人教版八年级数学上册分式方程专项练习题41
人教版八年级数学上册分式方程(含答案)

15.3分式方程专题一 解分式方程 1.方程32x 31-x 1+=的解是 . 2.解分式方程:3x 911x 3x 32-=-+.3.解分式方程:32x ++1x =242x x+.专题二 分式方程无解4.关于x 的分式方程211x m x x -=--无解,则m 的值是( )A .1B .0C .2D .–25.若关于x 的方程2222x m x x ++=--无解,则m 的值是______. 6.若关于x 的分式方程2233x m x x -=--无解,则m 的值为__________. 专题三 列分式方程解应用题7.甲、乙两班学生参加植树造林.已知甲班每天比乙班少植2棵树,甲班植60棵树所用天数与乙班植70棵树所用天数相等.若设甲班每天植树x 棵,则根据题意列出方程正确的是( )A .60702x x=+ B .60702x x =+C.60702x x =- D.60702x x =-8.为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种1,结果提前4天完成任务.原计划每天种多少棵树?39.某校为了进一步开展“阳光体育”活动,计划用2000元购买乒乓球拍,用2800元购买羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵14元.该校购买的乒乓球拍与羽毛球拍的数量能相同吗?请说明理由.状元笔记【知识要点】1.分式方程分母中含未知数的方程叫做分式方程.2.解分式方程的一般步骤【温馨提示】1.用分式方程中各项的最简公分母乘方程的两边,从而约去分母.但要注意用最简公分母乘方程两边各项时,切勿漏项.2.解分式方程可能产生使分式方程无解的情况,那么检验就是解分式方程的必要步骤.参考答案:1.x=6 解析:去分母,得2x+3=3(x-1),解得x=6,经检验x=6是原方程的解.所以,原分式方程无解.3.解:方程两边乘x(x+2),得3x+x+2=4,解得x=21.经检验:x=21是原方程的解.4.A 解析:方程两边成x -1,得x -2(x -1)=m ,解得x=2-m .∵当x=1时分母为0,方程无解,∴2-m=1,即m=1时,方程无解.故选A .7.B 解析:设甲班每天植树x 棵,则乙班每天植树(x+2)棵,甲班植60棵树所用的天数为x ,乙班植70棵树所用的天数270+x ,可列方程为x 60=270+x .故选B . 8.解:设原计划每天种x 棵树,实际每天种树113x ⎛⎫+⎪⎝⎭棵,根据题意,得 4804804113x x -=⎛⎫+ ⎪⎝⎭.解这个方程,得x=30.经检验x=30是原方程的解且符合题意.答:原计划每天种树30棵.9.解:不能相同.理由如下:设该校购买的乒乓球拍每副x 元,羽毛球拍每副(x +14)元,若购买的乒乓球拍与羽毛球拍的数量相同,则1428002000+=x x ,解得x =35.经检验x =35是原方程的解.但当x =35时,74001428002000=+=x x ,不是整数,不合题意. 所以购买的乒乓球拍与羽毛球拍的数量不能相同.先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。
人教版 八年级数学上册 竞赛专题分式方程(含答案)

人教版 八年级数学上册 竞赛专题:分式方程(含答案)【例1】 若关于x 的方程22x ax +-=-1的解为正数,则a 的取值范围是______.解题思路:化分式方程为整式方程,注意增根的隐含制约.【例2】 已知()22221111x x A B Cx x x x x +-=++--,其中A ,B ,C 为常数.求A +B +C 的值.解题思路:将右边通分,比较分子,建立A ,B ,C 的等式.【例3】解下列方程: (1)596841922119968x x x x x x x x ----+=+----; (2)222234112283912x x x x x x x x ++-+=+-+; (3)2x +21x x ⎛⎫⎪+⎝⎭=3.解题思路:由于各个方程形式都较复杂,因此不宜于直接去分母.需运用解分式问题、分式方程相关技巧、方法解.【例4】(1)方程18272938x x x x x x x x +++++=+++++的解是___________. (2)方程222111132567124x x x x x x x ++=+++++++的解是________.解题思路:仔细观察分子、分母间的特点,发现联系,寻找解题的突破口.【例5】若关于x 的方程2211k x kx x x x x+-=--只有一个解,试求k 的值与方程的解. 解题思路:化分式方程为整式方程,解题的关键是对原方程“只有一个解”的准确理解,利用增根解题.【例6】求方程11156x y z ++=的正整数解. 解题思路:易知,,x y z 都大于1,不妨设1<x ≤y ≤z ,则111x y z≥≥,将复杂的三元不定方程转化为一元不等式,通过解不等式对某个未知数的取值作出估计.逐步缩小其取值范围,求出结果.能力训练A 级1.若关于x 的方程1101ax x +-=-有增根,则a 的值为________. 2.用换元法解分式方程21221x x x x --=-时,如果设21x x-=y ,并将原方程化为关于y 的整式方程,那么这个整式方程是___________. 3.方程2211340x x x x ⎛⎫+-++= ⎪⎝⎭的解为__________. 4.两个关于x 的方程220x x --=与132x x a=-+有一个解相同,则a =_______.5.已知方程11x a x a+=+的两根分别为a ,1a ,则方程1111x a x a +=+--的根是( ). A .a ,11a - B .11a -,1a - C .1a ,1a - D .a ,1aa -6.关于x 的方程211x mx +=-的解是正数,则m 的取值范围是( ) A .m >-1 B .m >-1且m ≠0C .m <-1D .m <-l 且m ≠-27.关于x 的方程22x c x c +=+的两个解是x 1=c ,x 2=2c ,则关于x 的方程2211x a x a +=+--的两个解是( ) . A .a ,2a B .a -1,21a - C .a ,21a - D .a ,11a a +- 8.解下列方程:(1)()2221160x x x x+++-=; (2)2216104933x x x x ⎛⎫+=-- ⎪⎝⎭.9.已知13x x+=.求x 10+x 5+51011x x +的值.10.若关于x 的方程2211k x kx x x x x+-=--只有一个解(相等的两根算作一个),求k 的值.11.已知关于x 的方程x2+2x +221022m x x m-=+-,其中m 为实数.当m 为何值时,方程恰有三个互不相等的实数根?求出这三个实数根.12.若关于x 的方程()()122112x x ax x x x x ++-=+--+无解,求a 的值.B 级1.方程222211114325671221x x x x x x x x +++=+++++++的解是__________.2.方程222111011828138x x x x x x ++=+-+---的解为__________.3.分式方程()()1112x m x x x -=--+有增根,则m 的值为_________. 4.若关于x 的分式方程22x ax +-=-1的解是正数,则a 的取值范围是______.5.(1)若关于x 的方程2133mx x =---无解,则m =__________. (2)解分式方程225111mx x x +=+--会产生增根,则m =______. 6.方程33116x x x x ⎛⎫+=+ ⎪⎝⎭的解的个数为( ). A .4个 B .6个 C .2个 D .3个7.关于x 的方程11ax =+的解是负数,则a 的取值范围是( ) . A .a <l B .a <1且a ≠0 C .a ≤1 D .a ≤1且a ≠08.某工程,甲队独做所需天数是乙、丙两队合做所需天数的a 倍,乙队独做所需天数是甲、丙两队合做所需天数的b 倍,丙队独做所需天数是甲、乙两队合做所需天数的c 倍,则111111a b c +++++的值是( ).A .1B .2C .3D .49.已知关于x 的方程(a 2-1)()2271011x x a x x ⎛⎫⎛⎫-++= ⎪ ⎪--⎝⎭⎝⎭有实数根.(1)求a 的取值范围;(2)若原方程的两个实数根为x 1,x 2,且121231111x x x x +=--,求a 的值.10.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降. 今年三月份的电脑售价比去年同期每台降价1 000元.如果卖出相同数量的电脑,去年销售额为10万元.今年销售额只有8万元. (1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3 800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元.要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?参考答案例1 a <2且a ≠-4例2 原式右边=22(1)+B(1)(1Ax x x Cx x x --+-)=2222()()211(1)(1)A C x B A x B x x x x x x ++--+-=-- 得2111A C B A B +=⎧⎪-=⎨⎪-=-⎩∴1011,8.A B C =⎧⎪=⎨⎪=-⎩,∴A +B +C =13.例3 (1)x =12314提示:1155(5)(1)(4)(2)191968x x x x -++=++-----.(2)1,2x =,x 3=-1,x 4=-4 提示:令223.4x xy x x +=+-(3)1,2x =提示222222()().111x x x x x x x +=++++例4 (1)原方程化为11111+111+2+9+3+8x x x x --=-+-,即1111+3+2+9+8x x x x -=-,进一步可化为(x +2) (x +3)=(x +8) (x +9),解得x =-112.(2)原方程化为1111111+1+2+2+3+3+4+4x x x x x x x -+-+-=,即12+14x x =+,解得x =2. 例5 原方程化为kx 2-3kx +2x -1=0①,当k =0时,原方程有唯一解x =12;当k ≠0,Δ=5k 2+4(k -1)2>0.由题意知,方程①必有一根是原方程的曾根,即x =0或x =1,显然0不是①的根,故x =1是方程①的根,代入的k =12.∴当k =0或12时,原方程只有一个解. 例6 11113x x y z x <++≤,即1536x x <≤,因此得x =2或3.当x =2时,111x x y <+=511112623y y y -=≤+=,即1123y y<≤,由此可得y =4或5或6;同理,当x =3时,y =3或4,由此可得当1≤x ≤y ≤z 时,(x ,y ,z )共有(2,4,12),(2,6,6),(3,3,6),(3,4,4)4组;由于x ,y ,z 在方程中地位平等,可得原方程组的解共15组:(2,4,12),(2,12,4), (4,2,12),(4,12,2),(12,2,4),(12,4,2),(2,6,6),(6,2,6),(6,6,2),(3,3,6),(3,6,3),(6,3,3),(3,4,4) ,(4,4,3) ,(4,3,4).A 级1.-1 2.y 2-2y -1=0 3.1 4.-8 5.D 6.D 7.D8.(1)12123x x ==-, (2)1226x x ==-,,3,43x =-±9.15250 提示:由x +13x =得2217.x x +=则2211()()21x x x x ++=,得33118x x+=. 于是221()x x+331()126x x +=,得551123x x +=.进一步得1010115127x x +=.故原式=15250.10.k =0或k =12提示:原方程化为kx 2-3kx +2x -1=0,分类讨论. 11.设x +2x =y ,则原方程可化为y 2-2my +m 2-1=0,解得y 1=m +1,y 2=m -1.∵x 2+2x -m -1=0①,x 2+2x -m +1=0②,从而Δ1=4m +8,Δ2=4m 中应有一个等于零,一个大于零.经讨论,当Δ2=0即m =0时,Δ1>0,原方程有三个实数根.将m =0代入原方程,解得12321211.x x x ⎧=-⎪⎪=--⎨⎪=⎪⎩12 原方程“无解”内涵丰富:可能是化得的整式方程无解,亦可能是求得的整式方程的解为増根,故需全面讨论.原方程化为(a+2)x =-3 ① , ∵原方程无解,∴a+2=0或x -1=0,x+2=0,得B 级1. 3或 - 72. x₁=8 , x₁=-1 , x₁=-8 , x₁=1 提示: 令x ²-8=y3. 3 提示:由有増根可得m=0或 m=3,但当 m=0,化为整式方程时无解4. a<2 且 a ≠-45. ⑴ -2 ⑵ -4 或 -106. A7.8. 设甲单独做需要x 天完成,乙单独做需要y 天完成,丙单独做需要z 天完成则.解 . 当a ≠±1时,则Δ≥0,原方程有实数解.由Δ=[-﹙2a+7﹚]²-4﹙a ²-1﹚≥0,解得.21-5,2,21-a 5,-=a 分别别代入①2-= x 1,=x 把 2,-=a 或综上知--==a 0≠1a ∴ 0,≠11 0≠1x 1a 01-a x ∴,111x a: a a x a B 且即且由提示<+-+<⇒<=+=⇒=+1x y +=++a yz yzxz 得⑥⑤④, ⑥11yz x z x y x y ⑤,11yz x z x y x z ④.11yz x z x y yz ∴+++=+++=+++=++c b a 同理可得111111a 1=+++++c b 得,01.01)72(1)t -(a 1,≠,1⑴....9222=-=++-=-a t a t t x x当原方程可化为则设.,?=a , 41-=x 81-=x ∴, 51=1-x 91=1-x 0=1+5-0=1+9-, ?=原方程有实数解时当故或或即或则方程为时即x x t t a 且当综上可知由于解得时但当又,2853-≥,,2853->22±1,22±1=a ,1=t 1,≠t ,2853-≥a a .,22±1≠原方程有实数解时a。
人教版八年级数学上册期末专项训练资料:分式方程及其应用.

八数上册期末专项训练资料:分式方程及其应用专项训练题1.下列式子中,是分式方程的是( )A.++-x 23x 1xB.-=2x 1533C.+=-+111x 1x 1D.-++=x 3x 42232.分式方程-=-22x 11x 2的解为 ( )A.=-x 1B.=1x 2C.=x 1D.=x 23.分式方程--=-+x 120x 2x 1的解为( ) A.=-x 1 B.=x 3 C.=x 1 D.=x 3或=-x 14.慧慧家在A 市,欣欣家在B 市,慧慧家的面积与欣欣家的相同,慧慧家和欣欣家2020年所 交的取暖费分别为1995元和1890元.若B 时居民没平方米取暖费的价格比A 市的便宜1元,则A 市居民每平方米取暖费上午价格为 ( ) A.17元 B.18元 C.19元 D.20元5.某工程需要在规定日期内完成;若由甲队去做恰好如期完成,若乙队去做就要超过规定日期三天完成;若先由甲乙合作二天,再由乙队单独做恰好如期完成,问规定日期为 ( ) A.3天 B. 4天 C.5天 D.6天6.甲车行驶30千米与乙车行驶40千米所用的时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x 千米/时,依据题意列方程正确的是 ( ) A.3040x x 15=+ B.3040x 15x =- C.3040x x 15=- D.3040x 15x=+ 7.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原来提高了20%,结果共用了18天完成全部任务,设原计划每天加工x 套运动服,根据题意可以列方程为 ( ) A .()%+=+16040018x 120x B.()%+=+16040016018x 120x - C.+=16040016018x 20x -% D.()%+=+40040016018x 120x - 8.为积极响应“传统文化进校园”的号召,某中学举行书法比赛,为奖励获奖学生,学校购买了一些钢笔和毛笔,钢笔的单价是毛笔单价的1.5倍,购买钢笔用了1200元,购买毛笔用了1500元;购买的钢笔比毛笔少20支,钢笔、毛笔的单价分别是多少元?如果设毛笔的单价为x 元/支,那么下面所列方程中,正确的是 ( )A.-=12001500201.5x x B. -=1500120020x 1.5x C. =-1500120020x 1.5x D. -=1200150020x 1.5x9.甲、乙两位老师在某学校门口给学生检测体温,已知每分钟甲比乙少检测8个学生,甲检测120个学生所用的时间与乙检测150个学生所用的时间相等;设甲每分钟检测x 个学生,下列方程正确的是 ( ) A.=120150 B. =120150 C. =120150 D. =+120150x x 813.关于x 的分式方程=---2x 3x 3的解为正数,则m 的取值范为 . 14.已知A,B 两地相距160km ,一辆汽车从A 地到B 地的速度比原来提高了25%,结果比原来提前0.4h 到达,这辆汽车原来的速度是 km /h .15.甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程;已知乙队单独完成此项工程所需天数的45,则乙队单独完成此项工程需 天.16.解方程:⑴. 7m 11m 66m -+=--; ⑵17.若关于x 的方程23x a 1x 1x 1-+=--有增根,求a 的值? 18..于x 的分式方程+-=-2m x 21x 3x无解,求m 的值?19..某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?20.小明元旦前到文具超市用15元买了若干本练习本,元旦这一天,该超市开展优惠活动,同样的练习本比元旦前前便宜0.2元,小明又用20.7元钱买练习本,所以练习本的数量比上一次多50%,小明元旦前在该超市买了多少本练习本?21.某高速公路要对承建的工程队进行招标,现在甲、乙两个工程队前来投标,根据两队的申报材料估计,若甲、乙两队合作,24天可以完成,需费用120万元;若由甲队单独做20天,余下的工程由乙队做,还需40天完成,共需费用110万元;问:⑴.若甲、乙两队单独完成这项工程,各需多少天?⑵.若在甲、乙两队中选一队承包这项工程,为了使支付的费用较少,应选哪一队?22.某单位计划购进一品牌的毛笔和墨汁,已知购买一支毛笔比购买一瓶墨汁多用12元。
人教版八年级上册数学-分式方程+分式应用题专练60题

分式方程+分式应用题专练60题一.解答题(共60小题)1.先化简,再求值:,其中a﹣b=6.2.先化简再求值,,其中a=1.3.先化简,再求值:,其中﹣1≤x<2且x为整数.请你选一个合适的x值代入求值.4.先化简,再求值:(1),其中;(2)÷(a+2+),其中a是使不等式成立的正整数.5.先化简,然后从﹣1,0,1,2中选取一个合适的数作为x的值代入求值.6.先化简,再求值:,其中m2+3m=﹣1.7.已知实数a满足,求的值.8.先化简(1﹣a+)÷,再从不等式﹣2<a<2中选择一个适当的整数,代入求值.9.先化简,后求值:,其中x=﹣5.10.先化简,再求代数式的值,其中.11.化简求值:,已知m2﹣3m﹣4=0.12.先化简,再求值:,其中.13.先化简,再从﹣1,0,1,2中选择一个适当的数作为a的值代入求值.14.先化简:,再从﹣3,﹣1,1,3中选取一个使原式有意义的数代入求值.15.化简:,并在﹣1,0,2中选一个合适的数作为a的值代入求值.16.先化简,再求值:,从a=2,a=3中取一个a的值代入计算出结果.17.先化简,再求值:,其中x=3.18.先化简,再求值:(2﹣)÷,其中x=﹣3.19.(1)化简:;(2)化简并求值:,其中.20.先化简,再求值:,然后从﹣1,0,1,2四个数中选择一个恰当的数代入求值.21.解方程:(1);(2).22.解方程:(1);(2).23.解方程:(1)=5.(2)=0.24.解分式方程(1)..25.解下列方程(1);(2).26.解方程:(1);(2).27.解下列分式方程:(1);(2).28.解方程:(1);(2).29.解分式方程:(1);(2).30.解方程:(1);(2).31.为加快公共领域充电基础设施建设,某停车场计划购买A,B两种型号的充电桩.已知A型充电桩比B型充电桩的单价少0.3万元,且用18万元购买A型充电桩与用24万元购买B型充电桩的数量相等.求A,B两种型号充电桩的单价各是多少万元?32.列分式方程解应用题:2022年10月16日,习总书记在中国共产党第二十次全国代表大会上的报告中提出:“积极稳妥推进碳达峰碳中和”.某公司积极响应节能减排号召,决定采购新能源A型和B型两款汽车,已知每辆A型汽车的进价是每辆B 型汽车的进价的1.5倍,若用1500万元购进A型汽车的数量比1200万元购进B型汽车的数量少10辆.求A型和B型汽车的进价分别为每辆多少万元?33.某超市用5000元购进一批新品种苹果进行试销,由于销售状况良好,超市又调拨11000元资金第二次购进该品种苹果.但第二次的进货价比试销时每千克多了0.5元,第二次购进苹果数量是试销时的2倍.(1)设试销时该品种苹果的进货价是x元,则试销时购进苹果数量为千克?(用含x 的式子表示)(2)列分式方程求试销时该品种苹果的进货价是多少元?34.山地自行车越来越受中学生的喜爱一家店经营的某型号山地自行车,今年七月份销售额为22500元,八月份每辆车售价比七月份每辆车售价提高100元,若销售的数量与上一月销售的数量相同,则销售额是25000元.(1)求八月份每辆车售价是多少元?(2)为了促销,九月份每辆车售价比八月份每辆车售价降低了15%销售,该店仍可获利25%,求每辆山地自行车的进价是多少元?35.节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,要使行驶总费用不超过60元,求至少需要用电行驶多少千米?36.小明妈妈在批发市场购买某种海鲜销售,第一次用3000元购进一批,并以每千克40元的价格出售,很快售完.由于海鲜捕获量减少,第二次购买时,每千克的进价比第一次提高了20%,用3240元所购买的海鲜质量比第一次少了10千克,此次以每千克50元售出30千克后,因销售情况不佳,且海鲜不易保存,小明妈妈为减少损失,便降价50%售完剩余的海鲜.(1)求第一次购进的海鲜的进价.(2)在这两次销售中,小明妈妈总体上是盈利还是亏损?盈利或亏损了多少元?37.多多果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,由于水果畅销,很快售完,第二次用1430元购买了一批水果,每千克的进价比第一次提高了10%,所购买的水果的数量比第一次多20千克,求第一次购买水果的进价是每千克多少元?38.昭通苹果和天麻美味可口,小明在昆明某超市购买1市斤昭通苹果和2市斤小草坝天麻需要支付105元,购买3市斤昭通苹果和5市斤小草坝天麻需要265元.(1)1市斤昭通苹果和1市斤小草坝天麻的单价分别是多少元?(2)昆明到昭通的距离大约350km,以前超市老板都会亲自去往昭通选果,但今年的疫情原因,只能选择专车托运,以前花240元进购的苹果现在要花300元,进货单价比原来贵了1元,原来1市斤苹果进货单价为多少?39.成都大运会期间,某网店直接从工厂购进A、B两款文创纪念品,已知A、B两款纪念品的进价分别为30元/个、25元/个.(1)网店第一次用1400元购进A、B两款纪念品共50个,求A款纪念品购进的个数;(2)大运会临近结束时,网店打算把A款纪念品降价20%销售,则降价后销售A款纪念品要获得销售额800元,比按照原价销售要多卖4个才能获得同样多的销售额,求A款纪念品降价以前的售价.40.某商场计划购进一批篮球和足球,其中篮球的单价比足球的单价多30元,已知用360元购进的足球和用480元购进的篮球数量相等.(1)问篮球和足球的单价各是多少元?(2)若篮球售价为每个150元,足球售价为每个110元,商场售出足球的数量比篮球数量的三分之一还多10个,且获利超过1300元,问篮球最少要卖多少个?(3)若篮球售价为每个150元,足球售价为每个110元,商场计划用不超过10350元购进两种球共100个,其中篮球不少于40个,问商场有几种进货方案?哪种方案商场获利最大?41.某校学生利用双休时间去距学校10km的岳阳植物园去游玩,部分学生骑自行车从学校先出发,过了20min后,其余学生乘汽车沿相同路线出发,结果他们同时到达,已知汽车的速度是自行车速度的2倍,求自行车和汽车的速度分别是多少千米/小时?42.某校八年级学生乘车前往某景点秋游,现有两条线路可供选择:线路一全程25km,线路二全程30km;若走线路二平均车速是走线路一的1.5倍,所花时间比走线路一少用10min,则走线路一、二的平均车速分别为多少?43.(1)某公司到北京参加会议,给员工购买重庆到北京的高铁票.该公司计划花费43600元一次性购买一等座票,二等座票共50张.已知一等座票的价格为950元/张,二等座票的价格为820元/张,求该公司原计划购买两种高铁票各多少张?(2)已知重庆到北京的高铁全长2200公里,高铁提速后重庆到北京的时间比高铁提速前缩短3小时40分钟,该高铁提速后的速度比提速前的速度提升了50%,求提速后该高铁从重庆到北京的速度是多少公里/小时?(高铁在站点停留时间忽略不计)44.周末,小李和妈妈在600米的环形跑道上跑步锻炼,他们在同一地点沿着同一方向同时出发,跑步结束后两人有如下的对话.小李:妈妈跑得好快呀,你的速度是我的2倍;妈妈:妈妈跑完一圈所用的时间比你跑完一圈所用的时间少2分钟.(1)求小李和妈妈的速度;(2)妈妈第一次追上小李后,第二次追上小李前,再经过多少分钟,小李和妈妈在跑道上相距100米?45.远大中学组织同学到离学校15km的郊区进行社会调查.一部分同学骑自行车前往,另一部分同学在骑自行车的同学出发40min后,乘汽车沿相同路线行进,结果骑自行车的与乘汽车的同学同时到达目的地,已知汽车速度是自行车速度的3倍,求自行车和汽车的速度.46.小红家到学校的路程为38km,小红从家去学校总是先乘公共汽车,下车后再步行2km,才能到达学校,路途所用时间为1h.已知公共汽车的速度是小红步行速度的9倍,求小红步行的速度.47.某学校开展了社会实践活动,活动地点距离学校15km,甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的1.5倍,结果甲比乙早到15min,求乙同学骑自行车的速度.48.在春季,很多学校会组织学生进行春游.某校组织学生到离学校有90公里的生态园春游,队伍8:00从学校坐大巴车出发.李老师因有事情,8:30从学校自驾小车以大巴车1.5倍的速度追赶,追上大巴车后继续前行,结果比队伍提前15分钟到达生态园.求大巴车与小车的平均速度.49.据报道,我国高铁运营里程已超过世界高铁总里程的60%.已知某高铁平均速度提高50km/h后,行驶700km 所用的时间与提速前行驶600km所用的时间相同.求该高铁提速后的平均速度.50.每年的3月12日是植树节,某中学八年级师生在植树节当天到距学校13千米的森林公园植树,一班师生骑电动车先走,走了7千米后,二班师生乘汽车出发,结果同时到达.已知汽车的速度比电动车的速度每小时快35千米,求两种车的速度各是多少?51.某小区改造一段总长1800米的下水道管线,实际施工时,每天的施工效率比原计划提高了20%,可提前6天完成任务.(1)求实际施工时,每天改造下水道管线的长度;(2)施工进行10天后,为了减少对小区居民日常生活的影响,施工单位决定再次加快施工进度以确保总工期不超过25天,那么以后每天改造下水道管线至少还要增加多少米?52.一项工程,甲、乙两队合作需要8天完成,现甲队做了4天,乙队做了2天共完成这项工程的,若甲队单独做这项工程需要多少天完成?53.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米.甲、乙两队每天共修多少米?54.甲、乙、丙三人承包一项工程,发给他们工资共1800元,三人完成这项工程的具体情况是:甲、乙两人合作6天完成了工程的,因为甲有事,由乙、丙合作2天完成余下工程的,以后三人合作5天完成了这项工程,按完成量的多少来付劳动报酬,甲、乙、丙各得多少元?55.随着快递业务的不断增加,分拣快件是一项重要工作,某快递公司为了提高分拣效率,引进智能分拣机,每台机器每小时分拣的快件量是人工每人每小时分拣快件数量的20倍,经过测试,由5台机器分拣6000件快件的时间,比20个人工分拣同样数量的快件节省4小时.(1)求人工每人每小时分拣多少件?(2)若该快递公司每天需要分拣10万件快件,机器每天工作时间为16小时,则至少需要安排台这样的分拣机.56.新冠疫情发生后,全社会积极参与防疫工作,某医疗器械生产厂家接到A型口罩和B型口罩共86000只的订单,该工厂有甲、乙两个车间,甲车间生产A型口罩,乙车间生产B型口罩.已知A型口罩的数量是B型口罩的2倍少10000只.(1)求A型口罩和B型口罩的数量分别是多少?(2)甲、乙两个车间同时开始生产,甲车间比乙车间平均每天多生产1000只口罩,由于疫情需要,甲车间在完成所承担的生产任务后,通过技术改进使工作效率比原来提高了.设乙车间平均每天生产口罩m只,请回答下列问题:①根据题意,填写下表:(温馨提示:请写在答题卷对应的表格内)乙车间甲车间技术改进前技术改进后生产天数(天)(用含m的代数式表示)②若甲、乙两车间同时完成生产任务,求乙车间平均每天生产的口罩数量m和生产的天数.57.某化工厂为了给员工创建安全的工作环境,采用A,B两种机器人来搬运化工原料.其中A型机器人比B型机器人每小时多搬运30千克,A型机器人搬运1500千克所用时间与B型机器人搬运1000千克所用时间相等.(1)求A,B两种机器人每小时分别搬运多少千克化工原料;(2)若每台A型,B型机器人的价格分别为5万元和3万元,该化工厂需要购进A,B两种机器人共12台,工厂现有资金45万元,则最多可购进A型机器人多少台?58.现有A,B两个蚕丝纺织作坊,已知A作坊每天纺织蚕丝布的长度比B作坊每天多纺织50米,A作坊纺织600米蚕丝布与B作坊纺织300米蚕丝布所用的天数相同.(1)求A,B两个蚕丝纺织作坊每天各纺织多少米蚕丝布?(2)某服装厂需要4000米的蚕丝布,需要A、B两作坊共同完成,若A作坊每天需花费成本1.2万元,B作坊每天需花费成本0.5万元,已知两作坊总成本不超过46.8万元,则至少安排B作坊工作多少天?59.2022年第22届世界杯足球赛在卡塔尔举行,其官方吉祥物是一个外形酷似头巾的卡通人物,名字叫做拉伊卜,受到众人的热捧.某工厂计划加急生产一批该吉祥物,已知甲车间每天加工的数量是乙车间每天加工数量的2倍,两车间各加工3000个该吉祥物时,甲车间比乙车间少用5天.(1)求甲乙两车间每天各加工多少个吉祥物?(2)已知甲乙两车间加工该吉祥物每天的费用分别是1800元和600元,该工厂计划生产15000个这种吉祥物,如果总加工费用不超过39000元,那么乙车间至少要加工多少天?60.京东快递仓库使用机器人分拣货物,已知一台机器人的工作效率相当于一名分拣工人工作效率的20倍,若用一台机器人分拣4000件货物,比原先16名工人分拣这些货物要少用小时.(1)求一台机器人一小时可分拣多少件货物?(2)受“双十一”影响,石家庄某京东仓库11月11日当天收到快递70万件,为了在8小时之内分拣完所有快递货物,公司调配了20台机器人和30名分拣工人,工作3小时之后,又调配了10台机器人进行增援,该公司能否在规定的时间内完成任务?请说明理由.分式方程+分式应用题专练60题参考答案与试题解析一.解答题(共60小题)1.先化简,再求值:,其中a﹣b=6.【答案】2.【解答】解:原式=(1﹣)•=•=,当a﹣b=6时,原式=2.2.先化简再求值,,其中a=1.【答案】,2.【解答】解:=÷==,当a=1时,原式===2.3.先化简,再求值:,其中﹣1≤x<2且x为整数.请你选一个合适的x值代入求值.【答案】x﹣1,当x=0时,原式=﹣1.【解答】解:=•=•=•=x﹣1,∵﹣1≤x<2且x为整数,(x+1)(x﹣1)≠0,∴x=0,当x=0时,原式=0﹣1=﹣1.4.先化简,再求值:(1),其中;(2)÷(a+2+),其中a是使不等式成立的正整数.【答案】(1),原式=;(2)﹣,原式=﹣.【解答】解:(1)=•+=+===,当时,原式===;(2)÷(a+2+)=÷=÷=•=﹣,∵,∴a﹣1≤2,∴a≤3,∴该不等式的正整数解为:3,2,1,∵a﹣2≠0,3+a≠0,3﹣a≠0,∴a≠2,a≠﹣3,a≠3,∴当a=1时,原式=﹣=﹣.5.先化简,然后从﹣1,0,1,2中选取一个合适的数作为x的值代入求值.【答案】﹣,1.【解答】解:原式=(﹣)÷=•=•=•=﹣,∵x+1≠0,x﹣2≠0,∴x≠﹣1,x≠2,∴当x=0时,原式=﹣=1.6.先化简,再求值:,其中m2+3m=﹣1.【答案】,﹣1.【解答】解:原式=÷(﹣)=÷=•=,∵m2+3m=﹣1,∴原式==﹣1.7.已知实数a满足,求的值.【答案】,+1.【解答】解:原式=﹣•=﹣=﹣=,∵a2+2a+2﹣=0,∴a2+2a+1=﹣1,∴原式===+1.8.先化简(1﹣a+)÷,再从不等式﹣2<a<2中选择一个适当的整数,代入求值.【答案】,﹣1.【解答】解:原式=(+)÷=•=,在﹣2<a<2中,整数有﹣1,0,1,由题意得:x≠±1,当x=0时,原式==﹣1.9.先化简,后求值:,其中x=﹣5.【答案】x+2,﹣3.【解答】解:原式===x+2,当x=﹣5时,原式=﹣5+2=﹣3.10.先化简,再求代数式的值,其中.【答案】x+1,.【解答】解:==x+1;当时,原式=.11.化简求值:,已知m2﹣3m﹣4=0.【答案】,.【解答】解:=÷=•=•==,∵m2﹣3m﹣4=0,∴m2﹣3m=4,当m2﹣3m=4时,原式==.12.先化简,再求值:,其中.【答案】,.【解答】解:原式=÷[]===,当x=﹣3,原式==.13.先化简,再从﹣1,0,1,2中选择一个适当的数作为a的值代入求值.【答案】,﹣1或2.【解答】解:=[]×===,∵a2﹣2a≠0,解得:a≠0,a≠2,∴当a=1时,原式==2;当a=﹣1时,原式==﹣1.14.先化简:,再从﹣3,﹣1,1,3中选取一个使原式有意义的数代入求值.【答案】x+1,﹣2.【解答】解:原式=•=•=•=x+1,∵x﹣1≠0,x﹣3≠0,x+1≠0,∴x≠1,3,﹣1.∴当x=﹣3时,原式=﹣3+1=﹣2.15.化简:,并在﹣1,0,2中选一个合适的数作为a的值代入求值.【答案】,2.【解答】解:===,∵a≠2且a≠﹣1,∴a=0,当a=0时,原式=.16.先化简,再求值:,从a=2,a=3中取一个a的值代入计算出结果.【答案】,5.【解答】解:====,∵a=2时,原式没有意义,∴a=3时,当a=3时,原式=.17.先化简,再求值:,其中x=3.【答案】;.【解答】解:=•=•=,当x=3时,原式=.18.先化简,再求值:(2﹣)÷,其中x=﹣3.【答案】,﹣3.【解答】解:原式=÷=•=,当x=﹣3时,原式==﹣3.19.(1)化简:;(2)化简并求值:,其中.【答案】(1);(2),.【解答】解:(1)========;(2)===,当时,原式=.20.先化简,再求值:,然后从﹣1,0,1,2四个数中选择一个恰当的数代入求值.【答案】,当x=2时,原式=.【解答】解:=•=•=,∵当x=0,±1时,原分式无意义,∴x=2,当x=2时,原式==.21.解方程:(1);(2).【答案】(1)x=5;(2)无解.【解答】解:(1),x﹣2(x﹣1)=﹣3,解得:x=5,检验:当x=5时,x﹣1≠0,∴x=5是原方程的根;(2),5(x﹣1)+4x=x+3,解得:x=1,检验:当x=1时,x(x﹣1)=0,∴x=1是原方程的增根,∴原方程无解.22.解方程:(1);(2).【答案】(1)x=﹣4;(2)无解.【解答】解:(1),方程两边同时乘以(3﹣x),得:2x+1=﹣3+x,解得:x=﹣4,检验:当x=﹣4时,3﹣x≠0,∴原方程的解是x=﹣4;(2),方程两边同时乘以x(x+1)(x﹣1),得:2x﹣(x﹣1)=0,解得x=﹣1,检验:当x=﹣1时,x(x+1)(x﹣1)=0,∴x=﹣1是原方程的增根,∴原方程无解.23.解方程:(1)=5.(2)=0.【答案】(1)x=4;(2)x=.【解答】解:(1)=5.方程两边同乘(x﹣1),得:3=5(x﹣1)﹣3x,解得:x=4,检验:当x=4时,x﹣1≠0,∴原分式方程的解为:x=4;(2)=0,原方程变形为:=0,两边同乘x(x+1)(x﹣1),得:5(x﹣1)﹣(x+1)=0,解得:x=,检验:当x=时,x(x+1)(x﹣1)≠0,∴原分式方程的解为:x=.24.解分式方程(1)..【答案】(1)x=3;(2)无解.【解答】解:(1),4﹣(x+1)(x﹣1)=﹣(x﹣1)2,解得:x=3,检验:当x=3时,(x+1)(x﹣1)≠0,∴x=3是原方程的根;,2+2(x﹣3)=x﹣1,解得:x=3,检验:当x=3时,x﹣3=0,∴x=3是原方程的增根,∴原方程无解.25.解下列方程(1);(2).【答案】(1)x=0;(2)无解.【解答】解:(1),两边都乘以2x﹣5得:x﹣5=2x﹣5,解得:x=0,经检验:x=0是原方程的解,∴方程的解为:x=0.(2),∴,去分母得:2x+9=12x﹣21+6x﹣18,整理得:16x=48,解得:x=3,经检验:x=3是增根,∴原方程无解.26.解方程:(1);(2).【答案】(1)x=1;(2)无解.【解答】解:(1)方程两边同乘(x﹣2),得x﹣3+x﹣2=﹣3,解得x=1,检验:当x=1时x﹣2≠0,∴原分式方程的解是x=1;(2)方程两边同时乘(x+1)(x﹣1),得x+1﹣2(x﹣1)=4,解得x=﹣1,检验:当x=﹣1时,(x+1)(x﹣1)=0,∴原分式方程无解.27.解下列分式方程:(1);(2).【答案】(1)x=;(2)无解.【解答】解:(1)原方程去分母得:x﹣2=3(2x﹣1),去括号得:x﹣2=6x﹣3,移项,合并同类项得:﹣5x=﹣1,系数化为1得:x=,经检验,x=是分式方程的解,故原方程的解为x=;(2),去分母得:8+x2﹣4=x(x+2),去括号得:8+x2﹣4=x2+2x,移项得:x2﹣x2﹣2x=﹣8+4,解得:x=2,经检验,x=2是分式方程的增解,∴原分式方程无解.28.解方程:(1);(2).【答案】(1)x=;(2)无解.【解答】解:(1)原方程去分母得:1+x2=(x﹣2)2,整理得:1+x2=x2﹣4x+4,移项,合并同类项得:4x=3,系数化为1得:x=,经检验,x=是原分式方程的解,故原方程的解为x=;(2)原方程去分母得:4x﹣3(x﹣1)=2(x+1),去括号得:4x﹣3x+3=2x+2,移项,合并同类项得:﹣x=﹣1,系数化为1得:x=1,经检验,x=1是原分式方程的增根,故原方程无解.29.解分式方程:(1);(2).【答案】(1)x=1;(2)无解.【解答】解:(1)方程两边同乘2x(x+3),得x+3=4x,解得x=1,检验:当x=1时2x(x+3)≠0,∴原分式方程的解是x=1;(2)方程两边同乘(x+2)(x﹣2),得(x﹣2)2﹣(x+2)(x﹣2)=16,解得x=﹣2,检验:当x=﹣2时,(x+2)(x﹣2)=0,∴原分式方程无解.30.解方程:(1);(2).【答案】(1)x=﹣;(2)x=3.【解答】解:(1)方程两边同乘(x+1)(x﹣1),得x(x﹣1)﹣(x+1)(x﹣1)=3(x+1),解得x=﹣,检验:当x=﹣时(x+1)(x﹣1)≠0,∴原分式方程的解是x=﹣;(2)方程两边同乘(x+2)(x﹣2),得3(x﹣2)+2=x+2,解得x=3,检验:当x=3时(x+2)(x﹣2)≠0,∴原分式方程的解是x=3.31.为加快公共领域充电基础设施建设,某停车场计划购买A,B两种型号的充电桩.已知A型充电桩比B型充电桩的单价少0.3万元,且用18万元购买A型充电桩与用24万元购买B型充电桩的数量相等.求A,B两种型号充电桩的单价各是多少万元?【答案】A型充电桩的单价为0.9万元,B型充电桩的单价为1.2万元.【解答】解:设A型充电桩的单价为x万元,则B型充电桩的单价(x+0.3)万元,根据题意得:=,解得:x=0.9,经检验,x=0.9是所列方程的解,且符合题意,∴x+0.3=0.9+0.3=1.2.答:A型充电桩的单价为0.9万元,B型充电桩的单价为1.2万元.32.列分式方程解应用题:2022年10月16日,习总书记在中国共产党第二十次全国代表大会上的报告中提出:“积极稳妥推进碳达峰碳中和”.某公司积极响应节能减排号召,决定采购新能源A型和B型两款汽车,已知每辆A型汽车的进价是每辆B 型汽车的进价的1.5倍,若用1500万元购进A型汽车的数量比1200万元购进B型汽车的数量少10辆.求A型和B型汽车的进价分别为每辆多少万元?【答案】A型汽车的进价为每辆30万元,B型汽车的进价为每辆20万元.【解答】解:设B型汽车的进价为每辆x万元,则A型汽车的进价为每辆1.5x万元,依题意得,解得:x=20,经检验,x=20是方程的解,1.5x=1.5×20=30,答:A型汽车的进价为每辆30万元,B型汽车的进价为每辆20万元;33.某超市用5000元购进一批新品种苹果进行试销,由于销售状况良好,超市又调拨11000元资金第二次购进该品种苹果.但第二次的进货价比试销时每千克多了0.5元,第二次购进苹果数量是试销时的2倍.(1)设试销时该品种苹果的进货价是x元,则试销时购进苹果数量为千克?(用含x的式子表示)(2)列分式方程求试销时该品种苹果的进货价是多少元?【答案】(1);(2)5元.【解答】解:(1)设试销时该品种苹果的进货价是x元,则试销时购进苹果数量为千克;故答案为:;(2)根据题意,得:=×2,解之得:x=5,经检验:x=5是原方程的解,答:试销时该品种苹果的进货价是5元.34.山地自行车越来越受中学生的喜爱一家店经营的某型号山地自行车,今年七月份销售额为22500元,八月份每辆车售价比七月份每辆车售价提高100元,若销售的数量与上一月销售的数量相同,则销售额是25000元.(1)求八月份每辆车售价是多少元?(2)为了促销,九月份每辆车售价比八月份每辆车售价降低了15%销售,该店仍可获利25%,求每辆山地自行车的进价是多少元?【答案】(1)八月份每辆车的售价是1000元;(2)每辆山地自行车的进价是680元.【解答】解:(1)设八月份每辆车的售价是x元,由题意得:,解得:x=1000.经检验x=1000是原方程的解.答:八月份每辆车的售价是1000元;(2)设每辆山地自行车的进价是y元,由题意得:,解得:y=680.经检验y=680 是原方程的解.答:每辆山地自行车的进价是680元.35.节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,要使行驶总费用不超过60元,求至少需要用电行驶多少千米?【答案】(1)汽车行驶中每千米用电费用是0.3元,甲、乙两地的距离是30÷0.3=100千米;(2)40千米.【解答】解:(1)设汽车行驶中每千米用电费用是x元,则每千米用油费用为(x+0.5)元,可得:,解得:x=0.3,经检验x=0.3是原方程的解,∴汽车行驶中每千米用电费用是0.3元,甲、乙两地的距离是30÷0.3=100千米;(2)汽车行驶中每千米用油费用为0.3+0.5=0.8元,设汽车用电行驶ykm,可得:0.3y+0.8(100﹣y)≤60,解得:y≥40,所以至少需要用电行驶40千米.36.小明妈妈在批发市场购买某种海鲜销售,第一次用3000元购进一批,并以每千克40元的价格出售,很快售完.由于海鲜捕获量减少,第二次购买时,每千克的进价比第一次提高了20%,用3240元所购买的海鲜质量比第一次少了10千克,此次以每千克50元售出30千克后,因销售情况不佳,且海鲜不易保存,小明妈妈为减少损失,便降价50%售完剩余的海鲜.(1)求第一次购进的海鲜的进价.(2)在这两次销售中,小明妈妈总体上是盈利还是亏损?盈利或亏损了多少元?【答案】(1)第一次购买的海鲜的进价是每千克30元;(2)在这两次销售中,小明妈妈总体上是盈利了,盈利了760元.【解答】解:(1)设第一次购买的海鲜的进价是每千克x元,则第二次购买的海鲜的进价是每千克1.2x元,根据题意得,解得x=30.经检验,x=30是原方程的解.答:第一次购买的海鲜的进价是每千克30元.(2)第一次购买海鲜的质量为3000÷30=100(千克),第二次购买海鲜的质量为100﹣10=90(千克),∴第一次盈利100×(40﹣30)=1000(元),第二次盈利30×(50﹣30×1.2)+(90﹣30)×(50×0.5﹣30×1.2)=﹣240(元).∵1000﹣240=760(元),∴在这两次销售中,小明妈妈总体上是盈利了,盈利了760元.37.多多果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,由于水果畅销,很快售完,第二次用1430元购买了一批水果,每千克的进价比第一次提高了10%,所购买的水果的数量比第一次多20千克,求第一次购买水果的进价是每千克多少元?【答案】第一次购买水果的进价是每千克5元.【解答】解:设第一次购买水果的进价是每千克x元,则第二次购买水果的进价是每千克(1+10%)x元,依题意得:﹣=20,解得:x=5,经检验,x=5是原方程的解,且符合题意,答:第一次购买水果的进价是每千克5元.38.昭通苹果和天麻美味可口,小明在昆明某超市购买1市斤昭通苹果和2市斤小草坝天麻需要支付105元,购买。
人教版八年级数学上册 分式方程及其解法 同步练习题(含答案,教师版)

人教版八年级数学上册第十五章15.3.1 分式方程及其解法 同步练习题一、选择题1.下列是分式方程的是(D)A.x x +1+x +43B.x 4+x -52=0C.34(x -2)=43xD.1x +2+1=0 2.解分式方程1-x x -2=12-x-2时,去分母变形正确的是(D) A.-1+x =-1-2(x -2) B.1-x =1-2(x -2)C.-1+x =1+2(2-x)D.1-x =-1-2(x -2)3.方程23x -1=3x的解为(C) A.x =311 B.x =113 C.x =37 D.x =734.解分式方程1x -1+1=0,正确的结果是(A) A.x =0 B.x =1 C.x =2 D.无解5.对于非零的两个实数a ,b ,规定a ⊕b =1b -1a,若2⊕(2x-1)=1,则x 的值为(A) A.56 B.54 C.32 D.-166.已知关于x 的分式方程2x -m x -3=1的解是非正数,则m 的取值范围是(A) A.m ≤3B.m <3C.m >-3D.m ≥-3二、填空题7.下列关于x 的方程:①23x 2=1;②2π-x 2=1;③23x =x ;④1x -2+3=x -1x -2;⑤1x=2,其中是分式方程的是③④⑤.(填序号)8.已知关于x 的方程10x +k -3x =1的解为x =3,则k =2.9.若式子x -2x -4的值是2,则x =6. 10.若关于x 的分式方程x +m x -2+2m 2-x=3的解为正实数,则实数m 的取值范围是m <6且m≠2. 11.当a =17时,关于x 的方程ax a -1-2x -1=1的解与方程x -4x=3的解相同. 三、解答题12.解分式方程:x x 2-4+2x +2=1x -2. 解:方程两边同乘(x +2)(x -2),得x +2(x -2)=x +2. 解得x =3.检验:x =3时,(x +2)(x -2)≠0. 所以原分式方程的解为x =3.13.解下列方程:(1)2x x -2=1-12-x; 解:方程两边同乘(x -2),得2x =x -2+1.解得x =-1.检验:当x =-1时,x -2≠0.所以原分式方程的解为x =-1.(2)23+x 3x -1=19x -3. 解:方程两边同乘(9x -3),得2(3x -1)+3x =1.解得x =13.检验:当x =13时,9x -3=0. 因此x =13不是原方程的解. 所以原分式方程无解.14.解方程:6x -2=x x +3-1. 解:方程两边同乘(x -2)(x +3),得6(x +3)=x(x -2)-(x -2)(x +3).解得x =-43. 检验:当x =-43时,(x -2)(x +3)≠0. 所以原分式方程的解为x =-43. 15.解下列方程:(1)(宁夏中考)2x +2+1=x x -1; 解:方程两边同时乘(x +2)(x -1),得2(x -1)+(x +2)(x -1)=x(x +2).解得x =4.检验:当x =4时,(x +2)(x -1)=18≠0.∴原分式方程的根为x =4.(2)(广安中考)x x -2-1=4x 2-4x +4; 解:方程两边同时乘(x -2)2,得x(x -2)-(x -2)2=4.解得x =4.检验:当x =4时,(x -2)2=4≠0.∴原分式方程的根为x =4.(3)x +14x 2-1=32x +1-44x -2. 解:原方程可化为x +1(2x +1)(2x -1)=32x +1-22x -1. 两边同时乘(2x +1)(2x -1),得x +1=3(2x -1)-2(2x +1).解得x =6.检验:当x =6时,(2x +1)(2x -1)≠0.∴原分式方程的解为x =6.16.解关于x 的方程:m x -n x +1=0(m ≠n ≠0). 解:方程两边乘x(x +1),得m(x +1)-nx =0.解得x =-m m -n. 检验:当x =-m m -n时,x(x +1)≠0. 所以原分式方程的解为x =-m m -n . 17.如图,点A ,B 在数轴上,它们对应的数分别为-2,x x +1,且点A ,B 到原点的距离相等.求x 的值.。
八年级上册数学分式方程练习题及答案

八年级上册数学分式方程练习题及答案一、选择题:1、下列式子:22x1am?n,,,1?,, 中是分式的有个x3a?ba?b?A、B、C、D、22、下列等式从左到右的变形正确的是bb2bb?1ababbmA、?B、?C、2? D、? aaaa?1baamb3、下列分式中是最简分式的是m2?142m?1A、 B、C、2D、 m?12a1?mm?14、下列计算正确的是11111?mB、?m?m??1 C、m4??m3?1 D、n?m?n? nmmmn 3m22n35、计算?的结果是 ?2n3mnn2n2nA、 B、?C、 D、?m3m3m3mA、m?n?6、计算xy的结果是 ?x?yx?yxyx?y D、 x?yx?yA、1 B、0C、m27、化简m?n?的结果是 m?nm2?n2mnA、 B、?C、 D、? m?nm?nnm8、下列计算正确的是A、??1B、9、如果关于x的方程0?1?1 C、3a?2?35?32??a D、ax?8k??8无解,那么k的值应为 x?77?xA、1B、-1C、?1D、910、甲、乙两人做某一工程,如果两人合作,6天可以完成,如果单独工作,甲比乙少用5天,两人单独工作各需多少天完成?设乙单独工作x天完成,则根据题意列出的方程是A、111111111111??B、??C、??D、?? xx?56xx?56xx?56xx?56a2?a二、填空题: 11、分式,当a______时,分式的值为0;当a______时,分式无意义,当a______时,分式有意义12、x2?y22a?1a,2,2x?y.13、9?3aa?9a?6a?9的最简公分母是_____________. ?xa?1a?1ab??_____________.15、??_____________. abba?bb ?a116、?2?_____________. 17、把?0.0000000358用科学记数法表示为______________14、18、如果方程2则m=________ 19、如果x?x?1?5,则x2?x?2?___________ ?3的解是5,m20、一轮船在顺水中航行100千米与在逆水中航行60千米所用的时间相等,已知水流速度为3千米/时,求该轮船在静水中的速度?设该轮船在静水中的速度为x千米/时,则所列方程为___________________三、解答题21、计算:0?11?3??1x?yx??2??4???3?11x?12?3?2?23 232a2?? x?1x?212?21b?aa?b2a2?4??1?0 10baba?b??xy??2y?x?y?x2?2x2x?11?,其中x??2、先化简,再求值2x?13x?1 分式方程一.选择题1.分式方程1?1的解为x?3x?x?1x??1 x??22.第六次火车大提速后,从北京到上海的火车运行速度提高了25%,运行时间缩短了2h。
人教版八年级上册数学分式方程应用题训练

人教版八年级上册数学15.3 分式方程应用题训练姓名:__________ 班级:__________考号:__________1、某商店第一次用 600 元购进 2B 铅笔若干支,第二次又用 600 元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了 30 支.( 1 )求第一次每支铅笔的进价是多少元?( 2 )若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于 420 元,问每支售价至少是多少元?2、为增加学生阅读量,某校购买了“ 科普类” 和“ 文学类” 两种书籍,购买“ 科普类” 图书花费了 3600 元,购买“ 文学类” 图书花费了 2700 元,其中“ 科普类” 图书的单价比“ 文学类” 图书的单价多 20% ,购买“ 科普类” 图书的数量比“ 文学类” 图书的数量多 20 本.( 1 )求这两种图书的单价分别是多少元?( 2 )学校决定再次购买这两种图书共 100 本,且总费用不超过 1600 元,求最多能购买“ 科普类” 图书多少本?3、端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是 1200 元,购进乙种粽子的金额是 800 元,购进甲种粽子的数量比乙种粽子的数量少 50 个,甲种粽子的单价是乙种粽子单价的 2 倍.( 1 )求甲、乙两种粽子的单价分别是多少元?( 2 )为满足消费者需求,该超市准备再次购进甲、乙两种粽子共 200 个,若总金额不超过 1150 元,问最多购进多少个甲种粽子?4、“ 节能环保,绿色出行” 意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的 A 型自行车去年销售总额为 8 万元.今年该型自行车每辆售价预计比去年降低 200 元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少 10% ,求:( 1 ) A 型自行车去年每辆售价多少元;( 2 )该车行今年计划新进一批 A 型车和新款 B 型车共 60 辆,且 B 型车的进货数量不超过 A 型车数量的两倍.已知, A 型车和 B 型车的进货价格分别为 1500 元和 1800 元,计划 B 型车销售价格为 2400 元,应如何组织进货才能使这批自行车销售获利最多.5、小刚家到学校的距离是 1800 米.某天早上,小刚到学校后发现作业本忘在家中,此时离上课还有 20 分钟,于是他立即按原路跑步回家,拿到作业本后骑自行车按原路返回学校.已知小刚骑自行车时间比跑步时间少用了 4.5 分钟,且骑自行车的平均速度是跑步的平均速度的 1.6 倍.( 1 )求小刚跑步的平均速度;( 2 )如果小刚在家取作业本和取自行车共用了 3 分钟,他能否在上课前赶回学校?请说明理由.6、接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗 16 万剂,但受某些因素影响,有 10 名工人不能按时到厂.为了应对疫情,回厂的工人加班生产,由原来每天工作 8 小时增加到 10 小时,每人每小时完成的工作量不变,这样每天只能生产疫苗 15 万剂.( 1 )求该厂当前参加生产的工人有多少人?( 2 )生产 4 天后,未到的工人同时到岗加入生产,每天生产时间仍为 10 小时.若上级分配给该厂共 760 万剂的生产任务,问该厂共需要多少天才能完成任务?7、某区对乡镇道路进行改造,安排甲、乙两个工程队完成,已知乙队比甲队每天少改造 20 米,甲队改造 400 米的道路与乙队改造 300 米的道路所用时间相同,求甲、乙两个工程队每天改造的道路长度分别是多少米?8、随着我国科技事业的不断发展,国产无人机大量进入快递行业.现有 A , B 两种型号的无人机都被用来运送快件, A 型机比 B 型机平均每小时多运送 20 件, A 型机运送700 件所用时间与 B 型机运送 500 件所用时间相等,两种无人机平均每小时分别运送多少快件?9、小刚家到学校的距离是 1800 米.某天早上,小刚到学校后发现作业本忘在家中,此时离上课还有 20 分钟,于是他立即按原路跑步回家,拿到作业本后骑自行车按原路返回学校.已知小刚骑自行车时间比跑步时间少用了 4.5 分钟,且骑自行车的平均速度是跑步的平均速度的 1.6 倍.( 1 )求小刚跑步的平均速度;( 2 )如果小刚在家取作业本和取自行车共用了 3 分钟,他能否在上课前赶回学校?请说明理由.10、甲,乙两人去市场采购相同价格的同一种商品,甲用 2400 元购买的商品数量比乙用3000 元购买的商品数量少 10 件.( 1 )求这种商品的单价;( 2 )甲,乙两人第二次再去采购该商品时,单价比上次少了 20 元 / 件,甲购买商品的总价与上次相同,乙购买商品的数量与上次相同,则甲两次购买这种商品的平均单价是______ 元 / 件,乙两次购买这种商品的平均单价是 ______ 元 / 件.( 3 )生活中,无论油价如何变化,有人总按相同金额加油,有人总按相同油量加油,结合( 2 )的计算结果,建议按相同 ______ 加油更合算(填“ 金额” 或“ 油量” ).11、某市公交快速通道开通后,为响应市政府“绿色出行”的号召,家住新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米,他用乘公交车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的.小王用自驾车方式上班平均每小时行驶多少千米?12、某工程队(有甲、乙两组)承包一条路段的修建工程,要求在规定时间内完成。
八年级上册数学分式方程应用题及答案

八年级上册数学分式方程应用题及答案Revised on July 13, 2021 at 16:25 pm八年级上数学分式方程专项练习1、甲、乙两人准备整理一批新到的实验器材;甲单独整理需要40分完工;若甲、乙共同整理20分钟后;乙需要再单独整理20分才能完工..问:乙单独整理需多少分钟完工 解:设乙单独整理需x 分钟完工;则120204020=++x解;得x =80 经检验:x =80是原方程的解..答:乙单独整理需80分钟完工..2、有两块面积相同的试验田;分别收获蔬菜900千克和1500千克;已知第一块试验田每亩收获蔬菜比第二块少300千克;求第一块试验田每亩收获蔬菜多少千克 解:设第一块试验田每亩收获蔬菜x 千克;则3001500900+=x x 解;得x =450 经检验:x =450是原方程的解..答:第一块试验田每亩收获蔬菜450千克..3、甲、乙两地相距19千米;某人从甲地去乙地;先步行7千米;然后改骑自行车;共用了2小时到达乙地..已知这个人骑自行车的速度是步行速度的4倍..求步行的速度和骑自行车的速度..解:设步行速度是x 千米/时;则247197=-+xx 解;得x =5 经检验:x =5是原方程的解..进尔4x =20千米/时答:步行速度是5千米/时;骑自行车的速度是20千米/时..4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶;但她在百货商场食品自选室发现;同样的酸奶;这里要比供销大厦每瓶便宜0.2元;因此;当第二次买酸奶时;便到百货商场去买;结果用去18.40元钱;买的瓶数比第一次买的瓶数多;问:她第一次在供销大厦买了几瓶酸奶解:⑴设她第一次在供销大厦买了x 瓶酸奶;则2.053140.185.12+⎪⎭⎫ ⎝⎛+=x x 解;得x =5 经检验:x =5是原方程的解..答:她第一次在供销大厦买了5瓶酸奶..5、某商店经销一种纪念品;4月份的营业额为2000元;为扩大销售;5月份该商店对这种纪念品打九折销售;结果销售量增加20件;营业额增加700元..⑴ 求这种纪念品4月份的销售价格..⑵ 若4月份销售这种纪念品获利800元;问:5月份销售这种纪念品获利多少元 解:⑴设4月份销售价为每件x 元;则xx 9.07002000202000+=+ 解;得x =50经检验:x =50是原方程的解..⑵4月份销售件数:2000÷50=40件每件进价:2000-800÷40=30元5月份销售这种纪念品获利:2000+700-30×40+20 =900元答:4月份销售价为每件50元;5月份销售这种纪念品获利900元..6、王明和李刚各自加工15个零件;王明每小时比李刚多加工1个;结果比李刚少用半小时完成任务;问:两人每小时各加工多少个零件解:设李刚每小时加工x 个;则列方程为:xx 155.0115=++ 注:此方程去分母后化为一元二次方程7、某一项工程在招标时;接到甲、乙两个工程队的投标书;施工一天;需付甲工程队款1.5万元;乙工程队款1.1万元;工程领导小组根据甲、乙两队的投标书测算;可有三种施工方案:方案一:甲队单独完成这项工程刚好如期完成;方案二:乙队单独完成这项工程要比规定日期多用5天;方案三:若甲、乙两队合做4天;余下的工程由乙队单独完成;也正好如期完成.. 试问:在不耽误工期的情况下;你觉得哪一种施工方案最节省工程款 请说明理由.. 解:设规定时间为x 天;则154=++x x x 解;得x =20 经检验:x =20是原方程的解..方案一付款:1.5×20=30万元方案二:耽误工期不预考虑..方案三付款:1.5×4+1.1×20=28万元答:方案三节省工程款..8、一个分数的分母比分子大7;如果把此分数的分子加17;分母减4;所得新分数是原分数的倒数;求原分数..解:设原分数为x;则xx x x 74717+=-++ 解;得x =3 经检验:x =3是原方程的解.. 原分数为:1037=+x x 答:原分数为103.. 9、今年某市遇到百年一遇的大旱;全市人民齐心协力积极抗旱..某校师生也行动起来捐款打井抗旱;已知第一天捐款4800元;第二天捐款6000元;第二天捐款人数比第一天捐款人数多50人;且两天人均捐款数相等;那么两天共参加捐款的人数是多少 解:设第一天有x 人;则5060004800+=x x 解;得x =200 经检验:x =200是原方程的解..x +x +50=450人答:两天共参加捐款的人数是450人..10、某超市用5000元购进一批新品种的苹果进行试销;由于销售状况良好;超市又调拨11000元资金购进该品种苹果;但这次的进价比试销时的进价每千克多了0.5元;购进苹果数量是试销时的2倍..⑴ 试销时该品种苹果的进价是每千克多少元⑵ 如果超市将该品种苹果按每千克7元的定价出售;当大部分苹果售出后;余下的400千克按定价的七折售完;那么超市在这两次苹果销售中共盈利多少元解:⑴设试销时进价为每千克x 元;则5.01100050002+=⨯x x 解;得x =5 经检验:x =5是原方程的解..⑵ 1100050004007.074005.0511000550007--⨯⨯+⎪⎭⎫ ⎝⎛-++⨯=4160元 答:试销时进价为每千克5元;超市在这两次苹果销售中共盈利4160元..11、某公司开发的960件新产品必须加工后才能投放市场;现有甲、乙两个工厂都想加工这批产品;已知甲工厂单独加工48件产品的时间与乙工厂单独加工72件产品的时间相等;而且乙工厂每天比甲工厂多加工8件产品;在加工过程中;公司需每天支付50元劳务费请工程师到厂进行技术指导..⑴ 甲、乙两个工厂每天各能加工多少件产品⑵ 该公司要选择既省时又省钱的工厂加工产品;乙工厂预计甲工厂将向公司报加工费用为每天800元;请问:乙工厂向公司报加工费用每天最多为多少元时;有望加工这批产品解:⑴设甲每天加工件产x 品;乙每天加工x +8件;则87248+=x x 解;得x =16 经检验:x =16是原方程的解..x +8=24件⑵设乙工厂向公司报加工费每天最多为y 元;则249605024960169605016960800⨯+≥⨯+⨯y 解;得y ≤1225 答:甲每天加工16件产品;乙每天加工24件;乙工厂向公司报加工费每天最多为1225元..12、用价值100元的甲种涂料与价值240元的乙种涂料配制成一种新涂料;其每千克的售价比甲种涂料每千克的售价少3元;比乙种涂料每千克的售价多1元;求这种新涂料每千克的售价..解:设新涂料每千克x 元;则xx x 24010012403100+=-++ 解;得x =17 经检验:x =17是原方程的解..答:这种新涂料每千克的售价是17元..13、为加快西部大开发;某自治区决定新修一条公路;甲、乙两工程队承包此项工程..如果甲工程队单独施工;则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成;现在甲、乙两队先共同施工4个月;剩下的由乙队单独施工;则刚好如期完成..问原来规定修好这条公路需多长时间解:设原来规定修好这条公路需要x 个月才能如期完成;则甲单独修好这条公路需要x 个月才能完成;乙单独修好这条公路需要x+6个月才能完成;由题意得:错误! 解之得: x =12经经验:x=12是原方程的根且符合题意∴ 原方程的根是x=12答:原来规定修好这条公路需要12个月的时间才能如期完成..14、某中学到离学校15千米的西山春游;先遣队与大队同时出发;行进速度是大队的1.2倍;以便提前21 小时到达目的地做准备工作;求先遣队与大队的速度各是多少 解:设大队的速度是x 千米/时;则先遣队的速度是1.2x 千米/时;由题意得: 错误! - 错误!= 错误!解之得:x=5经检验:x=5是原方程的根且符合题意∴原方程的根是x=5∴ 1.2x=1.2×5=6千米/时答:先遣队的速度是6千米/时;大队的速度是5千米/时15、一项工程;需要在规定日期内完成;如果甲队独做;恰好如期完成;如果乙队独做;就要超过规定3天;现在由甲、乙两队合作2天;剩下的由乙队独做;也刚好在规定日期内完成;问规定日期是几天 本题5分解:设规定日期是x 天;则甲队独完成需要x 天;乙队独完成需要x+3天;由题意得:错误! + 错误!= 1解之得:x=6经检验:x=6是原方程的根且符合题意∴原方程的根是x=6答:规定日期是6天16、某市今年1月1日起调整居民用水价格;每立方米水费上涨25%.小明家去年12月份的水费是18元;而今年5月份的水费是36元.已知小明家今年5月份的用水量比去年12月份多6m3;求该市今年居民用水的价格.解:设该市去年居民用水的价格为x 元/m3;则今年用水价格为1+25%x 元/m3 根据题意得:36186(125%)x x-=+………………………………………4分 解得:x=1.8经检验:x=1.8是原方程的解答:该市今年居民用水的价格为2.25元/m3 …………………………………7分17.小明家、王老师家、学校在同一条路上;小明家到王老师家的路程为3千米;王老师家到学校的路程为0.5千米;由于小明的父母战斗在抗“非典”第一线;为了使他能按时到校;王老师每天骑自行车接小明上学..已知王老师骑自行车的速度是步行速度的3倍;每天比平时步行上班多用了20分钟;问王老师的步行速度及骑自行车速度各是多少千米/时解:设王老师的步行速度为x 千米/时;则骑自行车速度为3x 千米/时..1分依题意得:315.035.033=-++x x 4分 20分钟=31小时 解得:x=5 5分经检验:x=5是所列方程的解∴3x=3×5=15 6分答:王老师的步行速度及骑自行车速度各为5千米/时 和15千米/时 7分18、在争创全国卫生城市的活动中;我市一“青年突击队”决定义务清运一堆重达100吨的垃圾.开工后;附近居民主动参加到义务劳动中;使清运垃圾的速度比原计划提高了一倍;结果提前4小时完成任务;问“青年突击队”原计划每小时清运多少吨垃圾 解:设“青年突击队”原计划每小时清运x 吨垃圾;由题意得:错误!―4 = 错误!解之得:x= 错误!经检验x= 错误!是原方程的根;且符合题意∴原方程的根是:x= 错误!答:“青年突击队”原计划每小时清运 错误!吨垃圾..19、2007福建宁德课改;10分我国“八纵八横”铁路骨干网的第八纵通道——温州福州铁路全长298千米.将于2009年6月通车;通车后;预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米;火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间结果精确到0.01小时.解:设通车后火车从福州直达温州所用的时间为x 小时. 1分依题意;得29833122x x =⨯+. 5分 解这个方程;得14991x =. 8分 经检验14991x =是原方程的解. 9分 148 1.6491x =≈. 答:通车后火车从福州直达温州所用的时间约为1.64小时. 10分20、2007广东河池非课改;8分某商店在“端午节”到来之际;以2400元购进一批盒装粽子;节日期间每盒按进价增加20%作为售价;售出了50盒;节日过后每盒以低于进价5元作为售价;售完余下的粽子;整个买卖过程共盈利350元;求每盒粽子的进价. 解:设每盒粽子的进价为x 元;由题意得 1分20%x ×50-x2400-50×5=350 4分 化简得x2-10x -1200=0 5分解方程得x1=40;x2=-30不合题意舍去 6分经检验;x1=40;x2=-30都是原方程的解;但x2=-30不合题意;舍去. 7分答: 每盒粽子的进价为40元. 8分22、2007广西玉林课改;3分甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一;这时增加了乙队;两队又共同工作了1天;总量全部完成.那么乙队单独完成总量需要 DA.6天 B.4天 C.3天D.2天23、2007河北课改;2分炎炎夏日;甲安装队为A 小区安装66台空调;乙安装队为B 小区安装60台空调;两队同时开工且恰好同时完工;甲队比乙队每天多安装2台.设乙队每天安装x 台;根据题意;下面所列方程中正确的是 DA .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+ 24、2007吉林长春课改;5分张明与李强共同清点一批图书;已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同;且李强平均每分钟比张明多清点10本;求张明平均每分钟清点图书的数量.解:设张明平均每分钟清点图书x 本;则李强平均每分钟清点(10)x +本;依题意;得20030010x x =+. 3分 解得20x =.经检验20x =是原方程的解.答:张明平均每分钟清点图书20本. 5分注:此题将方程列为30020020010x x -=⨯或其变式;同样得分.25、2007江苏南通课改;3分有两块面积相同的试验田;分别收获蔬菜900kg 和1500kg;已知第一块试验田每亩收获蔬菜比第二块少300kg;求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg;根据题意;可得方程 CA .9001500300x x =+B .9001500300x x =- C .9001500300x x =+ D .9001500300x x=- 27、2007辽宁沈阳课改;10分甲、乙两个施工队共同完成某居民小区绿化改造工程;乙队先单独做2天后;再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的错误!;求甲、乙两个施工队单独完成此项工程各需多少天解:设甲施工队单独完成此项工程需x 天;则乙施工队单独完成此项工程需错误!x 天; ……………………1分根据题意;得 错误!+错误!=1 ………………………………… 4分解这个方程;得x =25 ………………………………………6分经检验;x =25是所列方程的根 ……………………………7分当x =25时;错误!x =20 …………………………………………9分答:甲、乙两个施工队单独完成此项工程分别需25天和20天.……………10分30、2007山东青岛课改;3分某市在旧城改造过程中;需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响;实际工作效率比原计划提高了20%;结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m;则根据题意可得方程 240024008(120)x x-=+% . 31、2007山东日照课改;7分今年4月18日;我国铁路实现了第六次大提速;这给旅客的出行带来了更大的方便.例如;京沪线全长约1500公里;第六次提速后;特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里;求第五次提速后和第六次提速后的平均时速各是多少解:设第五次提速后的平均速度是x 公里/时;则第六次提速后的平均速度是x+40公里/时.根据题意;得: x 1500-401500+x =815;……………………………………2分 去分母;整理得:x2+40x -32000=0;解之;得:x1=160;x2=-200; ……………………………… 4分经检验;x1=160;x2=-200都是原方程的解;但x2=-200<0;不合题意;舍去.∴x=160;x+40=200. …………………………………………6分答:第五次提速后的平均时速为160公里/时;第六次提速后的平均时速为200公里/时. ……………………… 7分32、2007山东泰安课改;9分某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本;并按该书定价7元出售;很快售完.由于该书畅销;第二次购书时;每本书的批发价已比第一次提高了20%;他用1500元所购该书数量比第一次多10本.当按定价售出200本时;出现滞销;便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了;还是赚钱了不考虑其它因素 若赔钱;赔多少 若赚钱;赚多少 解:设第一次购书的进价为x 元;则第二次购书的进价为(1)x +元.根据题意得:1200150010 1.2x x+= 4分 解得:5x =经检验5x =是原方程的解 6分 所以第一次购书为12002405=本. 第二次购书为24010250+=本第一次赚钱为240(75)480⨯-=元第二次赚钱为200(75 1.2)50(70.45 1.2)40⨯-⨯+⨯⨯-⨯=元所以两次共赚钱48040520+=元 8分答:该老板两次售书总体上是赚钱了;共赚了520元. 9分33、2007山东威海课改;7分甲、乙两火车站相距1280千米;采用“和谐”号动车组提速后;列车行驶速度是原来速度的3.2倍;从甲站到乙站的时间缩短了11小时;求列车提速后的速度.解法一:设列车提速前的速度为x 千米/时;则提速后的速度为3.2x 千米/时;根据题意;得12801280113.2x x-=. 4分 解这个方程;得80x =. 5分经检验;80x =是所列方程的根. 6分80 3.2256∴⨯=千米/时.所以;列车提速后的速度为256千米/时. 7分解法二: 设列车提速后从甲站到乙站所需时间为x 小时;则提速前列车从甲站到乙站所需时间为(11)x +小时;根据题意;得128012803.211x x⨯=+.5x ∴=. 则 列车提速后的速度为=256千米/时答:列车提速后的速度为256千米/时.34、2007四川德阳课改;8分某公司投资某个工程项目;现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息;从节约资金的角度考虑;公司应选择哪个工程队、应付工程队费用多少元解:设甲队单独完成需x 天;则乙队单独完成需要2x 天.根据题意得 1分111220x x +=; 3分 解得 30x =.经检验30x =是原方程的解;且30x =;260x =都符合题意. 5分∴应付甲队30100030000⨯=元.应付乙队30255033000⨯⨯=元.∴公司应选择甲工程队;应付工程总费用30000元. 8分35、2007广东深圳课改;8分A 、B 两地相距18公里;甲工程队要在A 、B 两地间铺设一条输送天然气管道;乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里;甲工程队提前3周开工;结果两队同时完成任务;求甲、乙两工程队每周各铺设多少公里管道解:设甲工程队每周铺设管道x 公里;则乙工程队每周铺设管道1+x 公里 ………………………1分根据题意; 得 311818=+-x x ………………………4分 解得21=x ;32-=x ………………………6分经检验21=x ;32-=x 都是原方程的根但32-=x 不符合题意;舍去 ………………………7分∴3x+1=答: 甲工程队每周铺设管道2公里;则乙工程队每周铺设管道3公里.………………………8分。