形.23.(1)证明:∵∠A+∠B+∠AOB=180°,∠C+∠D+∠COD=180°,又∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D.(2)解:结论:2∠E=∠A+∠C.理由:∵∠ABC和∠ADC的平分线相交于E,∴可以假设∠ABE=∠EBC=x,∠ADE=∠EDC=y,∵∠A+x=∠E+y,∠C+y=∠E+x,∴∠A+∠C=∠E+∠E,∴2∠E=∠A+∠C,24.解:(1)∵∠1=∠2+∠D=∠B+∠E+∠D,∠1+∠A+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°;(2)∵∠1=∠2+∠F=∠B+∠E+∠F,∠1+∠A+∠C+∠D=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°;(3)根据图中可得出规律∠A+∠B+∠C+∠D+∠E=180°,每截去一个角则会增加180度,所以当截去5个角时增加了180×5度,则∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=180°×5+180°=1080°.25.解:(1)∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴∠BAE=∠OAB,∠ABE=∠ABO,∴∠BAE+∠ABE=(∠OAB+∠ABO)=45°,∴∠AEB=135°;故答案为:135°;(2)①∵∠AOB=90°,∠BAO=60°,∴∠ABO=30°,∴∠ABN=150°,∵BC是∠ABN的平分线,∴∠OBD=∠CBN=150°=75°,∵AD平分∠BAO,∴∠DAB=30°,∴∠D=180°﹣∠ABD﹣∠BAD﹣∠AOB=180°﹣75°﹣30°﹣30°=45°,故答案为:45;②∠D的度数不随A、B的移动而发生变化,设∠BAD=α,∵AD平分∠BAO,∴∠BAO=2α,∵∠AOB=90°,∴∠ABN=180°﹣∠ABO=∠AOB+∠BAO=90+2α,∵BC平分∠ABN,∴∠ABC=45°+α,∵∠ABC=180°﹣∠ABD=∠D+∠BAD,∴∠D=∠ABC﹣∠BAD=45°+α﹣α=45°;(3)∵∠BAO与∠BOQ的平分线交于点E,∴∠AOE=135°,∴,∵AE、AF分别是∠BAO和∠OAG的平分线,∴,在△AEF中,若有一个角是另一个角的3倍,则①当∠EAF=3∠E时,得∠E=30°,此时∠ABO=60°;②当∠EAF=3∠F时,得∠E=60°,此时∠ABO=120°>90°,舍去;③当∠F=3∠E时,得,此时∠ABO=45°;④当∠E=3∠F时,得,此时∠ABO=135°>90°,舍去.综上可知,∠ABO的度数为60°或45°.。

人教版七年级下册第9章多边形单元测试卷含答案

人教版七年级下册第9章多边形单元测试卷含答案

人教版第9章多边形单元测试卷一、选择题(每题3分,共30分)1. 下列说法正确的是()A. 三角形的角平分线是射线B. 三角形的高总在三角形内部C. 三角形的高、中线、角平分线一定是三条不同的线段D. 三角形的中线在三角形内部2. 如图,AB// CD,/ A=45° , / C=28° ,则/ AEC的大小为()A.17 °B.62C.63 °D.733. 下列各组长度的线段,能组成三角形的是()A.2 cm,3 cm,4 cmB.2 cm,3 cm,5 cmC.2 cm,5 cm,10 cmD.8 cm,4 cm,4 cm4. 下列多边形中,内角和与外角和相等的是()A.四边形B.五边形C.六边形D.八边形5. 设厶ABC勺三边长分别为a,b,c,其中a,b满足|a+b-4|+(a-b+2)2=0, 则第三边的长c的取值范围是()A.3<c<5B.2<c<3C.1<c<4D.2<c<46. 如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2 340 °的新多边形,则原多边形的边数为()A.13B.14C.15D.167. 如图,直角三角尺的直角顶点落在直尺边上,若/仁56° ,则/ 2的8. 等腰三角形的两边长分别为2和4,则该等腰三角形的周长为()A.8 或10B.8C.10D.6 或129. 现有四种地砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地砖铺满地面,选择的方式有()A.2种B.3种C.4种D.5种10. 如图,/ 1+Z 2- / 3- / 4+Z 5- / 6- / 7+Z8- / 9 等于()二、填空题(每题3分,共24分) 11. 在厶 ABC 中,/ A=30° , / B=45° ,则/C=_ .12.有人说自己的步子大,一步能走5 m,你认为 _________ (填“可能” 或“不可能”),用你学过的数学知识说明理 由: ________________________________ .13. 如图所示,在四边形ABCD^, / A=45° .直线I 与边AB,AD 分别相交14.已知一个多边形的内角和是 1080 ° ,则这个多边形的边数是15. 如图,在厶 ABC 中, / ACB=80 , / B=35° ,CD 丄AB 于 D,则/ ACD= _______ .D.36016. n边形与m边形内角和度数的差为720 ° ,则n与m的差为17. ______________________ 用4个完全一样的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图①,用n个完全一样的正六边形按这种方式进行拼接,如图②,若围成一圈后中间形成一个正多边形,则n的值为.① ②18. 如图所示,在厶ABC中, / A=m , / ABC和/ ACD勺平分线交于点A ,得/ A; / ABC和/ACD的平分线交于点A2,得/ A;…;/A012BC和/A012CD的平分线父于点A 013 ,得/ A 013 ,则/ A 013 = __________ .三、解答题(23,24题每题9分,其余每题7分,共46分)19. 求出图中x的值.20. 如图所示,BP平分/ FBC,CF平分/ ECB,/ A=40° ,求/ BPC勺度数.21. 有一张正方形桌面,它的4个内角的和为360° ,现在锯掉它的一个角,残余桌面所有的内角的和是多少?小光说:“锯掉一个角,变成三角形,于是残余桌面所有的内角的和是180° . ”小欣说:“锯掉一个角,变成五边形,内角和应为540° . ”你认为谁对谁不对?说说你的解答.22. 如图,请你想办法求出五角星中/ A+Z B+Z C+Z D+Z E的值.下面是习题讲解时,老师和学生对话的情境:老师向学生抛出问题:观察图①中的图形,能分别求出Z A, Z B, Z C, Z D, Z E的度数吗?能的话怎么求?不能的话怎么办?学生通过观察回答:很明显每个角都不规则,因此求不出/ A, / B, /C, / D, Z E的度数.有个学生小声地说了句:要是能把这五个角放到一块就好了.老师回答:有想法,就去试试看.很快就有学生发现利用三角形外角的性质将/ C与/E的度数和,/B与/D的度数和分别用/ 1和/ 2表示.于是得到/ A+Z B+Z C+Z D+Z E二/ A+Z 1 +/ 2=180° .根据以上信息,你能求出图②中Z A+Z B+Z C+Z D+Z E+Z23. 如图,在Rt△ ABC中,Z ACB=90 ,CD丄AB于D,AF 平分Z CAB交CD 于E,交BC于F,试说明:Z CEF Z CFE.24. 王老师准备装修新房的地面,到一家装修公司去看地砖,该公司现有一批边长相等的正多边形地砖(如图)供客户选择.△ □ OLJ 正三角形地砖正方形地糕正六垃形地韓正丿I边形地转 正十二边形地秸(1) 若只用其中一种正多边形地砖铺满地面,则供王老师选择的正多边 形地砖有哪些?(2) 若从其中任取两种组合,能铺满地面的正多边形地砖的组合有哪 些?(3) 若从其中任取三种组合,能铺满地面的正多边形地砖的组合有哪 些?(4) 请说出其中所蕴含的数学道理.参考答案一、1.【答案】D 2.【答案】D 3. 【答案】A解:根据三角形中任意两边之和大于第三边,任意两边之差小于第三边 判断.4. 【答案】A解:设多边形的边数是n,则(n-2) • 180° =360° ,解得n=4.5. 【答案】D2 2解:V a,b 满足|a+b-4|+(a-b+2) =0,|a+b-4| > 0,(a-b+2) > 0,二a+b-4=0,a-b+2=0.二a=1,b=3.「.c 的取值范围为3-1<c<3+1.即c 的取值范围为2<c<4. •••选D.6. 【答案】B7.【答案】C8. 【答案】C解:本题利用分类讨论思想解题,对于已知中没有明确腰和底边的题目一定要分类讨论,还应验证各种情况是否能构成三角形,这点非常重要, 也是解题的关键.9. 【答案】B解:可选择的方式有:正三角形和正方形;正三角形和正六边形;正方形和正八边形,共3种.10. 【答案】A解:如图,vZ 1 + Z 2=180° - / a , / 3+Z 4=180° - /丫,/ 5=180° - /丫- Z 0 , /6+Z 7=180° - ZB , Z 8=180° - ZB - Z 入,Z 9=360° - Z a - Z 0 - Z 入,「Z 1 + Z 2- Z 3- Z 4+Z 5- Z 6- Z 7+Z 8- Z 9=180° - Z a -(180 °-Z 丫)+180 °- Z Y - Z 0 -(180 °- Z B )+180 °- Z B - Z 入-(360 °-Z a - Z 0 - Z 入)=-180二、11.[答案】105解:在△ ABC 中,/ A=30° , / B=45° ,C=180° - / A- / B=180° -30 ° -45 ° =105° .12. 【答案】不可能;三角形的任何两边的和大于第三边解:人的两腿的长度总和不可能大于 5 m,故一步不可能走5 m.13. 【答案】225°14. 【答案】8解:设这个多边形的边数为x,由题意,得(x-2) X 180° =1 080° ,解得x=8.15. 【答案】25°解:•••在厶ABC中, / ACB=80 , / B=35° ,•••/A=180° - / B-Z ACB=65 . v CDL AB,:丄 CDA=90 , ACD=180 -90 ° -65 ° =25° .16. 【答案】4解:根据题意,有(n-2) • 180° -(m-2) • 180° =(n-m) • 180° =720° , 整理得n-m=4.即n与m的差为4.m17. 【答案】6 18.【答案】…一三、19.解:①根据三角形的外角的性质,得(x+70) ° =x° +(x+10) ° ,解得x=60.②根据四边形的内角和是360° ,得(x+10) ° +x° +60° +90° =360° ,解得x=100.③根据五边形的内角和是(5-2) X 180° =540°得 x ° +(x+20) ° +(x-10) ° +x ° +70° =540° ,解得x=115.20.解:如图,因为BP 平分/ FBC,CP 平分/ ECB,「 1 1所以/ 仁-/ FBC,Z 2= / ECB,2 2所以/ 1=( / A+Z 4), / 2= ( / A+Z 3), 2 2又因为/ BPC=180 -( / 1 + Z 2), / A=40°1 1/ A+Z 4)+;( / A+Z 3)」=180 +40° )=180 ° -110 ° =70°因此残余桌面所有的内角的和可能为 540° ,360 ° ,180所以'BPC =180 士( 1 -X (180解:可利用三角形外角的性质及三角形内角和为 180°来求解.21.解:都不对.锯掉一个角,可能出现如图所示的三种情况22. 解:能.设AF与BG相交于点Q,则/ BQF M A+Z D+Z G,于是/ A+Z B+Z C+Z D+Z E+Z F+Z G=Z B+Z C+Z E+Z F+Z BQF=(5-2)X 180° =540° .23. 解法一:vZ ACB=90 ,:,Z CFE=90 - Z 1,v CDL AB于D,•••Z ADE=90 , /.Z AED=90 - Z 2.又v AF平分Z CAB,•Z 1 = Z 2, /Z AED Z CFE.又vZ CEF Z AED对顶角相等),•Z CEF Z CFE.解法二:vZ ACB=90 ,•Z ACE Z BCD=90 .v CDL AB于D,•Z B+Z BCD=90 ,•Z ACE Z B.v AF平分Z CAB,•Z 仁Z 2.vZ CEF Z 1+Z ACE,Z CFE Z B+Z 2(三角形的一个外角等于与它不相邻的两个内角的和),•••/ CEF2 CFE.24. 解:(1)正三角形的一个内角为60° ,正方形的一个内角为90° ,正六边形的一个内角为120° ,正八边形的一个内角为135° ,正十二边形的一个内角为150° .T60、90、120 能整除360,•供王老师选择的正多边形地砖有正三角形地砖、正方形地砖、正六边形地砖.⑵3 X 60° +2X 90° =360° , •正三角形地砖和正方形地砖可以铺满地面;2 X 60° +2X 120° =360°或4X 60° +120° =360° , •正三角形地砖和正六边形地砖可以铺满地面;60 ° +2X 150° =360° , •正三角形地砖和正十二边形地砖可以铺满地面;90 ° +2X 135°=360° , •••正方形地砖和正八边形地砖可以铺满地面,即其中任取两种组合,能铺满地面的正多边形地砖的组合有正三角形地砖和正方形地砖,正三角形地砖和正六边形地砖,正三角形地砖和正十二边形地砖,正方形地砖和正八边形地砖.(3)1块正方形地砖,1块正六边形地砖,1块正十二边形地砖可以铺满地面;2块正三角形地砖,1块正方形地砖,1块正十二边形地砖可以铺满地面;1块正三角形地砖,2块正方形地砖,1块正六边形地砖可以铺满地面,•从其中任取三种组合,能铺满地面的正多边形地砖的组合有正三角形地砖,正方形地砖,正十二边形地砖;正方形地砖,正六边形地砖,正十二边形地砖;正三角形地砖,正方形地砖,正六边形地砖.⑷能铺满地面的正多边形在一个顶点处的各内角的和为360° .。

华东师大版七年级下册 第9章多边形(9.2-9.3)同步测试(含解析)

华东师大版七年级下册 第9章多边形(9.2-9.3)同步测试(含解析)

多边形(9.2-9.3)同步测试一、选择(每小题3分,共24分)1.四边形没有稳定性,当四边形形状改变时,发生变化的是()A.四边形的边长B.四边形的周长C.四边形内角的大小D.四边形的内角和分析:四边形具有不稳定性,形状改变时,变的是内角的度数,边长不发生变化.故选:C.2.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是()A.正三角形B.正四边形C.正六边形D.正八边形分析:平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角.若能构成360°,则说明能够进行平面镶嵌;反之则不能.正八边形每个内角是135º,360°÷135º不能得到整数,故选D.3.若一个多边形的每一个外角都是40°,则这个多边形是()A.六边形B.八边形C.九边形D.十边形分析:因为任意多边形的外角和为360º,360º÷40º=9,即这个多边形的边数是9,故选C.4.从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是()A.6 B.7 C.8 D.9分析:设这个多边形是n边形,依题意,得n﹣3=5,解得n=8.故这个多边形的边数是8.故选C.5.已知一个多边形的内角和等于它的外角和,则这个多边形的边数为()A.3 B.4 C.5 D.6分析:设多边形的边数为n,根据题意,得(n﹣2)•180°=360°,n﹣2=2,n=4.故选B.6.若一个多边形有14条对角线,则这个多边形的边数为()A.4 B.5 C.6 D.7分析:n边形共有条对角线.当n=4时,=2;当n=5时,=5;当n=6时,=9;当n=7时,=14. 故选:D.7.用边长相等的下列两种正多边形,不能进行平面镶嵌的是()A.等边三角形和正六边形B.正方形和正八边形C.正五边形和正十边形D.正六边形和正十二边形分析:A、正三角形的每个内角是60°,正六边形的每个内角是120°,∵2×60°+2×120°=360°,能密铺;B、正八边形的每个内角是135°,正方形的每个内角是90°,∵2×135°+90°=360°,能密铺,;C、正五形的每个内角是108°,正十边形的每个内角是144°,∵2×108°+144°=360°,能密铺,;D、正六边形的每个内角是120°和正十二边形的每个内角是150°,120m+150n=360°,m=3﹣n,显然n取任何正整数时,m不能得正整数,故不能铺满.故选:D.8.如图,正三角形ABC(图1)和正五边形DEFGH(图2)的边长相同.点O为△ABC 两内角平分线的交点,用5个相同的△BOC拼入正五边形DEFGH中,得到图3,则图3中的五角星的五个锐角均为()A.36°B.42°C.45°D.48°分析:∵∠OBC=30º,正五边形的每一个内角=(5﹣2)•180°÷5=108°,∴图3中的五角星的五个锐角均为:108°﹣60°=48°.故选:D.二、填空(每小题4分,共24分)9.一个n边形的内角和是1800°,则n=.分析:根据题意得180·(n﹣2)=1800,解得:n=12.故答案是:12.10.如图,某文化广场的地面是由正五边形与图形密铺而成,图中图形的尖角∠ABC的度数为.分析:∵正五边形每个内角是180°﹣360°÷5=108°,∴∠ABC=(360°﹣3×108°)÷2=36°÷2=18°.故答案为:18°.11.将一个正六边形纸片对折,并完全重合,那么得到的图形是边形.分析:如图,①折痕是对角线所在的直线时,得到的图形是四边形,②折痕是对边中点所在的直线时,得到的图形是五边形,所以,得到的图形是四边形或五边形.故答案为:四边形或五.12.若一个多边形的内角和等于720°,则从这个多边形的一个顶点引出对角线条.分析:设多边形的边数是n,则(n﹣2)•180°=720°,解得n=6,∴从这个多边形的一个顶点引出对角线是:6﹣3=3(条),故答案为:3.13.如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED 的度数是.分析:如图,根据多边形外角和定理得到:∠1+∠2+∠3+∠4+∠5=360°,∴∠5=360﹣4×70=80°,∴∠AED=180﹣∠5=180﹣80=100°.14.用三种不同的正多边形地砖铺满地面,若其中有正三角形,正八边形,则另一个为正边形.分析:∵正三角形的内角是60°,正八边形的内角是135°,∴另一个正多边形的内角是165°,∴另一个正多边形是24边形;故答案为:24.三、解答(5个小题,共52分)15.若一个多边形的内角和等于外角和的3倍,求这个多边形的边数.分析:根据多边形的外角和与内角和公式,可得一个关于边数的方程,解方程即可.解:设这个多边形是n边形,由题意得:(n﹣2)×180°=360°×3,解得:n=8.答:这个多边形的边数是8.16.如图所示,正多边形A,B,C密铺地面,其中A为正六边形,C为正方形,请通过计算求出正多边形B的边数.分析:周角为360°,只有B的内角的度数是未知的,可构建方程求解.解:设正多边形B一个内角为x,则有120°+90°+x=360°,∴x=150°,∴n=360÷(180﹣150)=12.17.某校研究性学习小组研究平面密铺的问题,其中在探究用两种边长相等的正多边形做平面密铺的情形时用了以下方法:用2个正三角形和2个正六边形或4个正三角形和1个正六边形可以拼成一个无缝隙、不重叠的平面图形,如图(1)、(2)(3).请你仿照此方法解决下面问题:(1)研究用边长相等的x个正三角形和y个正方形进行平面密铺的情形,求出x和y的值(2)按图(4)中给出两个边长相等的正方形和正三角形画出一个密铺后图形的示意图.分析:(1)正三角形的每个内角是60°,正方形的每个内角是90°,能进行密铺,说明一个顶点处的各内角之和为360°,依此列出方程求出x和y的值;(2)作出3个正三角形和2个正方形进行平面密铺的图形.解:(1)依题意,可有60·x+90•y=360,化简得2x+3y=12,∵x、y为正整数,∴x=3,y=2;(2)如图.18.如图,小明从点O出发,前进5m后向右转15°,再前进5m后又向右转15°,…这样一直下去,直到他第一次回到出发点O为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?分析:第一次回到出发点A时,所经过的路线正好构成一个外角是15度的正多边形,求得边数,即可求解.解:(1)∵所经过的路线正好构成一个外角是15度的正多边形,∴360÷15=24,24×5=120m答:小明一共走了120米;(2)(24﹣2)×180°=3960°,答:这个多边形的内角和是3960度.19.(1)已知:如图1,P为△ADC内一点,DP、CP分别平分DP、CP分别平公∠ADC和∠ACD,如果∠A=90°,那么∠P=°;如果∠A=x°,则∠P=°;(答案直接填在题中横线上)(2)如图2,P为四边形ABCD内一点,DP、CP分别平分∠ADC和∠BCD,试探究∠P 与∠A+∠B的数量关系,并写出你的探索过程;(3)如图3,P为五边形ABCDE内一点,DP、CP分别平分DP、CP分别平公∠ADC和∠ACD,请直接写出∠P与∠A+∠B+∠E的数量关系:;(4)若P为n边形A1A2A3…A n内一点,PA1平分∠A n A1A2,PA2平分∠A1A2A3,请直接写出∠P与∠A3+A4+A5+…∠A n的数量关系:.(用含n的代数式表示)分析:(1)根据角平分线的定义和三角形内角和定理,列式整理解答;(2)根据角平分线的定义和四边形的内角和,列式整理解答;(3)根据角平分线的定义和五边形的内角和,列式整理解答;(4)根据角平分线的定义和n边形的内角和公式,列式整理解答;解:(1)∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=∠ADC,∠PCD=∠ACD,∴∠DPC=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠ACD=180°﹣(∠ADC+∠ACD)=180°﹣(180°﹣∠A)=90°+∠A,∴如果∠A=90°,那么∠P=135°;如果∠A=x°,则∠P=(90+)°;(2)∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=∠ADC,∠PCD=∠BCD,∴∠DPC=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠BCD=180°﹣(∠ADC+∠BCD)=180°﹣(360°﹣∠A﹣∠B)=(∠A+∠B);(3)五边形ABCDEF的内角和为:(5﹣2)•180°=540°,∵DP、CP分别平分∠EDC和∠BCD,∴∠P=∠EDC,∠PCD=∠BCD,∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣∠EDC﹣∠BCD=180°﹣(∠EDC+∠BCD)=180°﹣(540°﹣∠A﹣∠B﹣∠E)=(∠A+∠B+∠E)﹣90°,即∠P=(∠A+∠B+∠E)﹣90°;(4)同(1)可得,∠P=(∠A3+∠A4+∠A5+…∠A n)﹣(n﹣4)×90°.附加题:20.如图,四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∠ABC、∠BCD的角平分线交于点F.(1)若∠F=80º,则∠ABC+∠BCD=;∠E=;(2)探索∠E与∠F有怎样的数量关系,并说明理由;(3)给四边形ABCD添加一个条件,使得∠E=∠F所添加的条件为.分析:(1)根据三角形内角和定理求出∠FBC+∠BCF的度数,再由角平分线定义得出∠∠ABC+∠BCD的度数;由四边形ABCD的内角和为360°,得出∠BAD+∠CDA的度数.由角平分线定义得出∠DAE+∠ADE的度数,然后根据三角形内角和定理求出∠E的度数;(2)由四边形ABCD的内角和为360°和角平分线定义得出∠DAE+∠ADE+∠FBC+∠BCF 的度数,又根据三角形内角和定理可得∠E+∠F的度数;(3)由(2)可知∠E+∠F=180°,如果∠E=∠F,那么可以求出∠E=∠F=90°,根据三角形内角和定理求出∠DAE+∠ADE=90°,再利用角平分线定义得到∠BAD+∠CDA=180°,于是AB∥CD.解:(1)∵∠F=80º,∴∠FBC+∠BCF=180°﹣∠F=100°.∵∠ABC、∠BCD的角平分线交于点F,∴∠ABC=2∠FBC,∠BCD=2∠BCF,∴∠ABC+∠BCD=2∠FBC+2∠BCF=2(∠FBC+∠BCF)=200°;∵四边形ABCD的内角和为360°,∴∠BAD+∠CDA=360°﹣(∠ABC+∠BCD)=160°.∵四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∴∠DAE=∠BAD,∠ADE=∠CDA,∴∠DAE+∠ADE=∠BAD+∠CDA=(∠BAD+∠CDA)=80°,∴∠E=180°﹣(∠DAE+∠ADE)=100°;(2)∠E+∠F=180°.理由如下:∵∠BAD+∠CDA+∠ABC+∠BCD=360°,∵四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∠ABC、∠BCD的角平分线交于点F,∴∠DAE+∠ADE+∠FBC+∠BCF=180°,∵∠DAE+∠ADE+∠E=180°,∠FBC+∠BCF+∠F=180°,∴∠DAE+∠ADE+∠E+∠FBC+∠BCF+∠F=360°,∴∠E+∠F=360°﹣(∠DAE+∠ADE+∠FBC+∠BCF)=180°;(3)AB∥CD.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9章 多边形单元练习(1)
一、填空:
1、六边形的内角和为 ,外角和为 。

2、如图(1)所示,则∠α的度数是 。

(1) (2) (3)
3、已知一个等腰三角形的两边长分别为8㎝和3㎝,那么它的周长为 ㎝。

4、已知如图(2)在△ABC 中,∠ABC=80°,∠ACB=50°,BP 平分∠ABC,CP 平分∠ACB,则∠BPC= 。

5、已知八边形的各个内角相等,则每一个内角都等于 。

6、三角形中,三个内角的比为1∶3∶6,它的三个内角度数分别是________.
7、三角形a 、b 两边的长分别是7cm 和9cm ,则第三边c 的取值范围是________.
8、等腰三角形两边分别是3和6,则周长为________________.
9、如图1,在△ABC 中,∠A=27°,∠1=95°,∠B=38°则∠E=________.
10、正n 边形的一个外角等于它的一个内角的13
,则n =________. 11、正n 边形的一个内角等于150°,则从这个多边形的一个顶点出发可引_____条对角线.
12、在△ABC 中,∠A+∠B=∠C,则△ABC 是 三角形。

13、如图(3),∠1=65°,∠2=85°,∠3=60°,∠4=40°,那么∠5的度数是 。

14、如图(4),将标号为A ,B ,C ,D 的正方形,沿图中的虚线剪开后,得到标号为P ,Q ,M ,N 的四组图形,试按照“哪个正方形剪开后,得到哪组图形”的对应关系,填空:A 与 对应 B 与 对应 C 与 对应 D 与 对应.
B A
C
D N M Q P
二、选择:
15.若正n 边形的一个外角为60º,则n 的值为( ).
(A) 4 (B) 5 (C) 6 (D)8
16、a 、b 、c 是三角形的三边长,化简a b c b a c c a b --+--+--后等于( )
A .3b a c +-
B .a b c ++
C .333a b c ++
D .a b c +-
17、要组成一个三角形,三条线段的长度可取( ) A 、9,6,13 B 、2,3,5 C 、18,9,8 D 、3,5,9 18、钝角三角形三条高所在的直线交于( )。

A 、三角形内
B 、三角形外
C 、三角形的边上
D 、不能确定 19、如果一个正多边形的每个外角是24°,那么这个多边形是( )边形。

图(4) A 、14 B 、15 C 、25 D 、35
20、(n+1)边形的内角和比n 边形的内角和大( )
A 、180° B、360° C、180n D 、360n
21、如图(4),则∠A+∠B+∠C+∠D+∠E+∠F=( )
A 、180° B、360° C、540° D、720°
22、某人到瓷砖商店去购买一种..正多边形形状的瓷砖,铺设无缝地板,他购买的瓷砖形状不.
可以是( ) A 、正三角形 B 、正四边形 C 、正六边形 D 、正八边形 54321B A P C 110︒40︒αB F
A
C E
D
23、将矩形纸对折在对折如图(6),然后沿着图中的虚线剪下,得到①②两部分,将①展开后得到的平面图形是( )
A 、矩形;
B 、三角形;
C 、梯形;
D 、菱形
24、一个n 边形削去一个角后,变成(n +1)边形的内角和为2520°,则原n 边形的边数是( )
A .7
B .10
C .14
D .15
三、解答题:
25、已知三角形三边长为整数2,x ,4,则共可作出多少不同形状的三角形?当x 为多少时,所作三角形周长最
大?
26、如图6,AD 是△ABC 的角平分线,∠B=45°,
∠ADC=75°,求∠BAC 、∠C 的度数.
17、四边形ABCD 中,∠C 和∠A 互为补角,且∠A∶∠B∶∠D=6∶4∶5,求∠C 的度数。

28、等腰三角形的周长是20cm ,其中一边长是6cm ,求等腰三角形其他两边的长.
29、若在ΔABC 中,∠A=12∠B=13
∠C ,你能判断此三角形是什么三角形吗?
30、如图10,已知DC 是△ABC 中∠BCA 相邻外角的平分线,
试说明为什么∠ABC >∠A?
2011-5-7 A B
C D 图6 A B C
D 图10 E。

相关文档
最新文档